EP1342317A1 - Transversally coupled resonator filter - Google Patents

Transversally coupled resonator filter

Info

Publication number
EP1342317A1
EP1342317A1 EP01984707A EP01984707A EP1342317A1 EP 1342317 A1 EP1342317 A1 EP 1342317A1 EP 01984707 A EP01984707 A EP 01984707A EP 01984707 A EP01984707 A EP 01984707A EP 1342317 A1 EP1342317 A1 EP 1342317A1
Authority
EP
European Patent Office
Prior art keywords
resonator
distance
tine
centers
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01984707A
Other languages
German (de)
French (fr)
Inventor
Günter Martin
Bert Wall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tele Filter Zweigniederlassung der Dover Germany GmbH
Original Assignee
Tele Filter Zweigniederlassung der Dover Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tele Filter Zweigniederlassung der Dover Germany GmbH filed Critical Tele Filter Zweigniederlassung der Dover Germany GmbH
Publication of EP1342317A1 publication Critical patent/EP1342317A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/644Coupled resonator filters having two acoustic tracks
    • H03H9/6456Coupled resonator filters having two acoustic tracks being electrically coupled
    • H03H9/6459Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode
    • H03H9/6463Coupled resonator filters having two acoustic tracks being electrically coupled via one connecting electrode the tracks being electrically cascaded
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/643Means for obtaining a particular transfer characteristic the transfer characteristic being determined by reflective or coupling array characteristics

Definitions

  • the invention relates to the field of electrical engineering / electronics.
  • Objects for which the application is possible and expedient are components based on surface acoustic waves, such as bandpass filters with a relative bandwidth of the order of 0.1 percent and resonators for oscillators.
  • Transversely coupled resonator filters are known in which a plurality of one-port resonator structures are arranged side by side on a piezoelectric substrate, which are composed of two strip reflectors which enclose a flat cavity and whose reflector strips are short-circuited by short-circuit strips, and of an interdigital transducer which is on the flat Cavity is arranged, where in each one-port resonator structure the stripe areas of the stripe reflectors or the tine areas of the interdigital transducers together with the short-circuit stripes or with the collecting electrodes form waveguides for surface acoustic waves and the one-port resonator structures together because of the waveguide effect are coupled.
  • the most common specific embodiment consists of two one-port resonator structures (M. Tanaka, T. Morita, K. Ono and Y. Nakazawa, "narrow bandpass filter using double-mode SAW resonators on quartz", 38 th Annual Frequency Control Symposium 1984, S 286-293 [1])
  • the two converters which are operated as filter inputs and outputs, have a common collecting electrode, which is connected to ground potential, usually two identical filters of this type are connected in a cascade.
  • the invention is based on the object of changing transversely coupled resonator filters on the basis of surface acoustic waves of the known type in such a way that the insertion loss of the filters is reduced in particular by reducing the attenuation due to cascading.
  • This object is achieved according to the invention with the transversely coupled resonator filter described in the claims.
  • the resonator filter according to the invention is characterized in that at least one one-port resonator structure differs from the other one-port resonator structures by the ratio of the tine width to the distance between the tine centers and by the ratio of the width of the reflector strips to the distance between the centers of the reflector strips.
  • the propagation speed of surface acoustic waves depends, among other things, on the ratio of the tine width to the distance between the tine centers and the width of the reflector strips to the distance between the centers of the reflector strips, also called the metallization ratio.
  • the presence of one-port resonator structures with different metallization ratios therefore means that the propagation speeds in the tine and strip gratings of different one-port resonator structures differ from one another.
  • resonator filters can be designed which have a different propagation speed in those one-port resonator structures whose converters are coupling converters than in other one-port resonator structures.
  • Coupling converters are those converters of different filters that are directly connected to one another.
  • the invention can be expediently configured as follows.
  • transducers or strip reflectors of adjacent one-port resonator structures form common collecting electrodes or short-circuit strips.
  • Those one-port resonator structures that differ from the other one-port resonator structures by the ratio of the tine width to the distance between the tine centers and the width of the reflector strips to the distance between the centers of the reflector strips can also differ by the distance between the tine centers and the distance differentiate the middle of the reflector strips.
  • the distance between the tine centers and the distance between the centers of the reflector strips can also be the same in all one-port resonator structures.
  • the number of one-port resonator structures can be two.
  • the aperture of the transducers and reflectors can be the same or different in both one-port resonator structures.
  • the number of one-port resonator structures is particularly expedient to choose the number of one-port resonator structures to be greater than two. This results in the possibility that the one-port resonator structures form two groups, with all converters within a group being connected in parallel with one another and one group representing the input converter and the other group representing the output converter. It is sometimes advantageous if there are gaps between adjacent one-port resonator structures which are filled with reflector strips at the same potential.
  • the transducers in at least one one-port resonator structure can differ from the other transducers by the tine polarity.
  • two identical filters form a filter cascade, in which the same group is used as a coupling converter in both filters, the coupling converter being the group that is connected to a group of the other filter.
  • the group that forms the coupling converter in each case consists of one-port resonator structures with the same tine and reflector strip width and the same gaps between them.
  • the ratio of the tine width to the distance between the tine centers and the width of the reflector strips to the distance between the centers of the reflector strips in the group that forms the coupling converter can be larger or smaller than in all other one-port resonator structures.
  • the drawing shows in principle the design of a transversely coupled resonator filter according to the invention described in more detail in the following embodiment.
  • Two one-port resonator structures 2 and 3 are arranged next to one another on a piezoelectric substrate 1. They contain the reflectors 22 and 23 or 32 and 33 in the same order.
  • the interdigital transducers 21 and 31 are arranged between the reflectors 22 and 23 or 32 and 33.
  • the converter 21 consists of the collecting electrodes 212 and 213 and the tines 211.
  • the converter 31 forms the common collecting electrode 213 with the converter 21 and also consists of the collecting electrode 312 and the tines 311.
  • the reflectors 22 and 23 are made of the reflector strips 221 and 221, respectively 231 and the short-circuit strips 222 and 223 or 232 and 233.
  • the reflectors 32 and 33 form with the reflectors 22 and 23 common short-circuit strips 223 and 233 and are also composed of the reflector strips 321 and 331 and the short-circuit strips 322 and 332, respectively.
  • the center lines of the prongs 211 of the transducer 21 and the prongs 311 of the transducer 31 represent the continuations from one another and form the common center line 215. In an analogous manner, this also applies to the common center line 214.
  • the distance 216 of the common center lines 214 and 215 is accordingly the same in both converters 21 and 31. However, the tines 211 and 311 of the transducers 21 and 31 differ in their width.
  • the center lines of the reflector strips 221 of the strip reflector 22 and the reflector strips 321 of the strip reflector 32 represent the continuations from one another and form the common center line 224. In an analogous manner, this also applies to the common center line 225.
  • the distance 226 of the common center lines 224 and 225 is accordingly the same in both strip reflectors 22 and 32. However, the reflector strips 221 and 321 of the strip reflectors 22 and 32 differ in their width.
  • this description also applies to the strip reflectors 23 and 33 as follows.
  • the center lines of the reflector strips 231 of the strip reflector 23 and the reflector strips 331 of the strip reflector 33 represent the continuations from one another and form the common center line 235.
  • the short-circuit strips 222 and 232, 223 and 233 as well as 322 and 332 of the strip reflectors represent the extension of the collecting electrodes 212, 213 and 312 in the same order.
  • the short-circuit strips 223 and 233 together with the collecting electrode 213 form the coupling strip 4.
  • Each one-port resonator Structure is a waveguide for surface acoustic waves, which guides the waves in the tine and reflector strip area.
  • the coupling strip 4 influences the coupling between the two waveguides.
  • the converter 21 is connected to the filter input 5.
  • the converter 31 is connected to the filter input 6.
  • the reflectors 22, 23, 32 and 33 and the common collecting electrode 213 are connected to the ground potential 7.
  • a filter cascade can be formed from two resonator filters, one of which is shown in the drawing by connecting terminal 6 of the first filter, which is its output, to terminal 6 of the second filter, which is its input.
  • the converter 31 is the coupling converter. Due to the increased effective coupling factor in the coupling converters, the damping of the low-frequency resonance due to cascading is reduced.

