EP1336649A1 - Process for enhancing gasoils containing aromatics and naphthenoaromatics. - Google Patents
Process for enhancing gasoils containing aromatics and naphthenoaromatics. Download PDFInfo
- Publication number
- EP1336649A1 EP1336649A1 EP03290340A EP03290340A EP1336649A1 EP 1336649 A1 EP1336649 A1 EP 1336649A1 EP 03290340 A EP03290340 A EP 03290340A EP 03290340 A EP03290340 A EP 03290340A EP 1336649 A1 EP1336649 A1 EP 1336649A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrorefining
- weight
- group
- catalyst
- hydrocracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000008569 process Effects 0.000 title claims abstract description 42
- 230000002708 enhancing effect Effects 0.000 title 1
- 239000003054 catalyst Substances 0.000 claims abstract description 67
- 239000010457 zeolite Substances 0.000 claims abstract description 64
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 53
- 238000004517 catalytic hydrocracking Methods 0.000 claims abstract description 48
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 238000009835 boiling Methods 0.000 claims abstract description 19
- 239000000446 fuel Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 34
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 25
- 229910052698 phosphorus Inorganic materials 0.000 claims description 22
- 239000011574 phosphorus Substances 0.000 claims description 22
- 239000010703 silicon Substances 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 20
- 229910052796 boron Inorganic materials 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 16
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 13
- 239000011707 mineral Substances 0.000 claims description 13
- 150000002739 metals Chemical class 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 8
- 239000011733 molybdenum Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 7
- 229910000510 noble metal Inorganic materials 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 7
- 150000001491 aromatic compounds Chemical class 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims description 2
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 abstract description 22
- 150000001875 compounds Chemical class 0.000 abstract description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 14
- 239000011593 sulfur Substances 0.000 abstract description 14
- 229910052717 sulfur Inorganic materials 0.000 abstract description 14
- 125000003118 aryl group Chemical group 0.000 abstract description 10
- 239000011148 porous material Substances 0.000 description 12
- 238000011282 treatment Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 150000001768 cations Chemical class 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229940082150 encore Drugs 0.000 description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 239000010955 niobium Substances 0.000 description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910003294 NiMo Inorganic materials 0.000 description 3
- -1 VIB metals Chemical class 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005987 sulfurization reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000004645 aluminates Chemical class 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004231 fluid catalytic cracking Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004375 physisorption Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000861223 Issus Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 241000427843 Zuata Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- HIGRAKVNKLCVCA-UHFFFAOYSA-N alumine Chemical compound C1=CC=[Al]C=C1 HIGRAKVNKLCVCA-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical class O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/12—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
Definitions
- the present invention relates to the field of fuels for combustion engines internal. It relates more particularly to the conversion of a diesel cut and in particular the manufacture of a fuel for a compression ignition engine. She also relates to the fuel thus obtained.
- diesel fractions whether they come from the direct distillation of a crude oil or whether they come from a conversion process such as cracking catalytic, still contain significant amounts of compounds aromatic, nitrogen and sulfur.
- a fuel must have a cetane number greater than 51, a sulfur content less than 350 ppm (parts per million by mass), a density, d15 / 4, at 15 ° C less than 0.845 g / cm 3 , a content of polyaromatic compounds of less than 11% by weight and a boiling point of 95% of its components, T95, of less than 360 ° C.
- the diesel cuts generally come either from direct distillation of crude or from catalytic cracking: i.e. cuts of light distillates (Anglo-Saxon initials LCO for Light Cycle Oil), heavy fraction cuts (HCO initials) for Heavy Cycle Oil), or another conversion process (coking, visbreaking, hydroconversion of residue etc.) or even diesel fuels from the distillation of crude oil aromatic or naphthenoaromatic of the Cerro-Negro, Zuata, El Pao type. It is particularly important to produce an effluent that can be directly and fully valued as a very high quality fuel cutter.
- Patent FR 2 777 290 proposes a process combining hydrocracking with a hydrogenation in order to decrease the sulfur content and increase the cetane of the fuels thus produced. This process, which already has good performance, must however be improved in order to meet the increasingly stringent requirements that will be required in most countries industrialized.
- the diesel fillers to be treated are generally light diesel, for example direct distillation gas oils, fluid catalytic cracking gas oils (initials Anglo-Saxon FCC for Fluid Catalytic Cracking) or (LCO). They present generally an initial boiling point of at least 180 ° C and a final boiling point of at most 370 ° C.
- the weight composition of these charges by family of hydrocarbons is variable depending on the intervals. According to the compositions usually encountered, the paraffin contents are between 5.0 and 30.0% by weight and naphthenes between 5.0 and 60% by weight.
- the diesel fillers preferably have a content of aromatic compounds (including polyaromatic and naphthenoaromatic compounds) between 20% and 90%, in especially between 40% and 80% by weight.
- the process according to the invention makes it possible, during the first hydrorefining step, to reduce sulfur content, nitrogen content, aromatic content and polyaromatics, as well as increasing the cetane number.
- the conversion to products having a boiling point below 150 ° C is limited to the hydrorefining stage. So converting into products having a boiling point below 150 ° C is, for the hydrorefining step, included between 1 and 15%, preferably 5 and 15% by weight.
- the operating conditions to apply to respect these conversion rates favor the reduction of the content of compounds aromatics by hydrogenating them and increasing the cetane number.
- the conversion to products with a boiling point below 150 ° C is also, for all of the two hydrorefining and hydrocracking stages, kept below a certain limit, beyond which it was found that the index cetane could be reduced due to the presence of aromatic compounds. So, the conversion to products with a boiling point below 150 ° C is, overall of the two hydrorefining and hydrocracking stages, less than 40%, preferably less than 35%, in particular less than 30%, for example less than 25% by weight.
- a zeolitic catalyst is used during the step hydrocracking at a temperature lower than that of the hydrorefining step. He was noticed with surprise that this made it possible to complete the hydrogenation of the compounds aromatics and polyaromatics while allowing, nevertheless, to achieve a moderate cracking of the charge, since said cracking is carried out at temperatures relatively low.
- the difference between the temperature TR1 of the hydrorefining stage and the hydrocracking temperature TR2 of the step is between 0 and 80 ° C.
- This gap is preferably between 5 ° C and 70 ° C, especially between 10 ° C and 60 ° C, in especially between 15 ° C and 50 ° C.
- this difference can be between 11 ° C and 70 ° C, preferably between 13 ° C and 60 ° C, in particular between 15 ° C and 50 ° C.
- the process of the invention thus makes it possible to increase, during the hydrocracking step, the number of cetane while decreasing the density, d15 / 4, and the temperature, T95, of the cut diesel.
- the fuel produced thus meets the most stringent future specifications.
- the catalyst used during the hydrorefining step of the process of present invention also called hydrorefining catalyst, comprises on a amorphous mineral support, at least one metal from group VIB of the periodic table elements, at least one non-noble metal from group VIII of this same classification and at least one promoter element.
- the metals of groups VIB and VIII constitute the element hydro-dehydrogenating hydrorefining catalyst.
- the charge is brought into contact with a hydrorefining catalyst comprising at least one support, at least one element of group VIB of the periodic table, at least one element of group VIII of this same classification, at least one promoter element, the latter being deposited on said catalyst, possibly at least one element of group VIIB such as manganese, and possibly at least one element of the VB group such as niobium.
- a hydrorefining catalyst comprising at least one support, at least one element of group VIB of the periodic table, at least one element of group VIII of this same classification, at least one promoter element, the latter being deposited on said catalyst, possibly at least one element of group VIIB such as manganese, and possibly at least one element of the VB group such as niobium.
- the amorphous mineral supports of the hydrorefining catalyst can be used alone or as a mixture.
- These hydrorefining catalyst supports can be chosen among alumina, halogenated alumina, silica, silica-alumina, clays, magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, phosphates titanium, zirconium phosphates, coal, aluminates.
- the clays one can choose natural clays, such as kaolin or bentonite.
- supports used contain alumina, in all these forms known to man of the trade, and even more preferably are aluminas, for example alumina gamma.
- the hydro-dehydrogenating function of the hydrorefining catalyst is generally filled with at least one metal from group VIB of the periodic table and at least one non-noble metal from group VIII of this same classification, these metals preferably being chosen from molybdenum, tungsten, nickel and cobalt.
- this function can be ensured by the combination of at least one element of the group VIII (Ni, Co) with at least one element from group VIB (Mo, W).
- the hydrorefining catalyst comprising phosphorus is such that the total concentration of metal oxides of groups VIB and VIII is between 5 and 40% by weight, preferably between 7 and 30% by weight. weight.
- the weight ratio expressed as metal oxide between metal (or metals) of group VIB over metal (or metals) of group VIII is, for its part, preferably between 20 and 1.25, even more preferably between 10 and 2
- the concentration of phosphorus oxide P 2 O 5 in this catalyst is preferably less than 15% by weight, in particular less than 10% by weight.
- Such a hydrorefining catalyst exhibits activity in hydrogenation of aromatic hydrocarbons, hydrodenitrogenation and greater hydrodesulfurization than catalytic formulas without boron and / or silicon.
- This type of catalyst has also a higher hydrocracking activity and selectivity than the catalytic formulas known in the prior art.
- a catalyst comprising boron and silicon is particularly active, which induces, on the one hand, an improvement in hydrogenating, hydrodesulfurizing, hydrodenitrogenating properties and, on the other hand, a improvement in hydrocracking activity compared to the catalysts used usually in hydroconversion hydrorefining reactions.
- the preferred hydrorefining catalysts are NiMo and / or NiW catalysts on alumina, also NiMo and / or NiW catalysts on alumina doped with at least one element included in the group of atoms consisting of phosphorus, boron, silicon and fluorine.
- Other preferred catalysts are the NiMo and / or NiW catalysts on silica-alumina or on silica-alumina-oxide of titanium, doped or not, with at least one element included in the group of atoms consisting of phosphorus, boron, fluorine and silicon.
- the hydrorefining stage is advantageously carried out at a pressure ranging from 5 to 15 MPa, preferably from 6 to 13 MPa, even more preferably from 7 to 11 MPa and at a temperature ranging from 310 ° C to 420 ° C , preferably from 320 to 400 ° C, even more preferably from 340 to 400 ° C.
- the recycling of pure hydrogen per volume of charge may advantageously be between 200 and 2,500 Nm 3 / m 3 of charge, preferably between 300 and 2,000 Nm 3 / m 3 .
- the space velocity can be, for its part, between 0.1 and 5, preferably between 0.1 and 3 expressed in volume of liquid charge per volume of catalyst and per hour.
- the target organic nitrogen content is generally less than 50 ppm by mass, of preferably less than 20 ppm, in particular less than 10 ppm by mass.
- all of the products from the hydrorefining stage are used in the hydrocracking step of the process of the invention.
- the hydrorefining stage and the stage hydrocracking generally take place in at least two reaction zones distinct. These reaction zones can be contained in one or more reactors.
- the catalyst used during the hydrocracking step of the process of the invention also called hydrocracking catalyst, comprises at least one zeolite which can preferably be chosen from the group consisting of zeolite Y (of structural type FAU), zeolite NU-86 and zeolite Beta (of structural type BEA).
- This hydrocracking catalyst further comprises at least one mineral binder (or matrix) and a hydro-dehydrogenating element.
- This catalyst can optionally comprise at least one element chosen from the group consisting of boron, phosphorus, silicon, at least one element from group VIIA (chlorine, fluorine for example), at least one element from group VIIB (manganese for example ), and at least one element of the VB group (niobium for example).
- the catalyst can also comprise, as mineral binder, at least one porous or poorly crystallized mineral matrix of the oxide type. Mention may be made, by way of example, of aluminas, silicas, silica-aluminas, aluminates, alumina-boron oxide, magnesia, silica-magnesia, zirconia, titanium oxide, l clay, alone or in mixture.
- the hydro-dehydrogenating function of the hydrocracking catalyst is generally ensured by at least one non-noble element of group VIII of the periodic table elements (for example cobalt and / or nickel) and possibly at least one element of group VIB of the same classification (for example molybdenum and / or tungsten).
- the hydro-dehydrogenating function of the hydrocracking catalyst is ensured by at least one non-noble element of group VIII (for example cobalt and / or nickel) and at least one element from group VIB (for example molybdenum and / or tungsten)
- group VIII for example cobalt and / or nickel
- group VIB for example molybdenum and / or tungsten
- the hydrocracking catalyst comprises at least one non-noble group VIII metal, at least one group VIB metal, at least one zeolite and a mineral binder such as alumina.
