EP1351754A2 - Device and method for treating gas effluents in a chamber containing integrated heating/cooling elements in the form of thin plates - Google Patents

Device and method for treating gas effluents in a chamber containing integrated heating/cooling elements in the form of thin plates

Info

Publication number
EP1351754A2
EP1351754A2 EP02710940A EP02710940A EP1351754A2 EP 1351754 A2 EP1351754 A2 EP 1351754A2 EP 02710940 A EP02710940 A EP 02710940A EP 02710940 A EP02710940 A EP 02710940A EP 1351754 A2 EP1351754 A2 EP 1351754A2
Authority
EP
European Patent Office
Prior art keywords
elements
adsorbents
heating
condensation
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02710940A
Other languages
German (de)
French (fr)
Inventor
Jean-Charles Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1351754A2 publication Critical patent/EP1351754A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • B01D2259/40009Controlling pressure or temperature swing adsorption using sensors or gas analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption

Definitions

  • the present invention relates to a method and the means used to treat polluted air and recover polluting gases in the form of condensates.
  • the principle is to pass the charged air through a layer of activated carbon which will retain the pollutants.
  • the active coals or the adsorbent Once saturated, the active coals or the adsorbent will be "cleaned” or desorbed by passing steam at 120-140 ° C through the adsorbent bed. The gases will then be recovered by separate condensation.
  • the main drawbacks are:
  • Adsorption is an exothermic phenomenon which leads to temperature rises when the concentration of volatile organic compounds is too high, this results in a lower adsorption capacity and a risk of combustion of the activated carbon.
  • certain compounds can lead to the cessation of exothermic dehydration reactions and cause inflammation of the activated carbon in the presence of oxygen.
  • the gas mixtures are complex, the molecules having a low affinity with the adsorbent are displaced by the molecules having a strong affinity with the latter. This leads to a too short drilling time, therefore to a too reduced adsorption rate.
  • the relative humidity of the gaseous effluents is too high, the capacity of active carbon to adsorb volatile organic compounds is considerably reduced.
  • the temperature of the gases to be treated often exceeds 50 ° C, but the static capacity of the activated carbon decreases very sharply from 40 ° C.
  • Desorption requires the use of 3 to 4 kg of steam heated to 120-140 ° C for 1 kg of volatile organic compounds recovered. The investment of a steam generator is very expensive if its only destination is desorption.
  • the geometry of the systems mainly used induces preferential passages, during adsorption, which reduces the rate of adsorption at breakthrough.
  • FIG. 1 represents all of the elements of the device according to the invention
  • FIG. 2 represents a standard thermoregulated heating / cooling element seen from face
  • FIG. 3 represents a particular configuration with 2 stages of heating / cooling elements thermoregulated separately, containing 1, 2 or a mixture of separate adsorbents (3, 4)
  • FIG. 1 represents a particular embodiment, which, according to the invention, makes it possible to ensure in the same machine an optimal adsorption thanks to the controlled maintenance of the temperature, even in the case of complex gas mixture, a very rapid desorption where the adsorbents (2) and adsorbates are heated very quickly by conduction between heating elements (1) with specific geometry very closely spaced, and regulated in temperature, as well as a very economical recovery by condensation / absorption (3) due to the high concentration obtained at the output and from the condensation mode.
  • the configuration of the device makes it possible very quickly to obtain heating or cooling at the core of the adsorbents.
  • the charged air enters the lower part (6) of the reactor, passes through the adsorbents (2) located between the cooled thermoregulated elements (1) and abandons its pollutants there. H purified spring in the upper part (7).
  • a breakthrough detector 9 sends the desorption signal.
  • the tank In desorption mode, the tank is inerted by a gas (8).
  • the adsorbents are heated in dead conduction by the thermoregulated elements.
  • a heated transfer gas (8) is injected at very low flow rate in the upper part and entrains very concentrated pollutants in the condensation zone (3) in the lower part.
  • the pollutants recovered during the condensation are directed either to a storage unit (10), or partly to an intense cooling tank (4) from which they leave in the lower part of the reactor to be used during the operation. built-in adsorption / condensation (3). When simple condensation is sufficient, a heat exchanger (3.1) will replace absorption. In this case, all of the pollutants recovered will be sent directly to the storage area.
  • isolation valves (23) are provided at the fluid inlets and outlets.
  • the present invention provides a more suitable response to the problem posed by
  • the device according to the invention comprises as a first characteristic heating / cooling elements (1), the particular configuration of which (FIG. 2) has been specially studied to optimize heat transfers, limit the masses of refrigerant / heat transfer fluids used. , considerably limit heat losses and be perfectly flexible.
  • the heating elements (1) consist of small metal tanks (FIG. 2), generally made of very thin stainless steel (0.12 to 0.3 mm) in which circuits are printed (FIG. 2 - 20 ) for the passage of thermodynamic fluids. These circuits are studied to obtain the best thermal transfer / mass of fluid ratio used. The width of these elements is very small for reasons of speed of exchange and compactness.
  • This configuration gives very high thermal reactivity to the SVStème. ⁇ ui is designed nnur "unnorter ri * p. ⁇ ! tetnnou of adsorbents required being less.
  • the rate of adhesion to drilling an activated carbon can be divided by three when the temperature changes from 20 to 80 ° C.
  • the height of the elements varies according to the residence time necessary for complete adsorption, the nature and the number of adsorbents used.
  • thermoregulated elements positioned parallel to each other is proportional to the volume to be treated.
  • Heating elements height: 0.6m width: 0.010m length: 1m spacing: 20mm
  • the adsorbents are at the set temperature (160 °) in 240 seconds, a very short time, which can be further reduced by bringing the thermoregulated elements closer together and - or by increasing the temperature of the fluids.
  • the pure product is recovered for reuse without treatment.
  • the adsorbents are cooled and reusable only a few minutes after the deso ⁇ tion operation at a lower energy cost.
  • thermoregulated elements largely avoids heat losses since each element is surrounded by adsorbents.
  • the radiation and convection losses are negligible in such a system.
  • thermoregulated elements can heat or cool separately at identical or different temperatures. This is particularly judicious in the case where gas mixtures do not require the same temperatures of adsorption and or desorption or else in the case where the adsorbent materials used are not of the same nature. Thus a zeolite will withstand much higher temperatures without risk of combustion, which is obviously not the case with active carbon.
  • a higher temperature has less influence on the rate of adsorption of zeolites than on that of active carbon.
  • a first stage of zeolite ( Figure 3/2/2) can be regulated to 40 ° C while a second stage of active carbon ( Figure 3/2 / l) will be maintained at 20 ° C. This optimizes energy consumption during the addition operations. The same goes for deso ⁇ tion.
  • one or more types of adsorbents will be used depending on the nature of the gases to be treated.
  • thermoregulated elements (1) either in superimposed layers, or judiciously mixed in a proportion compatible with the gas mixture to be treated.
  • the adsorbers will be placed in the lower part for the first time.
  • thermoregulators (11) which continuously adjust the set temperature in order to provide only the energy necessary for the system. Indeed, in the majority of cases, during the various phases of a manufacturing process, the nature of the polluting gases to be treated can vary considerably in temperature, concentration and humidity. Pollution peaks, changes in gas quality, lead to malfunctions that are detrimental to efficiency of addiction.
  • Thermoregulators (11) allow the system to adapt to changing gas treatment conditions, providing only the instantaneous energy required.
  • the refrigerant (12) - coolant (13) circulating in the heating / cooling elements is a synthetic oil specially adapted to accept operating temperatures varying from - 20 ° C to + 300 ° C.
  • the energy supplied to the heating / cooling elements can be supplied by: • superheated steam / water cooling
  • thermofrigopompe When the temperature required for deso ⁇ tion is lower, in particular when the partial vacuum is used, a thermofrigopompe can be used which will provide the heat of deso ⁇ tion and the cold necessary for condensation. Considering the configuration of the system, a significant energy saving will be obtained.
  • the set temperature and - or the flow rates of the fluid are adjusted.
  • the set temperatures are adjusted according to the nature of the adsorbate and the adsorbent and the modes of deso ⁇ tion chosen.
  • steam deso ⁇ tion is still achievable in such a system.
  • the advantage is then very rapid drying of the adsorbents.
  • it is planned to be able to achieve a partial vacuum in the enclosure (19) of deso ⁇ tion.
  • the vacuum is produced by means of a vacuum pump and makes it possible either to desorb even faster or to desorb at a lower temperature, which becomes a necessity when the thermal degradation of certain compounds is to be avoided.
  • thermoregulation will safely optimize the temperature / vacuum level pair.
  • the shell of the system is cylindrical, in other cases, it is parallelepiped.
  • the cold fluid (oil, 14) circulating in the heating elements pushes the hot fluid (oil, 15) towards a buffer sheet.
  • the opposite occurs when the thermoregulated elements have to be cooled.
  • Two three-way valves (22) allow each of the operating fluids, hot and cold, to circulate in a closed circuit. This operating mode avoids heating and then cooling all of the fluids, since each fluid has its own insulated buffer tank (12) and (13).
  • the advantage is obviously the energy saving and the very high reactivity of the system since there is permanently available in the buffer tanks a mass of immediately available fluid maintained at the set temperature which contains sufficient instantaneous energy. to perform the heating or cooling operation.
  • the other advantage is that the installed power is lower the longer the duration of addition during which the oil is heated.
  • a small additional adsorber (5) is installed to trap the residual gas.
  • the desorption thereof is carried out during the phase of addition of the main absorber. This operation is made possible because the air flow rates and masses of pollutant used are very low during this operation.
  • the method incorporates a condensation phase (3) which is carried out by spraying (3) a portion of the recovered product (18) which is strongly cooled by an exchanger. It is an abso ⁇ tion / condensation.
  • the advantage is not to dilute or mix the product to be recovered in another product and to obtain, thanks to this very simple system, a very good efficiency of condensation / dissolving by direct contact.
  • the highly cooled condensates (4) are directed to a nozzle (16) or spray bar located in the lower part of the absorber by means of a pump (17).
  • the cold condensate On contact with hot gases, the cold condensate will exchange part of its sensible and latent heat, and will dissolve part of the gases to be recovered.
  • This operating mode is particularly effective because the temperature difference between the gas to be treated and the coolant / condensation / absorption is high. Furthermore, it is inexpensive in investment.
  • the condensation of the gases can also be carried out by a condenser (3 / l), or evaporator of a refrigerating machine which functions alone or in addition to the spraying.
  • a condenser (3 / l)
  • evaporator of a refrigerating machine which functions alone or in addition to the spraying.
  • the advantage of the two associated techniques is to increase the efficiency of the condensation and to recover a cooler liquid capable of being sprayed in the first stage of condensation / abso ⁇ tion.
  • the device is equipped with a ventilation system (24) and air diffusers (25) responsible for uniformly distributing the gaseous effiuents in the case of a very large air passage section.
  • These diffusers consist of simple drilled plates.
  • a filter (21) adapted to their nature, makes it possible to avoid clogging of the absorbents.
  • thermal safety probes (26) are placed at different points in the enclosure and trigger the flooding (8 A) or nitrogen inerting (8) systems.
  • the invention described above consists of a device for the treatment of gaseous effluents containing polluting volatile compounds and the recovery of polluting compounds in the form of condensates, characterized in that it comprises: - an enclosure ( 19) containing heating- cooling elements (1),
  • the heating-cooling elements (1) are in the form of plate of thickness less than 10 mm arranged parallel to each other and which are preferably rectangular.
  • the elements (1) are metal plates, in which are printed circuits (21-20) for the circulation of thermodynamic fluids (12) (13).
  • the elements (1) are plates comprising electrical heating circuits, the thickness of said plates being less than 5 mm and preferably less than 3 mm.
  • the thickness previously called width of these plates does not exceed 10 mm, value determined experimentally. This small thickness allows very rapid heating or cooling of the adsorbents thanks to the low thermal inertia of the plates and also makes it possible to lighten the structure.
  • thermoregulated elements (1) For the production of very thin electrical circuits (50 to 100 microns), it is possible, for example, to use the technology known for application in electric irons consisting of flat resistors in strips surrounding a mica plate, placed between two other mica plates, and covered with stainless steel sheets on each side.
  • VOC stands for volatile organic compounds and the spacing between two thermoregulated elements (1) has been optimized to 20 mm.
  • the device of the invention operates as follows: the air loaded with mono or multipollutants between (6) in an enclosure (19) and passes through one or more adsorbent materials (2) located between two thermo-regulated elements slightly spaced (1) ensuring the rapid, homogeneous and perfectly controlled heating and cooling function of said adsorbents.
  • the detector (9) informs that the adsorbers are saturated, the air inlets and outlets are isolated.
  • the heating elements rapidly raise the temperature of the adsorbents to the set temperature.
  • a carrier gas (8) crosses the adsorbents against the current and transfers the polluting gases to the integrated condensing unit using the condensates, part of which is strongly cooled ( 4) is used for condensation (3) the other is directed to the storage unit (10). If necessary, the residual gaseous pollutants are directed to a small secondary adsorber (5) which will restore these gases in the main adsorber in adsorption mode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