Abstract

The invention relates to a transversally coupled resonator filter based on acoustic surface waves. The aim of the invention is to modify said type of resonator, which has several one-port resonator structures (2; 3) located adjacent to one another on a substrate (1), said structures consisting of two strip reflectors (22 and 23; 32 and 33) and an interdigital transducer (21; 31), which together form a waveguide for acoustic surface waves, in such a way that the insertion loss of the filter is reduced, in particular by reducing the loss as a result of cascading. To achieve this aim, at least one of the one-port resonator structures (2;3) differs from the other one-port resonator structures in the ratio of the tine width to the distance (216) between the centres of the tines (214; 215) and in the ratio of the width of the reflector strips (221; 231; 321; 331) to the distance (226; 236) between the centres (224; 225 and 234; 235) of the reflector strips (221;231;321;331). The invention can be used in particular in bandpass filters with a relative band width of the order of magnitude of 0.1 percent and in resonators for oscillators.

Description

TRANSVERSAL GEKOPPELTES RESONATORFILTERTRANSVERSALLY COUPLED RESONATOR FILTER
Technisches GebietTechnical field
Die Erfindung bezieht sich auf das Gebiet Elektrotechnik/ Elektronik. Objekte, bei denen die Anwendung möglich und zweckmäßig ist, sind Bauelemente auf der Basis akustischer Oberflächenwellen, wie Bandpassfilter mit einer relativen Bandbreite in der Größenordnung von 0,1 Prozent und Resonatoren für Oszillatoren.The invention relates to the field of electrical engineering / electronics. Objects for which the application is possible and expedient are components based on surface acoustic waves, such as bandpass filters with a relative bandwidth of the order of 0.1 percent and resonators for oscillators.
Stand der TechniState of the art
Es sind transversal gekoppelte Resonatorfilter bekannt, bei denen auf einem piezoelektrischen Substrat mehrere Eintor- Resonator-Strukturen nebeneinander angeordnet sind, die aus zwei Streifenreflektoren, die einen ebenen Hohlraum einschließen und deren Reflektorstreifen durch Kurzschlussstreifen kurzgeschlossen sind, und aus einem interdigitalen Wandler, der im ebenen Hohlraum angeordnet ist, bestehen, wobei in jeder Eintor-Resonator-Struktur die Streifengebiete der Streifenreflektoren bzw. die Zinkengebiete der interdigitalen Wandler zusammen mit den Kurzschlussstreifen bzw. mit den Sammelelektroden Wellenleiter für akustische Oberflächenwellen bilden und die Eintor-Resonator-Strukturen wegen des Wellenleitereffekts miteinander gekoppelt sind.Transversely coupled resonator filters are known in which a plurality of one-port resonator structures are arranged side by side on a piezoelectric substrate, which are composed of two strip reflectors which enclose a flat cavity and whose reflector strips are short-circuited by short-circuit strips, and of an interdigital transducer which is on the flat Cavity is arranged, where in each one-port resonator structure the stripe areas of the stripe reflectors or the tine areas of the interdigital transducers together with the short-circuit stripes or with the collecting electrodes form waveguides for surface acoustic waves and the one-port resonator structures together because of the waveguide effect are coupled.
Bei einer speziellen Ausführungsform (DE 197 44 948) sind zwei Eintor-Resonator-Strukturen - dort Wellenleiterspuren genannt - über zwei weitere Wellenleiterspuren, die keine Wandler enthalten, gekoppelt. Die sonst homogen metallisierten äußeren Sammelelektroden sind in Streifen unterschiedlicher Breite, die sich in Richtung der Wandlerzinken erstrecken, und dazwischen liegende Lücken unterteilt. Diese Unterteilung dient dazu, in den äußeren Sammelelektroden Phasengeschwindigkeiten einzustellen, die zwischen der in den Gitterbereichen (Wellenleiterspuren) und der im freien Gebiet liegen. Eine Wellenanregung in diesen Gebieten erfolgt nicht. Alle Wandlerzinken und Reflektorstreifen sind gleich breit. Das trifft auch auf die Lücken zwischen den Wandlerzinken und Reflektorstreifen zu.In a special embodiment (DE 197 44 948) there are two one-port resonator structures - there waveguide tracks called - coupled via two further waveguide tracks that do not contain any transducers. The otherwise homogeneously metallized outer collecting electrodes are divided into strips of different widths, which extend in the direction of the transducer tines, and gaps between them. This subdivision serves to set phase velocities in the outer collecting electrodes which lie between that in the grating regions (waveguide tracks) and that in the free area. There is no wave excitation in these areas. All converter tines and reflector strips are of the same width. This also applies to the gaps between the converter tines and reflector strips.
Die am weitesten verbreitete spezielle Ausführungsform besteht aus zwei Eintor-Resonator-Strukturen (M. Tanaka, T. Morita, K. Ono und Y. Nakazawa, „Narrow bandpass filter using double-mode SAW resonators on quartz", 38th Annual Frequency Control Symposium 1984, S 286-293 [1]). Die beiden Wandler, die als Filterein- bzw. ausgang betrieben werden, haben eine gemeinsame Sammelelektrode, die mit Massepotential verbunden ist. Meistens sind zwei identische Filter dieser Art zu einer Kaskade verschaltet.The most common specific embodiment consists of two one-port resonator structures (M. Tanaka, T. Morita, K. Ono and Y. Nakazawa, "narrow bandpass filter using double-mode SAW resonators on quartz", 38 th Annual Frequency Control Symposium 1984, S 286-293 [1]) The two converters, which are operated as filter inputs and outputs, have a common collecting electrode, which is connected to ground potential, usually two identical filters of this type are connected in a cascade.