- the catalyst hydrocracking essentially comprises nickel, molybdenum, alumina and a zeolite selected from the group consisting of zeolite Y and zeolite NU-86.
- the zeolite can optionally be doped with metallic elements such as, for example example, the metals of the rare earth family, in particular lanthanum and cerium, or many noble or non-noble Group VIII metals, such as platinum, palladium, ruthenium, rhodium, iridium, iron and other metals like manganese, zinc, magnesium.
- metallic elements such as, for example example, the metals of the rare earth family, in particular lanthanum and cerium, or many noble or non-noble Group VIII metals, such as platinum, palladium, ruthenium, rhodium, iridium, iron and other metals like manganese, zinc, magnesium.
- said catalyst further comprises at least one metal having a hydro-dehydrogenating function, and silicon deposited on said catalyst.
- Peak rates and crystal fractions are determined by X-ray diffraction compared to a reference zeolite, using a procedure derived from the method ASTM D3906-97 "Determination of Relative X-ray Diffraction Intensities of Faujasite-Type-Containing Materials ”. We can refer to this method for the conditions terms of application of the procedure and, in particular, for the preparation of samples and references.
- a diffractogram is composed of the lines characteristic of the crystallized fraction of the sample and of a background, essentially caused by the diffusion of the amorphous or microcrystalline fraction of the sample (a weak diffusion signal is linked to the apparatus, air, sample holder, etc.).
- the peak rate of the sample is compared to that of a reference considered to be 100% crystallized (NaY for example).
- the peak rate of a perfectly crystallized NaY zeolite is of the order of 0.55 to 0.60.
- the peak rate of a conventional USY zeolite is 0.45 to 0.55, its crystalline fraction relative to a perfectly crystallized NaY is 80 to 95%.
- the peak rate of the solid which is the subject of the present invention is less than 0.4 and preferably less than 0.35. Its crystalline fraction is therefore less than 70%, preferably less than 60%.
- Partially amorphous zeolites are prepared according to techniques generally used for dealumination, from commercially available Y zeolites, that is to say which generally have high crystallinities (at least 80%). More generally we can start from zeolites having a crystalline fraction of at least 60%, or at least 70%.
- the Y zeolites generally used in hydrocracking catalysts are manufactured by modification of commercially available Na-Y zeolites. This modification leads to so-called stabilized, ultra-stabilized or even zeolites dealuminated. This modification is carried out by at least one of the techniques of dealumination, and for example hydrothermal treatment, acid attack. Of preferably, this modification is carried out by combination of three types of operations known to those skilled in the art: hydrothermal treatment, ion exchange and attack acid.
- a catalyst comprising a zeolite Y not dealuminated overall and very acidic.
- a Y zeolite structural type FAU, faujasite
- the crystalline parameter can be reduced by extraction of the aluminum from the structure (or framework).
- the overall SiO 2 / Al 2 O 3 ratio generally remains unchanged because the aluminum has not been chemically extracted.
- Such a globally non dealuminated zeolite therefore has an overall SiO 2 / Al 2 O 3 ratio which also remains unchanged.
- This globally non dealuminated Y zeolite can be in either hydrogenated, or at least partially exchanged with metal cations, by example using alkaline earth metal cations of earth metal cations rare with atomic number 57 to 71 inclusive.
- a zeolite devoid of rare earth and of alkaline earth is generally preferred.
- the generally non dealuminated zeolite Y generally has a crystalline parameter greater than 2.438 nm, an overall SiO 2 / Al 2 O 3 ratio less than 8, a SiO 2 / Al 2 O 3 molar ratio of framework less than 21 and greater than the SiO ratio 2 / Al 2 O 3 overall.
- the hydrocracking catalyst contains an alumina-type acidic amorphous oxide matrix doped with phosphorus, a zeolite Y not dealuminated overall and very acidic, and possibly at least one element of the group VIIA and in particular fluorine.
- beta zeolite of structural type BEA Astlas of Zeolites structures types", WM Meier, DH Olson and Ch. Baerlocher, 4 th revised Edition 1996, Elsevier.
- This beta zeolite can be used in its H-beta acid form or partially exchanged by cations.
- the Si / Al ratio of the beta zeolite can be that obtained during its synthesis or else it can undergo post-synthesis dealumination treatments known to those skilled in the art.
- NU-86 zeolite which can also be advantageously used in the process of the invention is described in American patent US Pat. No. 5,108,579. This zeolite can be used in its acid form H-NU-86 or partially exchanged by cations. The NU-86 zeolite can also be used after undergoing treatment (s) post-synthesis dealumination so as to increase and adjust its Si / Al ratio thus its catalytic properties. Post-synthesis dealumination techniques are described in US Patent 6,165,439.
- the hydrorefining and / or hydrocracking catalyst can be subjected to a sulfurization treatment making it possible to transform, at least in part, the species metallic sulphide before their contact with the load to be treated.
- This treatment of activation by sulfurization is well known to the skilled person and can be carried out by any method already described in the literature either in situ, i.e. in the reactor, or ex situ.
- a conventional sulfurization method well known to those skilled in the art consists in heating in the presence of hydrogen sulfide (pure or for example under a mixture flow hydrogen / hydrogen sulfide) at a temperature between 150 and 800 ° C, preferably between 250 and 600 ° C, generally in a crossed bed reaction zone.
- hydrogen sulfide pure or for example under a mixture flow hydrogen / hydrogen sulfide
- the effluent leaving the second reaction zone corresponding to the hydrocracking step of the process according to the invention may be subjected to a so-called final separation (for example atmospheric distillation) so as to separate the gases (such as l NH 3 ammonia and hydrogen sulfide (H 2 S), as well as the other light gases present, hydrogen and conversion products (petrol cut).
- a so-called final separation for example atmospheric distillation
- the feedstock treated in this example is a naphtheno-aromatic diesel fuel obtained from a distillation and the characteristics of which are as follows: Physico-chemical characteristics of the charge d15 / 4 0.9045 S content (% by weight) 2.2 Cetane engine 34 Content of aromatic compounds (including polyaromatics) 47.2 Polyaromatic content 20.4 T95% (ASTM D86) (° C) 351
- This charge was introduced into a catalytic test unit comprising 2 reactors.
- a catalyst comprising alumina is used, 3.6% by weight of nickel (oxide), 17.2% by weight of molybdenum (oxide) and 4% by weight of phosphorus (oxide), and in the downstream reactor a zeolitic catalyst hydrocracking comprising alumina, a Y zeolite, nickel and molybdenum.
- the yield of the diesel fraction at 150 ° C + is 43% by weight (conversion of 57% by weight).
- the fuel obtained does not have a quality in accordance with the constraints imposed in industrialized countries. We note, in particular, that the cetane number is below 51.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Procédé de transformation d'une coupe gazole permettant de produire un carburant ayant une qualité conforme à des spécifications sévères en termes de teneur en soufre, teneur en composés aromatiques, d'indice de cétane, de température, T95, d'ébullition de 95% des composés et de densité, d15/4, à 15°C. Ce procédé comprend une étape d'hydroraffinage et une étape d'hydrocraquage, cette dernière utilisant un catalyseur renfermant au moins une zéolithe. La conversion en produits ayant un point d'ébullition inférieur à 150°C est, pour l'ensemble des deux étapes d'hydrocraquage et d'hydroraffinage, inférieure à 40 % en poids et, pour l'étape d'hydroraffinage, comprise entre 1 et 15 % en poids. La température, TR2, de l'étape d'hydrocraquage, est inférieure à la température, TR1, de l'étape d'hydroraffinage et l'écart entre les températures TR1 et TR2 est compris entre 0 et 80°C.Process for converting a diesel cut to produce a fuel having a quality in accordance with strict specifications in terms of sulfur content, aromatic content, cetane number, temperature, T95, boiling point of 95% compounds and density, d15 / 4, at 15 ° C. This process comprises a hydrorefining step and a hydrocracking step, the latter using a catalyst containing at least one zeolite. The conversion into products having a boiling point below 150 ° C. is, for all of the two hydrocracking and hydrorefining stages, less than 40% by weight and, for the hydrorefining stage, between 1 and 15% by weight. The temperature, TR2, of the hydrocracking stage, is lower than the temperature, TR1, of the hydrorefining stage and the difference between the temperatures TR1 and TR2 is between 0 and 80 ° C.
Description
La présente invention concerne le domaine des carburants pour moteurs à combustion interne. Elle concerne plus particulièrement la conversion d'une coupe gazole et notamment la fabrication d'un carburant pour moteur à allumage par compression. Elle concerne également le carburant ainsi obtenu.The present invention relates to the field of fuels for combustion engines internal. It relates more particularly to the conversion of a diesel cut and in particular the manufacture of a fuel for a compression ignition engine. She also relates to the fuel thus obtained.
Actuellement, les coupes gazoles, qu'elles proviennent de la distillation directe d'un pétrole brut ou qu'elles soient issues d'un procédé de conversion tel que le craquage catalytique, contiennent encore des quantités non négligeables de composés aromatiques, azotés et soufrés.Currently, diesel fractions, whether they come from the direct distillation of a crude oil or whether they come from a conversion process such as cracking catalytic, still contain significant amounts of compounds aromatic, nitrogen and sulfur.
Dans le cadre législatif de la majorité des pays industrialisés, il existe des contraintes concernant la teneur maximale de ces produits dans les carburants. D'autres contraintes sont également appliquées aux carburants, tels que l'indice de cétane qui doit être au-dessus d'un certain seuil, la densité, d15/4, à 15°C et la température, T95, d'ébullition (méthode ASTM D86) de 95 % des composants, ces deux dernières devant être, quant à elles, au-dessous d'une certaine limite.Within the legislative framework of the majority of industrialized countries, there are constraints concerning the maximum content of these products in fuels. Other constraints are also applied to fuels, such as the cetane number which must be above of a certain threshold, the density, d15 / 4, at 15 ° C and the boiling point, T95 (ASTM D86 method) of 95% of the components, the latter two having to be them, below a certain limit.
Actuellement en Europe, un carburant doit présenter un indice de cétane supérieur à 51, une teneur en soufre inférieure à 350 ppm (parties par million en masse), une densité, d15/4, à 15°C inférieure à 0,845 g/cm3, une teneur en composés polyaromatiques inférieure à 11 % en poids et une température, T95, d'ébullition de 95 % de ses composants inférieure à 360°C.Currently in Europe, a fuel must have a cetane number greater than 51, a sulfur content less than 350 ppm (parts per million by mass), a density, d15 / 4, at 15 ° C less than 0.845 g / cm 3 , a content of polyaromatic compounds of less than 11% by weight and a boiling point of 95% of its components, T95, of less than 360 ° C.
Ces spécifications vont cependant faire l'objet de révisions visant à les rendre encore plus contraignantes. Par exemple en Europe, il est prévu pour 2005 de rabaisser la spécification de teneur en soufre maximale à 50 ppm, voire 10 ppm dans certains pays. Cependant, ces révisions contraignantes ne se limiteront pas uniquement à la teneur en soufre. Il est également envisagé d'augmenter le seuil de l'indice de cétane à 58, voire à une valeur plus élevée dans certains pays, ainsi que de réduire la densité d15/4 maximale à 0,825 g/cm3, la teneur maximale en composés polyaromatiques à 1 % en poids et la température T95 maximale à 340°C.These specifications will however be subject to revisions aimed at making them even more restrictive. For example in Europe, it is planned for 2005 to lower the specification of maximum sulfur content to 50 ppm, even 10 ppm in certain countries. However, these binding revisions will not be limited only to the sulfur content. It is also envisaged to increase the cetane index threshold to 58, or even to a higher value in certain countries, as well as to reduce the maximum density d15 / 4 to 0.825 g / cm 3 , the maximum content of compounds polyaromatics at 1% by weight and the maximum T95 temperature at 340 ° C.
