EP1355956A2 - Polymerization of olefinic compounds - Google Patents

Polymerization of olefinic compounds

Info

Publication number
EP1355956A2
EP1355956A2 EP02709300A EP02709300A EP1355956A2 EP 1355956 A2 EP1355956 A2 EP 1355956A2 EP 02709300 A EP02709300 A EP 02709300A EP 02709300 A EP02709300 A EP 02709300A EP 1355956 A2 EP1355956 A2 EP 1355956A2
Authority
EP
European Patent Office
Prior art keywords
hydrocarbyl
ligand
transition metal
ethylene
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02709300A
Other languages
German (de)
French (fr)
Inventor
Maurice S. Brookhart
Keith Kunitsky
Jon M. Malinoski
Lin Wang
Yin Wang
Weijun Liu
Lynda Kaye Johnson
Kristina A. Kreutzer
Steven Dale Ittel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/871,099 external-priority patent/US6897275B2/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of EP1355956A2 publication Critical patent/EP1355956A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • TITLE POLYMERIZATION OF OLEFINIC COMPOUNDS FIELD OF THE INVENTION The polymerization of olefins is catalyzed by transition metal complexes of selected imines, amines or phosphines containing another group such as ester or amide, and in some instances other olefinic compounds such as unsaturated esters may be copolymerized with olefins.
  • Useful transition metals include Ni, Fe, Ti and Zr. Certain types of late transition metal complexes are especially useful in making polymers containing polar comonomers.
  • olefins such as ethylene and propylene
  • olefins such as ethylene and propylene
  • Various methods are known for polymerizing olefins, such as free radical polymerization of ethylene, and coordination polymerization using catalysts such as Ziegler- Natta-type and metallocene-type catalysts.
  • catalysts such as Ziegler- Natta-type and metallocene-type catalysts.
  • new catalysts are constantly being sought for such polymerizations, to lower the cost of production and/or make new, and hopefully improved, polymer structures.
  • This invention concerns new transition metal complexes, and processes for the polymerization of olefins using such new transition metal complexes.
  • a first aspect of the present invention concerns a Group 3 through 11 (IUPAC) transition metal or a lanthanide metal complex of a ligand of the formula (I)
  • R and R 2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an E s of about -0.90 or less;
  • R 3 , R 4 , R 5 , and R 6 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl;
  • R 7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, or silyl;
  • R 8 is hydrocarbyl, substituted hydrocarbyl or silyl; provided that any two of R 3 , R 4 , R 5 , R 6 , R 7 and R 8 vicinal or geminal to one another together may form a ring; when Q is phosphorous and Z is oxygen:
  • R 1 and R 2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an E s of about -0.90 or less;
  • R 3 and R 4 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl;
  • R 8 is not present;
  • R 6 is -OR 9 , -NR 10 R 1 1 , hydrocarbyl or substituted hydrocarbyl, wherein R 9 is hydrocarbyl or substituted hydrocarbyl, and R 10 and R 1 1 are each independently hydrogen, hydrocarbyl or substituted hydrocarbyl; and provided that any two of R 3 , R 4 , and R 6 vicinal or geminal to one another may form a ring; or
  • R 1 and R 2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an E s of about -0.90 or less;
  • R 3 , R 4 , R 5 and R 6 are each
  • a second aspect of the present invention concerns a "first" process for the polymerization of olefins, comprising the step of contacting, under polymerizing conditions, one or more polymerizable olefins with an active polymerization catalyst comprising the aforementioned transition metal complex.
  • a third aspect of this invention is a "second" process for the manufacture of a polar copolymer by contacting, under polymerizing conditions, a hydrocarbon olefin, a polar olefin, and a polymerization catalyst comprising a nickel complex of a bidentate ligand which is an active ligand.
  • This third aspect also includes an improved process for the manufacture of a polar copolymer by contacting, under polymerizing conditions, a hydrocarbon olefin, a polar olefin, and a polymerization catalyst comprising a nickel complex, wherein the improvement comprises that the polymerization catalyst comprises a nickel metal complex of a bidentate ligand which is an active ligand.
  • hydrocarbyl group is a univalent group containing only carbon and hydrogen. If not otherwise stated, it is preferred that hydrocarbyl groups (and alkyl groups) herein contain 1 to about 30 carbon atoms.
  • substituted hydrocarbyl herein is meant a hydrocarbyl group that contains one or more substituent groups which are inert under the process conditions to which the compound containing these groups is subjected (e.g., an inert functional group, see below).
  • the substituent groups also do not substantially detrimentally interfere with the polymerization process or operation of the polymerization catalyst system. If not otherwise stated, it is preferred that substituted hydrocarbyl groups herein contain 1 to about 30 carbon atoms. Included in the meaning of "substituted” are chains or rings containing one or more heteroatoms, such as nitrogen, oxygen and/or sulfur, and the free valence of the substituted hydrocarbyl may be to the heteroatom.
  • a substituted hydrocarbyl all of the hydrogens may be substituted, as in trifluoromethyl.
  • (inert) functional group herein is meant a group other than hydrocarbyl or substituted hydrocarbyl that is inert under the process conditions to which the compound containing the group is subjected.
  • the functional groups also do not substantially interfere with any process described herein that the compound in which they are present may take part in. Examples of functional groups include halo (fluoro, chloro, bromo and iodo), and ether such as -OR 22 wherein R 22 is hydrocarbyl or substituted hydrocarbyl.
  • the functional group may be near a transition metal atom the functional group should not coordinate to the metal atom more strongly than the groups in those compounds are shown as coordinating to the metal atom, that is they should not displace the desired coordinating group.
  • silyl herein is meant a monovalent group whose free valence is to a silicon atom.
  • the other three valencies of the silicon atom are bound to other groups such as alkyl, halo, alkoxy, etc.
  • Silyl groups are also included in functional groups.
  • a “cocatalyst” or a “catalyst activator” is meant one or more compounds that react with a transition metal compound to form an activated catalyst species.
  • One such catalyst activator is an "alkyl aluminum compound” which, herein, is meant a compound in which at least one alkyl group is bound to an aluminum atom.
  • Other groups such as, for example, alkoxide, hydride and halogen may also be bound to aluminum atoms in the compound.
  • neutral Lewis base a compound, which is not an ion, which can act as a Lewis base.
  • examples of such compounds include ethers, amines, sulfides, olefins, and organic nitriles.
  • neutral Lewis acid is meant a compound, which is not an ion, which can act as a Lewis acid.
  • examples of such compounds include boranes, alkylaluminum compounds, aluminum halides, and antimony [V] halides.
  • cationic Lewis acid is meant a cation which can act as a Lewis acid. Examples of such cations are sodium and silver cations.
  • an "empty coordination site” is meant a potential coordination site on a transition metal atom that does not have a ligand bound to it. Thus if an olefin molecule (such as ethylene) is in the proximity of the empty coordination site, the olefin molecule may coordinate to the metal atom.
  • a ligand into which an olefin molecule may insert between the ligand and a metal atom or a "ligand that may add to an olefin”
  • L-M metal atom which forms a bond
  • an olefin molecule or a coordinated olefin molecule
  • a "ligand which may be displaced by an olefin” is meant a ligand coordinated to a transition metal which, when exposed to the olefin (such as ethylene), is displaced as the ligand by the olefin.
  • a “monoanionic ligand” is meant a ligand with one negative charge.
  • aryl is meant a monovalent aromatic group in which the free valence is to the carbon atom of an aromatic ring.
  • An aryl may have one or more aromatic rings which may be fused, connected by single bonds or other groups.
  • substituted aryl is meant a monovalent aromatic group substituted as set forth in the above definition of “substituted hydrocarbyl”. Similar to an aryl, a substituted aryl may have one or more aromatic rings which may be fused, connected by single bonds or other groups; however, when the substituted aryl has a heteroaromatic ring, the free valence in the substituted aryl group can be to a heteroatom (such as nitrogen) of the heteroaromatic ring instead of a carbon.
  • each R is simply another group on a carbon atom to satisfy carbon's normal valence requirement of 4.
  • ⁇ -allyl group a monoanionic ligand comprised of 1 sp 3 and two sp 2 carbon atoms bound to a metal center in a delocalized ⁇ 3 fashion indicated by
  • the three carbon atoms may be substituted with other hydrocarbyl groups or functional groups.
  • E s is meant a parameter to quantify steric effects of various groupings, see R. W. Taft, Jr., J. Am. Chem. Soc, vol. 74, p. 3120-3128 (1952), and M.S. Newman, Steric Effects in Organic Chemistry, John Wiley & Sons, New York, 1956, p. 598-603, which are both hereby included by reference.
  • the E s values are those described for o-substituted benzoates in these publications. If the value of E s for a particular group is not known, it can be determined by methods described in these references.
  • under polymerization conditions is meant the conditions for a polymerization that are usually used for the particular polymerization catalyst system being used. These conditions include things such as pressure, temperature, catalyst and cocatalyst (if present) concentrations, the type of process such as batch, semibatch, continuous, gas phase, solution or liquid slurry etc., except as modified by conditions specified or suggested herein. Conditions normally done or used with the particular polymerization catalyst system, such as the use of hydrogen for polymer molecular weight control, are also considered “under polymerization conditions”. Other polymerization conditions such as presence of hydrogen for molecular weight control, other polymerization catalysts, etc., are applicable with this polymerization process and may be found in the references cited herein. By a “hydrocarbon olefin” is meant an olefin containing only carbon and hydrogen.
  • polar (co)monomer or "polar olefin” is meant an olefin which contains elements other than carbon and hydrogen.
  • polar copolymer When copolymerized into a polymer the polymer is termed a "polar copolymer".
  • Useful polar comonomers are found in US 5,866,663, WO 9905189, WO 9909078 and WO 9837110, and S. D. Ittel, et a!., Chem. Rev., vol. 100, p. 1169-1203 (2000), all of which are incorporated by reference herein for all purposes as if fully set forth.
  • CO carbon monoxide
  • transition metal generally refers to Groups 3 through 11 of the periodic table (IUPAC) and the lanthanides, especially those in the 4th, 5th, 6th, and 10th periods.
  • Suitable transition metals include Ni, Pd, Cu, Pt, Fe, Co, Ti, Zr, V, Hf, Cr, Ru, Rh and Re, with Ni, Fe, Ti, Zr, Cu and Pd being more preferred and Ni, Fe, Ti and Zr being especially preferred.
  • Preferred oxiation states for some of the transition metals are Ni[ll], Ti[IV], Zr[IV], and Pd[ll].
  • the first polymerizations herein are carried out by a transition metal complex of (I).
  • Transition metal complexes in which (I) appears may, for example, have the formula (IV)
  • R 1 through R 8 , Q and Z are as defined above; M 1 is a transition metal; each X is independently a monoanion; and m is an integer equal to an oxidation state of M 1 .
  • Transition metal complexes in which (I) appears may, for example, also have the formula (IX)
  • R 1 through R 8 , Q and Z are as defined above;
  • M 1 is a transition metal;
  • L 1 is a monoanionic ligand which may add to an olefin;
  • n is equal to the oxidation state of M 1 minus one;
  • L 2 is a ligand which may be displaced by an olefin or is an empty coordination site; or L 1 and L 2 taken together are a bidentate monoanionic ligand into which an olefin molecule may insert between the ligand and a metal atom; and
  • W is a relatively noncoordinating anion.
  • R 1 is (VII) (see below) or a 2,5-disubstituted pyrrole, more preferably (VII); and/or R 4 is alkyl, especially alkyl containing 1 to 6 carbon atoms, more preferably methyl; and/or
  • R5 is -OR 12 , -R 13 or -NR 1 R 15 ;
  • R 2 is alkyl, especially alkyl containing 1 to 6 carbon atoms; and/or R 3 is alkyl, especially alkyl containing 1 to 6 carbon atoms; and/or R 14 is alkyl containing 1 to 6 carbon atoms, especially methyl; and/or
  • R 15 is hydrogen or alkyl; and/or R 15 and R 4 taken together form a ring; and/or R 4 and R 12 taken together form a ring; and/or R 4 and R 13 taken together form a ring; when Q is phosphorous and Z is nitrogen: R 1 and R 2 are t-butyl; and/or R 8 is aryl or substituted aryl, especially (VII); and/or R 3 , R 4 and R 5 are hydrogen, hydrocarbyl or substituted hydrocarbyl, especially hydrogen; and/or
  • R 6 is aryl or substituted aryl, more preferably phenyl; and/or R 7 is benzyl; when Q is phosphorous and Z is oxygen, and R 5 and R 7 taken together form a double bond: R 1 and R 2 are t-butyl;
  • R 3 and R 4 are hydrogen; and/or
  • R 6 is -OR 9 , -NR 10 R 11 , alkyl, aryl or substituted aryl; and/or
  • R 9 is alkyl or aryl, especially alkyl containing 1 to 6 carbon atoms or phenyl, and more preferably methyl; and/or
  • R 10 and R 11 are each independently aryl or substituted aryl, more preferably both phenyl; ⁇ when Q is phosphorous and Z is oxygen, and R 7 is hydrocarbyl or substituted hydrocarbyl:
  • R 1 and R 2 are t-butyl
  • R 3 , R 4 , R 5 , and R 6 are hydrogen; and or
  • R 7 is aryl or substituted aryl.
  • R 20 , R 21 , R 22 , R 23 and R 24 are each independently hydrogen, hydrocarbyl substituted hydrocarbyl or a functional group, provided than any two of R 20 , R 21 , R 22 , R 23 and R 24 ortho to another taken together may form a ring.
  • R 20 and R 24 is not hydrogen, and more preferably both of R 20 and R 24 are not hydrogen.
  • Useful groups for R 20 and R 24 include alkyl, especially alkyl containing 1 to 6 carbon atoms, halo especially chloro and bromo, alkoxy, aryl or substituted aryl especially phenyl.
  • Individual useful groups include 2,6-diisopropylphenyl, 2,6-dimethylphenyl, 2,4,6-trimethylphenyl, 2,6- dimethyl-4-chlorophenyl, and 2,6-dimethyl-4-bromophenyl.
  • Ligands (I) in which Q is nitrogen may be made by the reaction of a pyruvic (or a pyruvic-like compound which contains a group to be R 4 that is something other than methyl) acid ester or amide, or an ⁇ , ⁇ -dione and an appropriate arylamine.
  • Ligands (I) in which Q is phosphorous and Z is nitrogen may be prepared by the reaction of an appropriate imine with (di- t-butylphosphino)methyl lithium, with subsequent reaction of the lithium amide formed with a halocarbon such as benzyl bromide.
  • Transition metal complexes having neutral ligands such as (IV) and (IX) can be made by a variety of methods, see for instance previously incorporated US 5,880,241. In part how such compounds are made depends upon the transition metal compound used in the synthesis of the complex and in what each X (anion) in the final product is. For example, for transition metals such as Ni[ll], Fe[ll], Co[ll], Ti[IV] and Zr[IV] a metal halide such as the chloride may be mixed with the neutral ligand and transition metal complex, wherein X is halide.
  • nickel -ally- chloride dimer may be mixed with a neutral ligand in the presence of an alkali metal salt of a relatively noncoordinating anion such as sodium tetrakis[3,5- bistrifluoromethylphenyljborate (BAF for the anion alone) to form a complex in which one X is ⁇ -allyl and the other anion BAF.
  • a relatively noncoordinating anion such as sodium tetrakis[3,5- bistrifluoromethylphenyljborate (BAF for the anion alone)
  • transition metal complexes in which (I) (a neutral ligand) is present preferred transition metals are Pd, Ni, Fe, Co, Ti, Zr, Hf, Sc, V, Cr, and Ru, and especially preferred transition metals are Pd, Ni, Ti, Zr, Fe and Co, and a more preferred transition metals are Ni, Fe, Ti and Zr.
  • useful olefins include an olefin of the formula
  • H2C CH(CH2) n G (VIII), where n is 0 or an integer of 1 or more, g is hydrogen, -CO 2 R 25 or -C(O)NR 25 2 , and each R 25 is independently hydrogen, or hydrocarbyl substituted hydrocarbyl, styrenes, norbornenes and cyclopentenes.
  • Preferred olefins are when g is hydrogen and n is 0 (ethylene); or g is hydrogen and n is an integer of 1 to 12, especially one (propylene); or g is -CO2R 25 wherein R 25 is alkyl, especially alkyl containing 1 to 6 carbon atoms and more preferably methyl; and when g is -CO 2 R 25 , and n is 0 or an integer of 2 to 12. Copolymers may also be prepared.
  • a preferred copolymer is one containing ethylene and one or more others of (VIII), for example the copolymers ethylene/1-hexene, ethylene/propylene, ethylene/methyl acrylate (n is 0 and R 25 is methyl), and ethylene/methyl- or ethyl-1-undecylenate.
  • L 1 which form a bond with the metal into which an olefin may insert between it and the transition metal atom
  • hydrocarbyl and substituted hydrocarbyl especially phenyl and alkyl, and particularly methyl, hydride, and acyl
  • ligands L 2 which ethylene may displace include phosphine such as triphenylphosphine, nitrite such as acetonitrile, ether such as ethyl ether, pyridine, and tertiary alkylamines such as TMEDA (N,N,N',N'-tetramethylethylenediamine).
  • Ligands in which L 1 and L 2 taken together are a bidentate monoanionic ligand into which an olefin may insert between that ligand and the transition metal atom include ⁇ -allyl- or ⁇ -benzyl-type ligands (in this instance, sometimes it may be necessary to add a neutral Lewis acid cocatalyst such as triphenylborane to initiate the polymerization, see for instance previously incorporated US 5,880,241).
  • ligands ethylene may insert into (between the ligand and transition metal atom) see for instance J. P. Collman, et al., Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987.
  • L 1 is not a ligand into which ethylene may insert between it and the transition metal atom or if (IV) is present, it may be possible to add a cocatalyst which may convert L 1 or X into a ligand which will undergo such an insertion.
  • L 1 or X is halide such as chloride or bromide, or carboxylate, it may be converted to hydrocarbyl such as alkyl by use of a suitable alkylating agent such as an alkylaluminum compound, a Grignard reagent or an alkyllithium compound. It may be converted to hydride by using of a compound such as sodium borohydride. It is preferred that when the transition metal is alkylated or hydrided, that a relatively noncoordinating anion is formed. Such reactions are described in previously incorporated US 5,880,241.
  • a preferred cocatalyst in the first process is an alkylaluminum compound
  • useful alkylaluminum compounds include trialkylaluminum compounds such as triethylaluminum, trimethylaluminum and tri-i- butylaluminum, alkyl aluminum halides such as diethylaluminum chloride and ethylaluminum dichloride, and aluminoxanes such as methylaluminoxane.
  • L 1 and L 2 taken together may be a ⁇ -allyl or ⁇ -benzyl group such as
  • R is hydrocarbyl, and ⁇ -allyl and ⁇ -benzyl groups are preferred.
  • L 1 and L 2 taken together are ⁇ -allyl or ⁇ -benzyl, in order to initiate the polymerization it may be useful to have a Lewis acid such as triphenylboron or tris(pentafluorophenyl)boron also present.
  • the temperature at which the polymerization is carried out is about -100°C to about +200°C, preferably about -60°C to about 170°C, more preferably about -20°C to about 140°C.
  • the pressure of the ethylene or other gaseous olefin at which the polymerization is carried out is not critical, atmospheric pressure to about 275 MPa being a suitable range.
  • the first polymerization process herein may be run in the presence of various liquids, particularly aprotic organic liquids.
  • the catalyst system, ethylene or other olefinic monomer, and/or polymer may be soluble or insoluble in these liquids, but obviously these liquids should not prevent the polymerization from occurring.
  • Suitable liquids include alkanes, cycloalkanes, selected halogenated hydrocarbons, and aromatic hydrocarbons.
  • Specific useful solvents include hexane, toluene, benzene, methylene chloride, 1,2,4-trichlorobenzene and p-xylene.
  • the first polymerization process herein may also initially be carried out in the "solid state" by, for instance, supporting the transition metal compound on a substrate such as silica or alumina, activating if necessary it with one or more cocatalysts and contacting it with, say, ethylene.
  • the support may first be contacted (reacted) with a cocatalysts (if needed) such as an alkylaluminum compound, and then contacted with an appropriate transition metal compound.
  • the support may also be able to take the place of a Lewis or Bronsted acid, for instance an acidic clay such as montmorillonite, if needed.
  • These "heterogeneous" catalysts may be used to catalyze polymerization in the gas phase or the liquid phase.
  • gas phase is meant that a gaseous olefin is transported to contact with the catalyst particle.
  • the polymerization catalysts and/or polymer formed is in the form of a fluidized bed.
  • olefinic oligomers and polymers are made. They may range in molecular weight from oligomeric POs (polyolefins), to lower molecular weight oils and waxes, to higher molecular weight POs.
  • One preferred product is a POs with a degree of polymerization (DP) of about 10 or more, preferably about 40 or more.
  • DP is meant the average number of repeat units in a PO molecule.
  • the POs made by the processes described herein are useful in many ways. For instance if they are thermoplastics, they may be used as molding resins, for extrusion, films, etc. If they are elastomeric, they may be used as elastomers. If they contain functionalized monomers such as acrylate esters or other polar monomers, they are useful for other purposes, see for instance previously incorporated US 5,880,241.
  • the POs may have varying properties. Some of the properties that may change are molecular weight and molecular weight distribution, crystallinity, melting point, and glass transition temperature. Except for molecular weight and molecular weight distribution, branching can affect all the other properties mentioned, and branching may be varied (using the same nickel compound) using methods described in previously incorporated US 5,880,241.
  • blends of distinct polymers may have advantageous properties compared to "single" polymers.
  • polymers with broad or bimodal molecular weight distributions may be melt processed (be shaped) more easily than narrower molecular weight distribution polymers.
  • Thermoplastics such as crystalline polymers may often be toughened by blending with elastomeric polymers.
  • the transition metal containing polymerization catalyst disclosed herein can be termed the first active polymerization catalyst.
  • a second active polymerization catalyst (and optionally one or more others) is used in conjunction with the first active polymerization catalyst.
  • the second active polymerization catalyst may be another late transition metal catalyst, for example as described in previously incorporated US 5,880,241 , US 6,060,569 and US 6,174,795, as well as US 5,714,556 and US 5,955,555 which are also incorporated by reference herein as if fully set forth.
  • catalysts may also be used for the second active polymerization catalyst.
  • so-called Ziegler-Natta and/or metallocene-type catalysts may also be used.
  • These types of catalysts are well known in the polyolefin field, see for instance Angew. Chem., Int. Ed. Engl., vol. 34, p. 1143-1170 (1995), EP-A-0416815 and US 5,198,401 for information about metallocene-type catalysts, and J. Boor Jr., Ziegler- Natta Catalysts and Polymerizations, Academic Press, New York, 1979 for information about Ziegler-Natta-type catalysts, all of which are hereby included by reference.