Der Nachteil dieser Ausführung besteht darin, dass die Dämpfung infolge Kaskadierung und dadurch die Einfügedämpfung der Filter zu groß ist.The disadvantage of this design is that the attenuation due to cascading and thus the insertion loss of the filter is too great.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zugrunde, transversal gekoppelte Resonatorfilter auf der Basis akustischer Oberflächenwellen der bekannten Art so zu verändern, dass die Einfügedämpfung der Filter insbesondere durch Verringerung der Dämpfung infolge Kaskadierung reduziert wird. Diese Aufgabe wird nach der Erfindung mit dem in den Patentansprüchen beschriebenen transversal gekoppelten Resonatorfilter gelöst.The invention is based on the object of changing transversely coupled resonator filters on the basis of surface acoustic waves of the known type in such a way that the insertion loss of the filters is reduced in particular by reducing the attenuation due to cascading. This object is achieved according to the invention with the transversely coupled resonator filter described in the claims.
Das erfindungsgemäße Resonatorfilter ist dadurch gekennzeichnet, dass sich mindestens eine Eintor-Resonator- Struktur durch das Verhältnis der Zinkenbreite zum Abstand der Zinkenmitten und durch das Verhältnis der Breite der Reflektorstreifen zum Abstand der Mitten der Reflektorstreifen von den übrigen Eintor-Resonator-Strukturen unterscheidet .The resonator filter according to the invention is characterized in that at least one one-port resonator structure differs from the other one-port resonator structures by the ratio of the tine width to the distance between the tine centers and by the ratio of the width of the reflector strips to the distance between the centers of the reflector strips.
Die Ausbreitungsgeschwindigkeit von akustischen Oberflächenwellen hängt unter anderem vom Verhältnis der Zinkenbreite zum Abstand der Zinkenmitten und der Breite der Reflektorstreifen zum Abstand der Mitten der Reflektorstreifen, auch Metallisierungsverhältnis genannt, ab. Die Anwesenheit von Eintor-Resonator-Strukturen mit unterschiedlichem Metallisierungsverhältnis bedeutet deshalb, dass sich die Ausbreitungsgeschwindigkeiten in den Zinken- und Streifengittern verschiedener Eintor-Resonator-Strukturen voneinander unterscheiden. Demzufolge können Resonatorfilter entworfen werden, die in denjenigen Eintor-Resonator- Strukturen, deren Wandler Koppelwandler sind, eine andere Ausbreitungsgeschwindigkeit aufweisen als in anderen Eintor- Resonator-Strukturen. Als Koppelwandler werden dabei diejenigen Wandler verschiedener Filter bezeichnet, die unmittelbar miteinander verbunden sind. Dies ist beispielsweise bei einer Filterkaskade, bei der der Ausgangswandler des ersten Filters mit dem Eingangswandler des zweiten Filters verbunden ist, der Fall. Bei der Kaskadierung von zwei identischen Filtern kann man in Umgebung der nieder- bzw. höherfrequenten Resonanz in den Koppelwandlern eine erhöhte Energiedichte erzeugen. Infolgedessen erhöht sich der reelle Leitwert der Koppelwandler, während deren Kapazität unverändert bleibt. Deshalb wird der effektive Koppelfaktor erhöht. Das ist die Voraussetzung für die Verringerung der Einfügedämpfung, die durch die Kaskadierung bedingt ist. Der höhere effektive Koppelfaktor verursacht eine Vergrößerung der Resonanzaufspaltung der nieder- bzw. höherfrequenten Resonanz, die eine Folge der Kaskadierung ist.The propagation speed of surface acoustic waves depends, among other things, on the ratio of the tine width to the distance between the tine centers and the width of the reflector strips to the distance between the centers of the reflector strips, also called the metallization ratio. The presence of one-port resonator structures with different metallization ratios therefore means that the propagation speeds in the tine and strip gratings of different one-port resonator structures differ from one another. Accordingly, resonator filters can be designed which have a different propagation speed in those one-port resonator structures whose converters are coupling converters than in other one-port resonator structures. Coupling converters are those converters of different filters that are directly connected to one another. This is the case, for example, in a filter cascade in which the output converter of the first filter is connected to the input converter of the second filter. When two identical filters are cascaded, an increased energy density can be generated in the coupling transducers in the vicinity of the low-frequency or higher-frequency resonance. As a result, the real conductance of the coupling converters increases, while their capacitance remains unchanged. Therefore the effective coupling factor is increased. This is the prerequisite for the reduction in insertion loss, which is due to the cascading. The higher effective coupling factor causes an increase in the resonance splitting of the low or higher frequency resonance, which is a consequence of the cascading.
Die Erfindung kann wie folgt zweckmäßig ausgestaltet sein.The invention can be expediently configured as follows.
Es ist zweckmäßig, wenn die Wandler bzw. Streifenreflektoren benachbarter Eintor-Resonator-Strukturen gemeinsame Sammelelektroden bzw. Kurzschlussstreifen bilden.It is expedient if the transducers or strip reflectors of adjacent one-port resonator structures form common collecting electrodes or short-circuit strips.
Diejenigen Eintor-Resonator-Strukturen, die sich durch das Verhältnis der Zinkenbreite zum Abstand der Zinkenmitten und der Breite der Reflektorstreifen zum Abstand der Mitten der Reflektorstreifen von den übrigen Eintor-Resonator-Strukturen unterscheiden, können sich auch durch den Abstand der Zinkenmitten und den Abstand der Mitten der Reflektorstreifen voneinander unterscheiden. Der Abstand der Zinkenmitten und der Abstand der Mitten der Reflektorstreifen kann aber in allen Eintor-Resonator-Strukturen auch gleich sein.Those one-port resonator structures that differ from the other one-port resonator structures by the ratio of the tine width to the distance between the tine centers and the width of the reflector strips to the distance between the centers of the reflector strips can also differ by the distance between the tine centers and the distance differentiate the middle of the reflector strips. However, the distance between the tine centers and the distance between the centers of the reflector strips can also be the same in all one-port resonator structures.