The invention concerns a method and a device for purifying air and for recuperating polluting gases with selective adsorption, desorption and condensation/adsorption cycles. The invention is characterised in that the air loaded with single or multiple pollutants enters (6) a chamber (19) and passes through one or several adsorbent materials (2) located between two heat-regulated elements slightly spaced apart (1) for fast, homogeneous and perfectly controlled heating/cooling of said adsorbents. When the detector (9) indicates that the adsorbents are saturated, the air inlets and outlets are isolated. The heating elements quickly raise the temperature of the adsorbents up to a set temperature, a carrier gas (8) passes through the adsorbents in counter-current and transfers the polluting gases towards the integrated condensation unit.

Description

Dispositif et procédé pour le traitement d'effluents gazeux dans une enceinte contenant des éléments chauffants/refroidissants intégrés sous forme de plaques de faible épaisseur.Device and method for the treatment of gaseous effluents in an enclosure containing heating / cooling elements integrated in the form of thin plates.
La présente invention concerne un procédé et les moyens mis en œuvre pour traiter l'air pollué et récupérer sous forme de condensats les gaz polluants.The present invention relates to a method and the means used to treat polluted air and recover polluting gases in the form of condensates.
Une des techniques les plus connues dans l'industrie de la chimie, de la pharmacie 5 ou du traitement de surface, est l'adsorption / désorption sur charbon actif.One of the best known techniques in the chemical, pharmaceutical or surface treatment industry is adsorption / desorption on activated carbon.
Le principe est de faire passer l'air chargé à travers une couche de charbon actif qui va retenir les polluants.The principle is to pass the charged air through a layer of activated carbon which will retain the pollutants.
Une fois saturés, les charbons actifs ou l'adsorbant seront " nettoyés " ou désorbés par passage de vapeur d'eau à 120 - 140° C au travers du lit d'adsorbant. 10 Les gaz seront ensuite récupérés par condensation séparée.Once saturated, the active coals or the adsorbent will be "cleaned" or desorbed by passing steam at 120-140 ° C through the adsorbent bed. The gases will then be recovered by separate condensation.
Toutefois, l'utilisation de ces techniques entraîne de nombreux inconvénients qui limitent les domaines d'application et restreignent les performances.However, the use of these techniques leads to numerous drawbacks which limit the fields of application and restrict performance.
Les inconvénients principaux sont :The main drawbacks are:
- la grande inertie thermique qui entraîne des opérations de désorption, de 15 refroidissement et de séchage très longues ( plusieurs heures )the great thermal inertia which results in very long desorption, cooling and drying operations (several hours)
- la limitation des plages de température d'utilisation- limitation of the operating temperature ranges
- l'établissement de gradients de température néfaste à l'objectif de concentration recherché lors de la récupération et au taux d' adsorption à la percée- the establishment of temperature gradients detrimental to the concentration objective sought during recovery and the adsorption rate at breakthrough
L'adsorption est un phénomène exothermique qui conduit à des élévations de 20 température lorsque la concentration en composés organiques volatils est trop importante, cela entraîne une capacité d' adsorption moindre et un risque de combustion des charbons actifs. Par ailleurs, certains composés peuvent entraîner à l'arrêt des réactions de déshydratation exothermique et provoquer une inflammation des charbons actifs en présence d'oxygène. 25 Lorsque les mélanges de gaz sont complexes, les molécules ayant une faible affinité avec l'adsorbant, sont déplacées par les molécules ayant une plus forte affinité avec celui - ci. Cela conduit à un temps de perçage trop court, donc à un taux d' adsorption trop réduit. Lorsque l'humidité relative des efïluents gazeux est trop importante, la capacité des charbons actifs à adsorber les composés organiques volatils est considérablement réduite. 30 De même, la température des gaz à traiter dépasse souvent les 50° C, or la capacité statique du charbon actif diminue très fortement à partir de 40° C. La désorption nécessite l'emploi de 3 à 4 kg vapeur chauffée à 120-140°C pour 1 kg de composés organiques volatils récupérés. L' investissement d'un générateur de vapeur est très coûteux si sa seule destination est la désorption.Adsorption is an exothermic phenomenon which leads to temperature rises when the concentration of volatile organic compounds is too high, this results in a lower adsorption capacity and a risk of combustion of the activated carbon. In addition, certain compounds can lead to the cessation of exothermic dehydration reactions and cause inflammation of the activated carbon in the presence of oxygen. When the gas mixtures are complex, the molecules having a low affinity with the adsorbent are displaced by the molecules having a strong affinity with the latter. This leads to a too short drilling time, therefore to a too reduced adsorption rate. When the relative humidity of the gaseous effluents is too high, the capacity of active carbon to adsorb volatile organic compounds is considerably reduced. 30 Similarly, the temperature of the gases to be treated often exceeds 50 ° C, but the static capacity of the activated carbon decreases very sharply from 40 ° C. Desorption requires the use of 3 to 4 kg of steam heated to 120-140 ° C for 1 kg of volatile organic compounds recovered. The investment of a steam generator is very expensive if its only destination is desorption.
L'emploi de la vapeur d'eau nécessite une phase de séchage des adsorbants, de refroidissement et de condensation de cette vapeur, ce qui est coûteux en énergie et prend du temps et donc impose de surdimensionner les installations. En effet, lorsqu'il faut plusieurs heures pour désorber, il est souvent nécessaire d'avoir une double installation. L'emploi de la vapeur d'eau rend nécessaire le traitement des condensats par décantation si les produits à récupérer sont insolubles dans l'eau ou, s'ils sont solubles, par des méthodes de séparation beaucoup plus complexes et coûteuses, techniques souvent mal adaptées lorsque les polluants représentent des quantités relativement faibles. La désorption par gaz chaud présente des difficultés liées à la faible capacité thermique des gaz caloporteurs, à la mauvaise conductibilité thermique de l'adsorbant et à la dilution des gaz que l'on veut justement concentrer. Cela entraîne un coût et une perte énergétique importants lors de l'opération de désorption et un coût prohibitif lors de l'opération de récupération par condensation.The use of water vapor requires a phase of drying of the adsorbents, cooling and condensation of this vapor, which is costly in energy and takes time and therefore requires oversizing the installations. Indeed, when it takes several hours to desorb, it is often necessary to have a double installation. The use of steam makes it necessary to treat condensates by decantation if the products to be recovered are insoluble in water or, if they are soluble, by much more complex and costly separation methods, techniques which are often poorly suitable when pollutants represent relatively small quantities. Desorption by hot gas presents difficulties linked to the low thermal capacity of the heat transfer gases, to the poor thermal conductivity of the adsorbent and to the dilution of the gases which it is precisely desired to concentrate. This results in a significant cost and energy loss during the desorption operation and a prohibitive cost during the recovery operation by condensation.
Durant des opérations de désorption à la vapeur ou par gaz chaud, il se forme des gradients de température liés au transfert de chaleur fluide de désorption / adsorbant ainsi qu'à des problèmes de passage préférentiels. Cela entraîne une désorption non homogène, moins concentrée, plus longue et dans le cas du gaz chaud, un risque accru d'incendie ou de dégradation thermique des adsorbats.During desorption operations using steam or hot gas, temperature gradients are formed linked to the transfer of heat from the desorption / adsorbent fluid as well as to preferential passage problems. This results in a non-homogeneous, less concentrated, longer desorption and, in the case of hot gas, an increased risk of fire or thermal degradation of the adsorbates.
La géométrie des systèmes majoritairement utilisés induit des passages préférentiels, lors de l'adsorption, ce qui réduit le taux d' adsorption à la percée.The geometry of the systems mainly used induces preferential passages, during adsorption, which reduces the rate of adsorption at breakthrough.