Il est donc nécessaire de mettre au point des procédés fiables, efficaces et économiquement viables permettant de produire des carburants ayant des caractéristiques améliorées en ce qui concerne l'indice de cétane, la teneur en composés polyaromatiques, en soufre et en azote, ainsi que la densité, d15/4, à 15°C et la température T95, d'ébullition de 95 % des composants du carburant.It is therefore necessary to develop reliable, efficient and economically viable for producing fuels with improved characteristics with regard to cetane number, content of compounds polyaromatics, sulfur and nitrogen, as well as the density, d15 / 4, at 15 ° C and the temperature T95, boiling point of 95% of the fuel components.
Des procédés tels que l'hydrocraquage à haute pression permettent de produire, à partir de charges lourdes tels que des distillats sous vide, des coupes gazoles ayant une bonne qualité et répondant aux spécifications actuelles. Cependant, l'investissement pour une telle unité est généralement élevé. Par ailleurs, pour des coupes gazoles présentant une qualité moyenne, voire médiocre, ce type de procédé est souvent insuffisant et inadapté.Processes such as high pressure hydrocracking allow production from heavy loads such as vacuum distillates, diesel cuts having good quality and meeting current specifications. However, the investment for a such unity is generally high. Furthermore, for diesel cuts having a Medium or even poor quality, this type of process is often insufficient and unsuitable.
Les coupes gazoles proviennent généralement, soit de distillation directe de brut, soit de craquage catalytique : c'est à dire des coupes de distillats légers (initiales anglo-saxonnes LCO pour Light Cycle Oil), des coupes de fractions lourdes (initiales anglo-saxonnes HCO pour Heavy Cycle Oil), soit d'un autre procédé de conversion (cokéfaction, viscoréduction, hydroconversion de résidu etc.) ou encore de gazoles issus de distillation de pétrole brut aromatique ou naphténoaromatique de type Cerro-Negro, Zuata, El Pao. Il est particulièrement important de produire un effluent pouvant être directement et intégralement valorisé en tant que coupe carburant de très haute qualité.The diesel cuts generally come either from direct distillation of crude or from catalytic cracking: i.e. cuts of light distillates (Anglo-Saxon initials LCO for Light Cycle Oil), heavy fraction cuts (HCO initials) for Heavy Cycle Oil), or another conversion process (coking, visbreaking, hydroconversion of residue etc.) or even diesel fuels from the distillation of crude oil aromatic or naphthenoaromatic of the Cerro-Negro, Zuata, El Pao type. It is particularly important to produce an effluent that can be directly and fully valued as a very high quality fuel cutter.
Les procédés classiques, tel que l'hydrocraquage à haute pression, permettent d'augmenter l'indice de cétane, de diminuer la teneur en soufre et de satisfaire aux spécifications actuelles pour certaines charges présentant déjà initialement des qualités intéressantes. Cependant, dans le cas des coupes gazoles provenant d'un procédé de conversion de type craquage catalytique tels que les LCO, ou bien des coupes gazoles issues de la distillation de pétrole bruts, c'est à dire des coupes gazoles présentant des teneurs élevées en composés aromatiques ou naphténoaromatiques, l'amélioration de la qualité de cette coupe gazole en terme d'indice de cétane, de teneur en soufre, de densité, d15/4, à 15°C, de température, T95, d'ébullition de 95 % des composants et de teneurs en composés polyaromatiques, atteint des limites qui ne peuvent être dépassées par les enchaínements des procédés classiques.Conventional processes, such as high pressure hydrocracking, allow increase the cetane number, decrease the sulfur content and meet the current specifications for certain loads that already have qualities initially interesting. However, in the case of diesel cuts from a production process catalytic cracking type conversion such as LCO, or diesel cuts from the distillation of crude petroleum, i.e. diesel fuel cuts with high levels of aromatic or naphthenoaromatic compounds, improving the quality of this diesel cut in terms of cetane number, sulfur content, density, d15 / 4, at 15 ° C, temperature, T95, 95% boiling of the components and contents of polyaromatic compounds, reaches limits which cannot be exceeded by the sequences of conventional processes.
L'art antérieur révèle des procédés d'hydrogénation de coupes pétrolières particulièrement riches en composés aromatiques qui utilisent un catalyseur, par exemple le brevet US 5,037,532 ou la publication "Proceeding of the 14th World Petroleum Congress, 1994, p. 19-26". Ces documents font état de procédés conduisant à l'obtention de coupes hydrocarbonées pour lesquels une augmentation de l'indice de cétane est obtenue par une hydrogénation poussée des composés aromatiques. The prior art discloses oil cuts of hydrogenation processes especially rich in aromatic compounds using a catalyst, for example, US Patent 5,037,532 or the publication "Proceeding of the 14 th World Petroleum Congress, 1994, p. 19-26" . These documents state processes leading to the production of hydrocarbon cuts for which an increase in the cetane number is obtained by a thorough hydrogenation of the aromatic compounds.
Le brevet FR 2 777 290 propose un procédé combinant un hydrocraquage à une hydrogénation dans le but de diminuer la teneur en soufre et d'augmenter l'indice de cétane des carburants ainsi produits. Ce procédé, qui présente déjà de bonnes performances, doit cependant faire l'objet d'améliorations pour permettre de répondre aux exigences de plus en plus sévères qui seront requises dans la plupart des pays industrialisés.Patent FR 2 777 290 proposes a process combining hydrocracking with a hydrogenation in order to decrease the sulfur content and increase the cetane of the fuels thus produced. This process, which already has good performance, must however be improved in order to meet the increasingly stringent requirements that will be required in most countries industrialized.
Il a été trouvé un procédé amélioré combinant un hydrocraquage à une hydrogénation permettant de produire des carburants répondant à des spécifications encore plus sévères, non seulement avec une teneur maximale en soufre de 350 ppm, de préférence de 50 ppm, et un indice de cétane minimal de 51, de préférence de 53, en particulier de 58, mais également une température T95 maximale de 360°C, de préférence de 340°C, une teneur maximale en composés polyaromatiques de 11 % en poids, de préférence de 6 % en poids, en particulier de 1 % en poids et une densité d15/4 maximum de 0,845 g/cm3, de préférence de 0,825 g/cm3. Les carburants obtenus par ce procédé amélioré présentent ainsi un indice de cétane élevé, une teneur en soufre réduite répondant aux spécifications actuelles et futures. Ils présentent, en outre, une température T95 d'ébullition, une densité d15/4 et des teneurs en composés polyaromatiques suffisamment diminuées pour permettre de répondre, non seulement aux spécifications actuelles, et de préférence, aux prévisions des futures spécifications européennes de 2005.An improved process has been found combining hydrocracking with hydrogenation making it possible to produce fuels meeting even more stringent specifications, not only with a maximum sulfur content of 350 ppm, preferably 50 ppm, and a minimum cetane number. 51, preferably 53, in particular 58, but also a maximum temperature T95 of 360 ° C, preferably 340 ° C, a maximum content of polyaromatic compounds of 11% by weight, preferably 6% by weight , in particular 1% by weight and a maximum density d15 / 4 of 0.845 g / cm 3 , preferably 0.825 g / cm 3 . The fuels obtained by this improved process thus have a high cetane number, a reduced sulfur content meeting current and future specifications. They also have a boiling temperature T95, a density d15 / 4 and contents of polyaromatic compounds sufficiently reduced to allow to meet not only the current specifications, and preferably the forecasts of the future European specifications of 2005.
Un objet de la présente invention est également de fournir un procédé pouvant être opéré dans des conditions simples et économiquement viables, et en particulier ne mettant pas en jeu des pressions élevées et conduisant à de bons rendements en gazole.It is also an object of the present invention to provide an operable method under simple and economically viable conditions, and in particular not putting high pressures and leading to good diesel yields.
L'objet principal de la présente invention est donc de fournir un procédé de conversion
d'une coupe gazole, notamment d'une coupe gazole à teneur élevée en composés
aromatiques ou naphténoaromatiques, permettant d'améliorer son indice de cétane et de
diminuer ses teneurs en soufre, composés aromatiques et polyaromatiques tout en
diminuant sa température T95 (ASTM D86) et sa densité d15/4, et ceci de manière à
répondre aux spécifications futures les plus sévères qui seront appliquées aux coupes
gazoles.
L'invention porte donc sur un procédé de transformation d'une coupe gazole comprenant:
- un support minéral amorphe,
- au moins un métal du groupe VIB de la classification périodique des éléments,
- au moins un métal non noble du groupe VIII de ladite classification, et,
- au moins un élément promoteur choisi dans le groupe constitué par le phosphore, le bore, le silicium et le fluor,
- au moins une zéolithe,
- un liant minéral, et,
- au moins un métal non noble du groupe VIII,
The invention therefore relates to a process for transforming a diesel cut comprising:
- an amorphous mineral support,
- at least one metal from group VIB of the periodic table,
- at least one non-noble metal from group VIII of said classification, and,
- at least one promoter element chosen from the group consisting of phosphorus, boron, silicon and fluorine,
- at least one zeolite,
- a mineral binder, and,
- at least one non-noble metal from group VIII,
Les conditions opératoires du procédé de l'invention ont, de manière surprenante, conduit à des carburants présentant, non seulement une teneur en soufre réduite et un indice de cétane plus élevé, mais aussi à une température, T95, d'ébullition de 95 % des composants, à une teneur en composés aromatiques et à une densité, d15/4, à 15°C ayant des valeurs plus basses.The operating conditions of the process of the invention have surprisingly led fuels with not only a reduced sulfur content and an index of higher cetane, but also at a temperature, T95, of 95% boiling components, with aromatic content and density, d15 / 4, at 15 ° C having lower values.
Les charges gazoles à traiter sont généralement des gazoles légers, comme par exemple des gazoles de distillation directe, des gazoles de craquage catalytique fluide (initiales anglo-saxonnes FCC pour Fluid Catalytic Cracking) ou (LCO). Elles présentent généralement un point d'ébullition initial d'au moins 180°C et final d'au plus 370°C. La composition pondérale de ces charges par familles d'hydrocarbures est variable selon les intervalles. Selon les compositions habituellement rencontrées, les teneurs en paraffines sont comprises entre 5,0 et 30,0 % en poids et en naphtènes entre 5,0 et 60 % en poids. Les charges gazoles ont, de préférence, une teneur en composés aromatiques (incluant les composés polyaromatiques et naphténoaromatiques) entre 20 % et 90 %, en particulier entre 40 % et 80 % en poids.The diesel fillers to be treated are generally light diesel, for example direct distillation gas oils, fluid catalytic cracking gas oils (initials Anglo-Saxon FCC for Fluid Catalytic Cracking) or (LCO). They present generally an initial boiling point of at least 180 ° C and a final boiling point of at most 370 ° C. The weight composition of these charges by family of hydrocarbons is variable depending on the intervals. According to the compositions usually encountered, the paraffin contents are between 5.0 and 30.0% by weight and naphthenes between 5.0 and 60% by weight. The diesel fillers preferably have a content of aromatic compounds (including polyaromatic and naphthenoaromatic compounds) between 20% and 90%, in especially between 40% and 80% by weight.
Le procédé selon l'invention permet, lors de la première étape d'hydroraffinage de réduire la teneur en soufre, la teneur en azote, la teneur en composés aromatiques et polyaromatiques, ainsi que d'augmenter l'indice de cétane.The process according to the invention makes it possible, during the first hydrorefining step, to reduce sulfur content, nitrogen content, aromatic content and polyaromatics, as well as increasing the cetane number.
Selon un aspect de l'invention, la conversion en produits ayant un point d'ébullition inférieur à 150°C est limitée à l'étape d'hydroraffinage. Ainsi, la conversion en produits ayant un point d'ébullition inférieur à 150°C est, pour l'étape d'hydroraffinage, comprise entre 1 et 15 %, de préférence 5 et 15 % en poids. Les conditions opératoires à appliquer pour respecter ces taux de conversion favorisent la réduction de la teneur en composés aromatiques en les hydrogénant et augmentent l'indice de cétane.According to one aspect of the invention, the conversion to products having a boiling point below 150 ° C is limited to the hydrorefining stage. So converting into products having a boiling point below 150 ° C is, for the hydrorefining step, included between 1 and 15%, preferably 5 and 15% by weight. The operating conditions to apply to respect these conversion rates favor the reduction of the content of compounds aromatics by hydrogenating them and increasing the cetane number.