Die Anzahl der Eintor-Resonator-Strukturen kann gleich zwei sein. Dabei kann die Apertur der Wandler und Reflektoren in beiden Eintor-Resonator-Strukturen gleich oder unterschiedlich sein.The number of one-port resonator structures can be two. The aperture of the transducers and reflectors can be the same or different in both one-port resonator structures.
Die Anzahl der Eintor-Resonator-Strukturen größer als zwei zu wählen, ist besonders zweckmäßig. Dadurch ergibt sich die Möglichkeit, dass die Eintor-Resonator-Strukturen zwei Gruppen bilden, wobei alle Wandler innerhalb einer Gruppe miteinander parallel geschaltet sind und eine Gruppe den Eingangs- und die jeweils andere Gruppe den Ausgangswandler darstellt. Mitunter ist es vorteilhaft, wenn zwischen benachbarten Eintor-Resonator-Strukturen Lücken vorhanden sind, die mit auf gleichem Potential liegenden Reflektorstreifen ausgefüllt sind.It is particularly expedient to choose the number of one-port resonator structures to be greater than two. This results in the possibility that the one-port resonator structures form two groups, with all converters within a group being connected in parallel with one another and one group representing the input converter and the other group representing the output converter. It is sometimes advantageous if there are gaps between adjacent one-port resonator structures which are filled with reflector strips at the same potential.
Die Wandler in mindestens einer Eintor-Resonator-Struktur können sich von den übrigen Wandlern durch die Zinkenpolarität unterscheiden.The transducers in at least one one-port resonator structure can differ from the other transducers by the tine polarity.
Besonders zweckmäßig ist es, wenn zwei identische Filter eine Filterkaskade bilden, bei der bei beiden Filtern die gleiche Gruppe als Koppelwandler benutzt ist, wobei als Koppelwandler jeweils diejenige Gruppe bezeichnet ist, die mit einer Gruppe des jeweils anderen Filters verbunden ist. Dabei ist es von Vorteil, wenn die Gruppe, die jeweils den Koppelwandler bildet, aus Eintor-Resonator-Strukturen mit gleicher Zinken- und Reflektorstreifenbreite sowie gleichen Lücken zwischen ihnen besteht. Das Verhältnis der Zinkenbreite zum Abstand der Zinkenmitten und der Breite der Reflektorstreifen zum Abstand der Mitten der Reflektorstreifen in der Gruppe, die den Koppelwandler bildet, kann größer oder kleiner als in allen übrigen Eintor-Resonator-Strukturen sein.It is particularly expedient if two identical filters form a filter cascade, in which the same group is used as a coupling converter in both filters, the coupling converter being the group that is connected to a group of the other filter. It is advantageous if the group that forms the coupling converter in each case consists of one-port resonator structures with the same tine and reflector strip width and the same gaps between them. The ratio of the tine width to the distance between the tine centers and the width of the reflector strips to the distance between the centers of the reflector strips in the group that forms the coupling converter can be larger or smaller than in all other one-port resonator structures.
Kurze Beschreibung der ZeichnungBrief description of the drawing
Die Zeichnung zeigt in Prinzipdarstellung das Design eines in dem nachfolgenden Ausführungsbeispiel näher beschriebenen erfindungsgemäßen transversal gekoppelten Resonatorfilters.The drawing shows in principle the design of a transversely coupled resonator filter according to the invention described in more detail in the following embodiment.
Bester Weg zur Ausführung der ErfindungBest way to carry out the invention
Die Erfindung ist nachstehend anhand eines Ausführungsbeispiels und der zugehörigen Zeichnung näher erläutert. Auf einem piezoelektrischen Substrat 1 sind zwei Eintor- Resonator-Strukturen 2 und 3 nebeneinander angeordnet. Sie enthalten in gleicher Reihenfolge die Reflektoren 22 und 23 bzw. 32 und 33. Zwischen den Reflektoren 22 und 23 bzw. 32 und 33 sind die interdigitalen Wandler 21 bzw. 31 angeordnet. Der Wandler 21 besteht aus den Sammelelektroden 212 und 213 und den Zinken 211. Der Wandler 31 bildet mit dem Wandler 21 die gemeinsame Sammelelektrode 213 und besteht außerdem aus der Sammelelektrode 312 und den Zinken 311. Die Reflektoren 22 und 23 sind aus den Reflektorstreifen 221 bzw. 231 und den Kurzschlussstreifen 222 und 223 bzw. 232 und 233 zusammengesetzt. Die Reflektoren 32 und 33 bilden mit den Reflektoren 22 bzw. 23 gemeinsame Kurzschlussstreifen 223 bzw. 233 und sind außerdem aus den Reflektorstreifen 321 bzw. 331 und den Kurzschlussstreifen 322 bzw. 332 zusammengesetzt.The invention is explained below with reference to an embodiment and the accompanying drawing. Two one-port resonator structures 2 and 3 are arranged next to one another on a piezoelectric substrate 1. They contain the reflectors 22 and 23 or 32 and 33 in the same order. The interdigital transducers 21 and 31 are arranged between the reflectors 22 and 23 or 32 and 33. The converter 21 consists of the collecting electrodes 212 and 213 and the tines 211. The converter 31 forms the common collecting electrode 213 with the converter 21 and also consists of the collecting electrode 312 and the tines 311. The reflectors 22 and 23 are made of the reflector strips 221 and 221, respectively 231 and the short-circuit strips 222 and 223 or 232 and 233. The reflectors 32 and 33 form with the reflectors 22 and 23 common short-circuit strips 223 and 233 and are also composed of the reflector strips 321 and 331 and the short-circuit strips 322 and 332, respectively.