Enfin, dans certains cas, il y a risque de décomposition de l'adsorbat par hydrolyse ou dégradation thermique. Les adsorbats deviennent alors non récupérables.Finally, in certain cases, there is a risk of decomposition of the adsorbate by hydrolysis or thermal degradation. The adsorbates then become non-recoverable.
De telles installations sont chères, complexes et nécessitent l'emploi de personnel qualifié.Such installations are expensive, complex and require the employment of qualified personnel.
La présente invention a pour objet un procédé et un dispositif permettant d'éviter ou de limiter les inconvénients précités, en proposant un appareil simple, compact qui intègre les fonctions d' adsorption et de désorption contrôlées en température, de chauffage et de refroidissement très rapides des adsorbants et de condensation / absorption économiques des gaz pour une réutilisation directe et sans traitement des condensats. Dans la description qui suit, faite à titre d'exemple, on se réfère aux dessins annexés dans lesquels : la figure 1 représente l'ensemble des éléments du dispositif selon l'invention la figure 2 représente un élément chauffant / refroidissant thermorégulé standard vu de face la figure 3 représente une configuration particulière à 2 étages d'éléments chauffants /refroidissants thermorégulés séparément, contenant 1, 2 ou un mélange d' adsorbants séparés ( 3, 4 )The subject of the present invention is a method and a device making it possible to avoid or limit the abovementioned drawbacks, by proposing a simple, compact device which integrates the adsorption and desorption functions controlled in temperature, very rapid heating and cooling. economic adsorbents and condensation / absorption of gases for direct reuse and without treatment of condensates. In the description which follows, given by way of example, reference is made to the appended drawings in which: FIG. 1 represents all of the elements of the device according to the invention; FIG. 2 represents a standard thermoregulated heating / cooling element seen from face FIG. 3 represents a particular configuration with 2 stages of heating / cooling elements thermoregulated separately, containing 1, 2 or a mixture of separate adsorbents (3, 4)
La figure 1 représente une réalisation particulière, qui, selon l'invention, permet d'assurer dans une même machine une adsorption optimale grâce au maintien contrôlé de la température, même dans le cas de mélange gazeux complexe, une désorption très rapide où les adsorbants ( 2 ) et adsorbats sont chauffés très rapidement par conduction entre des éléments chauffants (1 ) à géométrie spécifique très faiblement espacés, et régulés en température, ainsi qu'une récupération très économique par condensation / absorption ( 3) du fait de la concentration élevée obtenue en sortie et du mode de condensation. La configuration du dispositif permet d'obtenir très rapidement un chauffage ou un refroidissement à cœur des adsorbants.FIG. 1 represents a particular embodiment, which, according to the invention, makes it possible to ensure in the same machine an optimal adsorption thanks to the controlled maintenance of the temperature, even in the case of complex gas mixture, a very rapid desorption where the adsorbents (2) and adsorbates are heated very quickly by conduction between heating elements (1) with specific geometry very closely spaced, and regulated in temperature, as well as a very economical recovery by condensation / absorption (3) due to the high concentration obtained at the output and from the condensation mode. The configuration of the device makes it possible very quickly to obtain heating or cooling at the core of the adsorbents.
En mode adsorption, l'air chargé entre en partie basse ( 6 ) du réacteur, traverse les adsorbants ( 2 ) situés entre les éléments thermorégulés refroidis ( 1 ) et y abandonne ses polluants. H ressort épuré en partie haute ( 7 ).In adsorption mode, the charged air enters the lower part (6) of the reactor, passes through the adsorbents (2) located between the cooled thermoregulated elements (1) and abandons its pollutants there. H purified spring in the upper part (7).
Lorsque les adsorbeurs sont saturés, un détecteur de percée ( 9 ) envoie le signal de la désorption.When the adsorbers are saturated, a breakthrough detector (9) sends the desorption signal.
En mode désorption, la cuve est inertée par un gaz ( 8 ). Les adsorbants sont chauffés en conduction morte par les éléments thermorégulés. Quand la température de consigne est atteinte, un gaz de transfert ( 8 ) réchauffé est injecté à très faible débit en partie haute et entraîne les polluants très concentrés dans la zone de condensation ( 3 ) en partie basse.In desorption mode, the tank is inerted by a gas (8). The adsorbents are heated in dead conduction by the thermoregulated elements. When the set temperature is reached, a heated transfer gas (8) is injected at very low flow rate in the upper part and entrains very concentrated pollutants in the condensation zone (3) in the lower part.
Les polluants récupérés lors de la condensation sont dirigés, soit vers une unité de stockage ( 10 ), soit en partie vers un bac de refroidissement ( 4 ) intense d'où ils repartent en partie basse du réacteur pour être utilisés lors de l'opération d'adsoφtion / condensation intégrée ( 3 ) . Lorsqu'une simple condensation est suffisante, un échangeur thermique ( 3.1 ) remplacera l'absorption. Dans ce cas, la totalité des polluants récupérés sera dirigée directement vers la zone de stockage.The pollutants recovered during the condensation are directed either to a storage unit (10), or partly to an intense cooling tank (4) from which they leave in the lower part of the reactor to be used during the operation. built-in adsorption / condensation (3). When simple condensation is sufficient, a heat exchanger (3.1) will replace absorption. In this case, all of the pollutants recovered will be sent directly to the storage area.
Pour chaque mode de fonctionnement, des vannes d'isolement ( 23 ) sont prévues aux entrées et sorties de fluides. La présente invention apporte une réponse mieux adaptée au problème posé par lesFor each operating mode, isolation valves (23) are provided at the fluid inlets and outlets. The present invention provides a more suitable response to the problem posed by
CON dans les petites et moyennes entreprises qui recherchent principalement la compacification, l'augmentation de l'efficacité, la simplification des procédures et une maintenance très réduite pouvant être réalisées par un personnel non qualifié . Sans être une réponse universelle, le caractère standard et modulable du dispositif permet de s'adapter à toutes les évolutions réglementaires, techniques ou de production sans remettre en cause l'investissement initial.CON in small and medium-sized enterprises which mainly seek compacification, increased efficiency, simplification of procedures and very low maintenance which can be carried out by unqualified personnel. Without being a universal response, the standard and modular nature of the device makes it possible to adapt to all regulatory, technical or production changes without jeopardizing the initial investment.
Le dispositif, selon l'invention, comporte comme première caractéristique des éléments chauffants / refroidissants ( 1 ), dont la configuration particulière ( figure 2 ) a été spécialement étudiée pour optimiser les transferts thermiques, limiter les masses de fluides frigo / caloporteur mises en œuvre, limiter considérablement les pertes thermiques et être parfaitement modulable.The device according to the invention comprises as a first characteristic heating / cooling elements (1), the particular configuration of which (FIG. 2) has been specially studied to optimize heat transfers, limit the masses of refrigerant / heat transfer fluids used. , considerably limit heat losses and be perfectly flexible.
Cette configuration modulable permet de répondre à la majorité des cas, très diversifiés, de traitement des CON en terme de débit, concentration et nature. Avantageusement, les éléments chauffants ( 1 ) sont constitués de petits réservoirs métalliques ( figure 2 ), en général en acier inoxydable de très faible épaisseur, ( 0,12 à 0,3 mm ) dans lesquels sont imprimés des circuits ( figure 2 - 20 ) pour le passage des fluides thermodynamiques. Ces circuits sont étudiés pour obtenir le meilleur rapport transfert thermique / masse de fluide mise en œuvre. La largeur de ces éléments est très faible pour des raisons de rapidité d'échanges et de compacité. Cette configuration confère une très grande réactivité thermiαue au SVStème. αui est conçu nnur «unnorter ri*p.<! tetnnéra d'adsorbants nécessaire étant moindre. Cela permet d'accepter également des concentrations de polluant plus élevées et de limiter considérablement les risques de combustion lorsque les adsorbants sont des charbons actifs. A titre d'exemple, le taux d'adsoφtion au perçage d'un charbon actif peur être divisé par trois lorsque la température évolue de 20 à 80° C.This modular configuration makes it possible to respond to the majority of very diverse cases of treatment of CON in terms of flow, concentration and nature. Advantageously, the heating elements (1) consist of small metal tanks (FIG. 2), generally made of very thin stainless steel (0.12 to 0.3 mm) in which circuits are printed (FIG. 2 - 20 ) for the passage of thermodynamic fluids. These circuits are studied to obtain the best thermal transfer / mass of fluid ratio used. The width of these elements is very small for reasons of speed of exchange and compactness. This configuration gives very high thermal reactivity to the SVStème. αui is designed nnur "unnorter ri * p. <! tetnnéra of adsorbents required being less. This also makes it possible to accept higher concentrations of pollutant and to considerably limit the risks of combustion when the adsorbents are active carbon. For example, the rate of adhesion to drilling an activated carbon can be divided by three when the temperature changes from 20 to 80 ° C.