  • the first olefin(s) (olefin(s) polymerized by the first active polymerization catalyst) and second olefin(s) (the monomer(s) polymerized by the second active polymerization catalyst) are identical.
  • the second olefin may also be a single olefin or a mixture of olefins to make a copolymer.
  • the first active polymerization catalyst polymerizes one or olefins, a monomer that may not be polymerized by said second active polymerization catalyst, and/or vice versa. In that instance two chemically distinct polymers may be produced. In another scenario two monomers would be present, with one polymerization catalyst producing a copolymer, and the other polymerization catalyst producing a homopolymer.
  • the first active polymerization catalyst is described in detail above.
  • the second active polymerization catalyst may also meet the limitations of the first active polymerization catalyst, but must be chemically distinct. For instance, it may utilize a different ligand which differs in structure between the first and second active polymerization catalysts. In one preferred process, the ligand type and the metal are the same, but the ligands differ in their substituents.
  • two active polymerization catalysts include systems in which a single polymerization catalyst is added together with another ligand, preferably the same type of ligand, which can displace the original ligand coordinated to the metal of the original active polymerization catalyst, to produce in situ two different polymerization catalysts.
  • the molar ratio of the first active polymerization catalyst to the second active polymerization catalyst used will depend on the ratio of polymer from each catalyst desired, and the relative rate of polymerization of each catalyst under the process conditions. For instance, if one wanted to prepare a "toughened" thermoplastic polyethylene that contained 80% crystalline polyethylene and 20% rubbery polyethylene, and the rates of polymerization of the two catalysts were equal, then one would use a 4:1 molar ratio of the catalyst that gave crystalline polyethylene to the catalyst that gave rubbery polyethylene. More than two active polymerization catalysts may also be used if the desired product is to contain more than two different types of polymer.
  • the polymers made by the first active polymerization catalyst and the second active polymerization catalyst may be made in sequence, i.e., a polymerization with one (either first or second) of the catalysts followed by a polymerization with the other catalyst, as by using two polymerization vessels in series. However it is preferred to carry out the polymerization using the first and second active polymerization catalysts in the same vessel(s), i.e., simultaneously. This is possible because in most instances the first and second active polymerization catalysts are compatible with each other, and they produce their distinctive polymers in the other catalyst's presence. Any of the processes applicable to the individual catalysts may be used in this polymerization process with 2 or more catalysts, i.e., gas phase, liquid phase, continuous, etc.
  • the polymers produced by this process may vary in molecular weight and/or molecular weight distribution and/or melting point and/or level of crystallinity, and/or glass transition temperature and/or other factors.
  • the polymers produced are useful as molding and extrusion resins and in films as for packaging. They may have advantages such as improved melt processing, toughness and improved low temperature properties.
  • Catalyst components which include transition metal complexes of
  • such a catalyst component could include the transition metal complex supported on a support such as alumina, silica, a polymer, magnesium chloride, sodium chloride, etc., with or without other components being present. It may simply be a solution of the transition metal complex, or a slurry of the transition metal complex in a liquid, with or without a support being present.
  • Hydrogen or other chain transfer agents such as silanes (for example trimethylsilane or triethylsilane) may be used to lower the molecular weight of polyolefin produced in the polymerization process herein. It is preferred that the amount of hydrogen present be about 0.01 to about 50 mole percent of the olefin present, preferably about 1 to about 20 mole percent.
  • the relative concentrations of a gaseous olefin such as ethylene and hydrogen may be regulated by varying their partial pressures.
  • a transition metal complex of Groups 6 to 11 preferably Groups 8-1 1 , more preferably Ni or Pd, and especially preferably Ni, is used.
  • the transition metal is complexed to an "active ligand", and this ligand is bi- or higher (tri-, tetra, etc.) dentate.
  • the ligand may be neutral (have no charge) or anionic (have one or more negative charges). Bidentate ligands are preferred.
  • the active ligand has certain properties, measured by a specific test, that classify it as an active ligand.
  • the ligand may be active with one transition metal but not with another.
  • transition metal complexes when used as olefin polymerization catalyst (components), they are usually used in conjunction with other catalyst components, such as alkylating agents, and/or Lewis acids, and/or others. It has been found that these transition metal complexes, when having at least one ⁇ -allyl also coordinated to the transition metal, will initiate the polymerization of ethylene, and/or copolymerization of ethylene and ethyi-10-undecylenate, under specified conditions (see below) in the absence of any other cocatalysts. This in a sense makes them especially active in olefin polymerizations, especially polymerizations in which a polar monomer is used (and copolymerized) with a hydrocarbon olefin, especially ethylene.
  • these ligands have at least two different types of groups which coordinate to the transition metal, for example two different heteroatom groups such as (in a bidentate ligand) N and O, or N and P, or P and O, etc.
  • both the heteroatoms and the groups of which they are a part may be the same.
  • the heteroatoms may be same, but the groups of which they are a part are different, for example for nitrogen they may be amino or imino, for oxygen they may be keto or hydroxy, etc.
  • Hemilabile and hybrid ligands are known in the art, see for instance: J. C. Jeffrey et al., Inorg. Chem., vol. 18, p. 2658 (1979); L. P. Barthel-Rosa, et al., Inorg. Chem., vol. 37, p. 633 (1998); S. Mecking, et al., Organometallics vol. 15, p. 2650 (1996); A. M.
  • R 26 is hydrogen, alkyl or substituted alkyl, preferably hydrogen or n-alkyl, and ethylene is especially preferred.
  • a preferred polar olefin is
  • R 27 is alkylene or a covalent bond, more preferably n-alkylene or a covalent bond, and especially preferably a covalent bond
  • R 28 is hydrocarbyl, substituted hydrocarbyl, or a metal, or any easily derivable functionality such as amide or nitrile, and more preferably R 28 is hydrocarbyl and substituted hydrocarbyl.
  • Another type of preferred polar olefin is a vinyl olefin wherein the polar group is attached directly to a vinylic carbon atom, for example when R 27 is
  • the polymerization process be run at a temperature of about 50°C, more preferably 60°C to about 170°C, and an ethylene partial pressure of at least about 700 kPa. More preferably the temperature range is about 80°C to about 140°C and/or a lower ethylene pressure is about 5.0 MPa or more, and/or a preferred upper limit on ⁇ ethylene pressure is about 200 MPa, especially preferably about 20 MPa.
  • the polymerizations may otherwise be carried out in the "normal" manner for such ligands (including the presence of Lewis acids, which are not present in part of the test to determine whether a ligand is an active ligand
  • Polymerization without added Lewis acids is described herein in Examples 39-45, 54-58, 70, 73, 91 and 192.
  • Examples of ligands with excellent potential for being active ligands are listed in previously incorporated S. Ittel, et al., Chem. Rev., vol. 100, p.
  • 1177-1179 and are (Reference Numbers from their Table 2 given): 116 E-33; 116 E-32; 116 E-15; 116 E-57; 116 E-51; 116 E-60; 116 E-185; 116 E-23; 116 E-89; 116 E-29; 116 E-27; 116 E-61 ; 116 E-43; 116 E-49; 116 E-39; 116 E-56; 116 E-36; 116 E-95; 116 E-3; 116 E-184; 116 E-141 ; 116 E-144; 116 E-53; 116 E-105; 116 E-106; 116 E-37; 116 E-46; 116 E-44; 139; 116 E-10; 116 E-162; 116 E-16; 116 E-48; 116 E-30; 116 E-47; 116 E-55; 116 E-24; 116 E-54; 140; 136; 116 E-34; and 116 E-
  • a ligand is termed an "active ligand" if it meets one or both of the following two tests:
  • Test 1 The yield of polyethylene obtained under condition 1-1 is greater than or equal to one half of the maximum yield of polyethylene obtained under conditions 1-2 and 1-3.
  • Conditions 1-1 Heat a clean 600 mL Parr® reactor under vacuum, and then allow it to cool under nitrogen. Next, heat the reactor to 80°C. In a nitrogen-filled drybox, weigh out 0.0085 mmole of the neutral nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H 5 )], the cationic nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H5)] + [B(3,5-(CF3) 2 C 6 H3)4]-, or the cationic nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H5)] + [B(C 6 F5)4]- and dissolve it in 60 mL of chlorobenzene and then place the solution in a 150 mL addition cylinder.
  • the neutral nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H 5 )]
  • the cationic nickel(ll) allyl complex [(L ⁇ L')N
  • Condition 1-3 Repeat the procedure of Condition 1-1 , except include 10 equiv of B(C 6 F 5 ) 3 in the addition funnel.
  • Test 2 The yield of E/E-10-U copolymer obtained under Condition
  • Condition 1-4 is greater than or equal to one third of the maximum yield of polyethylene obtained under Conditions 1-5 and 1-6.
  • Condition 1-4 Heat a clean 600 mL Parr® reactor under vacuum, and then allow it to cool under nitrogen. In a nitrogen-filled drybox, weigh out 0.0094 mmole of the neutral nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H 5 )], the cationic nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H 5 )] + [B(3,5-(CF 3 ) 2 C 6 H 3 ) 4 ]-, or the cationic nickel(ll) allyl complex [(L ⁇ L')Ni(C 3 H5)] + [B(C 6 F5)4]- and dissolve it in 90 mL of toluene and 60 mL of E-10-U in a 300 mL RB flask.
  • Condition 1-5 Repeat the procedure of Conditions 1-4, except include 80 equiv of BPh 3 in the RB flask.
  • Condition 1-6 Repeat the procedure of Conditions 1-4, except include 80 equiv of B(C 6 F5) 3 in the RB flask.
  • active Ligands L ⁇ L' is bidentate ligand being tested, and E-10-U is ethyl 10-undecylenate.
  • Preferred active ligands are those that meet the conditions for Test 2.
  • E-10-U - ethyl-10-undecylenate EG - end-group refers to the ester group of the acrylate being located in an unsaturated end group of the ethylene copolymer
  • IC - in-chain refers to the ester group of the acrylate being bound to the main-chain of the ethylene copolymer
  • Total methyls per 1000 CH 2 are measured using different NMR resonances in H and 13 C NMR spectra. Because of accidental overlaps of peaks and different methods of correcting the calculations, the values measured by 1 H and 13 C NMR spectroscopy will not be exactly the same, but they will be close, normally within 10-20%) at low levels of acrylate comonomer. In 13 C NMR spectra, the total methyls per 1000 CH 2 are the sums of the 1B-), 1B 2 , 1B 3 , and 1B + , EOC resonances per 1000 CH 2 , where the CH 2 's do not include the CH 2 's in the alcohol portions of the ester group.
  • the total methyls measured by 3 C NMR spectroscopy do not include the minor amounts of methyls from the methyl vinyl ends nor the methyls in the alcohol portion of the ester group.
  • the total methyls are measured from the integration of the resonances from 0.6 to 1.08 ppm and the CH 2 's are determined from the integral of the region from 1.08 to 2.49 ppm. It is assumed that there is 1 methine for every methyl group, and 1/3 of the methyl integral is subtracted from the methylene integral to remove the methine contribution.
  • the methyl and methylene integrals are also usually corrected to exclude the values of the methyls and methylenes in the alcohol portion of the ester group, if this is practical.
  • the viscous oil was filtered cold using a cold, coarse filter and was washed with 4x15 mL cold hexanes.
  • the yellow oil was dried in vacuo for 2 h. It weighed 0.619 g.
  • the filtrate was evaporated.
  • the resulting oil was dissolved in 100 mL hexanes.
  • the solution was cooled at -40°C overnight. Hexanes were decanted.
  • the sample was dried in vacuo for 2 h.
  • the weight of the yellow oil was 4.172 g (37% overall yield).
  • Ligand L12 (0.5 g, 1.64 mmol), 0.222 g (0.82 mmol) nickel allyl chloride dimer, 1.453 g (1.64 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 30 mL THF were mixed in a 100 mL RB flask. The burgundy mixture was stirred at RT for 3 h. The mixture was then evaporated under full vacuum. The residue was dissolved in ca.
  • TCB TCB
  • optionally comonomers were added to the glass insert.
  • a Lewis acid cocatalyst typically BPh 3 or B(C 6 Fs) 3
  • the insert was then capped and sealed. Outside of the drybox, the tube was placed under ethylene and was shaken mechanically at the temperature listed in Table 1 for about 18 h.
  • the resulting reaction mixture was mixed with methanol, filtered, repeatedly washed with methanol and the solid polymer dried in vacuo.
  • Table 1 gives general conditions for the various polymerizations. The results of these polymerizations are reported in Tables 2-13.
  • Examples 93-127 1 H and 31 P NMR spectra were recorded on either a Varian 300 MHz or Bruker Avance-300 MHz spectrometers. 1 H NMR spectra of polymer were taken in C 6 D 5 Br at 120°C.
  • Nickel dimer, [Ni(C 3 H 5 )CI] 2 was synthesized using a similar procedure to that described by G. Wilke et al., Angew. Chem., Int. Ed. Engl. 1966, 5, 151.
  • a Schlenk flask was charged with [Ni(C 3 H 5 )CI] 2 (108 mg, 0.4 mmol) and 15 mL dry, air-free hexane.
  • the flask was cooled to -78°C and a solution of appropriate phosphine in 10 mL hexane was added with stirring.
  • the reaction mixture was allowed to warm to RT and stirred for 1-2 h. Solid product precipitated out. The solid was filtered and dried under vacuum. The results are summarized in Table 16.
  • Polymerizations were carried out in a 1000 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture and a cooling system.
  • the reactor was heated under vacuum at 100°C for 1 h before use.
  • After the reactor was purged with ethylene for three times, 185 mL dry, air-free toluene was added via syringe.
  • the solvent was purged with ethylene at 2.76 MPa for three times and heated up to the desired temperature.
  • Catalyst 23 was dissolved in 15 mL toluene and was rapidly added to the reactor via cannula. The reaction mixture was stirred under 2.76 MPa ethylene pressure, then quenched by addition of acetone and methanol. The polymers were filtered from the liquid, washed with acetone and dried in vacuo at 70°C overnight. The conditions and results are summarized in Table 20. Table 20
  • Example 154 - Synthesis of 27a (X) was prepared using the same literature procedure as nickel allyl chloride dimer, with the exception that methyl-2-bromomethyl acrylate was substituted for allyl chloride.
  • Catalyst 27 was prepared by following the same procedure as catalyst 23 using 0.300 g (0.589 mmol) 27a and 0.556 g (0.627 mmol)
  • the flask was back-filled twice with 101 kPa ethylene and charged with 50 mL toluene. The flask was then charged with 1.5 mL MMAO (6.42 wt. %, solution in heptane) and stirred under 101 kPa ethylene. The polymerization was quenched with 10 mL acetone/2 mL HCI and poured into stirring methanol to precipitate the polymer. The product was isolated by filtration, washed with acetone, and dried in a vacuum oven. Results are given in Table 28.
  • GPC molecular weights are reported versus polystyrene standards. Unless noted otherwise, GPC's were run with Rl detection at a flow rate of 1 mL/min at 135°C with a run time of 30 min. Two columns were used: AT-806MS and WA/P/N 34200. A Waters Rl detector was used and the solvent was TCB with 5 grams of BHT per gallon. Dual UV/RI detection GPC was run in THF at rt using a Waters 2690 separation module with a Waters 2410 Rl detector and a Waters 2487 dual absorbance detector. Two Shodex columns, KF-806M, were used along with one guard column, KF-G.
  • the glass insert was then loaded in a pressure tube inside the drybox.
  • the pressure tube was then sealed, brought outside of the drybox, connected to the pressure reactor, placed under the desired ethylene pressure and shaken mechanically. After the stated reaction time, the ethylene pressure was released and the glass insert was removed from the pressure tube.
  • the polymer was precipitated by the addition of MeOH ( ⁇ 20 mL).
  • the polymer was then collected on a frit and rinsed with MeOH and, optionally, acetone.
  • the polymer was transferred to a pre-weighed vial and dried under vacuum overnight. The polymer yield and characterization were then obtained. Nickel compounds used in these examples are shown below.
  • the imine-ketone and alpha-diimine ligands and their Ni complexes F-1 through F-6 were synthesized according to standard literature methods (torn Dieck, h.; Svoboda, M.; Grieser, T., Z. Naturforsch, 1981 , 36b, 832).
  • a small excess of aniline was added to the diketone in methanol together with a catalytic amount of formic acid.
  • the reaction mixtures were stirred for several days and the precipitate was collected on a frit, washed with methanol, and dried in vacuo.
  • the ligand for complex F-7 was synthesized as follows: In a nitrogen-filled drybox, 2-indanone (0.50 g, 3.78 mmol) was placed in a round-bottom flask and dissolved in 20 mL of THF. Sodium hydride (0.77 g, 30.3 mmol) was added to the flask and the reaction mixture was stirred for approximately 1 h. Next, (f-Bu) 2 PCI (1.37 g, 7.57 mmol) was added to the reaction mixture and stirring was continued overnight. The solution was filtered through a frit with Celite®. The solid was dissolved in pentane and filtered again to yield 1.59 g of a yellow powder.
  • 1 H NMR CD 2 CI 2 , diagnostic resonances
  • ⁇ 1.3 - 1.0 ppm two major sets of doublets, P(t- Bu)).
  • the ligand for complex F-8 was synthesized as follows: In a nitrogen-filled drybox, tetralone (2.92 g, 20 mmol) was added dropwise to a solution of LDA (2.14 g, 20 mmol) in Et 2 O (25 mL). The tetralone enolate was isolated by precipitation with anhydrous hexane followed by filtration and drying. Next, Cy 2 PCI (0.232 g, 1.0 mmol) and tetralone enolate (0.152 g, 1.0 mmol) were each dissolved in THF (1 mL), mixed, and the reaction mixture was stirred overnight. The solvent was removed in vacuo.
  • Ni complexes F-1 through F-8 were synthesized by stirring an Et O solution of the ligand (1 equiv), the appropriately substituted [(allyl)Ni(halide)] 2 precursor (0.5 equiv) and NaBAF (1 equiv) in a nitrogen- filled drybox for several hours. The solution was then filtered through a frit with dry Celite® and the solvent was removed in vacuo. The product was washed with pentane and then dried in vacuo.
  • Results for Examples 193-203 are listed in Tables 31 and 32 below.
  • the polymerizations were carried out according to the General Polymerization Procedure A. Varying amounts of acrylate homopolymer are present in some of the isolated polymers.
  • the yield of the polymer is reported in grams and includes the yield of the dominant ethylene/acrylate copolymer as well as the yield of any acrylate homopolymer that was formed.
  • Molecular weights were determined by GPC, unless indicated otherwise. Mole percent acrylate incorporation and total Me were determined by 1 H NMR spectroscopy, unless indicated otherwise. Mole percent acrylate incorporation is typically predominantly IC, unless indicated otherwise.
  • a 600 mL Parr® reactor was cleaned, heated up under vacuum, and then allowed to cool under nitrogen.
  • 10.0 mg of 3 (and also 20mg BPh 3 for Example 205) was dissolved in 60mL chlorobenzene in a 150mL addition cylinder.
  • the cylinder was brought out of the drybox and was attached to the Parr® reactor.
  • the solution in the addition cylinder was pressured into the 80°C reactor under 2.1 MPa. Nitrogen was quickly vented. Ethylene pressure ( ⁇ 6.9 MPa) was applied.
  • the autoclave was allowed to stir (600RPM) at 100°C under 6.9 MPa of ethylene for 1 h. The heating source was removed and ethylene was vented.
  • a 600 mL Parr® reactor was cleaned, heated under vacuum, and then allowed to cool under nitrogen.
  • 12.4 mg of 14 (and also 182mg BPh 3 for Example 207, or 385 mg B(CgF5)3 for Example 208) was dissolved in 90mL toluene and 60mL E-10-U in a 300mL RB flask. It was sealed using a rubber septum. Outside the drybox, a 100°C oil bath was prepared. The RB flask was removed from the drybox. The solution was transferred via cannula into the autoclave under positive nitrogen pressure. The autoclave was sealed and pressurized to 700 kPa nitrogen. Nitrogen was then vented. The pressuring/venting was repeated two more times.
  • the autoclave was stirred at about 600 rpm. Ethylene pressure ( ⁇ 4.5 MPa) was applied. The autoclave was quickly placed in the preheated 100°C bath. The pressure of the autoclave was adjusted to about 5.5 MPa and the temperature of the bath was adjusted to make the reaction temperature about 100°C. It was stirred at this temperature and pressure for 2 hr. The heating source was removed and ethylene was vented. The autoclave was back-filled with 700 kPa nitrogen and the nitrogen was vented after brief stirring. This was repeated two more times. The room temperature mixture was poured into 500mL methanol, filtered, and washed with methanol. The resulting polymer was blended with methanol, filtered, and washed with methanol. This procedure was repeated two more times. It was dried in vacuo overnight. Results are shown in Table 34.
  • the vials were placed into a shaker tube, sealed and taken out from the dry box.
  • the shaker tube was connected to a high pressure, ethylene shaker reaction unit. Reaction conditions for polymerization were: 1000 psi ethylene, 120°C, 18 hours. The results are presented below in Table 35.
  • Polymerization was carried out in a 1000 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture and a cooling system.
  • the reactor was heated under vacuum at 100°C for 1 h before use.
  • After the reactor was purged with ethylene three times, 185 mL dry, air-free toluene was added via syringe.
  • the solvent was then purged with ethylene at 2.76 MPa three times. 19 (5 mg, 4.1 ⁇ mol) was dissolved in 15 mL toluene and was rapidly added to the reactor via cannula.
  • the reaction mixture was heated to 60°C and stirred under 2.76 MPa ethylene for 1 h.
  • Pentane (20 mL) was added and the mixture was vigorously stirred for 2 h, during which time a white- gray solid precipitated from the clear, colorless solution.
  • the product was isolated by filtration, washed with pentane (2 x 15 mL), and dried in vacuo to yield 33 (0.478 g, 78% yield).
  • the product was recrystallized from diethyl ether/pentane.
  • Parr® autoclave was heated under vacuum at 100°C for 1 h and was then cooled and backfilled with ethylene.
  • Toluene (200 mL) was added, the autoclave was sealed, and the ethylene pressure was raised to ca. 3 atm.
  • the reactor temperature was established and the solvent was allowed to stir for 10 min.
  • the autoclave was then vented, the catalyst solution (3.88 ⁇ mol 32 or 33 in 5 mL toluene) was added, and the autoclave was sealed and pressurized to 1.38 MPa ethylene pressure while stirring for 3 h.
  • the reaction was quenched by venting the autoclave followed by addition of acetone.
  • the contents were transferred to a 500 mL RB flask and the solvent was removed on a rotovap.
  • the residue was extracted into hot toluene and filtered to removed Pd black.
  • the solvent was removed and the resulting colorless amorphous solid was dried in vacuo. Results of all polymerization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Certain complexes containing ligands having a phosphino group, amino group or an imino group, and a second functional group such as amide, ester or ketone, when complexed to transition metals, catalyze the (co)polymerization of olefinic compounds such as ethylene, α-olefins and/or acrylates. A newly recognized class of ligands for making copolymer containing polar monomers using late transition metal complexes is described.