Die Mittellinien der Zinken 211 des Wandlers 21 und der Zinken 311 des Wandlers 31 stellen die Fortsetzungen voneinander dar und bilden die gemeinsame Mittellinie 215. In analoger Weise gilt das auch für die gemeinsame Mittellinie 214. Der Abstand 216 der gemeinsamen Mittellinien 214 und 215 ist demzufolge in beiden Wandlern 21 und 31 gleich. Jedoch unterscheiden sich die Zinken 211 und 311 der Wandler 21 bzw. 31 durch ihre Breite.The center lines of the prongs 211 of the transducer 21 and the prongs 311 of the transducer 31 represent the continuations from one another and form the common center line 215. In an analogous manner, this also applies to the common center line 214. The distance 216 of the common center lines 214 and 215 is accordingly the same in both converters 21 and 31. However, the tines 211 and 311 of the transducers 21 and 31 differ in their width.
Die Mittellinien der Reflektorstreifen 221 des Streifenreflektors 22 und der Reflektorstreifen 321 des Streifenreflektors 32 stellen die Fortsetzungen voneinander dar und bilden die gemeinsame Mittellinie 224. In analoger Weise gilt das auch für die gemeinsame Mittellinie 225. Der Abstand 226 der gemeinsamen Mittellinien 224 und 225 ist demzufolge in beiden Streifenreflektoren 22 und 32 gleich. Jedoch unterscheiden sich die Reflektorstreifen 221 und 321 der Streifenreflektoren 22 bzw. 32 durch ihre Breite. In analoger Weise gilt diese Beschreibung auch für die Streifenreflektoren 23 und 33 wie folgt. Die Mittellinien der Reflektorstreifen 231 des Streifenreflektors 23 und der Reflektorstreifen 331 des Streifenreflektors 33 stellen die Fortsetzungen voneinander dar und bilden die gemeinsame Mittellinie 235. In analoger Weise gilt das auch für die gemeinsame Mittellinie 234. Der Abstand 236 der gemeinsamen Mittellinien 234 und 235 ist demzufolge in beiden Streifenreflektoren 23 und 33 gleich. Jedoch unterscheiden sich die Reflektorstreifen 231 und 331 der Streifenreflektoren 23 bzw. 33 durch ihre Breite.The center lines of the reflector strips 221 of the strip reflector 22 and the reflector strips 321 of the strip reflector 32 represent the continuations from one another and form the common center line 224. In an analogous manner, this also applies to the common center line 225. The distance 226 of the common center lines 224 and 225 is accordingly the same in both strip reflectors 22 and 32. However, the reflector strips 221 and 321 of the strip reflectors 22 and 32 differ in their width. In an analogous manner, this description also applies to the strip reflectors 23 and 33 as follows. The center lines of the reflector strips 231 of the strip reflector 23 and the reflector strips 331 of the strip reflector 33 represent the continuations from one another and form the common center line 235. In an analogous manner, this also applies to the common center line 234. The distance 236 of the common center lines 234 and 235 is accordingly the same in both strip reflectors 23 and 33. However, the reflector strips 231 and 331 of the strip reflectors 23 and 33 differ in their width.
Die Kurzschlussstreifen 222 und 232, 223 und 233 sowie 322 und 332 der Streifenreflektoren stellen in gleicher Reihenfolge die Verlängerung der Sammelelektroden 212, 213 und 312 dar. Die Kurzschlussstreifen 223 und 233 bilden zusammen mit der Sammelelektrode 213 den Koppelstreifen 4. Jede Eintor-Resonator-Struktur ist ein Wellenleiter für akustische Oberflächenwellen, der die Wellen im Zinken- und Reflektorstreifengebiet führt. -Der Koppelstreifen 4 beeinflusst die Kopplung zwischen den beiden Wellenleitern.The short-circuit strips 222 and 232, 223 and 233 as well as 322 and 332 of the strip reflectors represent the extension of the collecting electrodes 212, 213 and 312 in the same order. The short-circuit strips 223 and 233 together with the collecting electrode 213 form the coupling strip 4. Each one-port resonator Structure is a waveguide for surface acoustic waves, which guides the waves in the tine and reflector strip area. The coupling strip 4 influences the coupling between the two waveguides.
Der Wandler 21 ist an den Filtereingang 5 angeschlossen. Der Wandler 31 ist an den Filtereingang 6 angeschlossen. Die Reflektoren 22, 23, 32 und 33 sowie die gemeinsame Sammelelektrode 213 sind mit dem Massepotential 7 verbunden.The converter 21 is connected to the filter input 5. The converter 31 is connected to the filter input 6. The reflectors 22, 23, 32 and 33 and the common collecting electrode 213 are connected to the ground potential 7.
Infolge der breiteren Zinken und Reflektorstreifen in der Eintor-Resonator-Struktur 3 ist die Ausbreitungsgeschwindigkeit im Zinken- und Streifengitter dort kleiner als in der Eintor-Resonator-Struktur 2, so dass die Profile der Wellenleitermoden in einer Weise unsymmetrisch werden, dass die Dichte der Wellenenergie und als Folge davon auch der effektive Koppelfaktor in Umgebung der niederfrequenten Resonanz in der Eintor-Resonator-Struktur 3 besonders groß ist. Aus zwei Resonatorfiltern, von denen eines in der Zeichnung dargestellt ist, kann eine Filterkaskade gebildet werden, indem der Anschluss 6 des ersten Filters, der dessen Ausgang ist, mit dem Anschluss 6 des zweiten Filters, der dessen Eingang ist, verbunden ist. Bei beiden Resonatorfiltern ist der Wandler 31 der Koppelwandler. Aufgrund des erhöhten effektiven Koppelfaktors in den Koppelwandlern wird die Dämpfung der niederfrequenten Resonanz infolge Kaskadierung herabgesetzt. As a result of the wider tines and reflector strips in the one-port resonator structure 3, the propagation speed in the tine and strip grating is lower there than in the one-port resonator structure 2, so that the profiles of the waveguide modes become asymmetrical in such a way that the density of the Wave energy and, as a result, the effective coupling factor in the vicinity of the low-frequency resonance in the one-port resonator structure 3 is particularly large. A filter cascade can be formed from two resonator filters, one of which is shown in the drawing by connecting terminal 6 of the first filter, which is its output, to terminal 6 of the second filter, which is its input. In both resonator filters, the converter 31 is the coupling converter. Due to the increased effective coupling factor in the coupling converters, the damping of the low-frequency resonance due to cascading is reduced.