La hauteur des éléments varie en fonction du temps de séjour nécessaire à une adsorption complète, de la nature et du nombre d' adsorbants mis en œuvre.The height of the elements varies according to the residence time necessary for complete adsorption, the nature and the number of adsorbents used.
Le nombre d ' éléments thermorégulés standard positionnés parallèlement les uns aux autres est proportionnel au volume à traiter. Le descriptif ci - dessous, sans être limitatif ou unique permet d'illustrer un mode de réalisation.The number of standard thermoregulated elements positioned parallel to each other is proportional to the volume to be treated. The description below, without being limiting or unique, illustrates an embodiment.
Eléments chauffants : hauteur : 0,6m largeur : 0,010 m longueur : 1 m écartement : 20 mmHeating elements: height: 0.6m width: 0.010m length: 1m spacing: 20mm
Masse de charbons actifs : 250 kgMass of active carbon: 250 kg
Dans cet exemple, les adsorbants sont à la température de consigne ( 160° ) en 240 secondes, temps très court, qui peut être encore réduit en rapprochant davantage les éléments thermorégulés et - ou en augmentant la température des fluides. Le produit pur est récupéré pour être réutilisé sans traitement. Les adsorbants sont refroidis et réutilisables seulement quelques minutes après l'opération de désoφtion à un coût énergétique moindre.In this example, the adsorbents are at the set temperature (160 °) in 240 seconds, a very short time, which can be further reduced by bringing the thermoregulated elements closer together and - or by increasing the temperature of the fluids. The pure product is recovered for reuse without treatment. The adsorbents are cooled and reusable only a few minutes after the desoφtion operation at a lower energy cost.
Selon l'invention, la configuration particulière des éléments thermorégulés évite en grande partie les pertes thermiques puisque chaque élément est entouré des adsorbants. Les pertes par rayonnement et par convection sont négligeables dans un tel système.According to the invention, the particular configuration of the thermoregulated elements largely avoids heat losses since each element is surrounded by adsorbents. The radiation and convection losses are negligible in such a system.
Les surfaces des éléments chauffants, selon l'invention , sont instantanément quasi isothermes et l'écart de température entre ces surfaces et l'adsorbant est très réduit. Il n'y a pratiquement pas de gradient de température dans les adsorbants et la température d'équilibre est atteinte très rapidement. Dans certains cas, une configuration tubulaire respectant les mêmes écartements pourrait remplacer les éléments thermorégulés parallépipédiques. Selon une autre caractéristique ( figure 3 ), les éléments thermorégulés peuvent chauffer ou refroidir séparément à des températures identiques ou différentes. Cela est particulièrement judicieux dans le cas où des mélanges gazeux ne nécessitent pas les mêmes températures d'adsoφtion et ou de désoφtion ou bien dans le cas où les matériaux adsorbants mis en œuvre ne sont pas de même nature. Ainsi une zéolithe supportera des températures beaucoup plus élevées sans risque de combustion, ce qui n'est évidemment pas le cas des charbons actifs. Lors de l'adsoφtion, une température plus élevée ( 50 ° C ) a moins d'influence sur le taux d'adsoφtion des zéolithes que sur celui des charbons actifs. A titre d'exemple ( figure 3 ), lors de l'adsoφtion, si les effluents gazeux à traiter sont à une température initiale de 60° C, un premier étage de zéolithe ( figure 3 /2/2 ) pourra être régulé à 40° C alors qu'un second étage de charbons actifs ( figure 3/2 /l ) sera maintenu à 20° C. Cela permet d'optimiser la consommation d'énergie lors des opérations d'adsoφtion. Il en va de même pour la désoφtion. Selon l'invention, il sera utilisé un ou plusieurs types d' adsorbants en fonction de la nature des gaz à traiter. Lorsque deux types de molécule polluante sont présentes dans l'air à traiter, il pourra être mis en place deux types d'adsorbants ( figure 3/2/1 et 2/2 ) spécialement choisis pour leur affinité particulière avec chaque type de molécule. Selon l'invention, les différents adsorbants sont disposés entre les éléments thermorégulés ( 1 )soit en couches superposées, soit judicieusement mélangées dans une proportion compatible avec le mélange gazeux à traiter. A titre d'exemple ni limitatif ni unique, dans les cas d'une humidité relative trop élevée d'un air chargé en polluants, afin de ne pas dégrader considérablement le taux d'adsoφtion, il sera mis en partie basse des adsorbeurs une première couche ( figure 3/2/2 ) de zéolithe hydrophile qui retiendra l'humidité suivie d'une seconde couche de charbons actifs ( figure 3/2/1) qui retiendra les autres polluants dans de bonnes conditions.The surfaces of the heating elements according to the invention are instantly almost isothermal and the temperature difference between these surfaces and the adsorbent is very small. There is practically no temperature gradient in the adsorbents and the equilibrium temperature is reached very quickly. In certain cases, a tubular configuration respecting the same spacings could replace the thermoregulated parallelepipedic elements. According to another characteristic (FIG. 3), the thermoregulated elements can heat or cool separately at identical or different temperatures. This is particularly judicious in the case where gas mixtures do not require the same temperatures of adsorption and or desorption or else in the case where the adsorbent materials used are not of the same nature. Thus a zeolite will withstand much higher temperatures without risk of combustion, which is obviously not the case with active carbon. During adsorption, a higher temperature (50 ° C) has less influence on the rate of adsorption of zeolites than on that of active carbon. For example (Figure 3), during the addition, if the gaseous effluents to be treated are at an initial temperature of 60 ° C, a first stage of zeolite (Figure 3/2/2) can be regulated to 40 ° C while a second stage of active carbon (Figure 3/2 / l) will be maintained at 20 ° C. This optimizes energy consumption during the addition operations. The same goes for desoφtion. According to the invention, one or more types of adsorbents will be used depending on the nature of the gases to be treated. When two types of polluting molecule are present in the air to be treated, two types of adsorbents can be used (Figure 3/2/1 and 2/2) specially chosen for their particular affinity with each type of molecule. According to the invention, the various adsorbents are arranged between the thermoregulated elements (1) either in superimposed layers, or judiciously mixed in a proportion compatible with the gas mixture to be treated. By way of example, neither limiting nor unique, in the case of a too high relative humidity of an air loaded with pollutants, so as not to considerably degrade the rate of adsorption, the adsorbers will be placed in the lower part for the first time. layer (Figure 3/2/2) of hydrophilic zeolite which will retain moisture followed by a second layer of active carbon (Figure 3/2/1) which will retain the other pollutants in good conditions.
Selon l'invention, les fluide frigo et caloporteurs sont traités thermiquement par des thermorégulateurs (11) qui ajuste en permanence la température de consigne afin de ne fournir que l'énergie nécessaire au système. En effet, dans la majorité des cas, lors des différentes phases d'un process de fabrication, la nature des gaz polluants à traiter peut varier considérablement en température, concentration et humidité. Les pics de pollution, l'évolution de la qualité des gaz, entraînent des dysfonctionnements nuisibles à l'efficacité de l'adsoφtion. Les thermorégulateurs ( 11 ) permettent au système de s'adapter à l'évolution des conditions de traitement des gaz, en apportant uniquement l'énergie instantanée nécessaire.According to the invention, the refrigerant and heat transfer fluids are heat treated by thermoregulators (11) which continuously adjust the set temperature in order to provide only the energy necessary for the system. Indeed, in the majority of cases, during the various phases of a manufacturing process, the nature of the polluting gases to be treated can vary considerably in temperature, concentration and humidity. Pollution peaks, changes in gas quality, lead to malfunctions that are detrimental to efficiency of addiction. Thermoregulators (11) allow the system to adapt to changing gas treatment conditions, providing only the instantaneous energy required.