Description

TITLE POLYMERIZATION OF OLEFINIC COMPOUNDS FIELD OF THE INVENTION The polymerization of olefins is catalyzed by transition metal complexes of selected imines, amines or phosphines containing another group such as ester or amide, and in some instances other olefinic compounds such as unsaturated esters may be copolymerized with olefins. Useful transition metals include Ni, Fe, Ti and Zr. Certain types of late transition metal complexes are especially useful in making polymers containing polar comonomers.
TECHNICAL BACKGROUND The polymerization of olefins such as ethylene and propylene is a very important commercial activity, and such polymers in various forms are made in enormous quantities for very many uses. Various methods are known for polymerizing olefins, such as free radical polymerization of ethylene, and coordination polymerization using catalysts such as Ziegler- Natta-type and metallocene-type catalysts. Nevertheless, given the importance of polyolefins new catalysts are constantly being sought for such polymerizations, to lower the cost of production and/or make new, and hopefully improved, polymer structures. More recently so-called single site catalysts using late transition metal complexes have been developed, and they have proved in many instances to give different polymers than the earlier known early transition metal catalysts. See, for example, US 5,714,556, US 5,880,241 and US 6,103,658 (all of which are incorporated by reference herein for all purposes as if fully set forth). Another type of useful polyolefin is one that contains polar comonomers, such as acrylates. These copolymers are made especially well by a new type of complex in which a certain type of ligand is used.
SUMMARY OF THE INVENTION This invention concerns new transition metal complexes, and processes for the polymerization of olefins using such new transition metal complexes.
A first aspect of the present invention concerns a Group 3 through 11 (IUPAC) transition metal or a lanthanide metal complex of a ligand of the formula (I)
wherein:
Z is nitrogen or oxygen; and Q is nitrogen or phosphorous; provided that: when Q is phosphorous and Z is nitrogen: R and R2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R3, R4, R5, and R6 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, or silyl; and R8 is hydrocarbyl, substituted hydrocarbyl or silyl; provided that any two of R3, R4, R5, R6, R7 and R8 vicinal or geminal to one another together may form a ring; when Q is phosphorous and Z is oxygen:
R1 and R2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R3 and R4 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; R5 and R7 taken together form a double bond; R8 is not present; and R6 is -OR9, -NR10R1 1 , hydrocarbyl or substituted hydrocarbyl, wherein R9 is hydrocarbyl or substituted hydrocarbyl, and R10 and R1 1 are each independently hydrogen, hydrocarbyl or substituted hydrocarbyl; and provided that any two of R3, R4, and R6 vicinal or geminal to one another may form a ring; or R1 and R2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R3, R4, R5 and R6 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; R7 is hydrocarbyl, silyl, or substituted hydrocarbyl; and R8 is not present; and provided that any two of R3, R4, R5, R6, and R7 vicinal or geminal to one another may form a ring; when Q is nitrogen: R1 is hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R2 and R3 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl, or taken together form a double bond; R4 is hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; Z is oxygen; R6 and R7 taken together form a double bond; R8 is not present; R5 is -OR12, -R13 or -NR R15, wherein R12 and R 3 are each independently hydrocarbyl or substituted hydrocarbyl, and R14 and R15 are each hydrogen, hydrocarbyl or substituted hydrocarbyl; provided that when R2 and R3 taken together form an aromatic ring, R1 and R4 are not present; and further provided that any two of R2, R3, R4 and R5 vicinyl or germinal to one another together may form a ring.
A second aspect of the present invention concerns a "first" process for the polymerization of olefins, comprising the step of contacting, under polymerizing conditions, one or more polymerizable olefins with an active polymerization catalyst comprising the aforementioned transition metal complex.
A third aspect of this invention is a "second" process for the manufacture of a polar copolymer by contacting, under polymerizing conditions, a hydrocarbon olefin, a polar olefin, and a polymerization catalyst comprising a nickel complex of a bidentate ligand which is an active ligand. This third aspect also includes an improved process for the manufacture of a polar copolymer by contacting, under polymerizing conditions, a hydrocarbon olefin, a polar olefin, and a polymerization catalyst comprising a nickel complex, wherein the improvement comprises that the polymerization catalyst comprises a nickel metal complex of a bidentate ligand which is an active ligand.
These and other features and advantages of the present invention will be more readily understood by those of ordinary skill in the art from a reading of the following detailed description. It is to be appreciated that certain features of the invention which are, for clarity, described below in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Herein, certain terms are used. Some of them are: A "hydrocarbyl group" is a univalent group containing only carbon and hydrogen. If not otherwise stated, it is preferred that hydrocarbyl groups (and alkyl groups) herein contain 1 to about 30 carbon atoms.
By "substituted hydrocarbyl" herein is meant a hydrocarbyl group that contains one or more substituent groups which are inert under the process conditions to which the compound containing these groups is subjected (e.g., an inert functional group, see below). The substituent groups also do not substantially detrimentally interfere with the polymerization process or operation of the polymerization catalyst system. If not otherwise stated, it is preferred that substituted hydrocarbyl groups herein contain 1 to about 30 carbon atoms. Included in the meaning of "substituted" are chains or rings containing one or more heteroatoms, such as nitrogen, oxygen and/or sulfur, and the free valence of the substituted hydrocarbyl may be to the heteroatom. In a substituted hydrocarbyl, all of the hydrogens may be substituted, as in trifluoromethyl. By "(inert) functional group" herein is meant a group other than hydrocarbyl or substituted hydrocarbyl that is inert under the process conditions to which the compound containing the group is subjected. The functional groups also do not substantially interfere with any process described herein that the compound in which they are present may take part in. Examples of functional groups include halo (fluoro, chloro, bromo and iodo), and ether such as -OR22 wherein R22 is hydrocarbyl or substituted hydrocarbyl. In cases in which the functional group may be near a transition metal atom the functional group should not coordinate to the metal atom more strongly than the groups in those compounds are shown as coordinating to the metal atom, that is they should not displace the desired coordinating group.
By "silyl" herein is meant a monovalent group whose free valence is to a silicon atom. The other three valencies of the silicon atom are bound to other groups such as alkyl, halo, alkoxy, etc. Silyl groups are also included in functional groups.
By a "cocatalyst" or a "catalyst activator" is meant one or more compounds that react with a transition metal compound to form an activated catalyst species. One such catalyst activator is an "alkyl aluminum compound" which, herein, is meant a compound in which at least one alkyl group is bound to an aluminum atom. Other groups such as, for example, alkoxide, hydride and halogen may also be bound to aluminum atoms in the compound.
By "neutral Lewis base" is meant a compound, which is not an ion, which can act as a Lewis base. Examples of such compounds include ethers, amines, sulfides, olefins, and organic nitriles.
By "neutral Lewis acid" is meant a compound, which is not an ion, which can act as a Lewis acid. Examples of such compounds include boranes, alkylaluminum compounds, aluminum halides, and antimony [V] halides.
By "cationic Lewis acid" is meant a cation which can act as a Lewis acid. Examples of such cations are sodium and silver cations. By an "empty coordination site" is meant a potential coordination site on a transition metal atom that does not have a ligand bound to it. Thus if an olefin molecule (such as ethylene) is in the proximity of the empty coordination site, the olefin molecule may coordinate to the metal atom. By a "ligand into which an olefin molecule may insert between the ligand and a metal atom", or a "ligand that may add to an olefin", is meant a ligand coordinated to a metal atom which forms a bond (L-M) into which an olefin molecule (or a coordinated olefin molecule) may insert to start or continue a polymerization. For instance, with ethylene this may take the form of the reaction (wherein L is a ligand): /CH2CH2---
M >- M
>
By a "ligand which may be displaced by an olefin" is meant a ligand coordinated to a transition metal which, when exposed to the olefin (such as ethylene), is displaced as the ligand by the olefin.
By a "monoanionic ligand" is meant a ligand with one negative charge.
By a "neutral ligand" is meant a ligand that is not charged. "Alkyl group" and "substituted alkyl group" have their usual meaning (see above for substituted under substituted hydrocarbyl). Unless otherwise stated, alkyl groups and substituted alkyl groups preferably have 1 to about 30 carbon atoms.
By "aryl" is meant a monovalent aromatic group in which the free valence is to the carbon atom of an aromatic ring. An aryl may have one or more aromatic rings which may be fused, connected by single bonds or other groups.
By "substituted aryl" is meant a monovalent aromatic group substituted as set forth in the above definition of "substituted hydrocarbyl". Similar to an aryl, a substituted aryl may have one or more aromatic rings which may be fused, connected by single bonds or other groups; however, when the substituted aryl has a heteroaromatic ring, the free valence in the substituted aryl group can be to a heteroatom (such as nitrogen) of the heteroaromatic ring instead of a carbon.
By "Rx and Ry taken together may form a double bond" is meant a structure originally written as -CRRx-CRRy- is, when Rx and Ry do in fact form a double bond, -CR=CR-. In this example each R is simply another group on a carbon atom to satisfy carbon's normal valence requirement of 4.
By a "π-allyl group" is meant a monoanionic ligand comprised of 1 sp3 and two sp2 carbon atoms bound to a metal center in a delocalized η3 fashion indicated by
The three carbon atoms may be substituted with other hydrocarbyl groups or functional groups.
By "Es" is meant a parameter to quantify steric effects of various groupings, see R. W. Taft, Jr., J. Am. Chem. Soc, vol. 74, p. 3120-3128 (1952), and M.S. Newman, Steric Effects in Organic Chemistry, John Wiley & Sons, New York, 1956, p. 598-603, which are both hereby included by reference. For the purposes herein, the Es values are those described for o-substituted benzoates in these publications. If the value of Es for a particular group is not known, it can be determined by methods described in these references.
By "under polymerization conditions" is meant the conditions for a polymerization that are usually used for the particular polymerization catalyst system being used. These conditions include things such as pressure, temperature, catalyst and cocatalyst (if present) concentrations, the type of process such as batch, semibatch, continuous, gas phase, solution or liquid slurry etc., except as modified by conditions specified or suggested herein. Conditions normally done or used with the particular polymerization catalyst system, such as the use of hydrogen for polymer molecular weight control, are also considered "under polymerization conditions". Other polymerization conditions such as presence of hydrogen for molecular weight control, other polymerization catalysts, etc., are applicable with this polymerization process and may be found in the references cited herein. By a "hydrocarbon olefin" is meant an olefin containing only carbon and hydrogen.
By a "polar (co)monomer" or "polar olefin" is meant an olefin which contains elements other than carbon and hydrogen. When copolymerized into a polymer the polymer is termed a "polar copolymer". Useful polar comonomers are found in US 5,866,663, WO 9905189, WO 9909078 and WO 9837110, and S. D. Ittel, et a!., Chem. Rev., vol. 100, p. 1169-1203 (2000), all of which are incorporated by reference herein for all purposes as if fully set forth. Also included as a polar comonomer is CO (carbon monoxide).
For ease in describing the invention, the term "transition metal" as used herein generally refers to Groups 3 through 11 of the periodic table (IUPAC) and the lanthanides, especially those in the 4th, 5th, 6th, and 10th periods. Suitable transition metals include Ni, Pd, Cu, Pt, Fe, Co, Ti, Zr, V, Hf, Cr, Ru, Rh and Re, with Ni, Fe, Ti, Zr, Cu and Pd being more preferred and Ni, Fe, Ti and Zr being especially preferred. Preferred oxiation states for some of the transition metals are Ni[ll], Ti[IV], Zr[IV], and Pd[ll].
The first polymerizations herein are carried out by a transition metal complex of (I).
Transition metal complexes in which (I) appears may, for example, have the formula (IV)
(IV)
wherein R1 through R8, Q and Z are as defined above; M1 is a transition metal; each X is independently a monoanion; and m is an integer equal to an oxidation state of M1.
Transition metal complexes in which (I) appears may, for example, also have the formula (IX)
wherein R1 through R8, Q and Z are as defined above; M1 is a transition metal; L1 is a monoanionic ligand which may add to an olefin; n is equal to the oxidation state of M1 minus one; L2 is a ligand which may be displaced by an olefin or is an empty coordination site; or L1 and L2 taken together are a bidentate monoanionic ligand into which an olefin molecule may insert between the ligand and a metal atom; and W is a relatively noncoordinating anion. In (I) and in all complexes and compounds containing (I), it is preferred that: when Q is nitrogen:
R1 is (VII) (see below) or a 2,5-disubstituted pyrrole, more preferably (VII); and/or R4 is alkyl, especially alkyl containing 1 to 6 carbon atoms, more preferably methyl; and/or
R5 is -OR12, -R13 or -NR1 R15; and/or
R 2 is alkyl, especially alkyl containing 1 to 6 carbon atoms; and/or R 3 is alkyl, especially alkyl containing 1 to 6 carbon atoms; and/or R14 is alkyl containing 1 to 6 carbon atoms, especially methyl; and/or
R15 is hydrogen or alkyl; and/or R15 and R4 taken together form a ring; and/or R4 and R12 taken together form a ring; and/or R4 and R13 taken together form a ring; when Q is phosphorous and Z is nitrogen: R1 and R2 are t-butyl; and/or R8 is aryl or substituted aryl, especially (VII); and/or R3, R4 and R5 are hydrogen, hydrocarbyl or substituted hydrocarbyl, especially hydrogen; and/or
R6 is aryl or substituted aryl, more preferably phenyl; and/or R7 is benzyl; when Q is phosphorous and Z is oxygen, and R5 and R7 taken together form a double bond: R1 and R2 are t-butyl;
R3 and R4 are hydrogen; and/or
R6 is -OR9, -NR10R11 , alkyl, aryl or substituted aryl; and/or
R9 is alkyl or aryl, especially alkyl containing 1 to 6 carbon atoms or phenyl, and more preferably methyl; and/or
R10 and R11 are each independently aryl or substituted aryl, more preferably both phenyl;\ when Q is phosphorous and Z is oxygen, and R7 is hydrocarbyl or substituted hydrocarbyl:
R1 and R2 are t-butyl;
R3, R4, R5, and R6 are hydrogen; and or
R7 is aryl or substituted aryl.
In many of the above formulas a preferred aryl or substituted aryl group is (VII).
In (VII) R20, R21, R22, R23 and R24 are each independently hydrogen, hydrocarbyl substituted hydrocarbyl or a functional group, provided than any two of R20, R21, R22, R23 and R24 ortho to another taken together may form a ring. Preferably one of R20 and R24 is not hydrogen, and more preferably both of R20 and R24 are not hydrogen. Useful groups for R20 and R24 include alkyl, especially alkyl containing 1 to 6 carbon atoms, halo especially chloro and bromo, alkoxy, aryl or substituted aryl especially phenyl. Individual useful groups (VII) include 2,6-diisopropylphenyl, 2,6-dimethylphenyl, 2,4,6-trimethylphenyl, 2,6- dimethyl-4-chlorophenyl, and 2,6-dimethyl-4-bromophenyl.
Ligands (I) in which Q is nitrogen may be made by the reaction of a pyruvic (or a pyruvic-like compound which contains a group to be R4 that is something other than methyl) acid ester or amide, or an α,β-dione and an appropriate arylamine. Ligands (I) in which Q is phosphorous and Z is nitrogen may be prepared by the reaction of an appropriate imine with (di- t-butylphosphino)methyl lithium, with subsequent reaction of the lithium amide formed with a halocarbon such as benzyl bromide. Transition metal complexes having neutral ligands such as (IV) and (IX) can be made by a variety of methods, see for instance previously incorporated US 5,880,241. In part how such compounds are made depends upon the transition metal compound used in the synthesis of the complex and in what each X (anion) in the final product is. For example, for transition metals such as Ni[ll], Fe[ll], Co[ll], Ti[IV] and Zr[IV] a metal halide such as the chloride may be mixed with the neutral ligand and transition metal complex, wherein X is halide. When it is desired that one of X be a relatively noncoordinating anion and another X is an anion which may add across an olefinic bond (as in ethylene), for example using a nickel compound, then nickel -ally- chloride dimer may be mixed with a neutral ligand in the presence of an alkali metal salt of a relatively noncoordinating anion such as sodium tetrakis[3,5- bistrifluoromethylphenyljborate (BAF for the anion alone) to form a complex in which one X is π-allyl and the other anion BAF.
For the transition metal complexes in which (I) (a neutral ligand) is present preferred transition metals are Pd, Ni, Fe, Co, Ti, Zr, Hf, Sc, V, Cr, and Ru, and especially preferred transition metals are Pd, Ni, Ti, Zr, Fe and Co, and a more preferred transition metals are Ni, Fe, Ti and Zr. In the first process useful olefins include an olefin of the formula
H2C=CH(CH2)nG (VIII), where n is 0 or an integer of 1 or more, g is hydrogen, -CO2R25 or -C(O)NR25 2, and each R25 is independently hydrogen, or hydrocarbyl substituted hydrocarbyl, styrenes, norbornenes and cyclopentenes. Preferred olefins are when g is hydrogen and n is 0 (ethylene); or g is hydrogen and n is an integer of 1 to 12, especially one (propylene); or g is -CO2R25 wherein R25 is alkyl, especially alkyl containing 1 to 6 carbon atoms and more preferably methyl; and when g is -CO2R25, and n is 0 or an integer of 2 to 12. Copolymers may also be prepared. A preferred copolymer is one containing ethylene and one or more others of (VIII), for example the copolymers ethylene/1-hexene, ethylene/propylene, ethylene/methyl acrylate (n is 0 and R25 is methyl), and ethylene/methyl- or ethyl-1-undecylenate.
In (IX) when an olefin may insert between L and the transition metal atom, and L2 is an empty coordination site or is a ligand which may be displaced by an olefin, or L1 and L2 taken together are a bidentate monoanionic ligand into which an olefin may inserted between that ligand and the transition metal atom, (IX) may by itself catalyze the polymerization of an olefin. Examples of L1 which form a bond with the metal into which an olefin may insert between it and the transition metal atom are hydrocarbyl and substituted hydrocarbyl, especially phenyl and alkyl, and particularly methyl, hydride, and acyl; and ligands L2 which ethylene may displace include phosphine such as triphenylphosphine, nitrite such as acetonitrile, ether such as ethyl ether, pyridine, and tertiary alkylamines such as TMEDA (N,N,N',N'-tetramethylethylenediamine). Ligands in which L1 and L2 taken together are a bidentate monoanionic ligand into which an olefin may insert between that ligand and the transition metal atom include π-allyl- or π-benzyl-type ligands (in this instance, sometimes it may be necessary to add a neutral Lewis acid cocatalyst such as triphenylborane to initiate the polymerization, see for instance previously incorporated US 5,880,241). For a summary of which ligands ethylene may insert into (between the ligand and transition metal atom) see for instance J. P. Collman, et al., Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987.
If for instance L1 is not a ligand into which ethylene may insert between it and the transition metal atom or if (IV) is present, it may be possible to add a cocatalyst which may convert L1 or X into a ligand which will undergo such an insertion. Thus if L1 or X is halide such as chloride or bromide, or carboxylate, it may be converted to hydrocarbyl such as alkyl by use of a suitable alkylating agent such as an alkylaluminum compound, a Grignard reagent or an alkyllithium compound. It may be converted to hydride by using of a compound such as sodium borohydride. It is preferred that when the transition metal is alkylated or hydrided, that a relatively noncoordinating anion is formed. Such reactions are described in previously incorporated US 5,880,241.
A preferred cocatalyst in the first process is an alkylaluminum compound, and useful alkylaluminum compounds include trialkylaluminum compounds such as triethylaluminum, trimethylaluminum and tri-i- butylaluminum, alkyl aluminum halides such as diethylaluminum chloride and ethylaluminum dichloride, and aluminoxanes such as methylaluminoxane.
In another preferred form L1 and L2 taken together may be a π-allyl or π-benzyl group such as