Claims

Patentansprüche claims
1. Transversal gekoppeltes Resonatorfilter auf der Basis akustischer Oberflächenwellen, bei dem auf einem piezoelektrischen Substrat (1) mehrere Eintor-Resonator- Strukturen (2; 3) nebeneinander angeordnet sind, die aus zwei Streifenreflektoren (22 und 23; 32 und 33) , die einen ebenen Hohlraum einschließen und deren Reflektorstreifen (221; 231; 321; 331) durch Kurzschlussstreifen (222;223; 232;233; 322; 332) kurzgeschlossen sind, und aus einem interdigitalen Wandler (21;31), der im ebenen Hohlraum angeordnet ist, bestehen, wobei in jeder Eintor- Resonator-Struktur (2; 3) die Streifengebiete der Streifenreflektoren (22 ; 23; 32; 33) bzw. die Zinkengebiete der interdigitalen Wandler (21; 31) zusammen mit den Kurzschlussstreifen (222; 223; 232; 233; 322 ; 332 ) bzw. mit den Sammelelektroden (212; 213; 312) Wellenleiter für akustische Oberflächenwellen bilden und die Eintor-Resonator- Strukturen (2; 3) wegen des Wellenleitereffekts miteinander gekoppelt sind, dadurch gekennzeichnet, dass sich mindestens eine Eintor-Resonator-Struktur (2; 3) durch das Verhältnis der Zinkenbreite zum Abstand (216) der Zinkenmitten (214; 215) und durch das Verhältnis der Breite der Reflektorstreifen (221; 231; 321; 331) zum Abstand (226;236) der Mitten (224;225 und 234;235) der Reflektorstreifen (221; 231; 321; 331) von den übrigen Eintor-Resonator-Strukturen unterscheidet .1. Transversely coupled resonator filter based on surface acoustic waves, in which on a piezoelectric substrate (1) several one-port resonator structures (2; 3) are arranged side by side, which consist of two strip reflectors (22 and 23; 32 and 33), the enclose a flat cavity and the reflector strips (221; 231; 321; 331) are short-circuited by short-circuit strips (222; 223; 232; 233; 322; 332), and from an interdigital transducer (21; 31) which is arranged in the flat cavity is, wherein in each one-port resonator structure (2; 3) the stripe areas of the stripe reflectors (22; 23; 32; 33) or the tine areas of the interdigital transducers (21; 31) together with the short-circuit stripes (222; 223 ; 232; 233; 322; 332) or with the collecting electrodes (212; 213; 312) form waveguides for surface acoustic waves and the one-port resonator structures (2; 3) are coupled to each other because of the waveguide effect, characterized in that d at least one one-port resonator structure (2; 3) by the ratio of the tine width to the distance (216) of the tine centers (214; 215) and by the ratio of the width of the reflector strips (221; 231; 321; 331) to the distance (226; 236) of the centers (224; 225 and 234; 235) of the reflector strips (221; 231; 321; 331) differs from the other one-port resonator structures.
2. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass die Wandler (21; 31) bzw. Streifenreflektoren (22; 23; 32; 33) benachbarter Eintor-Resonator-Strukturen (2; 3) gemeinsame Sammelelektroden (213) bzw. Kurzschlussstreifen (223;233) bilden. 2. Resonator filter according to claim 1, characterized in that the transducers (21; 31) or strip reflectors (22; 23; 32; 33) of adjacent single-port resonator structures (2; 3) common collecting electrodes (213) or short-circuit strips ( 223; 233).
3. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass diejenigen Eintor-Resonator-Strukturen (2;3), die sich durch das Verhältnis der Zinkenbreite zum Abstand (216) der Zinkenmitten (214;215) und der Breite der Reflektorstreifen (221; 231; 321; 331) zum Abstand (226;236) der Mitten (224;225 und 234;235) der Reflektorstreifen (221; 231; 321; 331) von den übrigen Eintor-Resonator- Strukturen unterscheiden, sich auch durch den Abstand (216) der Zinkenmitten (214;215) und den Abstand (226;236) der Mitten (224; 225 und 234; 235) der Reflektorstreifen (221; 231; 321; 331) voneinander unterscheiden.3. Resonator filter according to claim 1, characterized in that those one-port resonator structures (2; 3), which are characterized by the ratio of the tine width to the distance (216) of the tine centers (214; 215) and the width of the reflector strips (221; 231; 321; 331) to the distance (226; 236) of the centers (224; 225 and 234; 235) of the reflector strips (221; 231; 321; 331) differ from the other one-port resonator structures, also by the distance (216) the tine centers (214; 215) and the distance (226; 236) of the centers (224; 225 and 234; 235) of the reflector strips (221; 231; 321; 331) from each other.
4. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand (216) der Zinkenmitten (214; 215) und der Abstand (226/236) der Mitten (224;225 und 234;235) der Reflektorstreifen (221; 231; 321; 331) in allen Eintor- Resonator-Strukturen (2; 3) gleich sind.4. resonator filter according to claim 1, characterized in that the distance (216) of the tine centers (214; 215) and the distance (226/236) of the centers (224; 225 and 234; 235) of the reflector strips (221; 231; 321 ; 331) are the same in all one-port resonator structures (2; 3).
5. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Eintor-Resonator-Strukturen (2; 3) gleich zwei ist.5. Resonator filter according to claim 1, characterized in that the number of one-port resonator structures (2; 3) is equal to two.
6. Resonatorfilter nach Anspruch 5, dadurch gekennzeichnet, dass die Apertur der Wandler (21; 31) und Reflektoren (22; 23; 32; 33) in beiden Eintor-Resonator-Strukturen (2; 3) gleich ist.6. Resonator filter according to claim 5, characterized in that the aperture of the transducers (21; 31) and reflectors (22; 23; 32; 33) is the same in both one-port resonator structures (2; 3).