De surcroít, la conversion en produits ayant un point d'ébullition inférieur à 150°C est également, sur l'ensemble des deux étapes d'hydroraffinage et d'hydrocraquage, maintenue au-dessous d'une certaine limite, au-delà de laquelle il a été trouvé que l'indice de cétane risquait d'être diminué du fait de la présence de composés aromatiques. Ainsi, la conversion en produits ayant un point d'ébullition inférieur à 150°C est, sur l'ensemble des deux étapes d'hydroraffinage et d'hydrocraquage, inférieure à 40 %, de préférence inférieure à 35 %, en particulier inférieure à 30 %, par exemple inférieure à 25 % en poids.In addition, the conversion to products with a boiling point below 150 ° C is also, for all of the two hydrorefining and hydrocracking stages, kept below a certain limit, beyond which it was found that the index cetane could be reduced due to the presence of aromatic compounds. So, the conversion to products with a boiling point below 150 ° C is, overall of the two hydrorefining and hydrocracking stages, less than 40%, preferably less than 35%, in particular less than 30%, for example less than 25% by weight.
Selon un autre aspect de l'invention, on utilise un catalyseur zéolithique lors de l'étape d'hydrocraquage à une température inférieure à celle de l'étape d'hydroraffinage. Il a été constaté avec surprise que ceci permettait de compléter l'hydrogénation des composés aromatiques et des polyaromatiques tout en permettant, néanmoins, de réaliser un craquage modéré de la charge, puisque ledit craquage est réalisé à des températures relativement basses. Ainsi, l'écart entre la température TR1 de l'étape d'hydroraffinage et la température TR2 d'hydrocraquage de l'étape est comprise entre 0 et 80°C. Cet écart est, de préférence, compris entre 5°C et 70°C, spécialement entre 10°C et 60°C, en particulier entre 15°C et 50°C. Alternativement, cet écart peut être compris entre 11°C et 70°C, de préférence entre 13°C et 60°C, en particulier entre 15°C et 50°C.According to another aspect of the invention, a zeolitic catalyst is used during the step hydrocracking at a temperature lower than that of the hydrorefining step. He was noticed with surprise that this made it possible to complete the hydrogenation of the compounds aromatics and polyaromatics while allowing, nevertheless, to achieve a moderate cracking of the charge, since said cracking is carried out at temperatures relatively low. Thus, the difference between the temperature TR1 of the hydrorefining stage and the hydrocracking temperature TR2 of the step is between 0 and 80 ° C. This gap is preferably between 5 ° C and 70 ° C, especially between 10 ° C and 60 ° C, in especially between 15 ° C and 50 ° C. Alternatively, this difference can be between 11 ° C and 70 ° C, preferably between 13 ° C and 60 ° C, in particular between 15 ° C and 50 ° C.
Le procédé de l'invention permet ainsi d'augmenter, lors de l'étape d'hydrocraquage, le nombre de cétane tout en diminuant la densité, d15/4, et la température, T95, de la coupe gazole. Le carburant produit répond ainsi aux spécifications futures les plus sévères. The process of the invention thus makes it possible to increase, during the hydrocracking step, the number of cetane while decreasing the density, d15 / 4, and the temperature, T95, of the cut diesel. The fuel produced thus meets the most stringent future specifications.
Selon l'invention, le catalyseur utilisé lors de l'étape d'hydroraffinage du procédé de la présente invention, appelé également catalyseur d'hydroraffinage, comprend sur un support minéral amorphe, au moins un métal du groupe VIB de la classification périodique des éléments, au moins un métal non noble du groupe VIII de cette même classification et au moins un élément promoteur. Les métaux des groupes VIB et VIII constituent l'élément hydro-déshydrogénant du catalyseur d'hydroraffinage.According to the invention, the catalyst used during the hydrorefining step of the process of present invention, also called hydrorefining catalyst, comprises on a amorphous mineral support, at least one metal from group VIB of the periodic table elements, at least one non-noble metal from group VIII of this same classification and at least one promoter element. The metals of groups VIB and VIII constitute the element hydro-dehydrogenating hydrorefining catalyst.
De façon avantageuse, pendant l'étape d'hydroraffinage, la charge est mise en contact avec un catalyseur d'hydroraffinage comprenant au moins un support, au moins un élément du groupe VIB de la classification périodique, au moins un élément du groupe VIII de cette même classification, au moins un élément promoteur, ce dernier étant déposé sur ledit catalyseur, éventuellement au moins un élément du groupe VIIB tel que le manganèse, et éventuellement au moins un élément du groupe VB tel que le niobium.Advantageously, during the hydrorefining step, the charge is brought into contact with a hydrorefining catalyst comprising at least one support, at least one element of group VIB of the periodic table, at least one element of group VIII of this same classification, at least one promoter element, the latter being deposited on said catalyst, possibly at least one element of group VIIB such as manganese, and possibly at least one element of the VB group such as niobium.
Selon l'invention, l'élément promoteur est choisi dans le groupe constitué par le
phosphore, le bore, le silicium et le fluor.
De préférence, le catalyseur d'hydroraffinage comprend comme éléments promoteurs du
bore et/ou du silicium, ainsi qu'éventuellement et, de préférence, du phosphore. Les
teneurs en bore, silicium, phosphore sont alors généralement comprises, pour chacun de
ces éléments, entre 0,1 et 20 % en poids, de préférence entre 0,1 et 15 % en poids, en
particulier entre 0,1 et 10 % en poids. La présence de phosphore apporte au moins deux
avantages au catalyseur d'hydroraffinage. Le phosphore facilite l'imprégnation des
solutions de nickel et de molybdène, et il améliore également l'activité d'hydrogénation.According to the invention, the promoter element is chosen from the group consisting of phosphorus, boron, silicon and fluorine.
Preferably, the hydrorefining catalyst comprises, as promoter elements, boron and / or silicon, as well as optionally and, preferably, phosphorus. The contents of boron, silicon, phosphorus are then generally understood, for each of these elements, between 0.1 and 20% by weight, preferably between 0.1 and 15% by weight, in particular between 0.1 and 10% in weight. The presence of phosphorus brings at least two advantages to the hydrorefining catalyst. Phosphorus facilitates the impregnation of nickel and molybdenum solutions, and it also improves the hydrogenation activity.
Les supports minéraux amorphes du catalyseur d'hydroraffinage peuvent être utilisés seuls ou en mélange. Ces supports du catalyseur d'hydroraffinage peuvent être choisis parmi l'alumine, l'alumine halogénée, la silice, la silice-alumine, les argiles, la magnésie, l'oxyde de titane, l'oxyde de bore, la zircone, les phosphates d'aluminium, les phosphates de titane, les phosphates de zirconium, le charbon, les aluminates. Parmi les argiles, on peut choisir des argiles naturelles, telles que le kaolin ou la bentonite. De préférence, les supports utilisés contiennent de l'alumine, sous toutes ces formes connues par l'homme du métier, et de manière encore plus préférée sont des alumines, par exemple l'alumine gamma. The amorphous mineral supports of the hydrorefining catalyst can be used alone or as a mixture. These hydrorefining catalyst supports can be chosen among alumina, halogenated alumina, silica, silica-alumina, clays, magnesia, titanium oxide, boron oxide, zirconia, aluminum phosphates, phosphates titanium, zirconium phosphates, coal, aluminates. Among the clays, one can choose natural clays, such as kaolin or bentonite. Preferably, supports used contain alumina, in all these forms known to man of the trade, and even more preferably are aluminas, for example alumina gamma.
La fonction hydro-déshydrogénante du catalyseur d'hydroraffinage est généralement remplie par au moins un métal du groupe VIB de la classification périodique des éléments et au moins un métal non noble du groupe VIII de cette même classification, ces métaux étant, de préférence, choisis parmi le molybdène, tungstène, nickel et cobalt. En particulier, cette fonction peut être assurée par la combinaison d'au moins un élément du groupe VIII (Ni, Co) avec au moins un élément du groupe VIB (Mo, W).The hydro-dehydrogenating function of the hydrorefining catalyst is generally filled with at least one metal from group VIB of the periodic table and at least one non-noble metal from group VIII of this same classification, these metals preferably being chosen from molybdenum, tungsten, nickel and cobalt. In particular, this function can be ensured by the combination of at least one element of the group VIII (Ni, Co) with at least one element from group VIB (Mo, W).
Selon un mode préféré de l'invention, le catalyseur d'hydroraffinage comprenant du phosphore est tel que la concentration totale en oxydes de métaux des groupes VIB et VIII est comprise entre 5 et 40 % en poids, de préférence entre 7 et 30 % en poids. Le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VIB sur métal (ou métaux) du groupe VIII est, quant à lui, de préférence compris entre 20 et 1,25, de manière encore plus préférée entre 10 et 2. Par ailleurs, la concentration en oxyde de phosphore P2O5 dans ce catalyseur est, de préférence, inférieure à 15 % poids, en particulier, inférieure à 10 % poids.According to a preferred embodiment of the invention, the hydrorefining catalyst comprising phosphorus is such that the total concentration of metal oxides of groups VIB and VIII is between 5 and 40% by weight, preferably between 7 and 30% by weight. weight. The weight ratio expressed as metal oxide between metal (or metals) of group VIB over metal (or metals) of group VIII is, for its part, preferably between 20 and 1.25, even more preferably between 10 and 2 Furthermore, the concentration of phosphorus oxide P 2 O 5 in this catalyst is preferably less than 15% by weight, in particular less than 10% by weight.
Selon un autre mode préféré de l'invention, le catalyseur d'hydroraffinage comprend du bore et/ou silicium, de préférence du bore et du silicium. Avantageusement, le catalyseur d'hydroraffinage comprend en pourcentage en poids par rapport à la masse totale du catalyseur :
- de 3 à 60 %, de préférence de 3 à 45 %, de manière encore plus préférée de 3 à 30 % d'au moins un métal du groupe VIB,
- de 0,5 à 30 %, de préférence de 0,5 à 25 %, de manière encore plus préférée de 0,5 à 20 % d'au moins un métal du groupe VIII,- de 0,1 à 99 %, de préférence de 10 à 98 %, par exemple de 15 à 95 % d'au moins un support minéral amorphe,
- de 0,1 à 20 %, de préférence de 0,1 à 15 %, de manière encore plus préférée de 0,1 à 10 % de bore et/ou de 0,1 à 20 %, de préférence de 0,1 à 15 %, de manière encore plus préférée de 0,1 à 10 % de silicium,
- éventuellement de 0 à 20 %, de préférence de 0,1 à 15 %, de manière encore plus préférée de 0,1 à 10 % de phosphore, et,
- éventuellement de 0 à 20 %, de préférence de 0,1 à 15 %, de manière encore plus préférée de 0,1 à 10 % d'au moins un élément choisi dans le groupe VIIA, de préférence le fluor.
- from 3 to 60%, preferably from 3 to 45%, even more preferably from 3 to 30% of at least one metal from group VIB,
- from 0.5 to 30%, preferably from 0.5 to 25%, even more preferably from 0.5 to 20% of at least one metal from group VIII, - from 0.1 to 99%, from preferably from 10 to 98%, for example from 15 to 95% of at least one amorphous mineral support,
- from 0.1 to 20%, preferably from 0.1 to 15%, even more preferably from 0.1 to 10% of boron and / or from 0.1 to 20%, preferably from 0.1 to 15%, even more preferably from 0.1 to 10% of silicon,
- optionally from 0 to 20%, preferably from 0.1 to 15%, even more preferably from 0.1 to 10% of phosphorus, and,
- optionally from 0 to 20%, preferably from 0.1 to 15%, even more preferably from 0.1 to 10% of at least one element chosen from the group VIIA, preferably fluorine.
D'une façon générale, sont préférées les formulations ayant les rapports atomiques suivants :
- un rapport atomique : métal du groupe VIII / métaux du groupe VIB, compris entre 0 et 1,
- un rapport atomique : B / métaux du groupe VIB, compris entre 0,01 et 3,
- un rapport atomique : Si / métaux du groupe VIB, compris entre 0,01 et 1,5,
- un rapport atomique : P / métaux du groupe VIB, compris entre 0,01 et 1,
- un rapport atomique : métal du groupe VIIA / métaux du groupe VIB, compris entre 0,01 et 2.
- an atomic ratio: group VIII metal / group VIB metals, between 0 and 1,
- an atomic ratio: B / metals of group VIB, of between 0.01 and 3,
- an atomic ratio: Si / metals of group VIB, of between 0.01 and 1.5,
- an atomic ratio: P / metals of group VIB, of between 0.01 and 1,
- an atomic ratio: group VIIA metal / group VIB metals, between 0.01 and 2.