wherein R is hydrocarbyl, and π-allyl and π-benzyl groups are preferred. When L1 and L2 taken together are π-allyl or π-benzyl, in order to initiate the polymerization it may be useful to have a Lewis acid such as triphenylboron or tris(pentafluorophenyl)boron also present. In the first polymerization process herein, the temperature at which the polymerization is carried out is about -100°C to about +200°C, preferably about -60°C to about 170°C, more preferably about -20°C to about 140°C. The pressure of the ethylene or other gaseous olefin at which the polymerization is carried out is not critical, atmospheric pressure to about 275 MPa being a suitable range.
The first polymerization process herein may be run in the presence of various liquids, particularly aprotic organic liquids. The catalyst system, ethylene or other olefinic monomer, and/or polymer may be soluble or insoluble in these liquids, but obviously these liquids should not prevent the polymerization from occurring. Suitable liquids include alkanes, cycloalkanes, selected halogenated hydrocarbons, and aromatic hydrocarbons. Specific useful solvents include hexane, toluene, benzene, methylene chloride, 1,2,4-trichlorobenzene and p-xylene. The first polymerization process herein may also initially be carried out in the "solid state" by, for instance, supporting the transition metal compound on a substrate such as silica or alumina, activating if necessary it with one or more cocatalysts and contacting it with, say, ethylene. Alternatively, the support may first be contacted (reacted) with a cocatalysts (if needed) such as an alkylaluminum compound, and then contacted with an appropriate transition metal compound. The support may also be able to take the place of a Lewis or Bronsted acid, for instance an acidic clay such as montmorillonite, if needed. These "heterogeneous" catalysts may be used to catalyze polymerization in the gas phase or the liquid phase. By gas phase is meant that a gaseous olefin is transported to contact with the catalyst particle. In a preferred form of gas phase polymerization the polymerization catalysts and/or polymer formed is in the form of a fluidized bed. In all of the polymerization processes described herein olefinic oligomers and polymers are made. They may range in molecular weight from oligomeric POs (polyolefins), to lower molecular weight oils and waxes, to higher molecular weight POs. One preferred product is a POs with a degree of polymerization (DP) of about 10 or more, preferably about 40 or more. By "DP" is meant the average number of repeat units in a PO molecule.
Depending on their properties, the POs made by the processes described herein are useful in many ways. For instance if they are thermoplastics, they may be used as molding resins, for extrusion, films, etc. If they are elastomeric, they may be used as elastomers. If they contain functionalized monomers such as acrylate esters or other polar monomers, they are useful for other purposes, see for instance previously incorporated US 5,880,241.
Depending on the first process conditions used and the polymerization catalyst system chosen, the POs may have varying properties. Some of the properties that may change are molecular weight and molecular weight distribution, crystallinity, melting point, and glass transition temperature. Except for molecular weight and molecular weight distribution, branching can affect all the other properties mentioned, and branching may be varied (using the same nickel compound) using methods described in previously incorporated US 5,880,241.
It is known that blends of distinct polymers, that vary for instance in the properties listed above, may have advantageous properties compared to "single" polymers. For instance it is known that polymers with broad or bimodal molecular weight distributions may be melt processed (be shaped) more easily than narrower molecular weight distribution polymers. Thermoplastics such as crystalline polymers may often be toughened by blending with elastomeric polymers.
Therefore, methods of producing polymers which inherently produce polymer blends are useful especially if a later separate (and expensive) polymer mixing step can be avoided. However in such polymerizations one should be aware that two different catalysts may interfere with one another, or interact in such a way as to give a single polymer.
In such a process the transition metal containing polymerization catalyst disclosed herein can be termed the first active polymerization catalyst. A second active polymerization catalyst (and optionally one or more others) is used in conjunction with the first active polymerization catalyst. The second active polymerization catalyst may be another late transition metal catalyst, for example as described in previously incorporated US 5,880,241 , US 6,060,569 and US 6,174,795, as well as US 5,714,556 and US 5,955,555 which are also incorporated by reference herein as if fully set forth.
Other useful types of catalysts may also be used for the second active polymerization catalyst. For instance so-called Ziegler-Natta and/or metallocene-type catalysts may also be used. These types of catalysts are well known in the polyolefin field, see for instance Angew. Chem., Int. Ed. Engl., vol. 34, p. 1143-1170 (1995), EP-A-0416815 and US 5,198,401 for information about metallocene-type catalysts, and J. Boor Jr., Ziegler- Natta Catalysts and Polymerizations, Academic Press, New York, 1979 for information about Ziegler-Natta-type catalysts, all of which are hereby included by reference. Many of the useful polymerization conditions for all of these types of catalysts and the first active polymerization catalysts coincide, so conditions for the polymerizations with first and second active polymerization catalysts are easily accessible. Oftentimes the "cocatalyst" or "activator" is needed for metallocene or Ziegler-Natta-type polymerizations. In many instances the same compound, such as an alkylaluminum compound, may be used as an "activator" for some or all of these various polymerization catalysts.
In one preferred process described herein the first olefin(s) (olefin(s) polymerized by the first active polymerization catalyst) and second olefin(s) (the monomer(s) polymerized by the second active polymerization catalyst) are identical. The second olefin may also be a single olefin or a mixture of olefins to make a copolymer.
In some processes herein the first active polymerization catalyst polymerizes one or olefins, a monomer that may not be polymerized by said second active polymerization catalyst, and/or vice versa. In that instance two chemically distinct polymers may be produced. In another scenario two monomers would be present, with one polymerization catalyst producing a copolymer, and the other polymerization catalyst producing a homopolymer.
Likewise, conditions for such polymerizations, using catalysts of the second active polymerization type, will also be found in the appropriate above mentioned references.
Two chemically different active polymerization catalysts are used in this polymerization process. The first active polymerization catalyst is described in detail above. The second active polymerization catalyst may also meet the limitations of the first active polymerization catalyst, but must be chemically distinct. For instance, it may utilize a different ligand which differs in structure between the first and second active polymerization catalysts. In one preferred process, the ligand type and the metal are the same, but the ligands differ in their substituents.
Included within the definition of two active polymerization catalysts are systems in which a single polymerization catalyst is added together with another ligand, preferably the same type of ligand, which can displace the original ligand coordinated to the metal of the original active polymerization catalyst, to produce in situ two different polymerization catalysts.
The molar ratio of the first active polymerization catalyst to the second active polymerization catalyst used will depend on the ratio of polymer from each catalyst desired, and the relative rate of polymerization of each catalyst under the process conditions. For instance, if one wanted to prepare a "toughened" thermoplastic polyethylene that contained 80% crystalline polyethylene and 20% rubbery polyethylene, and the rates of polymerization of the two catalysts were equal, then one would use a 4:1 molar ratio of the catalyst that gave crystalline polyethylene to the catalyst that gave rubbery polyethylene. More than two active polymerization catalysts may also be used if the desired product is to contain more than two different types of polymer. The polymers made by the first active polymerization catalyst and the second active polymerization catalyst may be made in sequence, i.e., a polymerization with one (either first or second) of the catalysts followed by a polymerization with the other catalyst, as by using two polymerization vessels in series. However it is preferred to carry out the polymerization using the first and second active polymerization catalysts in the same vessel(s), i.e., simultaneously. This is possible because in most instances the first and second active polymerization catalysts are compatible with each other, and they produce their distinctive polymers in the other catalyst's presence. Any of the processes applicable to the individual catalysts may be used in this polymerization process with 2 or more catalysts, i.e., gas phase, liquid phase, continuous, etc.
The polymers produced by this process may vary in molecular weight and/or molecular weight distribution and/or melting point and/or level of crystallinity, and/or glass transition temperature and/or other factors. The polymers produced are useful as molding and extrusion resins and in films as for packaging. They may have advantages such as improved melt processing, toughness and improved low temperature properties. Catalyst components which include transition metal complexes of
(I), with or without other materials such as one or more cocatalysts and/or other polymerization catalysts are also disclosed herein. For example, such a catalyst component could include the transition metal complex supported on a support such as alumina, silica, a polymer, magnesium chloride, sodium chloride, etc., with or without other components being present. It may simply be a solution of the transition metal complex, or a slurry of the transition metal complex in a liquid, with or without a support being present.
Hydrogen or other chain transfer agents such as silanes (for example trimethylsilane or triethylsilane) may be used to lower the molecular weight of polyolefin produced in the polymerization process herein. It is preferred that the amount of hydrogen present be about 0.01 to about 50 mole percent of the olefin present, preferably about 1 to about 20 mole percent. The relative concentrations of a gaseous olefin such as ethylene and hydrogen may be regulated by varying their partial pressures.
In the second polymerization process herein, a transition metal complex of Groups 6 to 11 , preferably Groups 8-1 1 , more preferably Ni or Pd, and especially preferably Ni, is used. The transition metal is complexed to an "active ligand", and this ligand is bi- or higher (tri-, tetra, etc.) dentate. The ligand may be neutral (have no charge) or anionic (have one or more negative charges). Bidentate ligands are preferred. Besides having this denticity, the active ligand has certain properties, measured by a specific test, that classify it as an active ligand. The ligand may be active with one transition metal but not with another. The complex for any given ligand with each transition metal should be separately tested (see below). When most such transition metal complexes are used as olefin polymerization catalyst (components), they are usually used in conjunction with other catalyst components, such as alkylating agents, and/or Lewis acids, and/or others. It has been found that these transition metal complexes, when having at least one π-allyl also coordinated to the transition metal, will initiate the polymerization of ethylene, and/or copolymerization of ethylene and ethyi-10-undecylenate, under specified conditions (see below) in the absence of any other cocatalysts. This in a sense makes them especially active in olefin polymerizations, especially polymerizations in which a polar monomer is used (and copolymerized) with a hydrocarbon olefin, especially ethylene.
Generally speaking, these ligands have at least two different types of groups which coordinate to the transition metal, for example two different heteroatom groups such as (in a bidentate ligand) N and O, or N and P, or P and O, etc. In some instances, both the heteroatoms and the groups of which they are a part may be the same. In some instances, the heteroatoms may be same, but the groups of which they are a part are different, for example for nitrogen they may be amino or imino, for oxygen they may be keto or hydroxy, etc. Many of these ligands happen to be so- called "hemilabile" or "hybrid" ligands, although the fact that a ligand is hemilabile or hybrid does not guarantee it will be an active ligand, and vice versa. Hemilabile and hybrid ligands are known in the art, see for instance: J. C. Jeffrey et al., Inorg. Chem., vol. 18, p. 2658 (1979); L. P. Barthel-Rosa, et al., Inorg. Chem., vol. 37, p. 633 (1998); S. Mecking, et al., Organometallics vol. 15, p. 2650 (1996); A. M. Allgeier, et al., Organometallics, vol. 13, p. 2928 (1994); M. Nandi, M., et al., J. Am. Chem. Soc, vol. 121 , p. 9899 (1999); P. Braunstein, et al., Organometallics, vol. 15, p. 5551 (1996); A. Bader, et al., Coord. Chem. Rev., vol. 108, p. 27-100 (1991); C. Slone, et al., In Progress in Inorganic Chemistry. K. D. Karlin, Ed.; John Wiley & Sons, New York (1999), p. 233-350, all of which are hereby included by reference. Although none of these guides is absolute, they do suggest to the artisan what ligands may be active ligands. Making the transition metal complex and testing it by the simple method described below allows a determination whether the ligand is an active ligand.
When using active ligand complexes to form polar copolymers, preferred hydrocarbon olefins are ethylene and H2C=CHR26, wherein R26 is hydrogen, alkyl or substituted alkyl, preferably hydrogen or n-alkyl, and ethylene is especially preferred. A preferred polar olefin is
H2C=CHR27CO R28, particularly wherein R27 is alkylene or a covalent bond, more preferably n-alkylene or a covalent bond, and especially preferably a covalent bond, and R28 is hydrocarbyl, substituted hydrocarbyl, or a metal, or any easily derivable functionality such as amide or nitrile, and more preferably R28 is hydrocarbyl and substituted hydrocarbyl. Another type of preferred polar olefin is a vinyl olefin wherein the polar group is attached directly to a vinylic carbon atom, for example when R27 is a covalent bond. CO may also be used as a polar olefin; however, when CO is present it is preferred that at least one other polar olefin is also present.
In the second process, especially when ethylene is the hydrocarbon olefin, it is preferred that the polymerization process be run at a temperature of about 50°C, more preferably 60°C to about 170°C, and an ethylene partial pressure of at least about 700 kPa. More preferably the temperature range is about 80°C to about 140°C and/or a lower ethylene pressure is about 5.0 MPa or more, and/or a preferred upper limit on < ethylene pressure is about 200 MPa, especially preferably about 20 MPa. The polymerizations may otherwise be carried out in the "normal" manner for such ligands (including the presence of Lewis acids, which are not present in part of the test to determine whether a ligand is an active ligand Polymerization without added Lewis acids is described herein in Examples 39-45, 54-58, 70, 73, 91 and 192. Examples of ligands with excellent potential for being active ligands are listed in previously incorporated S. Ittel, et al., Chem. Rev., vol. 100, p. 1177-1179 and are (Reference Numbers from their Table 2 given): 116 E-33; 116 E-32; 116 E-15; 116 E-57; 116 E-51; 116 E-60; 116 E-185; 116 E-23; 116 E-89; 116 E-29; 116 E-27; 116 E-61 ; 116 E-43; 116 E-49; 116 E-39; 116 E-56; 116 E-36; 116 E-95; 116 E-3; 116 E-184; 116 E-141 ; 116 E-144; 116 E-53; 116 E-105; 116 E-106; 116 E-37; 116 E-46; 116 E-44; 139; 116 E-10; 116 E-162; 116 E-16; 116 E-48; 116 E-30; 116 E-47; 116 E-55; 116 E-24; 116 E-54; 140; 136; 116 E-34; and 116 E-160. From Table 8, p. 1195, 416. Under certain circumstances α-diimines are not preferred neutral active ligands, and/or salicylaldimines are not preferred monoanionic active ligands.
Herein, a ligand is termed an "active ligand" if it meets one or both of the following two tests:
Test 1 : The yield of polyethylene obtained under condition 1-1 is greater than or equal to one half of the maximum yield of polyethylene obtained under conditions 1-2 and 1-3.
Conditions 1-1 : Heat a clean 600 mL Parr® reactor under vacuum, and then allow it to cool under nitrogen. Next, heat the reactor to 80°C. In a nitrogen-filled drybox, weigh out 0.0085 mmole of the neutral nickel(ll) allyl complex [(LΛL')Ni(C3H5)], the cationic nickel(ll) allyl complex [(LΛL')Ni(C3H5)]+[B(3,5-(CF3)2C6H3)4]-, or the cationic nickel(ll) allyl complex [(LΛL')Ni(C3H5)]+[B(C6F5)4]- and dissolve it in 60 mL of chlorobenzene and then place the solution in a 150 mL addition cylinder. Seal the cylinder and bring it out of the drybox and attach it to the Parr® reactor. Utilize 2.1 MPa of nitrogen to force the solution in the addition cylinder into the 80°C reactor. Quickly vent the nitrogen and fill the reactor with ethylene to 6.9 MPa. Stir the reaction mixture at 600 rpm while adjusting the temperature of the reaction mixture to 100°C. Maintain the temperature at 100°C and the pressure at 6.9 MPa while continuing to stir for a total of 1 h. Remove the heat source and vent the ethylene. Back-fill with 0.7 MPa nitrogen and vent the nitrogen after brief stirring. Repeat this two more times. Pour the room temperature mixture into 500 mL methanol, filter, and wash with methanol. Blend the resulting polymer with methanol, filter, and wash with methanol. Repeat this blending/washing procedure two more times, and dry the polymer in vacuo overnight. Condition 1-2: Repeat the procedure of Condition 1-1 , except include 10 equiv of BPh3 in the addition funnel.
Condition 1-3: Repeat the procedure of Condition 1-1 , except include 10 equiv of B(C6F5)3 in the addition funnel. Test 2: The yield of E/E-10-U copolymer obtained under Condition
1-4 is greater than or equal to one third of the maximum yield of polyethylene obtained under Conditions 1-5 and 1-6. Condition 1-4: Heat a clean 600 mL Parr® reactor under vacuum, and then allow it to cool under nitrogen. In a nitrogen-filled drybox, weigh out 0.0094 mmole of the neutral nickel(ll) allyl complex [(LΛL')Ni(C3H5)], the cationic nickel(ll) allyl complex [(LΛL')Ni(C3H5)]+[B(3,5-(CF3)2C6H3)4]-, or the cationic nickel(ll) allyl complex [(LΛL')Ni(C3H5)]+[B(C6F5)4]- and dissolve it in 90 mL of toluene and 60 mL of E-10-U in a 300 mL RB flask. Seal the flask with a rubber septum and bring it out of the drybox and transfer the solution into the autoclave via a cannula under positive nitrogen pressure. Seal the autoclave and pressure it to 0.7 MPa nitrogen. Then release the nitrogen. Repeat this pressurizing/venting procedure two more times. Add about 0.03 MPa of nitrogen to the autoclave and then stir the reaction mixture at 600 rpm. Next, apply 4.5 MPa of ethylene pressure. Quickly place the autoclave in a preheated 100°C oil bath. Adjust the pressure of the autoclave to 5.5 MPa. Maintain the temperature at 100°C and the pressure at 5.5 MPa while continuing to stir for a total of 2 h. Remove the heat source and vent the ethylene. Back-fill with 0.7 MPa nitrogen and vent the nitrogen after brief stirring. Repeat this two more times. Pour the room temperature mixture into 500 mL methanol, filter, and wash with methanol. Blend the resulting polymer with methanol, filter, and wash with methanol. Repeat this blending/washing procedure two more times, and dry the polymer in vacuo overnight.
Condition 1-5: Repeat the procedure of Conditions 1-4, except include 80 equiv of BPh3 in the RB flask.
Condition 1-6: Repeat the procedure of Conditions 1-4, except include 80 equiv of B(C6F5)3 in the RB flask.
6.9 MPa Ethylene
Test 1: 60 mL Chlorobenzene »-- Polyethylene
Conditions 1 : No Lewis acid Conditions 2: 10 equiv BPh3 Conditions 3: 10 equiv B(C6F5)3
Neutral or Cationic Ni(II) Complexes
Test 2:
E/E-10-U Copolymer
)3
Neutral or Cationic Ni(II) Complexes
In the tests above for "active Ligands" LΛL' is bidentate ligand being tested, and E-10-U is ethyl 10-undecylenate. Preferred active ligands are those that meet the conditions for Test 2.
In the Examples except where noted, all pressures are gauge pressures. In the Examples, the following abbreviations are used:
Am - amyl
Ar - aryl
BAF - B(3,5-C6H3-(CF3)2)4-
BArF - B(C6F5)4-
BHT - 2,6-di-t-butyl-4-methylphenol
BQ - 1 ,4-benzoquinone
Bu - butyl
Bu2O - dibutyl ether
CB - chlorobenzene
Cmpd - compound
Cy - cyclohexyl
DSC - Differential Scanning Calorimetry
E - ethylene
E-10-U - ethyl-10-undecylenate EG - end-group, refers to the ester group of the acrylate being located in an unsaturated end group of the ethylene copolymer
EGPEA - 2-phenoxyethyl acrylate
Eoc - end-of-chain Equiv - equivalent
Et - ethyl
Et2O - diethyl ether
GPC - gel permeation chromatography
HA - hexyl acrylate Hex - hexyl
IC - in-chain, refers to the ester group of the acrylate being bound to the main-chain of the ethylene copolymer
Incorp - incorporation i-Pr - isopropyl LA - Lewis acid
LDA - lithium N,N-diethylamide
M.W. - molecular weight
MA - methyl acrylate
Me - methyl MeOH - methanol
Ml - melt index
Mn - number average molecular weight