Le fluide frigo (12 ) - caloporteur (13) circulant dans les éléments chauffants / refroidissants est une huile de synthèse spécialement adaptée pour accepter des températures de fonctionnement variant de - 20° C à +300° C.The refrigerant (12) - coolant (13) circulating in the heating / cooling elements is a synthetic oil specially adapted to accept operating temperatures varying from - 20 ° C to + 300 ° C.
Toutefois, d'autres fluides ou modes de chauffage - refroidissement peuvent être utilisés . A titre d'exemple, l'énergie apportée aux éléments chauffants / refroidissants peut être fournie par : • de la vapeur surchauffée / refroidissement à l'eauHowever, other fluids or modes of heating - cooling can be used. For example, the energy supplied to the heating / cooling elements can be supplied by: • superheated steam / water cooling
• des résistances électriques / eau froide ou eau glycolée• electrical resistances / cold water or brine
• chauffage par induction / eau froide• induction heating / cold water
• tube à passage de courant / eau froide ou eau glycolée• current flow tube / cold water or brine
Lorsque la température nécessaire à la désoφtion est plus basse, en particulier quand le vide partiel est utilisé, il pourra être utilisé une thermofrigopompe qui fournira la chaleur de désoφtion et le froid nécessaire à la condensation. Compte tenu de la configuration du système, une économie d'énergie importante sera obtenue.When the temperature required for desoφtion is lower, in particular when the partial vacuum is used, a thermofrigopompe can be used which will provide the heat of desoφtion and the cold necessary for condensation. Considering the configuration of the system, a significant energy saving will be obtained.
Lors de Padsoφtion, lorsque l'humidité, la température ou la concentration sont plus élevées, la température de consigne et - ou les débits du fluide sont ajustés. Lors de la désoφtion, les températures de consigne sont ajustées en fonction de la nature de l'adsorbat et de l'adsorbant et des modes de désoφtion choisis. Selon l'invention, malgré les inconvénients cités, une désoφtion à la vapeur est toujours réalisable dans un tel système. L'avantage est alors un séchage très rapide des adsorbants. Selon l'invention, il est prévu de pouvoir réaliser un vide partiel dans l'enceinte (19) de désoφtion. Le vide est réalisé au moyen d'une pompe à vide et permet, soit de desorber encore plus rapidement, soit de desorber à plus basse température, ce qui devient une nécessité lorsque l'on doit éviter la dégradation thermique de certains composés. Dans ce cas, la thermorégulation permettra d'optimiser, en toute sécurité, le couple température / niveau de vide. Lorsque le vide est utilisé, la coque du système est cylindrique, dans les autres cas, elle est parallépipédique. Selon l'invention, lorsque l'on passe d'un mode de fonctionnement désoφtion (chaud) à un mode adsoφtion (froid), le fluide froid (huile, 14) circulant dans les éléments chauffants pousse le fluide chaud (huile, 15) vers une bâche tampon. L'inverse se produit lorsque l'on doit refroidir les éléments thermorégulés. Deux vannes trois voies (22) permettent à chacun des fluides de service , chaud et froid, de circuler en circuit fermé. Ce mode de fonctionnement évite de réchauffer puis de refroidir la totalité des fluides , puisque chaque fluide a sa propre bâche tampon isolée (12) et (13).During padding, when the humidity, temperature or concentration are higher, the set temperature and - or the flow rates of the fluid are adjusted. During desoφtion, the set temperatures are adjusted according to the nature of the adsorbate and the adsorbent and the modes of desoφtion chosen. According to the invention, despite the drawbacks mentioned, steam desoφtion is still achievable in such a system. The advantage is then very rapid drying of the adsorbents. According to the invention, it is planned to be able to achieve a partial vacuum in the enclosure (19) of desoφtion. The vacuum is produced by means of a vacuum pump and makes it possible either to desorb even faster or to desorb at a lower temperature, which becomes a necessity when the thermal degradation of certain compounds is to be avoided. In this case, thermoregulation will safely optimize the temperature / vacuum level pair. When the vacuum is used, the shell of the system is cylindrical, in other cases, it is parallelepiped. According to the invention, when one passes from a desoφtion operating mode (hot) to an adsoφtion mode (cold), the cold fluid (oil, 14) circulating in the heating elements pushes the hot fluid (oil, 15) towards a buffer sheet. The opposite occurs when the thermoregulated elements have to be cooled. Two three-way valves (22) allow each of the operating fluids, hot and cold, to circulate in a closed circuit. This operating mode avoids heating and then cooling all of the fluids, since each fluid has its own insulated buffer tank (12) and (13).
L'avantage est évidemment l'économie d'énergie et la très grande réactivité du système puisque l'on a en permanence à disposition dans les bâches tampon une masse de fluide immédiatement disponible maintenue à la température de consigne qui contient l'énergie instantanée suffisante pour réaliser l'opération de chauffage ou de refroidissement. L'autre avantage est que la puissance installée est d'autant plus faible que la durée d'adsoφtion pendant laquelle l'huile est chauffée est longue.The advantage is obviously the energy saving and the very high reactivity of the system since there is permanently available in the buffer tanks a mass of immediately available fluid maintained at the set temperature which contains sufficient instantaneous energy. to perform the heating or cooling operation. The other advantage is that the installed power is lower the longer the duration of addition during which the oil is heated.
Ce mode de régulation entraîne des pertes énergétiques très faibles ; seule l'énergie nécessaire pour amener les éléments chauffants et les adsorbants à bonne température a été utilisée.This mode of regulation results in very low energy losses; only the energy required to bring the heating elements and the adsorbents to the correct temperature was used.
La chaleur non utilisée contenue dans le fluide frigocaloporteur ( huile ) (14) et (15) est récupérée dans les bâches tampon isolées (12) et (13).The unused heat contained in the coolant (oil) (14) and (15) is recovered in the insulated buffer sheets (12) and (13).
Selon l'invention, afin de garantir un rejet gazeux parfaitement épuré lors de la désorption, un petit adsorbeur complémentaire (5) est installé pour piéger le gaz résiduels. La désoφtion de celui-ci est réalisée pendant la phase d'adsoφtion de Padsorbeur principal. Cette opération est rendue possible car les débits d'air et masses de polluant mis en œuvre sont très faibles lors de cette opération.According to the invention, in order to guarantee a perfectly purified gas discharge during desorption, a small additional adsorber (5) is installed to trap the residual gas. The desorption thereof is carried out during the phase of addition of the main absorber. This operation is made possible because the air flow rates and masses of pollutant used are very low during this operation.
Selon l'invention, le procédé intègre une phase de condensation (3) qui est réalisée par pulvérisation (3) d'une partie du produit récupéré (18) qui est fortement refroidi par un échangeur. Il s'agit d'une absoφtion / condensation. L'avantage est de ne pas diluer ou mélanger le produit à récupérer dans un autre produit et d'obtenir, grâce à ce système très simple, une très bonne efficacité de condensation / mise en solution par contact direct. Pour réaliser cette opération de condensation / absoφtion, les condensats fortement refroidis (4) sont dirigés vers une buse (16) ou rampe de pulvérisation située en partie basse de Padsorbeur au moyen d'une pompe (17). - y-According to the invention, the method incorporates a condensation phase (3) which is carried out by spraying (3) a portion of the recovered product (18) which is strongly cooled by an exchanger. It is an absoφtion / condensation. The advantage is not to dilute or mix the product to be recovered in another product and to obtain, thanks to this very simple system, a very good efficiency of condensation / dissolving by direct contact. To carry out this condensation / absoφtion operation, the highly cooled condensates (4) are directed to a nozzle (16) or spray bar located in the lower part of the absorber by means of a pump (17). - y-