Un tel catalyseur d'hydroraffinage présente une activité en hydrogénation des hydrocarbures aromatiques, en hydrodéazotation et en hydrodésulfuration plus importante que les formules catalytiques sans bore et/ou silicium. Ce type de catalyseur présente également une activité et une sélectivité en hydrocraquage plus importante que les formules catalytiques connues dans l'art antérieur. Un catalyseur comprenant du bore et du silicium est particulièrement actif, ce qui induit, d'une part, une amélioration des propriétés hydrogénantes, hydrodésulfurantes, hydrodéazotantes et, d'autre part, une amélioration de l'activité en hydrocraquage par rapport aux catalyseurs utilisés habituellement dans les réactions d'hydroraffinage d'hydroconversion.Such a hydrorefining catalyst exhibits activity in hydrogenation of aromatic hydrocarbons, hydrodenitrogenation and greater hydrodesulfurization than catalytic formulas without boron and / or silicon. This type of catalyst has also a higher hydrocracking activity and selectivity than the catalytic formulas known in the prior art. A catalyst comprising boron and silicon is particularly active, which induces, on the one hand, an improvement in hydrogenating, hydrodesulfurizing, hydrodenitrogenating properties and, on the other hand, a improvement in hydrocracking activity compared to the catalysts used usually in hydroconversion hydrorefining reactions.
Selon un autre mode préféré de l'invention, les catalyseurs d'hydroraffinage préférés sont les catalyseurs NiMo et/ou NiW sur alumine, également les catalyseurs NiMo et/ou NiW sur alumine dopée avec au moins un élément compris dans le groupe des atomes constitué par le phosphore, le bore, le silicium et le fluor. D'autres catalyseurs préférés sont les catalyseurs NiMo et/ou NiW sur silice-alumine ou sur silice-alumine-oxyde de titane, dopée ou non, par au moins un élément compris dans le groupe des atomes constitué par le phosphore, le bore, le fluor et le silicium.According to another preferred embodiment of the invention, the preferred hydrorefining catalysts are NiMo and / or NiW catalysts on alumina, also NiMo and / or NiW catalysts on alumina doped with at least one element included in the group of atoms consisting of phosphorus, boron, silicon and fluorine. Other preferred catalysts are the NiMo and / or NiW catalysts on silica-alumina or on silica-alumina-oxide of titanium, doped or not, with at least one element included in the group of atoms consisting of phosphorus, boron, fluorine and silicon.
De préférence, ce type de catalyseur d'hydroraffinage comprend :
- de 5 à 40 % en poids d'au moins un élément des groupes VIB et VIII non noble (% oxyde),
- de 0,1 à 20 % en poids d'au moins un élément promoteur choisi parmi le phosphore, le bore, le silicium (% oxyde),
- de 0 à 20 % en poids d'au moins un élément du groupe VIIB (manganèse par exemple),
- de 0 à 20 % en poids d'au moins un élément du groupe VIIA (fluor, chlore par exemple),
- de 0 à 60 % en poids d'au moins un élément du groupe VB (niobium par exemple), et
- de 0,1 à 95 % en poids d'au moins une matrice, et de préférence l'alumine.
- from 5 to 40% by weight of at least one non-noble element of groups VIB and VIII (% oxide),
- from 0.1 to 20% by weight of at least one promoter element chosen from phosphorus, boron, silicon (% oxide),
- from 0 to 20% by weight of at least one element of group VIIB (manganese for example),
- from 0 to 20% by weight of at least one element of group VIIA (fluorine, chlorine for example),
- from 0 to 60% by weight of at least one element of the VB group (niobium for example), and
- from 0.1 to 95% by weight of at least one matrix, and preferably alumina.
L'étape d'hydroraffinage est avantageusement réalisée à une pression allant de 5 à 15 MPa, de préférence de 6 à 13 MPa, de manière encore plus préférée de 7 à 11 MPa et à une température allant de 310°C à 420°C, de préférence de 320 à 400°C, de manière encore plus préférée de 340 à 400°C. Le recyclage d'hydrogène pur par volume de charge peut être avantageusement compris entre 200 et 2500 Nm3/m3 de charge, de préférence entre 300 et 2000 Nm3/m3. La vitesse spatiale peut être, quant à elle, comprise entre 0,1 et 5, de préférence entre 0,1 et 3 exprimée en volume de charge liquide par volume de catalyseur et par heure.The hydrorefining stage is advantageously carried out at a pressure ranging from 5 to 15 MPa, preferably from 6 to 13 MPa, even more preferably from 7 to 11 MPa and at a temperature ranging from 310 ° C to 420 ° C , preferably from 320 to 400 ° C, even more preferably from 340 to 400 ° C. The recycling of pure hydrogen per volume of charge may advantageously be between 200 and 2,500 Nm 3 / m 3 of charge, preferably between 300 and 2,000 Nm 3 / m 3 . The space velocity can be, for its part, between 0.1 and 5, preferably between 0.1 and 3 expressed in volume of liquid charge per volume of catalyst and per hour.
La teneur en azote organique visée est généralement inférieure à 50 ppm massiques, de préférence inférieure à 20 ppm, en particulier inférieure à 10 ppm massiques.The target organic nitrogen content is generally less than 50 ppm by mass, of preferably less than 20 ppm, in particular less than 10 ppm by mass.
De préférence, la totalité des produits issus de l'étape d'hydroraffinage est engagée dans l'étape d'hydrocraquage du procédé de l'invention. L'étape d'hydroraffinage et l'étape d'hydrocraquage ont généralement lieu dans au moins deux zones réactionnelles distinctes. Ces zones réactionnelles peuvent être contenues dans un ou plusieurs réacteurs.Preferably, all of the products from the hydrorefining stage are used in the hydrocracking step of the process of the invention. The hydrorefining stage and the stage hydrocracking generally take place in at least two reaction zones distinct. These reaction zones can be contained in one or more reactors.
Le catalyseur utilisé lors de l'étape d'hydrocraquage du procédé de l'invention, appelé
également catalyseur d'hydrocraquage, comprends au moins une zéolithe qui peut être,
de préférence, choisie dans le groupe constitué par la zéolithe Y (de type structural FAU),
la zéolithe NU-86 et la zéolithe Bêta (de type structural BEA). Ce catalyseur
d'hydrocraquage comprend, en outre, au moins un liant minéral (ou matrice) et un
élément hydro-déshydrogénant. Ce catalyseur peut éventuellement comprendre au
moins un élément choisi dans le groupe constitué par le bore, le phosphore, le silicium, au
moins un élément du groupe VIIA (chlore, fluor par exemple), au moins un élément du
groupe VIIB (manganèse par exemple), et au moins un élément du groupe VB (niobium
par exemple).
Le catalyseur peut comprendre également, comme liant minéral, au moins une matrice
minérale poreuse ou mal cristallisée de type oxyde. On peut citer, à titre d'exemple, les
alumines, les silices, les silice-alumines, les aluminates, l'alumine-oxyde de bore, la
magnésie, la silice-magnésie, le zircone, l'oxyde de titane, l'argile, seuls ou en mélange.The catalyst used during the hydrocracking step of the process of the invention, also called hydrocracking catalyst, comprises at least one zeolite which can preferably be chosen from the group consisting of zeolite Y (of structural type FAU), zeolite NU-86 and zeolite Beta (of structural type BEA). This hydrocracking catalyst further comprises at least one mineral binder (or matrix) and a hydro-dehydrogenating element. This catalyst can optionally comprise at least one element chosen from the group consisting of boron, phosphorus, silicon, at least one element from group VIIA (chlorine, fluorine for example), at least one element from group VIIB (manganese for example ), and at least one element of the VB group (niobium for example).
The catalyst can also comprise, as mineral binder, at least one porous or poorly crystallized mineral matrix of the oxide type. Mention may be made, by way of example, of aluminas, silicas, silica-aluminas, aluminates, alumina-boron oxide, magnesia, silica-magnesia, zirconia, titanium oxide, l clay, alone or in mixture.
La fonction hydro-déshydrogénante du catalyseur d'hydrocraquage est généralement assurée par au moins un élément du groupe VIII non noble de la classification périodique des éléments (par exemple le cobalt et/ou le nickel) et éventuellement au moins un élément du groupe VIB de la même classification (par exemple le molybdène et/ou le tungstène).The hydro-dehydrogenating function of the hydrocracking catalyst is generally ensured by at least one non-noble element of group VIII of the periodic table elements (for example cobalt and / or nickel) and possibly at least one element of group VIB of the same classification (for example molybdenum and / or tungsten).
De préférence, la fonction hydro-déshydrogénante du catalyseur d'hydrocraquage est assurée par au moins un élément du groupe VIII non noble (par exemple le cobalt et/ou le nickel) et au moins un élément du groupe VIB (par exemple le molybdène et/ou le tungstène)Preferably, the hydro-dehydrogenating function of the hydrocracking catalyst is ensured by at least one non-noble element of group VIII (for example cobalt and / or nickel) and at least one element from group VIB (for example molybdenum and / or tungsten)
Ainsi, selon cet autre mode préféré de l'invention, le catalyseur d'hydrocraquage comprend au moins un métal du groupe VIII non noble, au moins un métal du groupe VIB, au moins une zéolithe et un liant minéral telle que l'alumine. De préférence, le catalyseur d'hydrocraquage comprend essentiellement du nickel, du molybdène, de l'alumine et une zéolithe choisi dans le groupe constitué par la zéolithe Y et la zéolithe NU-86.Thus, according to this other preferred embodiment of the invention, the hydrocracking catalyst comprises at least one non-noble group VIII metal, at least one group VIB metal, at least one zeolite and a mineral binder such as alumina. Preferably, the catalyst hydrocracking essentially comprises nickel, molybdenum, alumina and a zeolite selected from the group consisting of zeolite Y and zeolite NU-86.
Selon un autre mode préféré de l'invention, le catalyseur d'hydrocraquage comprend au
moins un élément choisi dans le groupe constitué par le bore, le silicium et le phosphore.
En outre, le catalyseur d'hydrocraquage comprend éventuellement au moins un élément
du groupe VIIA, tel que le chlore et le fluor, éventuellement au moins un élément du
groupe VIIB tel que le manganèse, et éventuellement au moins un élément du groupe VB
tel que le niobium. Le bore, le silicium et/ou le phosphore peuvent être dans la matrice ou
dans la zéolithe. De préférence ces composés sont déposés sur le catalyseur, et ils sont
alors principalement localisés sur la matrice. Un catalyseur d'hydrocraquage préféré
contient, comme élément(s) promoteur(s), du bore et/ou silicium déposé(s) avec, de
préférence, en plus du phosphore utilisé comme élément promoteur. Les quantités
introduites sont généralement de 0,1-20 % en poids de catalyseur calculé en oxyde.
Le catalyseur d'hydrocraquage comprend avantageusement :
- de 0,1 à 80 % en poids d'une zéolite choisie parmi les zéolithes Y, Bêta et NU-86,
- de 0,1 à 40 % en poids d'au moins un élément du groupe VIII, et éventuellement VIB, (exprimé en % oxyde),
- de 0,1 à 99,8 % en poids de liant minéral (ou matrice) (exprimé en % oxyde),
- de 0 à 20 % en poids, de préférence de 0,1 à 20 % d'au moins un élément choisi dans le groupe constitué par le phosphore, le bore, le silicium (ajouté et non celui présent dans la zéolithe) (exprimé en % oxyde),
- de 0 à 20 % en poids, de préférence de 0,1 à 20 % en poids d'au moins un élément du groupe VIIA,
- de 0 à 20 % en poids, de préférence de 0,1 à 20 % en poids d'au moins un élément du groupe VIIB, et,
- de 0 à 60 % en poids, de préférence 0,1 à 60 % en poids d'au moins un élément du groupe VB.