Mp - peak molecular weight (by GPC)
Mw - weight average molecular weight Nd - not determined
PDI - Mw/Mn
PE - polyethylene
Ph - phenyl
PMAO-IP - poly(methylaluminoxane) available from Akzo-Nobel, Inc.
PPA - 2,2,3,3,3-pentafluoropropyl acrylate
Press - pressure
RB - round-bottomed
Rl - refractive index RT or Rt - room temperature t-Bu - t-butyl
TCB - 1 ,2,4-trichIorobenzene
Temp: Temperature THA - 3,5,5-trimethylhexyl acrylate THF - tetrahydrofuran TLC - thin layer chromatography
TON - turnovers, moles of olefinic compound polymerized/mole of transition metal compound
Total Me - total number of methyl groups per 1000 methylene groups as determined by 1 H or 13C NMR analysis UV - ultraviolet
All the operations related to the catalyst (transition metal compound) synthesis were performed in a nitrogen drybox or using a Schlenk line with nitrogen protection. Anhydrous solvents were used. Solvents were distilled from drying agents under nitrogen using standard procedures: tetrahydrofuran (THF), from sodium benzophenone ketyl. Ni(ll) allyl chloride (or bromide) was prepared according to the literature. (t-Butyl)2PCH Li was synthesized by reacting (t-butyl)2PCH3 with t- butyl lithium in heptane in a 109°C bath for 4 d. The product was filtered and washed with pentane. (t-Butyl)2PLi was synthesized by reacting (t-butyl)2PH with n-butyl lithium in heptane at 90°C for 6 h.
The 1H, 13C and 31P NMR spectra were recorded using a Bruker 500 MHz spectrometer.
Total methyls per 1000 CH2 are measured using different NMR resonances in H and 13C NMR spectra. Because of accidental overlaps of peaks and different methods of correcting the calculations, the values measured by 1H and 13C NMR spectroscopy will not be exactly the same, but they will be close, normally within 10-20%) at low levels of acrylate comonomer. In 13C NMR spectra, the total methyls per 1000 CH2 are the sums of the 1B-), 1B2, 1B3, and 1B +, EOC resonances per 1000 CH2, where the CH2's do not include the CH2's in the alcohol portions of the ester group. The total methyls measured by 3C NMR spectroscopy do not include the minor amounts of methyls from the methyl vinyl ends nor the methyls in the alcohol portion of the ester group. In 1H NMR spectra, the total methyls are measured from the integration of the resonances from 0.6 to 1.08 ppm and the CH2's are determined from the integral of the region from 1.08 to 2.49 ppm. It is assumed that there is 1 methine for every methyl group, and 1/3 of the methyl integral is subtracted from the methylene integral to remove the methine contribution. The methyl and methylene integrals are also usually corrected to exclude the values of the methyls and methylenes in the alcohol portion of the ester group, if this is practical. Because of the low levels of incorporation, this is usually a minor correction. Corrections are also made to exclude any contributions from acrylate homopolymer to the methyl or methylene integrals in both the 3C and 1H spectra where this is warranted. In the Examples the following ligands and transition metal compounds are made by the general indicated methods. Ligand and transition metal compound numbers are shown in the various synthetic equations.
L1. R, R' = iPr; R" = H 1. R, R' = iPr; R" = H
L2. R, R' = Me, R" = H 2. R, R' = Me, R" = H
L3. R, R', R" = Me 3. R, R', R" = Me
L4. R, R" = Me; R' = CI 4. R, R" = Me; R' = CI
L5. R, R' = Me; R" = Br 5. R, R' = Me; R" = Br
<- "> * NaBarf *
L7: R = CH3 7: : R = CH3 L8: R = H 8: R=H
Ni: / Ni" NaBarf
L9: R, R' = CH3 9: R, R = CH3 L10:R, R' = iPr 10: R, R' = iPr
11
L14 X = NPh2
L12 X = OMe 12 x = 0Me
L13 = OPh 13 χ = oph
L14 X = NPh2 14 χ = Nph2
Example 1 - Synthesis of Ligand L1
In a 300 mL RB flask, 5.672 g (0.05 mole) methyl pyruvate and 9.849 g (0.05 mole) 2,6-diisopropyIaniline were mixed with 150 mL toluene and 30 mg (catalytic amount) of p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The yellow solution was refluxed for 4.5 h. Solvent was removed under vacuum. The resulting oil was dissolved in 100 mL hexanes and the solution was cooled at ~40°C overnight. The viscous oil was filtered cold using a cold, coarse filter and was washed with 4x15 mL cold hexanes. The yellow oil was dried in vacuo for 2 h. It weighed 0.619 g. The filtrate was evaporated. The resulting oil was dissolved in 100 mL hexanes. The solution was cooled at -40°C overnight. Hexanes were decanted. The sample was dried in vacuo for 2 h. The weight of the yellow oil was 4.172 g (37% overall yield). 1 HNMR (in CD2CI2): δ 7.07 - 7.18 (m, 3H, Ar- H); 3.92 (s, 3H, -OCH3); 2.63 (heptet, 2H, -CH(CH3)2); 1.93 (s, 3H, N=C- CH3); 1.11-1.15 (dd, 12H, (CH3)2CH-). Example 2 - Synthesis of Catalyst 1
In a drybox, 0.586 g (2.241 mmol) ligand L1 , 0.303 g (1.120 mmol) nickel allyl chloride dimer, 1.986 g (2.241 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The resulting burgundy mixture was stirred at RT for 2 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under vacuum. The residue was dissolved in 3 mL dichloromethane, followed by addition of 30 mL pentane. Solvent was decanted. The procedure was repeated two more times by using 15 mL pentane. The resulting residue was dried under full vacuum. The brown solid was triturated with 20 mL pentane, filtered and washed with 3x10 mL pentane. The product was dried in vacuo for 2 h. Final weight of the brown solid was 2.475 g (90%). 1HNMR (in CD2CI2): δ 7.72 (s, 8H, Barf-H); 7.57 (s, 4H, Barf-H); 7.26 - 7.41 (m, 3H, Ar-H); 5.90 (heptet, 1 H, central allyl-H); 4.25 (s, 3H, -OCH3); 2.34, 2.81 , 3.10, 3.97 (bs, 1 H each, terminal allyl-H); 2.66 (heptet, 2H, -CH(CH3)2); 2.04 (s, 3H, N=C-CH3); 1.04-1.43 (bs, 12H, (CH3)2CH-). Example 3 - Synthesis of Ligand L2
In a 300 mL RB flask, 5.672 g (0.05 mol) methyl pyruvate and 6.061 g (0.05 mol) 2,6-dimethylaniline were mixed with 150 mL toluene and 50 mg p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The amber solution was refluxed for 4 h, at which time ca. 0.9 mL H 0 had been collected. The solution was refluxed for an additional 3 h. Solvent was removed under vacuum. Amber oil was obtained. The oil was dissolved 100 mL hexanes and the solution was cooled at -40°C overnight. Solvent was decanted. The dark red oil was washed with 3x25 mL cold hexanes. The product was dried in vacuo for 2 h. Final weight of the dark red oil was 3.532 g (34%). HNMR (in CD2CI2): δ 6.90 - 7.10 (m, 3H, Ar-H); 3.91 (s, 3H, - OCH3); 1.97 [s, 6H, -C6H3(CH3)2]; 1.89 (s, 3H, N=C-CH3). Example 4 - Synthesis of Catalyst 2
In a drybox, 0.500 g (2.436 mmol) ligand L2, 0.329 g (1.218 mmol) nickel allyl chloride dimer, 2.159 g (2.436 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The mixture was stirred at RT for 2 h. It was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under vacuum. The resulting brown solid was triturated with 20 mL pentane. The solid was filtered and washed with 3x10 mL pentane. The brown solid was dried in vacuo for 2 h. Final weight of the brown solid was 2.300 g (81 %). 1 HNMR (in CD2Cl2): δ 7.73 (s, 8H, Barf-H); 7.57 (s, 4H, Barf-H); 6.90 - 7.30 (m, 3H, Ar-H); 5.91 (heptet, 1 H, central allyl-H); 4.24 (s, 3H, -OCH3); 1.21 , 2.55, 3.60 (bs, total 4H, terminal allyl-H); 2.21 [bs, 6H, -C6H3(CH3)2]; 1.99 (s, 3H, N=C-CH3). Example 5 - Synthesis of Ligand L3
In a 300 mL RB flask, 5.672 g (0.05 mol) methyl pyruvate and 6.761 g (0.05 mol) 2,4,6-trimethylaniline were mixed with 150 mL toluene and 50 mg p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The amber solution was refluxed for 4 h, at which time ca. 0.9 mL H20 had been collected. The solution was refluxed for an additional 3 h. Solvent was removed with a rotary evaporator. The amber oil was dissolved in 100 mL hexanes. The solution was cooled at -40°C overnight. The hexanes layer was decanted. The dark red oil was washed with 3x25 mL cold hexanes. The product was dried in vacuo for 2 h. Final weight of the dark red oil was 5.574 g (51 %). 1 HNMR (in CD2CI2): δ 6.87 (s, 2H, Ar-H); 3.90 (s, 3H, - OCH3); 1.97 [s, 6H, ortho-C6H2(CH3)3]; 2.26, 1.88 [s, 3H each, N=C-CH3 and para-C6H2(CH3)3]. Example 6 - Synthesis of Catalyst 3
In a drybox, 0.500 g (2.28 mmol) ligand L3, 0.308 g (1.14 mmol) nickel allyl chloride dimer, 2.021 g (2.28 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The mixture was allowed to stir at RT for 2 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under vacuum. The resulting brown solid was triturated with 20 mL pentane. The solid was filtered and washed with 3x10 mL pentane. It was dried in vacuo for 2 h. Final weight of the brown solid was 0.830 g (31%). 1HNMR (in CD2CI2): δ 7.72 (s, 8H, Barf-H); 7.56 (s, 4H, Barf-H); 6.99 (s, 2H, Ar-H); 5.91 (heptet, 1 H, central allyl-H); 4.24 (s, 3H, -OCH3); 1.17, 2.25, 2.55, 3.48 (bs, total 4H, terminal allyl-H); 2.17 [bs, 6H, C6H2(CH3)3]; 1.98, 2.30 [s, 3H each, N=C-CH3 and para-C6H2(CH3)3]. Example 7 - Synthesis of Ligand L4 In a 300 mL RB flask, 5.672 g (0.0482 mol) methyl pyruvate and
7.5 g (0.0482 mol) 2-chloro-4,6-dimethylaniline were mixed with 150 mL toluene and 50 mg p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The mixture was refluxed for 6 h. Solvent was removed under vacuum. The residue was dissolved in 100 mL hexanes and the mixture was cooled at -40°C overnight. The hexanes layer was decanted. The residue was washed with 3x25 mL cold hexanes. It was then dried in vacuo for 2 h. Final weight of the brown-yellow solid/liquid mixture was 8.880 g (77%). Example 8 - Synthesis of Catalyst 4
In a drybox, 1.000 g ligand L4, 0.282 g nickel allyl chloride dimer, 1.849 g sodium tetrakis(3,5-trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The mixture was allowed to stir at RT for 2 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under vacuum. The resulting brown solid was triturated with 20 mL pentane. The solid was filtered and washed with 3x10 mL pentane. It was dried in vacuo for 2 h. Final weight of the brown solid was 2.707 g. Example 9 - Synthesis of Ligand L5
In a 300 mL RB flask, 5.469 g (0.05 mol) methyl pyruvate and 10.005 g (0.05 mol) 4-bromo-2,6-dimethylaniline were mixed with 150 mL toluene and 50 mg p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The solution was refluxed for 8 h. Solvent was removed under vacuum. The residue was dissolved in 100 mL hexanes and the solution was cooled at -40°C overnight. Solvent was decanted. The residue was washed with 3x25 mL cold hexanes. The product was dried in vacuo for 2 h. Final weight of the dark red-brown solid/liquid mixture was 8.611 g (61 %). Example 10 - Synthesis of Catalyst 5
In a drybox, 0.500 g (1.76 mmol) ligand L5, 0.238 g (0.88 mmol) nickel allyl chloride dimer, 1.560 g (1.76 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The mixture was allowed to stir at RT for 2 h. It was then concentrated to ca. 5 mL and was added 25 mL pentane. Solvent was decanted after brief stirring. The solid was washed with 2x15 mL pentane and was dried in vacuo. Dark brown solid was isolated. Final weight was 1.118 g (51 %). Example 11 - Synthesis of Ligand L6 In a 300 mL RB flask, 11.738 g (0.103 mol) 3,4-hexanedione,
19.74 g (0.100 mol) 2,6-diisopropylaniline and 8-10 drops of formic acid were mixed with 100 mL methanol. The yellow solution was refluxed for
14 h. It was then cooled at -40°C overnight. The yellow solid was filtered through a cold, coarse funnel, followed by 4x15 mL cold methanol wash. It was dried in vacuo overnight. Final weight of the yellow solid was 14.016 g (51 %). HNMR (in CD2CI2): δ 7.05- 7.17 (m, 3H, Ar-H); 2.59 (heptet, 2H, -CH(CH3)2); 2.25, 3.03 (q, 2H each, -CH2CH3); 1.18 [d, 3J = 7.0Hz, 6H, -CH(CH3)2]; 1.10 [d, 3J = 6.8Hz, 6H, -CH(CH3)2]; 0.90, 1.15 (t, 3H each, -CH2CH3). Example 12 - Synthesis of Catalyst 6
In a drybox, 0.547 g (2 mmol) ligand L6, 0.270 g (1 mmol) nickel allyl chloride dimer, 1.772 g (2 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 30 mL diethyl ether were mixed in a
100 mL RB flask. The dark burgundy reaction was allowed to stir at RT for 1.5 h. Solvent was evaporated. The residue was dissolved in 25 mL dichloromethane and the mixture was filtered through Celite®, followed by 4x10 mL dichloromethane wash. The filtrate was evaporated to ca. 2-3 mL and was added 30 mL pentane. Upon brief stirring, the mixture was filtered, followed by 3x10 mL pentane wash of the solid. The solid product was dried in vacuo for 1 h. Final weight of the brick red solid was 2.335 g (94%). 1HNMR (in CD2CI2): δ 7.72 (s, 8H, Barf-H); 7.56 (s, 4H, Barf-H); 7.28 - 7.41 (m, 3H, Ar-H); 5.88 (heptet, 1 H, central allyl-H); 4.00-4.40, 2.00-3.20 [bm, 6H total, terminal allyl-H and -CH(CH3)2]; 3.11 , 2.47 (q, 2H each, -CH2CH3); 1.21 , 1.32 [d, 3J = 6.6Hz, 6H each, - CH(CH3)2]; 1.15, 1.34 (t, 3H each, -CH2CH3). Example 13 - Synthesis of Ligand L7
In a 100 mL RB flask, 3.223 g (20 mmol) 1-methylisatin and 3.948 g (20 mmol) 2,6-diisopropylaniline were mixed with 50 mL toluene and 50 mg p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The orange-red solution was refluxed for 8 h. Solvent was removed under reduced vacuum. Upon sitting at RT, orange-red crystals began to grow in the thick, oily residue. It was triturated with ca. 15 mL hexanes. The solid was filtered, followed by 3x15 mL hexanes wash. The orange solid was dried in vacuo overnight. Its final weight was 5.372 g (84%). 1HNMR (in CD2CI2): δ 6.20 - 7.40 (total 7H, Ar-H); 3.28 (s, 3H, -NCH3); 2.75 (heptet, 2H, -CH(CH3)2); 0.96, 1.15 (d, 3J = 6.8Hz, 6H each, -CH(CH3)2). Example 14 - Synthesis of Catalyst 7
In a drybox, 0.641 g (2 mmol) ligand L7, 0.270 g (1 mmol) nickel allyl chloride dimer, 1.772 g (2 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The dark burgundy solution was stirred at RT for 3 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under full vacuum. Final weight of the dark brown foamy solid was 2.412 g (94%). Example 15 - Synthesis of Ligand L8
In a 300 mL RB flask, 2.943 g (20 mmol) isatin and 3.948 g (20 mmol) 2,6-diisopropylaniline were mixed with 150 mL toluene and 50 mg p-toluenesulfonic acid monohydrate. A Dean-Stark trap and a reflux condenser were attached to the flask. The orange-red solution was refluxed for 8 h. Upon cooling to RT, solid was formed in the flask. It was filtered, followed by 3x25 mL hexanes wash. The product was dried in vacuo overnight. Final weight of the golden yellow solid was 4.778 g (78%). 1HNMR (in CD2CI2): δ 7.98 (s, 1H, -NH); 6.20 - 7.34 (total 7H, Ar- H); 2.76 (heptet, 2H, -CH(CH3)2); 0.97, 1.15 (d, 3J = 6.9Hz, 6H each, - CH(CH3)2).
Example 16 - Synthesis of Catalyst 8
In a drybox, 0.613 g (2 mmol) ligand L8, 0.270 g (1 mmol) nickel allyl chloride dimer, 1.772 g (2 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The dark red solution was stirred at RT for 3 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The residue was dissolved in ca. 3 mL dichloromethane, followed by addition of 30 mL pentane. Upon brief stirring, solvent was decanted. The residue was washed with 2x20 mL pentane. It was dried under full vacuum for 2 h. Final weight of the red-tinted, dark brown solid was 2.289 g (90%>). Example 17 - Synthesis of Ligand L9
In a 100 mL RB flask, 4.920 g (40.6 mmol) 2,6-dimethylaniline, 8.394 g (50.75 mmol) α-bromo-γ-butyrolactone, 2.582 g (24.36 mmol) sodium carbonate and 50 mL xylenes were mixed. A Dean-Stark trap and a reflux condenser were attached to the flask. The mixture was refluxed for 5 h. Water (100 mL) was used to work up the reaction. The organic layer was separated and was washed with 100 mL 5% HCI, followed by a 100 mL brine wash. The organic layer was isolated and was dried over MgSO . The solution was filtered. Solvent was removed under reduced vacuum. The resulting oil was adhered to silica gel (50 g) and was performed a filtergraph by using 100% dichloromethane as eluent. The appropriate fraction was collected (based on TLC). Solvent was evaporated under full vacuum. Amber oil was obtained. It crystallized upon standing at RT. Final weight of the light tan solid was 0.800 g (10%). 1HNMR (in CDCI3): δ 7.04 (d, 3J = 7.5Hz, 2H, meta-Ar-H); 6.91 (t, 1 H, para-Ar-H); 4.43 (vt, 1H, -NHCHCO2-); 3.98, 4.20 [m, 1H each, - CHHOC(O)-]; 3.55 (s, 1 H, -NH); 2.37 [s, 6H, -C6H3(CH3)2]; 2.25, 2.64 [m, 1 H each, -CHH'CH2OC(O)-]. Example 18 - Synthesis of Catalyst 9
In a drybox, 0.800 g (3.898 mmol) ligand L9, 0.527 g (1.949 mmol) nickel allyl chloride dimer, 3.454 g (3.898 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a
100 mL RB flask. The resulting deep burgundy mixture was stirred at RT for 1.5 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under full vacuum. The residue was dissolved in ca. 3 mL dichloromethane and was added 30 mL pentane. Upon brief stirring, solvent was decanted. The residue was washed with 2x25 mL pentane. Solid precipitated out during the final pentane wash. It was filtered, followed by 3x15 mL pentane wash. The product was dried in vacuo for 3.5 h. Final weight of the tan-pale orange solid was 2.066 g (45%). Example 19 - Synthesis of Ligand L10
In a 100 mL RB flask, 5.123 g (26.02 mmol) 2,6-diisopropylaniline, 5.358 g (32.525 mmol) α-bromo-γ-butyrolactone, 1.655 g (15.612 mmol) sodium carbonate and 50 mL xylenes were mixed. A Dean-Stark trap and a reflux condenser were attached to the flask. The mixture was refluxed for 12 h. Water (100 mL) was used to work up the reaction. The organic layer was separated and was washed with 100 mL 5% HCI, followed by a 100 mL brine wash. The organic layer was isolated and was dried over Na2SO . The solution was filtered. Solvent was evaporated under reduced vacuum. The resulting oil was adhered to silica gel (50 g) and a filtergraph was performed by using 4:1 hexanes/ethyl acetate as eluent. The appropriate fraction (based on TLC) was collected. Solvent was evaporated under full vacuum. Viscous amber oil was obtained. It crystallized upon standing at RT. Final weight of the light tan solid was 0.770 g (11%). 1HNMR (in CDCI3): δ 7.15 (m, 3H, Ar-H); 4.43 (vt, 1 H, -NHCHCO2-); 3.80, 4.17 [m, 1 H each, -CHH'OC(O)-]; 3.56 (s, 1 H, -NH); 3.45 [heptet, 2H, -CH(CH3)2]; 2.31 , 2.53 [m, 1H each, -CHH'CH2OC(O)-], 1.26 [dd, 12H, -CH(CH3)2]. Example 20 - Synthesis of Catalyst 10
In a drybox, 0.523 g (2 mmol) ligand L10, 0.270 g (1 mmol) nickel allyl chloride dimer, 1.772 g (2 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The resulting burgundy mixture was stirred at RT for 3.5 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under full vacuum. The residue was dissolved in ca. 3 mL dichloromethane and was added 30 mL pentane. Upon brief stirring, solvent was decanted. The residue was washed with 2x25 mL pentane. Solid precipitated out (upon the scratching of the glass) during the final pentane wash. The solid was filtered and was washed with 3x15 mL pentane. It was dried in vacuo for 3 h. Final weight of the tan-pale orange solid was 2.412 g (98%). Isomers existed based on 1HNMR in THF-d8. The overall integration of the 1HNMR peaks was consistent with the proposed structure. Example 21 - Synthesis of ligand L11
At -30°C, to a 100 mL round bottom flask containing 10 mL of THF solution of N-(2,4,6-trimethylphenyl)benzylimine (0.354 g, 1.59 mmol), was added dropwise a solution of (t-Bu)2PCH2Li (0.264 g, 1.59 mmol) in 10 mL of THF. The mixture was stirred for one h and it turned greenish yellow. Then the THF solution of benzyl bromide [0.272 g (1.59 mmol) of benzyl bromide in 5 mL THF] was added to the mixture and the reaction mixture was allowed to stir overnight. Solvent was removed under vacuum. The residue was extracted with pentane. After evaporating pentane, colorless crystals (0.310 g, 0.65 mmol) were collected in 41 % yield. Both H NMR and 31P NMR were complicated. However, the X-ray single crystal structure was consistent with the desired product. Example 22 - Synthesis of Catalyst 11
In a 100 mL RB flask, 0.134 g (0.282 mmol) Ligand L11, 0.067 g (0.141 mmol) allyl nickel bromide dimer and 0.250 g ( 0.282 mmol) sodium tetrakis(3,5-bistrifloromethyl-phenyl)borate were mixed with 30 mL of ether and the mixture was stirred for 1 h. The solution became dark brown and it was filtered through Celite®. Solvent was removed under vacuum. The residue was washed with pentane. Dark green powder (0.360 g) was obtained. 31PNMR (C6D6): one major peak at 46.48 ppm. Example 23 - Synthesis of Ligand L12
In a drybox, 1.006 g (6.573 mmol) methyl bromoacetate and 40 mL THF were mixed in a 100 mL RB flask. The flask was placed in a freezer at -30°C for 0.5 h. (t-Bu)2PLi [1.000 g (6.573 mmol)] was added to it. The color of the reaction mixture changed rapidly from yellow to orange. The mixture was allowed to stir at RT overnight. It was then evaporated under full vacuum overnight. Pentane (30 mL) was added to the resulting crystalline residue for trituration. Solid was filtered and was washed with 2x15 mL pentane. It was dried in vacuo for several hours. Final weight of the pale orange solid was 1.233 g (61%). Example 24 - Synthesis of Catalyst 12
In a drybox, Ligand L12 (0.5 g, 1.64 mmol), 0.222 g (0.82 mmol) nickel allyl chloride dimer, 1.453 g (1.64 mmol) sodium tetrakis(3,5- trifluoromethylphenyl)borate and 30 mL THF were mixed in a 100 mL RB flask. The burgundy mixture was stirred at RT for 3 h. The mixture was then evaporated under full vacuum. The residue was dissolved in ca.
5 mL dichloromethane and was added ca. 50 mL pentane. The resulting yellow solid was filtered and was washed with 3x10 mL pentane. It was dried in vacuo for several hours. Final weight of the light yellow solid was 1.956 g. Example 25 - Synthesis of Ligand L13
In a drybox, 0.471 g (3.01 mmol) phenyl chloroformate and 15 mL THF were mixed in a 100 mL RB flask. It was placed in a freezer at -30°C for 0.5 h. At the same time, 0.5 g (3.01 mmol (t-Bu)2PCH2Li was dissolved in 10 mL THF. It was then slowly (dropwise) added to the above cold solution. The reaction mixture was allowed to warm up to RT and stir at this temperature for 1 h. The mixture was evaporated under full vacuum overnight. The residue was extracted with 25 mL toluene. The mixture was filtered through Celite®, followed by 3x10 mL toluene wash. The filtrate was evaporated and the solid was dried in vacuo. Tacky orange solid [0.501 g (59%)] was obtained. Example 26 - Synthesis of Catalyst 13 In a drybox, Ligand L13 (0.501 g, 1.786 mmol), 0.242 g