Au contact des gaz chauds, le condensât froid échangera une partie de sa chaleur sensible et latente, et mettra en solution une partie des gaz à récupérer.On contact with hot gases, the cold condensate will exchange part of its sensible and latent heat, and will dissolve part of the gases to be recovered.
Ce mode de fonctionnement est particulièrement efficace car l'écart de température entre le gaz à traiter et le liquide de refroidissement / condensation / absoφtion est élevé. Par ailleurs, il est peu coûteux en investissement.This operating mode is particularly effective because the temperature difference between the gas to be treated and the coolant / condensation / absorption is high. Furthermore, it is inexpensive in investment.
La condensation des gaz peut également être réalisée par un condenseur(3/l), ou évaporateur d'une machine frigorifique qui fonctionne seule ou en complément de la pulvérisation. L'avantage des deux techniques associées est d'augmenter l'efficacité de la condensation et de récupérer un liquide plus froid susceptible d'être pulvérisé en premier étage de condensation / absoφtion .The condensation of the gases can also be carried out by a condenser (3 / l), or evaporator of a refrigerating machine which functions alone or in addition to the spraying. The advantage of the two associated techniques is to increase the efficiency of the condensation and to recover a cooler liquid capable of being sprayed in the first stage of condensation / absoφtion.
Afin d'éviter les passages préférentiels, le dispositif est équipé d'un système de ventilation (24) et de diffuseurs d'air (25) chargés de répartir uniformément les effiuents gazeux dans le cas de très grande section de passage d'air. Ces diffuseurs sont constitués de simples plaques percées. Lorsque les effiuents gazeux sont chargés en particules, un filtre (21), adapté à leur nature, permet d'éviter le colmatage des absorbants.In order to avoid preferential passages, the device is equipped with a ventilation system (24) and air diffusers (25) responsible for uniformly distributing the gaseous effiuents in the case of a very large air passage section. These diffusers consist of simple drilled plates. When the gaseous effluents are loaded with particles, a filter (21), adapted to their nature, makes it possible to avoid clogging of the absorbents.
Pour assurer la sécurité de l'installation des sondes thermiques de sécurité (26) sont placés à différents endroits de l'enceinte et déclenchent les systèmes de noyage (8 A) ou d'inertage à l'azote (8).To ensure the safety of the installation, thermal safety probes (26) are placed at different points in the enclosure and trigger the flooding (8 A) or nitrogen inerting (8) systems.
De manière générale, l'invention décrite ci-dessus consiste en un dispositif pour le traitement d'effluents gazeux contenant des composés volatils polluants et la récupération des composés polluants sous forme de condensats, caractérisé en ce qu'il comporte : - une enceinte (19) contenant des éléments chauffants- refroidissant (1), In general, the invention described above consists of a device for the treatment of gaseous effluents containing polluting volatile compounds and the recovery of polluting compounds in the form of condensates, characterized in that it comprises: - an enclosure ( 19) containing heating- cooling elements (1),
- des adsorbants (2) régénérables, situés ente lesdits éléments (1) et au travers desquels circulent les effiuents gazeux à traiter,- regenerable adsorbents (2), located between said elements (1) and through which the gaseous effluents to be treated circulate,
- un système de chauffage-refroidissement des éléments chauffants-refroidissant (1) comportant des thermorégulateurs- a heating-cooling system for the heating-cooling elements (1) comprising thermoregulators
(11) aptes à réguler la température desdits éléments autour d'au moins une valeur de consigne(11) capable of regulating the temperature of said elements around at least one set value
- un système de condensation/adsorption- a condensation / adsorption system
- un système d'entraînement des composés gazeux polluants par balayage à faible débit d'un gaz dit d'extraction (8) vers le système de condensation/adsorption et caractérisé en ce que les éléments chauffants-refroidissants (1) sont en forme de plaque d'épaisseur inférieure à 10 mm disposés parallèlement les uns aux autres et qui sont préférentiellement rectangulaires.- a system for driving polluting gaseous compounds by sweeping at a low flow rate of a gas called extraction (8) towards the condensation / adsorption system and characterized in that the heating-cooling elements (1) are in the form of plate of thickness less than 10 mm arranged parallel to each other and which are preferably rectangular.
Selon une première variante, les éléments (1) sont des plaques métalliques, dans lesquelles sont imprimés des circuits (21-20) pour la circulation des fluides thermodynamiques (12) (13).According to a first variant, the elements (1) are metal plates, in which are printed circuits (21-20) for the circulation of thermodynamic fluids (12) (13).
Selon une deuxième variante, les éléments (1) sont des plaques comportant des circuits électriques de chauffage, l'épaisseur desdites plaques étant inférieure à 5 mm et préférentiellement inférieur à 3 mm.According to a second variant, the elements (1) are plates comprising electrical heating circuits, the thickness of said plates being less than 5 mm and preferably less than 3 mm.
L'épaisseur dénommée précédemment largeur de ces plaques ne dépasse pas 10 mm valeur déterminée expérimentalement. Cette faible épaisseur permet un échauffement ou un refroidissement très rapides des adsorbants grâce à la faible inertie thermique des plaques et permet en outre d'alléger la structure.The thickness previously called width of these plates does not exceed 10 mm, value determined experimentally. This small thickness allows very rapid heating or cooling of the adsorbents thanks to the low thermal inertia of the plates and also makes it possible to lighten the structure.
Pour la réalisation des circuits électriques de très fine épaisseur (de 50 à 100 microns), on peut par exemple utiliser la technologie connue pour l'application dans les fers électriques consistant en des résistances plates en bandes entourant une plaque de mica, placée entre deux autre plaques de mica , et rhabillées de tôles inox de chaque côté. L'abréviation COV signifie composés organiques volatils et l'espacement entre deux éléments thermorégulés (1) a été optimisé à 20 mm.For the production of very thin electrical circuits (50 to 100 microns), it is possible, for example, to use the technology known for application in electric irons consisting of flat resistors in strips surrounding a mica plate, placed between two other mica plates, and covered with stainless steel sheets on each side. The abbreviation VOC stands for volatile organic compounds and the spacing between two thermoregulated elements (1) has been optimized to 20 mm.
En résumé, le dispositif de l'invention fonctionne comme suit : l'air chargé en mono ou multipolluants entre (6) dans une enceinte (19) et traverse un ou des matériaux adsorbants (2) situés entre deux éléments thermo-régulés faiblement écartés (1) assurant la fonction de chauffage refroidissement rapide, homogène et parfaitement contrôlé desdits adsorbants.In summary, the device of the invention operates as follows: the air loaded with mono or multipollutants between (6) in an enclosure (19) and passes through one or more adsorbent materials (2) located between two thermo-regulated elements slightly spaced (1) ensuring the rapid, homogeneous and perfectly controlled heating and cooling function of said adsorbents.
Lorsque le détecteur (9) informe que les adsorbeurs sont saturés, les entrées et les sorties d'air sont isolées. Les éléments chauffants élèvent rapidement la température des adsorbants jusqu'à la température de consigne un gaz porteur (8) traverse les adsorbants à contre-courant et transfère les gaz polluants verse l'unité de condensation intégrée utilisant les condensats dont une partie fortement refroidie (4) sert à la condensation (3) l'autre est dirigée vers l'unité de stockage (10). Si nécessaire les polluants gazeux résiduels sont dirigés vers un petit adsorbeur secondaire (5) qui restituera ces gaz dans l'adsorbeur principal en mode adsorption. When the detector (9) informs that the adsorbers are saturated, the air inlets and outlets are isolated. The heating elements rapidly raise the temperature of the adsorbents to the set temperature. A carrier gas (8) crosses the adsorbents against the current and transfers the polluting gases to the integrated condensing unit using the condensates, part of which is strongly cooled ( 4) is used for condensation (3) the other is directed to the storage unit (10). If necessary, the residual gaseous pollutants are directed to a small secondary adsorber (5) which will restore these gases in the main adsorber in adsorption mode.