The hydrocracking catalyst advantageously comprises:
- from 0.1 to 80% by weight of a zeolite chosen from Y, Beta and NU-86 zeolites,
- from 0.1 to 40% by weight of at least one element from group VIII, and optionally VIB, (expressed in% oxide),
- from 0.1 to 99.8% by weight of mineral binder (or matrix) (expressed in% oxide),
- from 0 to 20% by weight, preferably from 0.1 to 20% of at least one element chosen from the group consisting of phosphorus, boron, silicon (added and not that present in the zeolite) (expressed in % oxide),
- from 0 to 20% by weight, preferably from 0.1 to 20% by weight of at least one element of group VIIA,
- from 0 to 20% by weight, preferably from 0.1 to 20% by weight of at least one element of group VIIB, and,
- from 0 to 60% by weight, preferably 0.1 to 60% by weight of at least one element of group VB.
La zéolite peut être éventuellement dopée par des éléments métalliques comme, par exemple, les métaux de la famille des terres rares, notamment le lanthane et le cérium, ou bien des métaux nobles ou non nobles du groupe VIII, comme le platine, le palladium, le ruthénium, le rhodium, l'iridium, le fer et d'autres métaux comme le manganèse, le zinc, le magnésium.The zeolite can optionally be doped with metallic elements such as, for example example, the metals of the rare earth family, in particular lanthanum and cerium, or many noble or non-noble Group VIII metals, such as platinum, palladium, ruthenium, rhodium, iridium, iron and other metals like manganese, zinc, magnesium.
Une zéolithe acide H-Y est particulièrement avantageuse et présente des spécifications spécifiques tels que :
- un rapport molaire global SiO2/Al2O3 compris entre environ 6 et 70, de préférence entre environ 12 et 50,
- une teneur en sodium inférieure à 0,15 % en poids (déterminée sur la zéolithe calcinée à 1 100 °C),
- un paramètre cristallin de la maille élémentaire compris entre 2,424 nm et 2,458 nm, de préférence entre 2,426 nm et 2,438 nm,
- une capacité CNa de reprise en ions sodium, exprimée en gramme de sodium par 100 grammes de zéolithe modifiée, neutralisée puis calcinée, supérieure à environ 0,85,
- une surface spécifique déterminée par la méthode B.E.T. supérieure à environ 400 m2/g, de préférence supérieure à 550 m2/g,
- une capacité d'adsorption de vapeur d'eau à 25°C, pour une pression partielle de 2,6 torrs (soit 34,6 MPa), supérieure à environ 6 %,
- éventuellement une répartition poreuse, déterminée par physisorption d'azote, comprenant entre 5 et 45 %, de préférence entre 5 et 40 % du volume poreux total de la zéolithe contenu dans des pores de diamètre situé entre 2 nm et 8 nm, et entre 5 et 45 %, de préférence entre 5 et 40 % du volume poreux total de la zéolithe contenu dans des pores de diamètre supérieur à 8 nm et généralement inférieur à 100 nm, le reste du volume poreux étant contenu dans les pores de diamètre inférieur à 2 nm.
- an overall SiO 2 / Al 2 O 3 molar ratio of between approximately 6 and 70, preferably between approximately 12 and 50,
- a sodium content of less than 0.15% by weight (determined on the zeolite calcined at 1100 ° C),
- a crystalline parameter of the elementary mesh comprised between 2,424 nm and 2,458 nm, preferably between 2,426 nm and 2,438 nm,
- a CNa capacity for taking up sodium ions, expressed in grams of sodium per 100 grams of modified zeolite, neutralized then calcined, greater than about 0.85,
- a specific surface area determined by the BET method greater than approximately 400 m 2 / g, preferably greater than 550 m 2 / g,
- a water vapor adsorption capacity at 25 ° C, for a partial pressure of 2.6 torr (or 34.6 MPa), greater than around 6%,
- optionally a porous distribution, determined by physisorption of nitrogen, comprising between 5 and 45%, preferably between 5 and 40% of the total pore volume of the zeolite contained in pores with a diameter between 2 nm and 8 nm, and between 5 and 45%, preferably between 5 and 40% of the total pore volume of the zeolite contained in pores with a diameter greater than 8 nm and generally less than 100 nm, the rest of the pore volume being contained in pores with a diameter less than 2 nm.
Une zéolite Y désaluminée est également avantageuse et présente des spécifications spécifiques telles que :
- un paramètre cristallin compris entre 2,424 nm et 2,455 nm, de préférence entre 2,426 et 2,438 nm,
- un rapport molaire SiO2/Al2O3 global supérieur à 8,
- une teneur en cations des métaux alcalino-terreux ou alcalins et/ou des cations des terres rares telle que le rapport atomique (n x M n+)/Al est inférieur à 0,8, de préférence inférieure à 0,5, en particulier à 0,1,
- une surface spécifique déterminée par la méthode B.E.T supérieure à 400 m2/g de préférence supérieure à 550 m2/g, et,
- une capacité d'adsorption d'eau à 25°C pour une valeur P/Po de 0,2, supérieure à 6 % poids.
- a crystalline parameter comprised between 2,424 nm and 2,455 nm, preferably between 2,426 and 2,438 nm,
- an overall SiO 2 / Al 2 O 3 molar ratio greater than 8,
- a content of cations of alkaline earth or alkali metals and / or cations of rare earths such that the atomic ratio (nx M n + ) / Al is less than 0.8, preferably less than 0.5, in particular 0 , 1,
- a specific surface area determined by the BET method greater than 400 m 2 / g, preferably greater than 550 m 2 / g, and,
- a water adsorption capacity at 25 ° C for a P / Po value of 0.2, greater than 6% by weight.
Dans le cas d'un catalyseur utilisant une zéolithe Y désaluminée, ledit catalyseur comprend, en outre, au moins un métal ayant une fonction hydro-déshydrogénante, et du silicium déposé sur ledit catalyseur.In the case of a catalyst using a dealuminated Y zeolite, said catalyst further comprises at least one metal having a hydro-dehydrogenating function, and silicon deposited on said catalyst.
Selon un mode avantageux de l'invention, un catalyseur comprenant une zéolithe Y partiellement amorphe est utilisée lors de l'étape d'hydrocraquage. On entend par zéolithe Y partiellement amorphe, un solide présentant :
- un taux de pic qui est inférieur à 0,40, de préférence inférieur à environ 0,30,
- une fraction cristalline exprimée par rapport à une zéolithe Y de référence sous forme sodique (Na) qui est inférieure à environ 60 %, de préférence inférieure à environ 50 %, ladite fraction étant déterminée par diffraction des rayons X.
- a peak rate which is less than 0.40, preferably less than about 0.30,
- a crystalline fraction expressed relative to a reference zeolite Y in sodium form (Na) which is less than about 60%, preferably less than about 50%, said fraction being determined by X-ray diffraction.
De préférence, les zéolithes Y partiellement amorphes, solides entrant dans la composition du catalyseur d'hydrocraquage du procédé de l'invention présente l'une au moins, de préférence toutes, les autres caractéristiques suivantes :
- un rapport Si/Al global supérieur à 15, de préférence supérieur à 20 et inférieur à 150,
- un rapport Si/AlIV de charpente supérieur ou égal au rapport Si/Al global,
- un volume poreux au moins égal à 0,20 ml par g de solide dont une fraction, comprise entre 8 % et 50 %, est constituée de pores ayant un diamètre d'au moins 50 Å,
- une surface spécifique de 210 à 800 m2/g, de préférence de 250 à 750 m2/g, en particulier de 300 à 600 m2/g.
- an overall Si / Al ratio greater than 15, preferably greater than 20 and less than 150,
- a structural Si / Al IV ratio greater than or equal to the overall Si / Al ratio,
- a pore volume at least equal to 0.20 ml per g of solid, a fraction of which between 8% and 50% consists of pores having a diameter of at least 50 Å,
- a specific surface of 210 to 800 m 2 / g, preferably from 250 to 750 m 2 / g, in particular from 300 to 600 m 2 / g.
Les taux de pics et les fractions cristallines sont déterminés par diffraction des rayons X par rapport à une zéolithe de référence, en utilisant une procédure dérivée de la méthode ASTM D3906-97 « Détermination of Relative X-ray Diffraction Intensities of Faujasite-Type-Containing Materials ». On peut se référer à cette méthode pour les conditions générales d'application de la procédure et, en particulier, pour la préparation des échantillons et des références.Peak rates and crystal fractions are determined by X-ray diffraction compared to a reference zeolite, using a procedure derived from the method ASTM D3906-97 "Determination of Relative X-ray Diffraction Intensities of Faujasite-Type-Containing Materials ”. We can refer to this method for the conditions terms of application of the procedure and, in particular, for the preparation of samples and references.
Un diffractogramme est composé des raies caractéristiques de la fraction cristallisée de
l'échantillon et d'un fond, provoqué essentiellement par la diffusion de la fraction amorphe
ou micro cristalline de l'échantillon (un faible signal de diffusion est lié à l'appareillage, air,
porte échantillon, etc...). Le taux de pics d'une zéolithe est le rapport, dans une zone
angulaire prédéfinie (typiquement 8 à 40° 2 lorsqu'on utilise le rayonnement Kα du
cuivre, 1 = 0,154 nm), de l'aire des raies de la zéolithe (pics) sur l'aire globale du
diffractogramme (pics+fond). Ce rapport pics/(pics+fond) est proportionnel à la quantité de
zéolithe cristallisée dans le matériau. Pour estimer la fraction cristalline d'un échantillon de
zéolithe Y, on compare le taux de pics de l'échantillon à celui d'une référence considérée
comme 100 % cristallisée (NaY par exemple). Le taux de pics d'une zéolithe NaY
parfaitement cristallisée est de l'ordre de 0,55 à 0,60. Le taux de pics d'une zéolithe USY
classique est de 0,45 à 0,55, sa fraction cristalline par rapport à une NaY parfaitement
cristallisée est de 80 à 95 %.
Le taux de pics du solide faisant l'objet de la présente invention est inférieur à 0,4 et de
préférence inférieur à 0,35. Sa fraction cristalline est donc inférieure à 70 %, de
préférence inférieure à 60 %.A diffractogram is composed of the lines characteristic of the crystallized fraction of the sample and of a background, essentially caused by the diffusion of the amorphous or microcrystalline fraction of the sample (a weak diffusion signal is linked to the apparatus, air, sample holder, etc.). The peak rate of a zeolite is the ratio, in a predefined angular zone (typically 8 to 40 ° 2 when using the Kα radiation of copper, 1 = 0.154 nm), of the area of the lines of the zeolite (peaks) on the global area of the diffractogram (peaks + background). This peak / (peak + bottom) ratio is proportional to the amount of zeolite crystallized in the material. To estimate the crystalline fraction of a Y zeolite sample, the peak rate of the sample is compared to that of a reference considered to be 100% crystallized (NaY for example). The peak rate of a perfectly crystallized NaY zeolite is of the order of 0.55 to 0.60. The peak rate of a conventional USY zeolite is 0.45 to 0.55, its crystalline fraction relative to a perfectly crystallized NaY is 80 to 95%.
The peak rate of the solid which is the subject of the present invention is less than 0.4 and preferably less than 0.35. Its crystalline fraction is therefore less than 70%, preferably less than 60%.
Les zéolites partiellement amorphes sont préparées selon les techniques généralement utilisées pour la désalumination, à partir de zéolites Y disponibles commercialement, c'est-à-dire qui présentent généralement des cristallinités élevées (au moins 80 %). Plus généralement on pourra partir de zéolites ayant une fraction cristalline d'au moins 60 %, ou d'au moins 70 %.Partially amorphous zeolites are prepared according to techniques generally used for dealumination, from commercially available Y zeolites, that is to say which generally have high crystallinities (at least 80%). More generally we can start from zeolites having a crystalline fraction of at least 60%, or at least 70%.
Les zéolithes Y utilisées généralement dans les catalyseurs d'hydrocraquage sont fabriquées par modification de zéolithes Na-Y disponibles commercialement. Cette modification permet d'aboutir à des zéolithes dites stabilisées, ultra-stabilisées ou encore désaluminées. Cette modification est réalisée par l'une au moins des techniques de désalumination, et par exemple le traitement hydrothermique, l'attaque acide. De préférence, cette modification est réalisée par combinaison de trois types d'opérations connues de l'homme de l'art : le traitement hydrothermique, l'échange ionique et l'attaque acide. The Y zeolites generally used in hydrocracking catalysts are manufactured by modification of commercially available Na-Y zeolites. This modification leads to so-called stabilized, ultra-stabilized or even zeolites dealuminated. This modification is carried out by at least one of the techniques of dealumination, and for example hydrothermal treatment, acid attack. Of preferably, this modification is carried out by combination of three types of operations known to those skilled in the art: hydrothermal treatment, ion exchange and attack acid.