7. Resonatorfilter nach Anspruch 5, dadurch gekennzeichnet, dass die Apertur der Wandler (21; 31) und Reflektoren (22;23;32;33) in beiden Eintor-Resonator-Strukturen (2;3) unterschiedlich ist.7. resonator filter according to claim 5, characterized in that the aperture of the transducers (21; 31) and reflectors (22; 23; 32; 33) is different in the two one-port resonator structures (2; 3).
8. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Eintor-Resonator-Strukturen (2; 3) größer als zwei ist. 8. resonator filter according to claim 1, characterized in that the number of one-port resonator structures (2; 3) is greater than two.
9. Resonatorfilter nach Anspruch 8, dadurch gekennzeichnet, dass die Eintor-Resonator-Strukturen (2; 3) zwei Gruppen bilden, wobei alle Wandler innerhalb einer Gruppe miteinander parallel geschaltet sind und eine Gruppe den Eingangs- und die jeweils andere Gruppe den Ausgangswandler darstellt.9. resonator filter according to claim 8, characterized in that the one-port resonator structures (2; 3) form two groups, all transducers within a group being connected in parallel with one another and one group representing the input and the other group representing the output transducer ,
10. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass zwischen benachbarten Eintor-Resonator-Strukturen (2; 3) Lücken vorhanden sind, die mit auf gleichem Potential liegenden Reflektorstreifen ausgefüllt sind.10. Resonator filter according to claim 1, characterized in that there are gaps between adjacent one-port resonator structures (2; 3) which are filled with reflector strips at the same potential.
11. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass sich die Wandler (21; 31) in mindestens einer Eintor- Resonator-Struktur (2; 3) von den übrigen Wandlern durch die Zinkenpolarität unterscheiden.11. Resonator filter according to claim 1, characterized in that the transducers (21; 31) differ in at least one one-port resonator structure (2; 3) from the other transducers by the prong polarity.
12. Resonatorfilter nach Anspruch 1, dadurch gekennzeichnet, dass zwei identische Filter nach Anspruch 9 eine Filterkaskade bilden, bei der bei beiden Filtern die gleiche Gruppe als Koppelwandler benutzt ist, wobei als Koppelwandler jeweils diejenige Gruppe bezeichnet ist, die mit einer Gruppe des jeweils anderen Filters verbunden ist.12. Resonator filter according to claim 1, characterized in that two identical filters according to claim 9 form a filter cascade, in which the same group is used as a coupling converter in both filters, wherein the coupling converter is the group with the group of the other Filters is connected.
13. Resonatorfilter nach Anspruch 12, dadurch gekennzeichnet, dass die Gruppe, die jeweils den Koppelwandler bildet, aus13. Resonator filter according to claim 12, characterized in that the group which forms the coupling converter in each case
Eintor-Resonator-Strukturen (2; 3) mit gleicher Zinken- und Reflektorstreifenbreite sowie gleichen Lücken zwischen ihnen besteht.There is one-gate resonator structures (2; 3) with the same tine and reflector strip width and the same gaps between them.
14. Resonatorfilter nach Anspruch 13, dadurch gekennzeichnet, dass das Verhältnis der Zinkenbreite zum Abstand (216) der Zinkenmitten (214;215) und der Breite der Reflektorstreifen (221;231; 321; 331) zum Abstand (226;236) der Mitten (224; 225 und 234; 235) der Reflektorstreifen14. resonator filter according to claim 13, characterized in that the ratio of the tine width to the distance (216) of the tine centers (214; 215) and the width of the Reflector strips (221; 231; 321; 331) to the distance (226; 236) of the centers (224; 225 and 234; 235) of the reflector strips
(221; 231; 321; 331) in der Gruppe, die den Koppelwandler bildet, größer als in allen übrigen Eintor-Resonator- Strukturen (2; 3) ist.(221; 231; 321; 331) in the group that forms the coupling converter is larger than in all other one-port resonator structures (2; 3).
15. Resonatorfilter nach Anspruch 13, dadurch gekennzeichnet, dass das Verhältnis der Zinkenbreite zum Abstand (216) der Zinkenmitten (214;215) und der Breite der Reflektorstreifen (221;231;321; 331) zum Abstand (226;23β) der Mitten (224; 225 und 234; 235) der Reflektorstreifen (221; 231; 321; 331) in der Gruppe, die den Koppelwandler bildet, kleiner als in allen übrigen Eintor-Resonator- Strukturen (2; 3) ist. 15. resonator filter according to claim 13, characterized in that the ratio of the tine width to the distance (216) of the tine centers (214; 215) and the width of the reflector strips (221; 231; 321; 331) to the distance (226; 23β) of the centers (224; 225 and 234; 235) of the reflector strips (221; 231; 321; 331) in the group that forms the coupling converter is smaller than in all other single-port resonator structures (2; 3).
EP01984707A 2000-12-11 2001-12-10 Transversally coupled resonator filter Withdrawn EP1342317A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10062847 2000-12-11
DE10062847A DE10062847C1 (en) 2000-12-11 2000-12-11 Transversal coupled resonator filter for acoustic surface waves has adjacent single gate resonator structures
PCT/DE2001/004676 WO2002049212A1 (en) 2000-12-11 2001-12-10 Transversally coupled resonator filter