(0.893 mmol) nickel allyl chloride dimer, 1.583 g (1.786 mmol) sodium tetrakis(3,5-trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The mixture was stirred at RT for 2 h. The mixture was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under full vacuum. The residue was dissolved in ca. 5 mL dichloromethane and was added ca. 50 mL pentane. After brief stirring, solvent was decanted. The residue was washed with 2x25 mL pentane. It was dried under full vacuum for 1 h. Final weight of the tacky dark brown solid was 1.675 g (75%). Example 27 - Synthesis of Ligand L14
In a drybox, 0.697 g (3.01 mmol) diphenylcarbamyl chloride and 15 mL THF were mixed in a 100 mL RB flask. It was placed in a freezer at -30θC for 0.5 h. At the same time, 0.5 g (3.01 mmol) (t-Bu)2PCH2Li was dissolved in 10 mL THF. It was then slowly (dropwise) added to the above cold solution. The dull orange reaction mixture was allowed to warm up to RT and stir at this temperature for 1 h. The mixture was evaporated to dryness. The residue was extracted with 25 mL toluene and was filtered through Celite®, followed by 3x10 mL toluene wash. Solvent was evaporated and the product was dried under full vacuum. Orange-red, viscous oil [0.798 g (75%)] was obtained. Example 28 - Synthesis of Catalyst 14 In a drybox, Ligand L14 (0.798 g, 2.246 mmol), 0.304 g
(1.123 mmol) nickel allyl chloride dimer, 1.990 g (2.246 mmol) sodium tetrakis(3,5-trifluoromethylphenyl)borate and 25 mL diethyl ether were mixed in a 100 mL RB flask. The mixture was stirred at RT for 2 h. It was then filtered through Celite®, followed by 3x10 mL ether wash. The filtrate was evaporated under full vacuum. The residue was dissolved in ca. 5 mL dichloromethane and was added ca. 50 mL pentane. Solvent was decanted. The residue was washed with 2x25 mL pentane. The final product was dried in vacuo. Dark brown, tacky solid [2.673 g (90%)] was obtained. 31PNMR (in CD2CI2): δ 70.13 (s, major peak); 45.58 (s, minor peak). There were also a few very small singlet peaks presented in the spectra. HNMR of the major product (in CD2CI2): δ 7.75 (s, 8H, Barf-H); 7.58 (s, 4H, Barf-H); 6.70 - 7.55 (m, 10H, Ar-H); 5.55 (heptet, 1H, central allyl-H); 4.39 (vd, 3J = 7.7Hz, 1 H, terminal allyl-H); 3.36, 3.14 (dd, 1H each, terminal allyl-H); 2.63-2.85 (dddd, ABX pattern, X was phosphorus, 2H total, -PCHH-); 1.93 (d, 3J = 13.1 Hz, 1H, terminal allyl-H); 1.40, 1.22 (d, 3J = 14.8Hz, 9H each, -P(CH3)3]. Examples 29-32 - Synthesis of Catalysts 15-18 General Procedure
In a drybox, 2.28 mmol MXn, 0.5 g (2.28 mmol) ligand L3 and 15 mL THF were mixed in a 20 mL vial. The mixture was stirred at RT overnight. Solvent was evaporated and the product was dried in vacuo overnight. Catalyst 15, MX2 = FeCI2. Final weight of the dark and tacky solid was 0.914 g.
Catalyst 16, MX2 = CoCI2. Final weight of the turquoise solid was 0.924 g. Catalyst 17, MXn = TiCI . Final weight of the dark solid was
1 .499 g.
Catalyst 18, MXn = ZrCI4. Final weight of the dark solid was 1 .551 g.
Examples 33-36 - Synthesis of Catalysts 19-22 General Procedure
In a drybox, 1.56 mmol MXn, 0.5 g (1.56 mmol) ligand L7 and 15 mL THF were mixed in a 20 mL vial. The mixture was stirred at RT overnight. Solvent was evaporated and the product was dried in vacuo overnight. Catalyst 19, MXn= CoCI2. Final weight of the dark, foamy solid was
0.841 g.
Catalyst 20, MXn= FeCI2. Final weight of the dark, foamy solid was 0.854 g.
Catalyst 21 , MXn = TiCI . Final weight of the dark, foamy solid was 1.040 g.
Catalyst 22, MXn = ZrCI4. Final weight of the dark, foamy solid was 1 .094 g.
Examples 37-92 - Polymerization of Olefinic Compounds Ethylene Polymerization Screening Using the Nickel Catalysts 1 to 14 In a drybox, a glass insert was loaded with the isolated Ni catalysts.
TCB, and optionally comonomers, were added to the glass insert. A Lewis acid cocatalyst (typically BPh3 or B(C6Fs)3) was often added to the solution. The insert was then capped and sealed. Outside of the drybox, the tube was placed under ethylene and was shaken mechanically at the temperature listed in Table 1 for about 18 h. The resulting reaction mixture was mixed with methanol, filtered, repeatedly washed with methanol and the solid polymer dried in vacuo.
Ethylene polymerization screening using Catalysts 15-22. in the presence of MAO In a drybox, a glass insert was loaded with 0.02 mmol of the isolated Zr or Ti catalyst and 9 mL of TCB. It was then cooled to -30°C. PMAO-IP [1 mL 12.9 wt % (in Al) toluene solution] was added to the frozen solution. It was put in a -30°C freezer. The insert was then capped and sealed. Outside of the drybox, the cold tube was placed under ethylene and was shaken mechanically at the temperature listed in Table 1 , condition IX, for about 18 h. Methanol (about 15 mL) and 2 mL cone, hydrochloric acid was added to the mixture. The polymer was isolated, washed with methanol several times and dried in vacuo. Polymer Characterization
The results of ethylene polymerization and copolymerization catalyzed by various catalysts under different reaction conditions (See Table 1) are reported in Tables 2-13. The polymers were characterized by NMR, GPC and DSC analysis. A description of the methods used to analyze the amount and type of branching in polyethylene is given in previously incorporated US5880241. GPC's were run in TCB at 135°C and calibrated against polyethylene using universal calibration based on polystyrene narrow fraction standards. DSC was recorded between - 100°C to 150°C at a rate of 10°C/minute. Data reported here are all based on second heat. Melting points are taken as the peak of the melting endotherm. 1HNMR of the polymer samples was run in tetrachloroethane- d2 at 120°C using a 500 MHz Bruker spectrometer.
Table 1 gives general conditions for the various polymerizations. The results of these polymerizations are reported in Tables 2-13.
Table 1 Conditions for Olefinic Polymerizations
Table 2
Lewis Acid effect on Ethylene Polymerization by 1.
Condition I
Table 3 Ethylene olymerization Without Lewis Acid, Condition
Table 4 Ethylene Copolvmerization. Condition II
a Contained 0.302 g copolymer and 0.054 g homopolymer of HA b No LiB(CgF5) was added in this case c 1 mL HA and 9 mL TCB were used rather than 4 mL HA and 6 mL TCB d Contained 0.380 g copolymer and 0.023 g homopolymer of HA
Table 5
Table 6
Table 7 Ethylene Polymerization. Condition V
Table 8 Ethylene/HA Copolvmerization, Condition VI
a All of the copolymer products contained a small amount of homopolymer of HA b 20 eq of NaBArF was used here rather than 20eq of iBfCgFs^; toluene was used as solvent here rather than TCB Table 9
Lewis Acid Effect on Ethylene Polymerization bv 6.
Condition I
a 4mL 1-Hexene and 6mL TCB was used in this case. Hexene incorporation was
3.19mole%. b Bimodal, Mp 2,549
Table 10 Ethylene/E-10-U Copolvmerization, Condition VII
a Bimodal, Mp 1,346.
Table 11 Ethylene Polymerization. Condition VIII
a Based on 1 HNMR
° Bimodal, Mp 267 (minor). Table 12 Eth lene Pol merization Condition IX
Table 13 Ethylene polymerization (0.01 mmol catalyst, 10 mL TCB, 3.5 MPa
a Bimodal, Mp 423.
Table 14 E/E-10-U Copolvmerization , Condition X
Examples 93-127
In the following Examples the following ligands and π-allyl nickel complexes are made/used. O II acetone
(t-Bu)2PH + BrCH2C — R -[But 2P(CH2COR)H]Br
NaOAc
L23 R = Ph
L24 R = Ph-p-OMe
L25 R = Ph-p-CF3
L26 R = t-Bu
For Examples 93-127 1H and 31P NMR spectra were recorded on either a Varian 300 MHz or Bruker Avance-300 MHz spectrometers.1H NMR spectra of polymer were taken in C6D5Br at 120°C. Examples 93-96 - Syntheses of the β-Keto-Phosphine Ligands L23-L26. The synthesis of these kinds of phosphines was described by B. L. Shaw, et al., J. Chem. Soc. Dalton Trans., 1980, 299. A solution of 1 mL di-t-butyl-phosphine in 5 mL degassed acetone was added dropwise to the appropriate -bromoketone in 15 mL degassed acetone with stirring. The mixture was stirred for a while and white crystals precipitated from the solution. The crystals were filtered and dried under vacuum then dissolved in 15 mL degassed water. A solution of sodium acetate (1.6 g, 20 mmol) in 10 mL degassed water was added to the phosphonium salt solution with stirring. The phosphine was extracted with diethyl ether and some colorless or light yellow oil was left after all the volatiles were removed under vacuum. For L25 and L26, the phosphonium salt didn't precipitate from the acetone solution. The acetone was removed under reduced pressure and the remaining solid was washed with pentane several times then dried. The results are summarized in Table 15.
Table 15
Examples 97-100 - Syntheses of the Ni (II) Chloride 23a-26a.
Nickel dimer, [Ni(C3H5)CI]2, was synthesized using a similar procedure to that described by G. Wilke et al., Angew. Chem., Int. Ed. Engl. 1966, 5, 151. A Schlenk flask was charged with [Ni(C3H5)CI]2 (108 mg, 0.4 mmol) and 15 mL dry, air-free hexane. The flask was cooled to -78°C and a solution of appropriate phosphine in 10 mL hexane was added with stirring. The reaction mixture was allowed to warm to RT and stirred for 1-2 h. Solid product precipitated out. The solid was filtered and dried under vacuum. The results are summarized in Table 16.
Table 16
Examples 101-104 - Syntheses of the Ni (II) Catalysts 23-26.
A Schlenk flask was charged with the appropriate nickel chloride complex from Examples 97-100 and 20 mL dry, air-free diethyl ether. After the suspension was cooled to -78°C, a solution of NaBAF in 10 mL diethyl ether was added with stirring. The reaction mixture was allowed to warm to RT and stirred for 2~3 h. then filtered via cannula. The filtrate was concentrated under reduced pressure to about 5-10 mL and 50 mL pentane was added. Yellow solid precipitated from the solution and was filtered then dried under vacuum. Product can be recrystallized from pentane and dichloromethane. The results are summarized in Table 17.
Table 17
Example 105
A Schlenk flask was charged with 50 mg of catalyst 23 which was dissolved in 5 mL CH CI2 under 101 kPa ethylene. The polymerization mixture was stirred for 22 h under 0 kPa ethylene then was quenched by addition of a few drops of acetone, 6 M HCI and excess methanol. Polyethylene precipitated from solution and was filtered out, washed with acetone and dried in vacuo at 70°C overnight. The result is summarized in Table 18.
Table 18
Examples 106-110
Polymerizations were carried out in a 250 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture. The reactor was heated under vacuum at 100°C for 1 h before use. After the reactor was purged with ethylene for three times, 65 mL dry, air-free CH2CI2 was added via syringe. Then the solvent was purged with ethylene at desired pressure for three times. Catalyst 23 was dissolved in 15 mL CH CI and was rapidly added to the reactor via cannula. The reaction mixture was stirred under the desired ethylene pressure then quenched by addition of acetone and methanol. The polymers were filtered from solution, washed with acetone and dried in vacuo at 70°C overnight. The conditions and results are summarized in Table 19. c: dried by 4 A molecular sieves; d: Tm = 124.8 °C e: initiated by heating it up to 50°C.
Examples 111-115
Polymerizations were carried out in a 1000 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture and a cooling system. The reactor was heated under vacuum at 100°C for 1 h before use. After the reactor was purged with ethylene for three times, 185 mL dry, air-free toluene was added via syringe. Then the solvent was purged with ethylene at 2.76 MPa for three times and heated up to the desired temperature.
Catalyst 23 was dissolved in 15 mL toluene and was rapidly added to the reactor via cannula. The reaction mixture was stirred under 2.76 MPa ethylene pressure, then quenched by addition of acetone and methanol. The polymers were filtered from the liquid, washed with acetone and dried in vacuo at 70°C overnight. The conditions and results are summarized in Table 20. Table 20
reached. b: PE filled up the reactor.
Examples 116-125
Polymerizations were carried out in a 1000 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture and a cooling system. The reactor was heated under vacuum at 100°C for 1 h before use. After the reactor was purged with ethylene for three times, 185 mL dry, air-free toluene was added via syringe. Then the toluene was purged with ethylene at desired pressure for three times. The appropriate Ni[ll] complex was dissolved in 15 mL toluene and was rapidly added to the reactor via cannula. The reaction mixture was heated up to the desired temperature and stirred under the desired ethylene pressure. The reaction was quenched by addition of acetone and methanol. The polymers were filtered from the liquid, washed with acetone and dried in vacuo at 70°C overnight. The conditions and results are summarized in Table 21.
Table 21
ever reached b: PE filled up the reactor.
Examples 126-127
Polymerizations were carried out in a 1000 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture and a cooling system. The reactor was heated under vacuum at 100°C for 1 h before use. After the reactor was purged with ethylene for three times, dry, air-free toluene and 5.0 mL methyl-10-undecenoate were added via syringe. Then the solvent was purged with ethylene at desired pressure for three times. Catalyst 23 was dissolved in toluene and was rapidly added to the reactor via cannula. The reaction mixture was heated up to the desired temperature and stirred under desired ethylene pressure. The reaction was quenched by addition of acetone and methanol. The polymers were filtered from the liquid, washed with acetone and dried in vacuo at 70°C overnight. The conditions and results are summarized in Table 22.
Table 22
a: 5 mL methyl-10-undecenoate, which was purified and dried be ore use. b: Reaction exothermed to 105°C in 15 min. c: In product polymer, measured by high-tempreature1H NMR.
Example 128 - Synthesis of Precatalvst 23a
To a suspension of [Ni(C3H5)CI]2 (0.300 g, 1.11 mmol) in 25 mL hexanes was added a solution of L23 (0.610 g, 2.31 mmol) in 10 mL hexanes. The resulting orange-yellow suspension was stirred at RT for 2 h. The reaction mixture was cooled to -78°C, and the bright orange solid was isolated by filtration, washed with hexanes (2 x 15 mL), and dried under high vacuum to yield 0.751 g (85%) of 23a. H NMR (200 MHz, CD2CI2): δ 7.98 (d, 2H, 3J(HH) 8 Hz, Ar-Ho), δ 7.54 (m, 3H, Ar- Hm,p), δ 5.38 (m, 1 H, allyl), δ 3.64 (d, 2H, 3J(PH) 10, -CH2-), δ 3.45 (s(broad) 2H, allyl), δ 2.51 (s(broad), 2H, allyl), δ 1.43 (d, 18H, 3J(PH) 13, C-CH3). Example 129 - Synthesis of Catalyst 23
To a suspension of 23a (0.500 g, 1.25 mmol) in 25 mL diethyl ether at -78°C was added a solution of NaBAF (1.106 g, 1.25 mmol) in 15 mL diethyl ether. The resulting yellow-orange solution was warmed to RT and stirred for 3 h. The yellow solution was separated from solid NaCl precipitate via filtration and the volume was reduced to -5 mL. Fifty mL pentane was slowly added to precipitate a bright yellow solid. The product was isolated by filtration, washed with pentane (2 x 15 mL), and dried under high vacuum to yield 1.301 g (85%) of catalyst 23. 1 H NMR (CDCI3, 300 MHz): δ 7.97 (d, 2H, J(HH) 8.7 Hz, Ar-Ho), δ 7.74 (t, 1H, 3J(HH) 9, Ar-Hp), δ 7.68 (s, 4H, BAF), δ 7.48 (t, 2H, 3J(HH) 9, Aϊ-Hm), δ 7.47 (s, 4H, BAF), δ 5.65 (m, 1 H , allyl), δ 4.86 (d, 1H, 3J(HH) 7.5, allyl), δ 3.66 (d, 1 H, 3J(HH) 14, allyl), δ 3.47 (dd, 3J(PH) 22, 1J(HH) 8, -CH2-), δ 3.34 (m, 1 H, allyl), δ 2.05 (d, 1 H, 3J(HH) 13, allyl), δ 1.36 (d, 9H, 3J(PH) 15, C-CH3), δ 1.19 (d, 9H, 3J(PH) 15, C-CH3). 31P{1H} NMR (CD2CI2, 121 MHz): δ 73.1 (s). IR (CH2CI2): v 1610 cm-1 (C=O stretch). Anal. (C51H42POBF24Ni) ca!cd: C, 49.91 ; H, 3.45. Found: C, 50.04; H, 3.62. Examples 130-146
General Procedure. 10 mg (8.2 μmol) of catalyst 23 was added to a flame-dried Schlenk flask under argon. The flask was back-filled twice with ethylene and placed in an oil bath at the appropriate reaction temperature. The flask was charged with 25 mL toluene and stirred under 101 kPa ethylene for the appropriate reaction time. The polymerization was quenched with 5 mL acetone and 1 mL HCI, and the mixture was poured into 250 mL stirring methanol to precipitate the polymer. The polymer was isolated by filtration, washed with acetone, and dried overnight in a vacuum oven. Results are given in Table 23. In Examples 130-133 the reaction produced a very small amount of polymer (visible upon precipitation into MeOH). However, the amount was so small that the polymer was not isolated and weighed. It is estimated that these reactions produce <2 mg polymer.
Table 23
Examples 147-153
Followed same polymerization procedure as in Examples 130-146, using 10 mg (8.2 μmol) of catalyst 23 plus 10.1 mg (10 μmol) H[OEt2]2BAF. Results are given in Table 24. Table 24
27a 27
Example 154 - Synthesis of 27a (X) was prepared using the same literature procedure as nickel allyl chloride dimer, with the exception that methyl-2-bromomethyl acrylate was substituted for allyl chloride.
Complex 27a was prepared by following the same procedure as
23a using 0.400 g (0.841 mmol) (X) and 0.555 g (2.10 mmol) L23. Yields 0.629 g (75%) bright orange powder. 1H NMR (CD2CI2, 200 MHz): δ 8.03
(d, 2H, Ar-H), δ 7.56 (m, 3H, Ar-H), δ 4.05 (s(broad), 2H, allyl), δ 3.83 (s,
3H, -OMe), δ 3.77 (d, 2H, -CH2-), δ 1.42 (d, 18H, C-CH3 ).
Example 155 - Synthesis of Catalyst 27
Catalyst 27 was prepared by following the same procedure as catalyst 23 using 0.300 g (0.589 mmol) 27a and 0.556 g (0.627 mmol)
NaBAF. Yields 0.702 g (91%) bright yellow powder. 1H NMR (CD2CI2,
300 MHz): δ 8.13 d, 2H, 3J(HH) 8.5 Hz, Ar-H), δ 7.88 (t, 1Η, 3J(HH) 7.5,
Ar-H), δ 7.72 (s, 8H, BAF), δ 7.62 (t, 2H, 3J(HH) 8, Ar-H), δ 7.55 (s, 4H, BAF), δ 5.37 (s(broad), 2H, allyl), δ 3.87 (s, 3H, -OMe), δ 3.62 (dd, 2H, 3J(PH) 14.7, 1J(HH) 7.8, -CH2-), δ 2.25 (s(broad), 2H, allyl), δ 1.47 (d, 9H, 3J(PH) 16.5, C-CH3), δ 1.27 (d, 9H, J(PH) 15, C-CH3). Examples 156-159
Followed same procedure as Examples 130-146, using 10.5 mg (8.2 μmol) of catalyst 27. Results are given in Table 25.
Table 25
Examples 160-167
Followed same procedure as Examples 130-146, using 10 mg (8.2 μmol) of catalyst 23, or 10.5 mg (8.2 μmol) of catalyst 27, plus 20.9 mg (40.8 μmol, 5 eq.) B(C6F5)3. Results are given in Table 26.
Table 26
Examples 168-177 - Polymerization of 1 -hexene
General Procedure. Twenty mg (16.2 μmol) of catalyst 23, or 10.5 mg (10 μmol) of catalyst 27 plus 20.9 mg (40.8 μmol) B(C6F5)3 (with 27 only) was added to a flame-dried Kontes® flask under argon. The flask was charged with 5 mL toluene and placed in an oil bath at the appropriate temperature. The flask was charged with 5 mL (39.98 mmol) 1 -hexene, sealed, and stirred under static argon. The polymerization was quenched with 5 mL acetone, and the volatiles were removed via rotary evaporation. The residue was extracted with hexanes, which was subsequently passed through a plug of 2:1 silica gel/alumina. The solvent was removed from the extractions and the resulting clear, colorless oil was dried under high vacuum. Results are given in Table 27.
Table 27
Polymers produced were typically thin, clear, colorless oils. A representative GPC result (Example 170): Mw = 1400, Mn = 1140.
23 28
Example 170 - Synthesis of Catalyst 28
To a suspension of 0.500 g (1.62 mmol) (DME)NiBr2 in 20 mL CH2CI2 at RT was added a solution of 0.471 g (1.78 mmol) L23 in 5 mL CH2CI2. The resulting dark brown/red suspension was stirred at room temperature for 16 h, during which time a light purple precipitate formed. The solid was isolated by filtration, washed with diethyl ether (2 x15 mL), and dried under high vacuum to yield 0.493 g (63%) bright purple/pink powder. Examples 179-184 General Procedure. Ten mg (20.7 μmol) of catalyst 28 was added to a flame-dried Schlenk flask under argon. The flask was back-filled twice with 101 kPa ethylene and charged with 50 mL toluene. The flask was then charged with 1.5 mL MMAO (6.42 wt. %, solution in heptane) and stirred under 101 kPa ethylene. The polymerization was quenched with 10 mL acetone/2 mL HCI and poured into stirring methanol to precipitate the polymer. The product was isolated by filtration, washed with acetone, and dried in a vacuum oven. Results are given in Table 28.
Table 28
Examples 185-191
General Procedure: In a drybox, a glass insert was loaded with the isolated Ni catalysts. TCB, and optionally comonomers, were added to the glass insert. A Lewis acid cocatalyst (typically BPh3 or B(C6F )3) was often added to the solution. The insert was then capped and sealed. Outside of the drybox, the tube was placed under ethylene and was shaken mechanically for about 18 h. The resulting reaction mixture was mixed with methanol, filtered, repeatedly washed with methanol and the solid polymer dried in vacuo. Results are given in Tables 29 and 30.
Table 29
Ethylene/Polar Monomer Copolvmerization Using 0.02mmole 1. with or without B(C6F .3. with a Total Volume of 10mL of TCB and Polar
Monomer, at 80°C under 3.4 MPa of E
Table 30
Ethylene/CO Copolymerization Using 0.02mmole Catalyst, 40eq B(C6F5)3.
10mL TCB. at 100°C under 2.8 MPa Ethylene/CO (9:1 ratio) for 16 h in
Shaker Tubes
Example 192
In a drybox, a glass insert was loaded with 0.0025 mmole 1, 6mL TCB and 4mL E-10-U. The insert was then capped and sealed. Outside of the drybox, the tube was placed under 6.9MPa ethylene and was shaken mechanically at 100°C for 18 h. The resulting reaction mixture was mixed with methanol, filtered, repeatedly washed with methanol and the solid polymer dried in vacuo. White solid (0.863 g) was obtained. HNMR: 6.9 mole% E-10-U. 30Me/1000CH2. GPC (TCB, 135°C): Mw = 10,625; Mn = 4,667; PDI = 2.3. The polymer had a melting point of 119°C (147.4J/g) based on DSC. Examples 193-203