Selon un autre mode avantageux de l'invention, il peut être utilisé lors de l'étape d'hydrocraquage un catalyseur comprenant une zéolithe Y non désaluminée globalement et très acide. Par zéolithe non désaluminée globalement on entend une zéolithe Y (type structural FAU, faujasite) selon la nomenclature développée dans "Atlas of zeolites structure types", W.M. Meier, D.H. Olson et Ch. Baerlocher, 4th revised Edition 1996, Elsevier.According to another advantageous embodiment of the invention, it can be used during the hydrocracking step a catalyst comprising a zeolite Y not dealuminated overall and very acidic. By globally non dealuminated zeolite is understood a Y zeolite (structural type FAU, faujasite) according to the nomenclature developed in "Atlas of zeolites structure types", WM Meier, DH Olson and Ch. Baerlocher, 4 th revised Edition 1996, Elsevier.
Pendant la préparation de cette zéolithe, le paramètre cristallin peut être réduit par extraction des aluminiums de la structure (ou charpente). Le rapport SiO2/Al2O3 global reste généralement, quant à lui, inchangé du fait que les aluminiums n'ont pas été extraits chimiquement. Une telle zéolithe non désaluminée globalement a donc un rapport SiO2/Al2O3 global qui reste également inchangée.During the preparation of this zeolite, the crystalline parameter can be reduced by extraction of the aluminum from the structure (or framework). The overall SiO 2 / Al 2 O 3 ratio generally remains unchanged because the aluminum has not been chemically extracted. Such a globally non dealuminated zeolite therefore has an overall SiO 2 / Al 2 O 3 ratio which also remains unchanged.
Cette zéolithe Y non désaluminée globalement peut se présenter sous forme soit hydrogénée, soit au moins partiellement échangée avec des cations métalliques, par exemple à l'aide de cations des métaux alcalino-terreux des cations de métaux de terres rares de numéro atomiques 57 à 71 inclus. Une zéolithe dépourvue de terre rare et d'alcalino-terreux est généralement préférée.This globally non dealuminated Y zeolite can be in either hydrogenated, or at least partially exchanged with metal cations, by example using alkaline earth metal cations of earth metal cations rare with atomic number 57 to 71 inclusive. A zeolite devoid of rare earth and of alkaline earth is generally preferred.
La zéolite Y globalement non désaluminée présente généralement un paramètre cristallin supérieur à 2,438 nm, un rapport SiO2 / Al2O3 global inférieur à 8, un rapport molaire SiO2 / Al2O3 de charpente inférieur à 21 et supérieur au rapport SiO2 / Al2O3 global.The generally non dealuminated zeolite Y generally has a crystalline parameter greater than 2.438 nm, an overall SiO 2 / Al 2 O 3 ratio less than 8, a SiO 2 / Al 2 O 3 molar ratio of framework less than 21 and greater than the SiO ratio 2 / Al 2 O 3 overall.
La zéolithe globalement non désaluminée peut être obtenue par tout traitement qui n'extrait pas les aluminiums de l'échantillon, tel que, par exemple, un traitement à la vapeur d'eau ou un traitement par SiCl4.The generally non dealuminated zeolite can be obtained by any treatment which does not extract the aluminum from the sample, such as, for example, a treatment with water vapor or a treatment with SiCl 4 .
Ainsi, selon un mode du procédé de l'invention le catalyseur d'hydrocraquage contient une matrice oxyde amorphe acide de type alumine dopée par du phosphore, une zéolithe Y non désaluminée globalement et très acide, et, éventuellement au moins un élément du groupe VIIA et notamment du fluor.Thus, according to one mode of the process of the invention, the hydrocracking catalyst contains an alumina-type acidic amorphous oxide matrix doped with phosphorus, a zeolite Y not dealuminated overall and very acidic, and possibly at least one element of the group VIIA and in particular fluorine.
Parmi les zéolithes utilisables dans le procédé de l'invention, on peut citer la zéolithe Bêta de type structural BEA, selon la nomenclature développée dans "Atlas of Zeolites structures types", W. M. Meier, D. H. Olson et Ch. Baerlocher, 4th revised Edition 1996, Elsevier. Cette zéolithe Bêta peut être utilisée sous sa forme acide H-Bêta ou partiellement échangée par des cations. Le rapport Si/Al de la zéolithe Bêta peut être celui obtenu lors de sa synthèse ou bien elle peut subir des traitements de désalumination post-synthèse connus de l'homme du métier.Among the zeolites which can be used in the process of the invention, mention may be made of the beta zeolite of structural type BEA, according to the nomenclature developed in "Atlas of Zeolites structures types", WM Meier, DH Olson and Ch. Baerlocher, 4 th revised Edition 1996, Elsevier. This beta zeolite can be used in its H-beta acid form or partially exchanged by cations. The Si / Al ratio of the beta zeolite can be that obtained during its synthesis or else it can undergo post-synthesis dealumination treatments known to those skilled in the art.
La zéolithe NU-86, qui peut également être avantageusement utilisée dans le procédé de l'invention, est décrit dans le brevet américain US 5,108,579. Cette zéolithe peut être utilisée sous sa forme acide H-NU-86 ou partiellement échangée par des cations. La zéolithe NU-86 peut également être utilisée après avoir subi un ou des traitements de désalumination post-synthèse de manière à augmenter son rapport Si/Al et en ajuster ainsi ses propriétés catalytiques. Les techniques de désalumination post-synthèse sont décrites dans le brevet américain US 6,165,439.NU-86 zeolite, which can also be advantageously used in the process of the invention is described in American patent US Pat. No. 5,108,579. This zeolite can be used in its acid form H-NU-86 or partially exchanged by cations. The NU-86 zeolite can also be used after undergoing treatment (s) post-synthesis dealumination so as to increase and adjust its Si / Al ratio thus its catalytic properties. Post-synthesis dealumination techniques are described in US Patent 6,165,439.
L'étape d'hydrocraquage est avantageusement réalisée à une pression allant de 5 à 15 MPa, de préférence de 6 à 13 MPa, de manière encore plus préférée de 7 à 11 MPa et à une température allant de 290 à 400°C, de préférence de 310°C à 390°C, de manière encore plus préférée de 320 à 380°C. Le recyclage d'hydrogène pur peut être compris entre 200 et 2500 Nm3/m3, de préférence entre 300 et 2000 Nm3/m3.The hydrocracking step is advantageously carried out at a pressure ranging from 5 to 15 MPa, preferably from 6 to 13 MPa, even more preferably from 7 to 11 MPa and at a temperature ranging from 290 to 400 ° C, preferably from 310 ° C to 390 ° C, even more preferably from 320 to 380 ° C. The recycling of pure hydrogen can be between 200 and 2500 Nm 3 / m 3 , preferably between 300 and 2000 Nm 3 / m3.
Préalablement à l'étape d'hydroraffinage et/ou l'étape d'hydrocraquage du procédé de la présente invention, le catalyseur d'hydroraffinage et/ou d'hydrocraquage peut être soumis à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfure avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'Homme du métier et peut être effectué par toute méthode déjà décrite dans la littérature soit in situ, c'est-à-dire dans le réacteur, soit ex-situ.Prior to the hydrorefining step and / or the hydrocracking step of the process of present invention, the hydrorefining and / or hydrocracking catalyst can be subjected to a sulfurization treatment making it possible to transform, at least in part, the species metallic sulphide before their contact with the load to be treated. This treatment of activation by sulfurization is well known to the skilled person and can be carried out by any method already described in the literature either in situ, i.e. in the reactor, or ex situ.
Une méthode de sulfuration classique bien connue de l'Homme du métier consiste à chauffer en présence d'hydrogène sulfuré (pur ou par exemple sous flux d'un mélange hydrogène/hydrogène sulfuré) à une température comprise entre 150 et 800°C, de préférence entre 250 et 600°C, généralement dans une zone réactionnelle à lit traversé.A conventional sulfurization method well known to those skilled in the art consists in heating in the presence of hydrogen sulfide (pure or for example under a mixture flow hydrogen / hydrogen sulfide) at a temperature between 150 and 800 ° C, preferably between 250 and 600 ° C, generally in a crossed bed reaction zone.
L'effluent en sortie de la deuxième zone réactionnelle correspondant à l'étape d'hydrocraquage du procédé selon l'invention peut-être soumis à une séparation dite finale (par exemple une distillation atmosphérique) de manière à séparer les gaz (tels que l'ammoniac NH3 et l'hydrogène sulfuré (H2S), ainsi que les autres gaz légers présents, l'hydrogène et les produits de conversion (coupe essence). The effluent leaving the second reaction zone corresponding to the hydrocracking step of the process according to the invention may be subjected to a so-called final separation (for example atmospheric distillation) so as to separate the gases (such as l NH 3 ammonia and hydrogen sulfide (H 2 S), as well as the other light gases present, hydrogen and conversion products (petrol cut).
Les exemples qui suivent illustrent l'invention sans en limiter la portée.The examples which follow illustrate the invention without limiting its scope.
La charge traitée dans cet exemple est un gazole naphténo-aromatique issu d'une
distillation et dont les caractéristiques sont les suivantes :
Cette charge a été introduite dans une unité de test catalytique comportant 2 réacteurs. Dans le réacteur en amont est mis en oeuvre un catalyseur comprenant de l'alumine, 3,6 % en poids de nickel (oxyde), 17,2 % en poids de molybdène (oxyde) et 4 % en poids de phosphore (oxyde), et dans le réacteur en aval un catalyseur zéolithique d'hydrocraquage comprenant de l'alumine, une zéolithe Y, du nickel et du molybdène.This charge was introduced into a catalytic test unit comprising 2 reactors. In the upstream reactor, a catalyst comprising alumina is used, 3.6% by weight of nickel (oxide), 17.2% by weight of molybdenum (oxide) and 4% by weight of phosphorus (oxide), and in the downstream reactor a zeolitic catalyst hydrocracking comprising alumina, a Y zeolite, nickel and molybdenum.
Les conditions opératoires utilisées sont les suivantes :
L'effluent en sortie de l'unité a subi une distillation de manière à récupérer la fraction dont
les composés ont un point d'ébullition supérieur à 150°C. Cette fraction a été ensuite
analysée et les caractéristiques de ladite fraction sont regroupées dans le tableau 2 ci-après.
Le rendement de la fraction gazole en 150°C+ est de 88 % poids (conversion de 12 % poids). Le tableau ci-dessus montre que toutes les caractéristiques de la coupe gazole 150°C+ obtenue par le procédé selon l'invention sont significativement améliorées et permettent de répondre aux spécifications futures les plus sévères.The yield of the diesel fraction at 150 ° C + is 88% by weight (conversion of 12% by weight). The table above shows that all the characteristics of the 150 ° C + diesel cut obtained by the process according to the invention are significantly improved and make it possible to meet the most severe future specifications.
La charge traitée dans cet exemple est identique à celle de l'exemple 1.The charge treated in this example is identical to that of example 1.
Les conditions opératoires utilisées sont les suivantes :
L'effluent en sortie de l'unité subit une distillation de manière à récupérer la fraction
150°C+ qui est ensuite analysée et dont les caractéristiques sont regroupées dans le
tableau 3 ci-après.
Le rendement de la fraction gazole en 150°C+ est de 92 % poids (conversion de 8 % en poids). Le tableau ci-dessus montre que toutes les caractéristiques de la coupe gazole 150°C+ obtenue par le procédé selon l'invention sont également améliorées et permettent de répondre aux spécifications futures les plus sévères.The yield of the diesel fraction at 150 ° C + is 92% by weight (conversion of 8% by weight). The table above shows that all the characteristics of the 150 ° C + diesel cut obtained by the process according to the invention are also improved and make it possible to meet the most severe future specifications.
Pour une charge identique à celle de l'exemple 1, les conditions opératoires utilisées sont
les suivantes :
Le rendement de la fraction gazole en 150°C+ est de 43 % poids (conversion de 57 % poids). Le carburant obtenu ne présente pas une qualité en accord avec les contraintes imposées dans les pays industrialisés. On remarque, en particulier, que l'indice de cétane est au-dessous de 51.The yield of the diesel fraction at 150 ° C + is 43% by weight (conversion of 57% by weight). The fuel obtained does not have a quality in accordance with the constraints imposed in industrialized countries. We note, in particular, that the cetane number is below 51.