Publications (1)

Publication Number Publication Date
EP1342317A1 true EP1342317A1 (en) 2003-09-10

Family

ID=7667483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01984707A Withdrawn EP1342317A1 (en) 2000-12-11 2001-12-10 Transversally coupled resonator filter

Country Status (6)

Country Link
US (1) US6762534B2 (en)
EP (1) EP1342317A1 (en)
JP (1) JP2004516703A (en)
KR (1) KR100792050B1 (en)
DE (1) DE10062847C1 (en)
WO (1) WO2002049212A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254634B1 (en) * 2002-03-08 2007-08-07 Akamai Technologies, Inc. Managing web tier session state objects in a content delivery network (CDN)
US7569971B2 (en) * 2007-10-02 2009-08-04 Delaware Capital Formation, Inc. Compensation of resonators for substrate and transducer asymmetry
US8258674B2 (en) * 2008-11-03 2012-09-04 Viorel Olariu Surface acoustic wave sensor and system
US8610518B1 (en) 2011-05-18 2013-12-17 Triquint Semiconductor, Inc. Elastic guided wave coupling resonator filter and associated manufacturing
CN104182708B (en) * 2014-08-11 2017-05-03 东华大学 Hybrid weighting type surface acoustic wave single-scale wavelet transform processor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117992B (en) * 1982-03-24 1985-09-18 Philips Electronic Associated Parallel-series acoustic wave device arrangement
JPH01260911A (en) * 1988-04-11 1989-10-18 Hitachi Ltd Composite filter for surface acoustic wave resonator
US5202652A (en) * 1989-10-13 1993-04-13 Hitachi, Ltd. Surface acoustic wave filter device formed on a plurality of piezoelectric substrates
GB2296614B (en) * 1994-12-23 1999-09-15 Advanced Saw Prod Sa Saw filter
JP3360541B2 (en) * 1995-10-20 2002-12-24 セイコーエプソン株式会社 Surface acoustic wave device and design method thereof
DE19744948C2 (en) * 1997-10-10 1999-12-09 Siemens Ag Acoustic filter, especially surface wave filter
DE19909470C2 (en) 1999-03-04 2003-09-25 Leibniz Inst Fuer Festkoerper Transducer for surface acoustic waves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0249212A1 *

Also Published As

Publication number Publication date
US6762534B2 (en) 2004-07-13
WO2002049212A1 (en) 2002-06-20
JP2004516703A (en) 2004-06-03
DE10062847C1 (en) 2002-05-23
US20030011279A1 (en) 2003-01-16
KR20020074512A (en) 2002-09-30
KR100792050B1 (en) 2008-01-04

Similar Documents

Publication Publication Date Title
EP1198881B1 (en) Surface acoustic wave filter
EP1488514B1 (en) Filter comprising acoustically coupled resonators
DE69735746T2 (en) Acoustic surface wave arrangement
EP1196991B1 (en) Surface acoustic wave (saw) filter of the reactance filter type exhibiting improved stop band suppression and method for optimizing the stop band suppression
DE69838694T2 (en) SAW filter with SAW interstage matching resonator
DE4431612C2 (en) Acoustic surface wave filter
DE102006010752B4 (en) DMS filter with interconnected resonators
DE19923963B4 (en) Surface acoustic wave filter
DE112009002361B4 (en) Filter device for elastic waves
DE69934765T2 (en) Acoustic surface wave filter
DE19513937A1 (en) Acoustic surface wave filter
DE60127351T2 (en) Acoustic Surface Wave Filter with Longitudinal Coupling
DE19838573A1 (en) Surface wave filter
DE69934863T2 (en) Acoustic surface acoustic wave filter for improving the flatness of the passband and the process of producing the same
EP0638212B1 (en) Weighted reflector for a surface-wave device
DE19924933B4 (en) Surface acoustic wave device
DE10152917B4 (en) Surface acoustic wave filter and communication device containing the same
EP0213372A2 (en) Dispersive interdigital transducer for devices operating with acoustical waves
EP0927455B1 (en) Reactance filter with surface wave resonators
DE10062847C1 (en) Transversal coupled resonator filter for acoustic surface waves has adjacent single gate resonator structures
DE112009002273B4 (en) Filter device for elastic waves
DE19513793C2 (en) Acoustic surface wave filter
DE19943072B4 (en) Acoustic surface wave filter
DE10163517B4 (en) resonator filter
DE19722859C1 (en) Surface acoustic wave (SAW) resonator e.g. for narrow-band bandpass filters and oscillators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090701