General Information Regarding Molecular Weight Analysis
GPC molecular weights are reported versus polystyrene standards. Unless noted otherwise, GPC's were run with Rl detection at a flow rate of 1 mL/min at 135°C with a run time of 30 min. Two columns were used: AT-806MS and WA/P/N 34200. A Waters Rl detector was used and the solvent was TCB with 5 grams of BHT per gallon. Dual UV/RI detection GPC was run in THF at rt using a Waters 2690 separation module with a Waters 2410 Rl detector and a Waters 2487 dual absorbance detector. Two Shodex columns, KF-806M, were used along with one guard column, KF-G. In addition to GPC, molecular weight information was at times determined by 1H NMR spectroscopy (olefin end group analysis) and by melt index measurements (g/10 min at 190°C). General Procedure A for Ethylene Polymerizations and Copolvmerizations: In a nitrogen-filled drybox, a 40 mL glass insert was loaded with the nickel compound and, optionally, a Lewis acid (e.g., BPh3 or B(CgF5)3) and borate (e.g., NaBAF or LiBArF) and any other specified cocatalysts. Next, the solvent was added to the glass insert followed by the addition of any co-solvents and then comonomers. The insert was greased and capped. The glass insert was then loaded in a pressure tube inside the drybox. The pressure tube was then sealed, brought outside of the drybox, connected to the pressure reactor, placed under the desired ethylene pressure and shaken mechanically. After the stated reaction time, the ethylene pressure was released and the glass insert was removed from the pressure tube. The polymer was precipitated by the addition of MeOH (~20 mL). The polymer was then collected on a frit and rinsed with MeOH and, optionally, acetone. The polymer was transferred to a pre-weighed vial and dried under vacuum overnight. The polymer yield and characterization were then obtained. Nickel compounds used in these examples are shown below.
F-5 F-6 F-7 F-8
Ligand and Catalyst Syntheses:
The imine-ketone and alpha-diimine ligands and their Ni complexes F-1 through F-6 were synthesized according to standard literature methods (torn Dieck, h.; Svoboda, M.; Grieser, T., Z. Naturforsch, 1981 , 36b, 832). Typically a small excess of aniline was added to the diketone in methanol together with a catalytic amount of formic acid. The reaction mixtures were stirred for several days and the precipitate was collected on a frit, washed with methanol, and dried in vacuo.
The ligand for complex F-7 was synthesized as follows: In a nitrogen-filled drybox, 2-indanone (0.50 g, 3.78 mmol) was placed in a round-bottom flask and dissolved in 20 mL of THF. Sodium hydride (0.77 g, 30.3 mmol) was added to the flask and the reaction mixture was stirred for approximately 1 h. Next, (f-Bu)2PCI (1.37 g, 7.57 mmol) was added to the reaction mixture and stirring was continued overnight. The solution was filtered through a frit with Celite®. The solid was dissolved in pentane and filtered again to yield 1.59 g of a yellow powder. 1H NMR (CD2CI2, diagnostic resonances) δ 1.3 - 1.0 ppm (two major sets of doublets, P(t- Bu)).
The ligand for complex F-8 was synthesized as follows: In a nitrogen-filled drybox, tetralone (2.92 g, 20 mmol) was added dropwise to a solution of LDA (2.14 g, 20 mmol) in Et2O (25 mL). The tetralone enolate was isolated by precipitation with anhydrous hexane followed by filtration and drying. Next, Cy2PCI (0.232 g, 1.0 mmol) and tetralone enolate (0.152 g, 1.0 mmol) were each dissolved in THF (1 mL), mixed, and the reaction mixture was stirred overnight. The solvent was removed in vacuo. The compound was dissolved in toluene, the solution was filtered, and the toluene was removed to give the product. 31 P NMR (C6D6): δ 135.16; IR shows very intense band at 1716 cnr1
The Ni complexes F-1 through F-8 were synthesized by stirring an Et O solution of the ligand (1 equiv), the appropriately substituted [(allyl)Ni(halide)]2 precursor (0.5 equiv) and NaBAF (1 equiv) in a nitrogen- filled drybox for several hours. The solution was then filtered through a frit with dry Celite® and the solvent was removed in vacuo. The product was washed with pentane and then dried in vacuo.
Results for Examples 193-203 are listed in Tables 31 and 32 below. The polymerizations were carried out according to the General Polymerization Procedure A. Varying amounts of acrylate homopolymer are present in some of the isolated polymers. In Tables 31 and 32, the yield of the polymer is reported in grams and includes the yield of the dominant ethylene/acrylate copolymer as well as the yield of any acrylate homopolymer that was formed. Molecular weights were determined by GPC, unless indicated otherwise. Mole percent acrylate incorporation and total Me were determined by 1H NMR spectroscopy, unless indicated otherwise. Mole percent acrylate incorporation is typically predominantly IC, unless indicated otherwise.
Table 31
Ethylene/Acrylate Copolvmerizations (0.02 mmol Ni Cmpd, 1 mL EGPEA.
9 mL Solvent, 20 eguiv B(C6F5)?, 10 equiv NaBAF. 6.9 MPa E.18 h.
aCopolymer resonances are observable in the NMR spectrum, but were not integrated due to overlap with significant homopolymer resonances.
Table 32 Ethylene Homopolvmerization and Ethylene/Acrylate Copolvmerization. 6.9 MPa Ed 8 h)
aComplex F-5 yields higher productivity for ethylene homopolymerization in the absence of a Lewis acid than a number of other alpha diimine nickel allyl complexes. For some comparative examples that were run in the same reactor as the present example and which exhibited lower productivity in the absence of Lewis acid cocatalyst, see US Patent 5,886,224 examples 521 - 531 (no Lewis acid present) and examples 532 - 537 (Lewis acid present). Examples 204-205
A 600 mL Parr® reactor was cleaned, heated up under vacuum, and then allowed to cool under nitrogen. In a drybox, 10.0 mg of 3 (and also 20mg BPh3 for Example 205) was dissolved in 60mL chlorobenzene in a 150mL addition cylinder. The cylinder was brought out of the drybox and was attached to the Parr® reactor. The solution in the addition cylinder was pressured into the 80°C reactor under 2.1 MPa. Nitrogen was quickly vented. Ethylene pressure (~6.9 MPa) was applied. The autoclave was allowed to stir (600RPM) at 100°C under 6.9 MPa of ethylene for 1 h. The heating source was removed and ethylene was vented. The autoclave was back-filled with 700 kPa nitrogen and the nitrogen was vented after brief stirring. This was repeated two more times. The room temperature mixture was poured into 500mL methanol, filtered, and washed with methanol. The resulting polymer was blended with methanol, filtered, and washed with methanol. Repeated this blending/washing procedure two more times. It was dried in vacuo overnight. Results are shown in Table 33.
Table 33
Examples 206-208
A 600 mL Parr® reactor was cleaned, heated under vacuum, and then allowed to cool under nitrogen. In the drybox, 12.4 mg of 14 (and also 182mg BPh3 for Example 207, or 385 mg B(CgF5)3 for Example 208) was dissolved in 90mL toluene and 60mL E-10-U in a 300mL RB flask. It was sealed using a rubber septum. Outside the drybox, a 100°C oil bath was prepared. The RB flask was removed from the drybox. The solution was transferred via cannula into the autoclave under positive nitrogen pressure. The autoclave was sealed and pressurized to 700 kPa nitrogen. Nitrogen was then vented. The pressuring/venting was repeated two more times. At about 35 kPa nitrogen, the autoclave was stirred at about 600 rpm. Ethylene pressure (~4.5 MPa) was applied. The autoclave was quickly placed in the preheated 100°C bath. The pressure of the autoclave was adjusted to about 5.5 MPa and the temperature of the bath was adjusted to make the reaction temperature about 100°C. It was stirred at this temperature and pressure for 2 hr. The heating source was removed and ethylene was vented. The autoclave was back-filled with 700 kPa nitrogen and the nitrogen was vented after brief stirring. This was repeated two more times. The room temperature mixture was poured into 500mL methanol, filtered, and washed with methanol. The resulting polymer was blended with methanol, filtered, and washed with methanol. This procedure was repeated two more times. It was dried in vacuo overnight. Results are shown in Table 34.
Table 34
Example 209 Ligand G-1
The syntheses of ligand G-1 was published in WO 00/50470.
Ligand G-2 - Acenaphthenedionemono[2,5-diisopropylpyrrol-1-imine1
A 100 mL round bottom flask was charged with 0.3215 g (1.76 mmol) of acenaphthenequinone, 0.586 g (3.53 mmol) of 1-amino- 2,5-diisopropylpyrrole, 50 mL methanol and 1 drop of formic acid. The reaction was monitored by TLC with elute of 30% ethyl acetate in hexane and stirred 7 days at RT. The solvent was removed under vacuum and the unreacted pyrrole was recovered by sublimation. The red residue was extracted with hexane. 0.40 g (1.2 mmol) of orange red powder was obtained in 69% yield. 1H NMR (CDCI3): δ 8.12 (d-d, 2, H-acen), 8.01 (d, 1 , H-acen), 7.77 (t, 1 , H-acen), 7.50 (t, 1 , H-acen), 6.70 (d, 1 , H-acen), 5.98 (s, 2, H-py), 2.60 (m, 2, H-Pr-i), 1.10 (d, 6, CH3-Pr-i), 0.94 (d, 6, CH3- Pr-i). Copolvmerization of ethylene and polar-comonomers
Into a glass vial used for shaker reaction, were weighed 0.02 mmol of Ligand G-1 or G-2, 1 equivalent of allyl-Ni dimer ([(2-MeO2C- C3H4)NiBr]2) and 10 equivalent of NaBaf. 2 mL of ether was added into the vial and shaken well. After two hours during which time the most of the ether was evaporated off, 20 equivalent of tris(pentafluorophenyl)borane cocatalyst, 9 mL of 1 ,2,4-trichlorobenzene and 1 mL of ethylene glycol phenyl ether acrylate was added into the vial. The vials were placed into a shaker tube, sealed and taken out from the dry box. The shaker tube was connected to a high pressure, ethylene shaker reaction unit. Reaction conditions for polymerization were: 1000 psi ethylene, 120°C, 18 hours. The results are presented below in Table 35.
Table 35
Notes: a. 20 equivalent of NaBArf, b. Rl data for GPC in THF, dual detector RI-UV, c. [AIMe2(Et2O)]+[MeB(C6F5)3]- cocatalyst and p-xylene solvent, d. Hexyl acrylate comonomer. Example 210
es = 2, 4, 6-trimethylphenyl
Synthesis of L29. Acetophenone (0.383 mL, 3.28 mmol) and 8 mL
THF were added to a flame-dried Schlenk under argon. The solution was cooled to -78°C and charged with 3.28 mmol LDA (solution in 8 mL THF). The reaction mixture was warmed to RT and stirred for 1.5 h, during which time a pale yellow solution formed. This was added via cannula to a pre- cooled (-78°C) solution of 1.00g (3.28 mmol) dimesitylchlorophosphine in 8 mL THF. The resulting yellow/orange solution was warmed to RT and stirred for 2 h. The solvent was removed in vacuo and the residue was extracted with 30 mL hexanes and passed through a plug of silica gel. The extract solvent was removed in vacuo to yield a pale yellow amorphous solid. Pentane (20 mL) was added with vigorous stirring to yield a white powder. The product was isolated via filtration, washed with 10 mL pentane, and dried in vacuo to yield 0.158g (12 %) L29. 1H NMR (300 MHz, CD2CI2). 7.81 (d, 2H, aryl H0), 7.51 (t, 1H, aryl Hp), 7.37 (m, 2H, aryl Hm), 6.73 (d, 4H, Mes Hm), 4.15 (d, 2H, -CH2-), 2.20 (s, 6H, Mes- Mep), 2.16 (s, 12H, Mes-Me0). 31P{1H} NMR (121 MHz, CD2CI2). -25.7.
Synthesis of 29. A solution of 75 mg (0.193 mmol) L29 in 8 mL Et O was added via cannula to a solution of 25.5 mg (0.094 mmol) Ni-allyl dimer in 5 mL Et2O. The resulting orange-yellow solution was stirred at RT for 3 h. The solvent was removed in vacuo to yield a orange/yellow microcrystalline solid. The product was dried in vacuo to yield 52 mg (53%) of a solid. 1 H NMR (400 MHz, CD2CI2). 7.68 (broad s, 2H, aryl H0), 7.35 (broad s, 1 H, aryl Hp), 7.32 (broad s, 2H, aryl m), 6.84 (s, 4H, Mes m), 5.40 (broad s, 1 H, allyl), 4.43 (broad s, 2H, allyl), 3.43 (broad s, 2H, allyl), 2.46 (s, 6H, Mes-Mep), 2.20 (s, 12H, Mes-Me0). 31P{1H} NMR (161.8 MHz, CD2CI2). -0.66. This solid (50 mg, 0.095 mmol), NaBAF (84 mg, 0.095 mmol), and 10 mL Et O were added to a flame-dried Schlenk flask at -78°C. The reaction was warmed to room temperature and stirred for 1.5 h. The pale yellow solution was isolated via cannula filtration and the solvent removed to yield a yellow oil. Pentane (20 mL) was added with vigorous stirring to yield a yellow powder. The product was isolated via filtration, washed with 10 mL pentane, and dried in vacuo to yield 86 mg (67 %) 29. 1H NMR (400 MHz, CD2CI2). 8.02 (d, 2H, aryl H0), 7.83 (t, 1H, aryl Hp), 7.72 (s, 8H, BAF), 7.57 (m, 2H, aryl Hm), 7.55 (s, 4H, BAF), 6.98 (d, 4H, Mes Hm), 5.87 (m, 1H, allyl), 4.84 (broad s, 1 H, allyl), 3.70 (d, 1 H, allyl), 3.06 (s, 1H, allyl), 2.42 (s, 12H, Mes-Me0), 2.29 (s, 6H, Mes-Mep), 1.97 (d, 1 H, allyl). 31P{1H} NMR (161.8 MHz, CD2CI2). 4.83. Examples 211-216
Polymerization of Ethylene (1 atm., 0 Pa gauge) with 29. Followed same procedure as Examples 130-146 using 2.0 mg (1.48 μmol) 3. Results are listed in Table 36.
Table 36
aMn = 1090, 5 branches/1000 carbons (determined by 1H NMR)
Example 217
Polymerization of Ethylene (1.38 MPa) with 29. Followed same procedure as Examples 111-115 using 2.0 mg (1.48 μmol) 3. Results are listed in Table 37.
Table 37
Example 218
L30
30 Synthesis of (19a). L19, t-Bu2PCH2CH2OPh, was synthesized using a procedure described by h. Werner et al., Organometallics 2000, 19, 4756. A Schlenk flask was charged with [Ni(C3H5)CI]2 (54 mg, 0.2 mmol) and 15 mL dry, air-free hexane. The flask was cooled to -78°C and a solution of L19 (103 mg, 0.4 mmol) in 10 mL hexane was added with stirring. The reaction mixture was allowed to warm to RT and stirred for 1.5 h. Product precipitated out as yellow solid. The solid was filtered and dried under vacuum to give 88 mg (56%) of 19a. 1H NMR (CD2CI2, 300 M): δ 6.85 - 7.2 ppm (total 5H, Ar-H); 5.25 (m, 1H, central allyl H); 4.21 (broad, 2H); 3.95 (broad, 1 H); 3.1 (broad, 1H); 2.9 (broad, 1 H); 2.2 (broad, 2H); 1.6 (broad, 1 H); 1.25 (d, 18H, t-Bu H). 31P NMR (CD2CI2, 121 M): δ 48.78 ppm.
Synthesis of 19. A Schlenk flask was charged with the nickel chloride 19a (80 mg, 0.2 mmol) and 20 mL dry, air-free diethyl ether. After the yellow suspension was cooled to -78°C, a solution of NaBAF (178 mg, 0.2 mmol) in 10 mL diethyl ether was added with stirring. The reaction mixture was allowed to warm to RT and stirred for 1.5 h, then filtered via cannula. 10 mL hexane was added to the filtrate. Removal of solvents afforded 0.20 g (81%) of 19 as yellow solid. 1H NMR (CD2CI2, 300 M): δ 7.5 - 7.8 ppm (total 12 H, BAF-H); 7.1 to 7.5 (total 5H, Ar-H); 5.5 (m, 1 H, central allyl H); 4.4 (m, 1 H); 4.2 (m, 1 H); 3.3 (broad, 2H); 3.0 (d of d, 1H); 2.05 (m, 1 H); 1.9 (broad doublet, 2H); 1.3 (d of d, 18H, t-Bu H). 31 P NMR (CD2CI2, 121 M): δ 72.35 ppm. Example 219
Polymerization was carried out in a 1000 mL, mechanically stirred Parr® reactor equipped with an electric heating mantle controlled by a thermocouple in the reaction mixture and a cooling system. The reactor was heated under vacuum at 100°C for 1 h before use. After the reactor was purged with ethylene three times, 185 mL dry, air-free toluene was added via syringe. The solvent was then purged with ethylene at 2.76 MPa three times. 19 (5 mg, 4.1 μmol) was dissolved in 15 mL toluene and was rapidly added to the reactor via cannula. The reaction mixture was heated to 60°C and stirred under 2.76 MPa ethylene for 1 h. The reaction was quenched by addition of acetone and methanol. Removal of solvents afforded 4.23 g colorless oil. TON 37,000. Mn 190 (determined by 1H NMR), 80% linear -olefins and 20% vinylidenes. Examples 220-221
(COD)PdMeCI + 23 Et2° >
NaBArF L
lBAr',
32 L = Et2O
33 L = MeCN Synthesis of 31 : 23 (0.441 g, 1.67 mmol) was dissolved in 10 mL diethyl ether and added via cannula to a solution of (COD)PdMe(CI) (0.400 g, 1.51 mmol) in 25 mL diethyl ether. The resulting white-yellow suspension was stirred at room temperature for 6 hours. The white powder product was isolated by filtration, washed with diethyl ether (2 x 10 mL), and dried in vacuo to yield 31 (0.513 g, 81% yield). 1H NMR (300 MHz, CD2CI2): 8.06 (d, 2H, J = 1.8 Hz, Ar-H0), 7.74 (t, 1 H, J = 7.5 Hz, Ar-Hp), 7.55 (m, 2H, Ar-Hm), 3.58 (d, 2H, 2jHp = 9.3 Hz, -CH2-), 1.37 (d, 18H, 3JHP = 14.4 Hz, -C(CH3)3), 1.03 (d, 3H, 3JHP = 2.1 Hz, Pd-CH3). 13C{1H} NMR (75.5 MHz, CD2CI2): 206.0 (d, 2JCP = 3.1 Hz, C=O),
136.0 (Ar-Cp), 134.5 (d, 3JCP = 3.9 Hz, Ar-C/pso), 130.5 (Ar-C0), 129.5 (Ar- Cm), 37.2 (d, JCP = 20.0 Hz, -CH2-), 35.7 (d, JCP = 16.8 Hz, -C(CH3)3), 29.2 (d, 2JCP = 4.7 Hz, -C(CH3)3), -11.6 (d, 2JCP = 2.0 Hz, Pd-CH3). 31 P{1 H} NMR (162 MHZ, CD2CI2): 70.5. IR (CH2CI2): (C=O) = 1626 cm-1. Anal Calcd for C17H28CIOPPd: C, 48.47; H, 6.70. Found: C, 48.99; H, 6.98. Example 220
Synthesis of 32: 31 (0.100 g, 0.237 mmol) and NaBAr'4 (0.220 g, 0.243 mmol) was added to a Schlenk flask and cooled to -78°C. Diethyl ether (15 mL) was added and the resulting pale-yellow solution was slowly warmed to 0°C and stirred for 3 h. The yellow solution was separated from the gray solid NaCl precipitate via cannula filtration, and the solvent was removed in vacuo to yield a white-yellow oily residue. Pentane (15 mL) was added and the mixture was vigorously stirred at 0 °C for 1 h, during which time a white-gray solid precipitated from the clear, colorless solution. The product was isolated by filtration, washed with pentane (2 x 10 mL), and dried in vacuo to yield 32 (0.223 g, 71% yield). The product was recrystallized from diethyl ether/pentane. 1H NMR (300 MHz, CD2CI2): 8.03 (d, 2H, J = 7.6 Hz, Ar-H0), 7.81 (t, 1 H, J = 7.5 Hz, Ar-Hp), 7.58 (m, 2H, Ar-Hm), 3.81 (q, 4H, J = 7.0 Hz, -O(CH2CH3)2), 3.71 (d, 2H, 2jHP = 9.6 Hz, -CH2-), 1.50 (t, 6H, J = 7.0 Hz, -O(CH2CH3)2), 1.39 (d, 18 H, 3JHP = 15.6 Hz, C(CH3)3), 0.93 (s, 3H, Pd-CH3). 13C{1H} (75.5 MHz, CD2CI2, 273 K): 207.1 (C=O), 137.5 (Ar-Cp), 133.2 (d, 3JCP = 4.0 Hz, Ar-C/pso), 130.6 (Ar-C0), 129.9 (Ar-Cm), 70.2 (-O(CH2CH3)2), 37.6 (d, 2jcp = 23.0 Hz, -CH2-), 36.4 (d, JCP = 20.0 Hz, -C(CH3)3), 28.8 (d, 2Jcp = 3.8 Hz, -C(CH3)3), 16.2 (-O(CH2CH3)2), -7.1 (Pd-CH3). 31P{1H} NMR (121 MHz, CD2CI2): 79.3. IR (CH2CI2): (C=O) = 1613 cm-1. Anal Calcd for C53H50BF24O2PPd: C, 48.11 ; H, 3.81. Found: C, 48.19; H, 3.74. Example 221
Synthesis of 33: 31 (0.200 g, 0.48 mmol) and NaBAr'4 (0.442 g, 0.50 mL) were added to a Schlenk flask and cooled to -78°C. Methylene chloride (20 mL) and 0.50 mL acetonitrile (9.49 mmol, 20 eq.) were added via syringe. The resulting pale-yellow solution was allowed to slowly warm to RT and stirred for 3 h. The yellow solution was isolated from the gray solid NaCl precipitate via cannula filtration, and the solvent was removed in vacuo to yield a yellow-brown oily residue. Pentane (20 mL) was added and the mixture was vigorously stirred for 2 h, during which time a white- gray solid precipitated from the clear, colorless solution. The product was isolated by filtration, washed with pentane (2 x 15 mL), and dried in vacuo to yield 33 (0.478 g, 78% yield). The product was recrystallized from diethyl ether/pentane. 1H NMR (400 MHz, CD2CI2): 8.05 (d, 2H, J = 8.6 Hz, Ar-H0), 7.80 (t, 1 H, J = 7.6 Hz, Ar-Hp), 7.58 (m, 2H, Ar-Hm), 3.65 (d, 2H, 2JHP = 9.2 Hz, -CH2-), 2.35 (s, 3H, -NCCH3), 1.37 (d, 18H, 3JHP = 15.2 Hz, -C(CH3)3), 0.97 (s, 3H, Pd-CH3). 13C{1H} NMR (75.5 MHz, CD2CI2, 273 K): 207.4 (C=O), 137.2 (Ar-Cp), 133.4 (d, 3JCP = 4.2 Hz, Ar-C/pso), 130.6 (Ar-C0), 129.8 (Ar-Cm), 118.5 (-NCCH3), 37.1 d, JCP = 22.6 Hz, -CH2-), 35.9 (d, JCP = 19.6 Hz, -C(CH3)3), 28.8 (d, 2jcp = 4 Hz, - C(CH3)3), 3.2 (-NCCH3), -10.4 (Pd-CH3). ^ P{1 H) NMR (162 MHz, CD2CI2): 75.2. IR (CH2CI2): v (C=O) = 1617 cm-1. Anal Calcd for C51H43BF24NOPPd: C, 47.50; H, 3.36; N, 1.09. Found: C, 47.73; H, 3.33; N, 1.22. Examples 222-233 General Procedure for 0 MPa Polymerizations: 32 or 33
(10.0 μmol) was added to a flame-dried Schlenk flask under argon. The flask was backfilled three times with 1 atm ethylene (0 Pa, gauge) and charged with 25 mL toluene. The flask was immediately placed into an oil bath (warmed to the desired reaction temperature) and stirred under 0 Pa ethylene for the 3 h. The reaction was quenched with acetone and the volatiles were removed in vacuo. The residue was extracted into hexanes and passed through a plug of 2:1 silica gel/alumina. The solvent was removed on a rotovap and the resulting clear, colorless oil was dried in vacuo. General Procedure for 1.38 MPa Polymerizations: A I OOO mL
Parr® autoclave was heated under vacuum at 100°C for 1 h and was then cooled and backfilled with ethylene. Toluene (200 mL) was added, the autoclave was sealed, and the ethylene pressure was raised to ca. 3 atm. The reactor temperature was established and the solvent was allowed to stir for 10 min. The autoclave was then vented, the catalyst solution (3.88 μmol 32 or 33 in 5 mL toluene) was added, and the autoclave was sealed and pressurized to 1.38 MPa ethylene pressure while stirring for 3 h. The reaction was quenched by venting the autoclave followed by addition of acetone. The contents were transferred to a 500 mL RB flask and the solvent was removed on a rotovap. The residue was extracted into hot toluene and filtered to removed Pd black. The solvent was removed and the resulting colorless amorphous solid was dried in vacuo. Results of all polymerizations are given in Table 38.
Table 38
a TON mol PE per mol catalyst. b Determined by GPC.
Example 234
The following illustrates a test for an "active ligand". A series of ethylene homopolymerizations and copolymerizations were carried out under the conditions of Test 1 or Test 2 for "active ligands," or under conditions close to those described. The catalyst was F-5, and the polymerizations were carried out at 5.52 MPa ethylene pressure and
100°C. The results are presented in Table 39. From the results in Table 39, F-5 qualifies as an active ligand under both of Tests 1 and 2 for active catalysts. Table 39