Claims (13)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0201971 | 2002-02-15 | ||
| FR0201971A FR2836150B1 (en) | 2002-02-15 | 2002-02-15 | PROCESS FOR IMPROVING AROMATIC AND NAPHTENO-AROMATIC GAS CUT |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1336649A1 true EP1336649A1 (en) | 2003-08-20 |
| EP1336649B1 EP1336649B1 (en) | 2011-06-22 |
Family
ID=27620253
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP03290340A Expired - Lifetime EP1336649B1 (en) | 2002-02-15 | 2003-02-11 | Process for enhancing gasoils containing aromatics and naphthenoaromatics. |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7381321B2 (en) |
| EP (1) | EP1336649B1 (en) |
| BR (1) | BR0300397B1 (en) |
| ES (1) | ES2367981T3 (en) |
| FR (1) | FR2836150B1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100371423C (en) * | 2006-09-06 | 2008-02-27 | 中国石油化工集团公司 | Hydrocarbons hydrocracking method |
| US8119552B2 (en) | 2005-10-27 | 2012-02-21 | Süd-Chemie AG | Catalyst composition for hydrocracking and process of mild hydrocracking and ring opening |
| WO2021203816A1 (en) * | 2020-04-06 | 2021-10-14 | 国家能源投资集团有限责任公司 | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BRPI0712908A2 (en) * | 2006-05-23 | 2012-10-02 | Japan Energy Corp | method for producing hydrocarbon fractions |
| BRPI1014950B1 (en) | 2009-04-21 | 2018-10-23 | Albemarle Europe Sprl | hydrotreating catalyst containing phosphorus and boron. |
| FR2984759B1 (en) * | 2011-12-22 | 2013-12-20 | IFP Energies Nouvelles | CATALYST COMPRISING AT LEAST ONE NU-86 ZEOLITE, AT LEAST ONE USY ZEOLITE AND A POROUS MINERAL MATRIX AND METHOD OF HYDROCONVERSION OF HYDROCARBON LOADS USING THE CATALYST |
| WO2014189744A1 (en) * | 2013-05-20 | 2014-11-27 | Shell Oil Company | Two-stage diesel aromatics saturation process utilizing intermediate stripping and base metal catalyst |
| EP2999770A1 (en) * | 2013-05-20 | 2016-03-30 | Shell Internationale Research Maatschappij B.V. | Two stage diesel aromatics saturation process using base metal catalyst |
| US10647925B2 (en) | 2015-12-28 | 2020-05-12 | Exxonmobil Research And Engineering Company | Fuel components from hydroprocessed deasphalted oils |
| US10947464B2 (en) | 2015-12-28 | 2021-03-16 | Exxonmobil Research And Engineering Company | Integrated resid deasphalting and gasification |
| US10590360B2 (en) | 2015-12-28 | 2020-03-17 | Exxonmobil Research And Engineering Company | Bright stock production from deasphalted oil |
| US10494579B2 (en) | 2016-04-26 | 2019-12-03 | Exxonmobil Research And Engineering Company | Naphthene-containing distillate stream compositions and uses thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3306839A (en) * | 1963-03-18 | 1967-02-28 | Union Oil Co | Hydrocracking process in several stages and regulating the hydrocracking by varying the amount of hydrogen sulfide in the reaction zones |
| EP0093552A2 (en) * | 1982-05-05 | 1983-11-09 | Mobil Oil Corporation | Hydrocracking process |
| EP0848992A1 (en) * | 1996-12-17 | 1998-06-24 | Institut Francais Du Petrole | Boron and silicon containing catalyst and its application in the hydrotreatment of hydrocarbon feeds |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3637484A (en) * | 1970-06-18 | 1972-01-25 | Union Oil Co | Platinum group metal on silica-alumina hydrogenation catalyst and process |
| US3703461A (en) * | 1971-07-16 | 1972-11-21 | Union Oil Co | Hydrogenation process and catalyst |
| US5118406A (en) | 1991-04-30 | 1992-06-02 | Union Oil Company Of California | Hydrotreating with silicon removal |
| JPH06299168A (en) | 1993-02-15 | 1994-10-25 | Shell Internatl Res Maatschappij Bv | Hydrotreating method |
| FR2743733B1 (en) * | 1996-01-22 | 1998-02-27 | Inst Francais Du Petrole | CATALYST INCLUDING A ZEOLITH OF FAUJASITE TYPE AND A ZEOLITH OF TON TYPE AND PROCESS FOR HYDROCONVERSION OF HYDROCARBON OIL FEEDS |
| FR2780311B1 (en) * | 1998-06-25 | 2000-08-11 | Inst Francais Du Petrole | HYDROCRACKING CATALYST COMPRISING A NON-GLOBALLY DESALUMINATED Y ZEOLITE, A VB GROUP ELEMENT, AND A PROMOTING ELEMENT SELECTED IN THE GROUP FORMED BY BORON, PHOSPHORUS AND SILICON |
| NL1014299C2 (en) * | 1999-02-24 | 2001-03-26 | Inst Francais Du Petrole | Hydrocracking process with a catalyst containing an IM-5 zeolite and catalyst containing an IM-5 zeolite and a promoter element. |
| US6387246B1 (en) | 1999-05-19 | 2002-05-14 | Institut Francais Du Petrole | Catalyst that comprises a partially amorphous Y zeolite and its use in hydroconversion of hydrocarbon petroleum feedstocks |
| US7355730B2 (en) * | 2001-03-21 | 2008-04-08 | Toshiba Tec Germany Imaging Systems Gmbh | Office machine that can be remote-maintenanced via a computer network and a management or/and support or/and report or/and information system comprising a plurality of office machines |
-
2002
- 2002-02-15 FR FR0201971A patent/FR2836150B1/en not_active Expired - Fee Related
-
2003
- 2003-02-11 EP EP03290340A patent/EP1336649B1/en not_active Expired - Lifetime
- 2003-02-11 ES ES03290340T patent/ES2367981T3/en not_active Expired - Lifetime
- 2003-02-13 BR BRPI0300397-3A patent/BR0300397B1/en not_active IP Right Cessation
- 2003-02-19 US US10/367,965 patent/US7381321B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3306839A (en) * | 1963-03-18 | 1967-02-28 | Union Oil Co | Hydrocracking process in several stages and regulating the hydrocracking by varying the amount of hydrogen sulfide in the reaction zones |
| EP0093552A2 (en) * | 1982-05-05 | 1983-11-09 | Mobil Oil Corporation | Hydrocracking process |
| EP0848992A1 (en) * | 1996-12-17 | 1998-06-24 | Institut Francais Du Petrole | Boron and silicon containing catalyst and its application in the hydrotreatment of hydrocarbon feeds |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8119552B2 (en) | 2005-10-27 | 2012-02-21 | Süd-Chemie AG | Catalyst composition for hydrocracking and process of mild hydrocracking and ring opening |
| US8128809B2 (en) | 2005-10-27 | 2012-03-06 | Statoil Asa | Ring opening process |
| CN100371423C (en) * | 2006-09-06 | 2008-02-27 | 中国石油化工集团公司 | Hydrocarbons hydrocracking method |
| WO2021203816A1 (en) * | 2020-04-06 | 2021-10-14 | 国家能源投资集团有限责任公司 | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon |
Also Published As
| Publication number | Publication date |
|---|---|
| US7381321B2 (en) | 2008-06-03 |
| US20040159581A1 (en) | 2004-08-19 |
| BR0300397A (en) | 2004-08-17 |
| FR2836150B1 (en) | 2004-04-09 |
| BR0300397B1 (en) | 2014-02-04 |
| ES2367981T3 (en) | 2011-11-11 |
| EP1336649B1 (en) | 2011-06-22 |
| FR2836150A1 (en) | 2003-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1278812B1 (en) | Flexible method for producing oil bases with a zsm-48 zeolite | |
| EP2333031B1 (en) | Process to produce high quality kerosine and diesel fuels and hydrogen coproduction from light saturated fractions | |
| EP1849850B1 (en) | Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps | |
| FR2926087A1 (en) | MULTI-PROCESS PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF AN EFFLUENT PRODUCED BY THE FISCHER-TROPSCH PROCESS | |
| EP1330505B1 (en) | Method for producing diesel fuel by moderate pressure hydrocracking | |
| EP0515256A1 (en) | Process for the isomerisation of Fischer-Tropsch paraffins with a catalyst based on zeolite H-Y | |
| EP1336649B1 (en) | Process for enhancing gasoils containing aromatics and naphthenoaromatics. | |
| EP1070108B9 (en) | Method for improving a gas oil fraction cetane index | |
| WO2009106704A2 (en) | Method of producing middle distillates by sequenced hydroisomeration and hydrocracking of effluent produced by the fischer-tropsch process | |
| EP1307527A1 (en) | Method for two-step hydrocracking of hydrocarbon feedstocks | |
| FR2826971A1 (en) | PROCESS FOR PRODUCING MEDIUM DISTILLATES BY HYDROISOMERIZATION AND HYDROCRACKING OF LOADS FROM THE FISCHER-TROPSCH PROCESS | |
| FR2743733A1 (en) | CATALYST INCLUDING A ZEOLITH OF FAUJASITE TYPE AND A ZEOLITH OF TON TYPE AND PROCESS FOR HYDROCONVERSION OF HYDROCARBON OIL FEEDS | |
| EP1157084B1 (en) | Adaptable method for producing medicinal oils and optionally middle distillates | |
| FR2830870A1 (en) | "ONE-STAGE" HYDROCRACKING PROCESS OF HYDROCARBON LOADS WITH HIGH NITROGEN CONTENTS | |
| FR2989381A1 (en) | PRODUCTION OF MEDIUM DISTILLATES FROM AN EFFLUENT FROM THE FISCHER-TROPSCH SYNTHESIS COMPRISING A STEP FOR REDUCING OXYGEN COMPOUND CONTENT | |
| EP1336648A1 (en) | Process for enhancing gasoils containing aromatics and naphtheno-aromatics | |
| WO2020144097A1 (en) | Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates | |
| FR2600669A1 (en) | Hydrocracking process intended for the production of middle distillates | |
| WO2025132835A1 (en) | Improved process for the production of middle distillates from synthetic hydrocarbons, comprising steps arranged in series and having low shift conversion | |
| FR3157423A1 (en) | Improved process for producing kerosene from serially synthesized hydrocarbons with low conversion per pass | |
| FR2989380A1 (en) | OPTIMIZED PROCESS FOR THE PRODUCTION OF MEDIUM DISTILLATES FROM A FISCHER-TROPSCH LOAD COMPRISING A LIMITED QUANTITY OF OXYGEN COMPOUNDS | |
| FR2785616A1 (en) | FLEXIBLE PROCESS FOR THE PRODUCTION OF OIL BASES AND POSSIBLE VERY HIGH QUALITY MEDIUM DISTILLATES | |
| FR2785617A1 (en) | FLEXIBLE PROCESS FOR THE PRODUCTION OF OIL BASES AND POSSIBLE VERY HIGH QUALITY MEDIUM DISTILLATES | |
| FR2673192A1 (en) | Process for the removal of mercury and optionally of arsenic in the feedstocks of the catalytic processes for producing aromatics | |
| FR2623814A2 (en) | Catalyst for cracking hydrocarbon feedstocks comprising an offretite, a zeolite and a matrix |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
| 17P | Request for examination filed |
Effective date: 20040220 |
|
| AKX | Designation fees paid |
Designated state(s): DE ES IT NL |
|
| 17Q | First examination report despatched |
Effective date: 20071214 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MARION, PIERRE Inventor name: GUERET, CHRISTOPHE Inventor name: BOURGES, PATRICK Inventor name: BENAZZI, ERIC |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES IT NL |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60337470 Country of ref document: DE Effective date: 20110811 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2367981 Country of ref document: ES Kind code of ref document: T3 Effective date: 20111111 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20120323 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60337470 Country of ref document: DE Effective date: 20120323 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20200225 Year of fee payment: 18 Ref country code: ES Payment date: 20200323 Year of fee payment: 18 Ref country code: IT Payment date: 20200224 Year of fee payment: 18 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200429 Year of fee payment: 18 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60337470 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210301 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210301 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210211 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220510 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210212 |