Claims

REVENDICATIONS
1. Dispositif pour le traitement d'effluents gazeux contenant des composés volatils polluants et la récupération des composés polluants sous forme de condensats, caractérisé en ce qu'il comporte :1. Device for the treatment of gaseous effluents containing volatile polluting compounds and the recovery of polluting compounds in the form of condensates, characterized in that it comprises:
- une enceinte (19) contenant des éléments chauffants- ref raidissants (1),- an enclosure (19) containing stiffening heating and cooling elements (1),
- des adsorbants (2) régénérables, situés ente lesdits éléments (1) et au travers desquels circulent les effiuents gazeux à traiter, - un système de chauffage-refroidissement des éléments chauffants-refroidissant (1) comportant des thermorégulateurs (11) aptes à réguler la température desdits éléments autour d'au moins une valeur de consigne- regenerable adsorbents (2) located between said elements (1) and through which the gaseous effluents to be treated circulate, - a heating-cooling system for heating-cooling elements (1) comprising thermoregulators (11) capable of regulating the temperature of said elements around at least one set value
- un système de condensation/adsorption - un système d'entraînement des composés gazeux polluants par balayage à faible débit d'un gaz dit d'extraction (8) vers le système de condensation/adsorption et caractérisé en ce que les éléments chauffants-refroidissants (1) sont en forme de plaque d'épaisseur inférieure à 10 mm disposés parallèlement les uns aux autres.- a condensation / adsorption system - a system for driving polluting gaseous compounds by sweeping at a low flow rate of a gas called extraction (8) towards the condensation / adsorption system and characterized in that the heating-cooling elements (1) are in the form of a plate with a thickness of less than 10 mm arranged parallel to one another.
2. Dispositif selon la revendication 1 caractérisé en ce que les plaques sont de forme générale rectangulaire.2. Device according to claim 1 characterized in that the plates are of generally rectangular shape.
3. Dispositif selon l'une des revendications 1 à 2, caractérisé en ce que les éléments 1 sont des plaques métalliques, dans lesquelles sont imprimés des circuits (21-20) pour la circulation des fluides thermodynamiques3. Device according to one of claims 1 to 2, characterized in that the elements 1 are metal plates, in which are printed circuits (21-20) for the circulation of thermodynamic fluids
(12) (13).(12) (13).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que les éléments (1) sont des plaques comportant des circuits électriques, l'épaisseur desdites plaques étant inférieure à 5 mm. 4. Device according to one of claims 1 to 3, characterized in that the elements (1) are plates comprising electrical circuits, the thickness of said plates being less than 5 mm.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que le système de condensation-adsorption est réalisé en partie basse de l'enceinte (19) et en ce qu'il est choisi dans l'ensemble (système à pulvérisation, système à condensation).5. Device according to one of claims 1 to 4, characterized in that the condensation-adsorption system is produced in the lower part of the enclosure (19) and in that it is chosen from the assembly (system with spraying, condensing system).
6. Dispositif selon la revendication 5 caractérisé en ce que les éléments (1) qui élèvent, abaissent ou maintiennent la température des adsorbants selon les phases de désorption, de refroidissement ou d'adsorption, sont isothermes et contiennent plusieurs étages de température.6. Device according to claim 5 characterized in that the elements (1) which raise, lower or maintain the temperature of the adsorbents depending on the desorption, cooling or adsorption phases, are isothermal and contain several temperature stages.
7. Dispositif selon une quelconque revendication 1 à 6 caractérisé en ce qu'il comporte un petit adsorbeur complémentaire régénérable (5) pour le traitement des polluants résiduels.7. Device according to any one of claims 1 to 6 characterized in that it comprises a small regenerable complementary adsorber (5) for the treatment of residual pollutants.
8. Dispositif selon une quelconque des revendications 1 à 7 caractérisé en ce qu'il comprend, en amont, un moyen de filtration des particules (21).8. Device according to any one of claims 1 to 7 characterized in that it comprises, upstream, a particle filtration means (21).
9. Dispositif selon l'une des revendications 1 à 8 caractérisé en ce qu'il comprend des sondes thermiques de sécurité (26) aptes à déclencher un moyen de sécurité choisi dans l'ensemble (système de noyage (8A), inertage à l'azote (8).)9. Device according to one of claims 1 to 8 characterized in that it comprises safety thermal probes (26) capable of triggering a safety means chosen from the assembly (flooding system (8A), inerting with the 'nitrogen (8).)
10. Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend deux cuves isolées (12,13) équipées de thermorégulateurs (11) contenant, l'une le fluide chaud (15), l'autre, le fluide froid (14), les fluides chauds et froids ne se mélangeant pas et conservant chacun l'énergie non utilisée grâce à au moins deux électrovannes (22) reliées à une armoire de régulation.10. Device for implementing the method according to any one of claims 1 to 9, characterized in that it comprises two insulated tanks (12,13) equipped with thermoregulators (11) containing, one the hot fluid (15), the other, the cold fluid (14), the hot and cold fluids not mixing and each retaining unused energy thanks to at least two solenoid valves (22) connected to a control cabinet.
11. Dispositif selon la revendication 10 caractérisé en ce qu'il comprend des vannes d'isolement des gaz (23) reliées à un boîtier de régulation. 11. Device according to claim 10 characterized in that it comprises gas isolation valves (23) connected to a regulation unit.
12. Dispositif selon l'une des revendications 1 à 11 caractérisé en ce que le système d'entraînement des polluants comprend un ventilateur (24) et au moins un diffuseur d'air composé de plaques percées (25).12. Device according to one of claims 1 to 11 characterized in that the pollutant drive system comprises a fan (24) and at least one air diffuser composed of perforated plates (25).
13. Dispositif selon l'une des revendications 1 à 12 caractérisé en ce qu'il comporte en outre une pompe à vide apte à réaliser un vide partiel dans l'enceinte (19).13. Device according to one of claims 1 to 12 characterized in that it further comprises a vacuum pump capable of achieving a partial vacuum in the enclosure (19).
14. Procédé de traitement des effiuents gazeux contenant des composés volatils polluants dégagés par les procédés industriels caractérisé en ce qu'il consiste à :14. Process for treating gaseous effluents containing polluting volatile compounds released by industrial processes, characterized in that it consists of:
- fixer les composés gazeux polluants sur des adsorbants (2) situés entre deux éléments chauffants-refroidissants faiblement écartés et d'épaisseur inférieure à 10 mm,- fix the gaseous polluting compounds on adsorbents (2) located between two heating-cooling elements slightly spaced and with a thickness of less than 10 mm,
- thermoréguler lesdits éléments (1) à une valeur de consigne,- thermoregulate said elements (1) to a set value,
- desorber rapidement par chauffage conductif des adsorbants (2) par lesdits éléments thermorégulés (1), - entraîner dès que la température de consigne est atteinte, les polluants concentrés par balayage à faible débit d'un gaz dit d'extraction (8) vers un système intégré de condensation/adsorption (3).- rapidly desorbing by conductive heating of the adsorbents (2) by said thermoregulated elements (1), - entraining as soon as the set temperature is reached, the pollutants concentrated by scanning at a low flow rate of a said gas extraction (8) to an integrated condensation / adsorption system (3).
15. Procédé selon la revendication 14, caractérisé en ce qu'il consiste en outre à diriger les polluants gazeux résiduels vers un adsorbeur secondaire (5) qui restituera ces gaz dans l'absorbeur principal en mode adsorbtion. 15. The method of claim 14, characterized in that it further comprises directing the residual gaseous pollutants to a secondary adsorber (5) which will restore these gases in the main absorber in adsorption mode.
EP02710940A 2001-01-04 2002-01-03 Device and method for treating gas effluents in a chamber containing integrated heating/cooling elements in the form of thin plates Withdrawn EP1351754A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0100068 2001-01-04
FR0100068A FR2818919B1 (en) 2001-01-04 2001-01-04 PROCESS AND DEVICE FOR THE INTEGRATED TREATMENT AND RECOVERY OF POLLUTANT GASEOUS EFFLUENTS
PCT/FR2002/000018 WO2002053266A2 (en) 2001-01-04 2002-01-03 Device and method for treating gas effluents