Claims

CLAIMS What is claimed is:
1. A Group 3 through 11 (IUPAC) transition metal or lanthanide metal complex of a ligand of the formula (I)
wherein:
Z is nitrogen or oxygen; and Q is nitrogen or phosphorous; provided that: when Q is phosphorous and Z is nitrogen: R1 and R2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R3, R4, R5, and R6 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl or silyl; and R8 is hydrocarbyl, substituted hydrocarbyl, or silyl; provided that any two of R3, R4, R5, R6, R7 and R8 vicinal or geminal to one another together may form a ring; when Q is phosphorous and Z is oxygen: R1 and R2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R3 and R4 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; R5 and R7 taken together form a double bond; R8 is not present; and R6 is -OR9, -NR10R11, hydrocarbyl or substituted hydrocarbyl, wherein R9 is hydrocarbyl or substituted hydrocarbyl, and R10 and R11 are each independently hydrogen, hydrocarbyl or substituted hydrocarbyl; and provided that any two of R3, R4, and R6 vicinal or geminal to one another may form a ring; or
R1 and R2 are each independently hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R3, R4, R5 and R6 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; R7 is hydrocarbyl, silyl, or substituted hydrocarbyl; and R8 is not present; and provided that any two of R3, R4, R5, R6, and R7 vicinal or geminal to one another may form a ring; when Q is nitrogen: R1 is hydrocarbyl, silyl, or substituted hydrocarbyl having an Es of about -0.90 or less; R2 and R3 are each independently hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl, or taken together form a double bond; R4 is hydrogen, hydrocarbyl, a functional group, or substituted hydrocarbyl; Z is oxygen; R6 and R7 taken together form a double bond; R8 is not present; R5 is - OR12, -Rl3 or -NR14R15, wherein R12 and R13 are each independently hydrocarbyl or substituted hydrocarbyl, and R14 and R15 are each hydrogen, hydrocarbyl or substituted hydrocarbyl; provided that when R2 and R3 taken together form an aromatic ring, R1 and R4 are not present; and further provided that any two of R2, R3, R4 and R5 vicinal or germinal to one another taken together may form a ring.
2. The transition metal complex of Claim 1 , wherein the transition metal is selected from Ni, Fe, Ti and Zr.
3. The transition metal complex of Claim 1, having the formula (IV)
(IV)
wherein M1 is the transition metal; each X is independently a monoanion; and m is an integer equal to an oxidation state of M1.
4. The transition metal complex of Claim 1 , having the formula (IX)
wherein M is the transition metal; L1 is a monoanionic ligand which may add to an olefin; n is equal to the oxidation state of M1 minus one; L2 is a ligand which may be displaced by an olefin or is an empty coordination site; or L1 and L2 taken together are a bidentate monoanionic ligand into which an olefin molecule may insert between the ligand and a metal atom; and W is a relatively noncoordinating anion.
5. The transition metal complex of Claim 1 , wherein Q is phosphorous and Z is oxygen.
6. The transition metal complex of Claim 5, wherein R1 and R2 are t-butyl; R3 and R4 are hydrogen; and/or R6 is -OR9, -NR10R11, alkyl, aryl or substituted aryl; and/or R9 is alkyl or aryl; and/or R10 and R11 are each independently aryl or substituted aryl.
7. The transition metal complex of Claim 1 , wherein Q is phosphorous and Z is nitrogen.
8. The transition metal complex of Claim 7, wherein R1 and R2 are t-butyl; and/or R8 is aryl or substituted aryl; and/or R3, R4 and R5 are hydrogen, hydrocarbyl or substituted hydrocarbyl; and/or R6 is aryl or substituted aryl; and/or R7 is benzyl.
9. The transition metal complex of Claim 1 , wherein Q is nitrogen and Z is oxygen.
10. The transition metal complex of Claim 9, wherein
R1 is a 2,5-disubstituted pyrrole or a group of the formula (VII)
wherein R20, R21, R22, R23 and R24 are each independently hydrogen, hydrocarbyl substituted hydrocarbyl or a functional group, provided than any two of R20, R21, R22, R23 and R24 ortho to another taken together may form a ring; and/or
R4 is alkyl; and/or
R5 is -OR12, -R13 or -NR14R15; and/or R12 is alkyl; and/or
R13 is alkyl; and/or
R14 is alkyl containing 1 to 6 carbon atoms; and/or
R15 is hydrogen or alkyl; and/or
R15 and R4 taken together form a ring; and/or R4 and R12 taken together form a ring; and/or
R4 and R13 taken together form a ring.
11. A process for the polymerization of olefins, comprising the step of contacting, under polymerizing conditions, one or more polymerizable olefins with an active polymerization catalyst comprising a transition metal complex as set forth above in Claim 1.
12. The process of Claim 11 , wherein said one or more polymerizable olefins are compounds of the formula H2C=CH(CH2)nG (VIII), wherein n is 0 or an integer of 1 or more, g is hydrogen or -CO2R25, and R25 is hydrogen, hydrocarbyl or substituted hydrocarbyl.
13. The process of Claim 12, wherein said one or more polymerizable olefins comprises ethylene.
14. The process of Claim 13, wherein said one or more polymerizable olefins comprises ethylene and at least one other polymerizable olefin.
15. A process for the manufacture of a polar copolymer by contacting, under polymerizing conditions, a hydrocarbon olefin, a polar olefin, and a polymerization catalyst comprising a nickel complex of a bidentate ligand which is an active ligand.
16. The process of Claim 15, provided that when CO is present, at least one other polar olefin is also present.
17. The process of Claim 15 wherein said active ligand meets the condition for Test 2, as defined herein.
18. The process of Claim 15, wherein said hydrocarbon olefin is one or more of ethylene and H2C=CHR26 wherein R26 is n-alkyl; and said polar olefin is one or more of H2C=CHR27CO2R28 wherein R27 is n- alkylene or a covalent bond and R28 is hydrocarbyl or substituted hydrocarbyl.
19. The process of Claim 18, wherein said hydrocarbon olefin is ethylene.
20. The process of Claim 15, wherein said process is carried out at about 50°C to about 170°C.
21. The process of Claim 18, wherein a pressure of said ethylene is at least about 700 kPa and said process is carried out at a temperature of about 50°C to about 170°C.
22. An improved process for the manufacture of a polar copolymer by contacting, under polymerizing conditions, a hydrocarbon olefin, a polar olefin, and a polymerization catalyst comprising a nickelcomplex, wherein the improvement comprises that the polymerization catalyst comprises a nickel complex of a bidentate ligand which is an active ligand.
23. The process of Claim 22 wherein said active ligand meets the condition for Test 2, as defined herein.
24. The process of Claim 22 wherein said process is carried out at about 50°C to about 170°C.
25. The process of Claim 24 wherein said hydrocarbon olefin is one or more of ethylene and H2C=CHR26 wherein R26 is n-alkyl, and said polar olefin is one or more of H2C=CHR27CO2R28 wherein R27 is n- alkylene or a covalent bond and R28 is hydrocarbyl or substituted hydrocarbyl.
26. The transition metal complex of Claim 5, wherein R1 and R2 are t-butyl, and/or R3, R4, R5, and R6 are hydrogen; and/or R7 is aryl or substituted aryl.
EP02709300A 2001-01-26 2002-01-25 Polymerization of olefinic compounds Withdrawn EP1355956A2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US26453701P 2001-01-26 2001-01-26
US264537P 2001-01-26
US29479401P 2001-05-31 2001-05-31
US871099 2001-05-31
US294794P 2001-05-31
US09/871,099 US6897275B2 (en) 2000-05-31 2001-05-31 Catalysts for olefin polymerization
PCT/US2002/003088 WO2002059165A2 (en) 2001-01-26 2002-01-25 Polymerization of olefinic compounds

Publications (1)

Publication Number Publication Date
EP1355956A2 true EP1355956A2 (en) 2003-10-29

Family

ID=27401711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02709300A Withdrawn EP1355956A2 (en) 2001-01-26 2002-01-25 Polymerization of olefinic compounds

Country Status (3)

Country Link
EP (1) EP1355956A2 (en)
JP (1) JP2004517933A (en)
WO (1) WO2002059165A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130452A1 (en) * 2001-10-12 2003-07-10 Johnson Lynda Kaye Copolymers of ethylene with various norbornene derivatives
US7635739B2 (en) * 2005-08-31 2009-12-22 Rohm And Haas Company Substantially linear polymers and methods of making and using same
IT201700006307A1 (en) * 2017-01-20 2018-07-20 Versalis Spa BONE-AZOTATE COMPLEX OF IRON, CATALYTIC SYSTEM INCLUDING THE BONE-AZOTATE COMPLEX OF IRON AND PROCEDURE FOR (CO) POLYMERIZATION OF CONJUGATED DIENES
JP6858376B2 (en) * 2017-12-22 2021-04-14 国立大学法人 東京大学 Method for Producing Catalyst for Olefin Polymerization and Polar Group-Containing Olefin Polymer
CN110483587B (en) * 2019-08-27 2021-07-09 中国科学技术大学 Large steric hindrance ketimine nickel catalyst and ligand compound, preparation method and application thereof
CN110483586B (en) * 2019-08-27 2021-07-09 中国科学技术大学 Large steric hindrance ketimine nickel catalyst and ligand compound, preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714556A (en) * 1995-06-30 1998-02-03 E. I. Dupont De Nemours And Company Olefin polymerization process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02059165A3 *

Also Published As

Publication number Publication date
WO2002059165A3 (en) 2003-05-22
WO2002059165A2 (en) 2002-08-01
JP2004517933A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US6710007B2 (en) Polymerization of olefinic compounds
AU2001275070B2 (en) Catalysts for olefin polymerization
AU2001275070A1 (en) Catalysts for olefin polymerization
US7847099B2 (en) Non-metallocene organometallic complexes and related methods and systems
US6506861B2 (en) Polymerization of olefins
EP0977785B1 (en) Polymerization of olefins
WO2000006620A2 (en) Polymerization of olefins
EP1046647B1 (en) Group 8,9 or 10 transition metal catalyst for olefin polymerization
US11149099B2 (en) Metal complex and method for producing the same, catalyst component for olefin polymerization and catalyst for olefin polymerization containing the metal complex, and methods for producing α-olefin polymer and copolymer using the catalyst for olefin polymerization
US6133387A (en) Group 8, 9 or 10 olefin copolymerization catalyst
WO2002059165A2 (en) Polymerization of olefinic compounds
JP6938264B2 (en) A metal complex and a method for producing the same, a catalyst component for olefin polymerization and a catalyst for olefin polymerization containing the metal complex, and a method for producing an α-olefin polymer and a copolymer using the catalyst for olefin polymerization.
US6380333B1 (en) Group 8, 9 or 10 olefin copolymerization catalyst
CN101311182A (en) Olefin polymerization
KR20030082543A (en) Cationic catalyst system
EP1134235B1 (en) Group 8, 9 or 10 olefin copolymerization catalyst
CA2285523C (en) Group 8, 9 or 10 olefin copolymerization catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030715

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ITTEL, STEVEN, DALE

Inventor name: KREUTZER, KRISTINA, A.

Inventor name: JOHNSON, LYNDA, KAYE

Inventor name: LIU, WEIJUN

Inventor name: WANG, YIN

Inventor name: WANG, LIN

Inventor name: MALINOSKI, JON, M.

Inventor name: KUNITSKY, KEITH

Inventor name: BROOKHART, MAURICE, S.

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 4/642 20060101ALI20070721BHEP

Ipc: C07F 7/00 20060101ALI20070721BHEP

Ipc: C07F 15/00 20060101ALI20070721BHEP

Ipc: C08F 4/70 20060101ALI20070721BHEP

Ipc: C08F 10/00 20060101AFI20020806BHEP

17Q First examination report despatched

Effective date: 20070918

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110802