Publications (1)

Publication Number Publication Date
EP1351754A2 true EP1351754A2 (en) 2003-10-15

Family

ID=8858511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02710940A Withdrawn EP1351754A2 (en) 2001-01-04 2002-01-03 Device and method for treating gas effluents in a chamber containing integrated heating/cooling elements in the form of thin plates

Country Status (4)

Country Link
EP (1) EP1351754A2 (en)
AU (1) AU2002229848A1 (en)
FR (1) FR2818919B1 (en)
WO (1) WO2002053266A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108499312B (en) * 2018-04-28 2020-04-24 闫子华 Secondary degerming device for industrial waste gas treatment device
CN110893285B (en) * 2019-12-18 2021-05-18 大连福佳·大化石油化工有限公司 Method for resolving PX by using low-consumption desorbent in desorbent regeneration tower

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1794140C3 (en) * 1968-09-13 1978-07-13 Bayer Ag, 5090 Leverkusen Continuous process for separating a gas mixture with the aid of an adsorbent
US4026680A (en) * 1974-10-30 1977-05-31 Union Carbide Corporation Air separation by adsorption
US4056369A (en) * 1975-11-25 1977-11-01 Henry Quackenbush Method of and apparatus for the recovery of a desired material from a carrier stream
JPS5953201B2 (en) * 1979-12-18 1984-12-24 松下電器産業株式会社 Hydrogen gas purification method
DE3139781A1 (en) * 1981-10-07 1983-04-21 Nyby Uddeholm AB, 64480 Torshälla Process and equipment for purifying a gas containing pollutants in vapour form
FI82200C (en) * 1986-08-28 1991-02-11 Seinaejoen Kylmaekone Oy N Kon FOERFARANDE OCH ANORDNING FOER AOTERVINNING AV I GASER BEFINTLIGA FOERORENINGAR, ISYNNERHET LOESNINGSMEDEL.
DE3821523A1 (en) * 1988-06-25 1989-12-28 Rombach Gmbh Johann B DEVICE FOR CONTINUOUSLY SEPARATING AND RECOVERING A SOLVENT FROM SOLVENT-CONTAINED EXHAUST AIR
DE19503052A1 (en) * 1995-02-01 1996-08-08 Bresch Entsorgung Gmbh Process for the condensation of adsorbable and desorbable gases and device for carrying out the process
US6164088A (en) * 1998-07-27 2000-12-26 Mitsubishi Denki Kaishushiki Kaisha Method for recovering condensable gas from mixed gas and condensable gas recovering apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02053266A3 *

Also Published As

Publication number Publication date
FR2818919B1 (en) 2004-02-06
AU2002229848A1 (en) 2002-07-16
WO2002053266A2 (en) 2002-07-11
WO2002053266A9 (en) 2003-02-20
WO2002053266A3 (en) 2002-08-22
FR2818919A1 (en) 2002-07-05

Similar Documents

Publication Publication Date Title
US9403122B2 (en) VOC source removal and off gas purification system
JP4677989B2 (en) Volatile organic compound processing method and volatile organic compound processing system using gas turbine
JP5654494B2 (en) Exhaust gas treatment method
RU2381053C2 (en) Method and system for treating volatile organic compound
WO2001068222A9 (en) Voc removal or destruction system
FR2641065A1 (en)
JP2003533342A (en) Selective sorption and desorption of gas by electrically heated activated carbon fiber cloth elements
WO1997044120A1 (en) Organic solvent recovering system and organic solvent recovering method
KR20140018874A (en) A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
CA1144147A (en) Heat exchanger/recuperator with cycle inversion, and its use for extracting heat from the exhaust of fired ovens
WO1997009109A1 (en) Method and device for purifying gaseous effluent streams containing pollutants
JP4200439B2 (en) Gas adsorption / desorption treatment equipment
WO2002053266A2 (en) Device and method for treating gas effluents
EP1683563A2 (en) Method and system for treating a gaseous stream containing organic and inorganic volatile compounds
JP7109721B2 (en) Method and apparatus for gas destruction
PL77605B1 (en)
EP1275429B1 (en) Process and device for the capture of vapors contained in a gas effluent
JP2007319730A (en) Recovery apparatus for solvent
JPH0515725A (en) Apparatus for concentrating and recovering solvent
JP4490362B2 (en) Combustible refrigerant treatment equipment
JPH0515726A (en) Apparatus for concentrating and recovering solvent
FR2526926A1 (en) Intermittent heating or refrigeration cycle - by sorption-desorption of carbon di:oxide on e.g. zeolite
EP1530697B1 (en) Process and device for separating or purifying a fluid
FR2823997A1 (en) PROCESS AND PLANT FOR REGENERATING ABSORBENTS USED FOR THE CAPTATION OF SULFUR DIOXIDE IN COMBUSTION FUMES
FR2703442A1 (en) Refrigeration cycle with absorption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030804

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20031217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040629