EP1336266B1 - Method for synchronizing a radio receiver to radio signals - Google Patents

Method for synchronizing a radio receiver to radio signals Download PDF

Info

Publication number
EP1336266B1
EP1336266B1 EP01993991A EP01993991A EP1336266B1 EP 1336266 B1 EP1336266 B1 EP 1336266B1 EP 01993991 A EP01993991 A EP 01993991A EP 01993991 A EP01993991 A EP 01993991A EP 1336266 B1 EP1336266 B1 EP 1336266B1
Authority
EP
European Patent Office
Prior art keywords
synchronization
radio receiver
radio
signals
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01993991A
Other languages
German (de)
French (fr)
Other versions
EP1336266A2 (en
Inventor
Frank Naberfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1336266A2 publication Critical patent/EP1336266A2/en
Application granted granted Critical
Publication of EP1336266B1 publication Critical patent/EP1336266B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/20Arrangements for broadcast or distribution of identical information via plural systems
    • H04H20/22Arrangements for broadcast of identical information via plural broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/44Arrangements characterised by circuits or components specially adapted for broadcast
    • H04H20/46Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95
    • H04H20/51Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95 specially adapted for satellite broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/20Aspects of broadcast communication characterised by the type of broadcast system digital audio broadcasting [DAB]

Definitions

  • the invention is based on a method for Synchronization of a radio receiver to radio signals after the genus of the independent claim.
  • DAB Digital Audio Broadcasting
  • TFPR symbols are called phase reference symbols Autocorrelation sequences, for which in particular the so-called CAZAC sequences can be used.
  • CAZAC sequences have such correlation properties that if there is a match, a high autocorrelation signal and if there is no match, a zero as Autocorrelation signal is output.
  • the TFPR symbol can then the frequency offset by a non-ideal Clock frequency in the radio receiver, a Doppler shift by movement of the radio receiver or Frequency storage of the transmitter is justified.
  • FFT Fast Fourier Transform
  • a radio receiver of this type will disclosed in EP 938 203.
  • a filter preferably a Predictor is performed.
  • a Kalman filter which has excellent properties for this, be used.
  • a predictor becomes a prediction of a message signal, i.e. a negative one Dead time.
  • Kalman filter is a Understanding calculation methods that an estimate for a disturbed measurable size determined.
  • the Kalman filter is particularly recursive and can be on a processor be realized.
  • a radio receiver with a Location device such as a GPS receiver can be connected and which has a correction unit, the Kalman filter, with which the correction of the synchronization of the received Radio signals can be carried out.
  • FIG. 1 shows a block diagram of the radio receiver according to the invention and FIG Flow chart of the method according to the invention.
  • the synchronization with digital radio signals in Radio receiver is crucial for that Quality of the data received.
  • digital Broadcast signals as is the case with DAB, for example is this synchronization with a first Coarse synchronization and then with a fine synchronization carried out.
  • the coarse synchronization is not enough to decode the DAB signal as error-free as possible, since the Strong fluctuations in the performance of the DAB radio signal conditionally.
  • the set Receiving frequency very closely to the actually broadcast frequency can be synchronized.
  • Another The on-board clock provides the problem. Is the onboard clock of the Is too far from the ideal frequency synchronization is not possible at all.
  • the TFPR symbol corrected calculated deviations themselves which is based on a received location signal.
  • the known GPS signal is used for the location signal.
  • the GPS signal delivers a very precise time reference and a very generic one exact position determination. Both information can be used for the improvement of DAB synchronization can be used.
  • This requires preprocessing, because only from the Position data is derived by a time derivative Speed vector can be calculated.
  • the actual on-board clock frequency from the GPS time and the Target frequency of the on-board clock are determined. Doing so preferably uses a counter that has a predetermined Vibration or cycle through the GPS time and through the On-board clock counts and then carries out a comparison.
  • the DAB receiver is GPS-accurate Receives time: he can then deviate his own Calculate on-board clocks from the ideal.
  • Synchronization on the DAB data stream is as above just described a rough time synchronization possible. If the actual clock frequency is known, the Frequency correction unit described above even before Reception of the first DAB data can be set so that the non-ideal on-board clock with the first data already is balanced. This is the first synchronization significantly accelerated and is now in a wider framework independent of the clock frequency.
  • Another aspect is the use of the exact time cycle of the GPS receiver for time synchronization.
  • Many DAB broadcasting networks are already synchronized via GPS. In these In cases, the timing of the GPS receiver can be used directly if the radio receiver is not moving. This The GPS receiver provides information about the detour Position data.
  • the TFPR analysis must be carried out for moving receivers only the additional ones created by the movement Eliminate deviations. Breaks the performance of the DAB signal so far that a decoding of the TFPR symbol is no longer possible, the GPS time clock can Maintain synchronization so far that when it is restarted Use of the DAB signal no rough time synchronization with the zero symbol is more necessary.
  • the speed information determined from the position data can improve in another way contribute to the DAB synchronization. Because the Doppler shift only from the reception frequency and the relative speed between transmitter and receiver depends, can be calculated which Doppler shift can occur at maximum with the current values. This Information can in turn be included in the error detection Include correction value calculation.
  • the Correction value calculation is preferably carried out with a filter, a predictor, and here is a Kalman filter used. Such a filter can be on a digital signal processor can be implemented.
  • FIG. 1 is a block diagram of the invention Shown radio receiver.
  • An antenna 1 is connected to one Input of a radio frequency receiving part 2 connected.
  • On The output of the radio frequency receiver 2 is at a first Input of a processor 3 connected.
  • To a second A processor 4 is connected to the input of the processor 3.
  • An output of the processor 3 leads to audio decoding. 7, whose output in turn to an audio amplifier 8 connected.
  • the audio amplifier 8 is connected to one Input of a speaker 9 connected.
  • At one The input of the processor 4 is a GPS receiver 5 connected.
  • At an input of the GPS receiver 5 is an antenna 6 connected.
  • the radio or radio signals received with antenna 1 are amplified by the high-frequency receiver 2, filtered and mixed down to an intermediate frequency as well digitized.
  • the resulting digital data stream is then from processor 3 first to a possible one Checked synchronization. This leads to the first Processor 3 the first time the DAB signal is received Coarse synchronization with the zero symbol in the DAB frame. After a successful rough time synchronization leads the processor 3 has a fine synchronization with the TFPR symbol and determines the frequency offset, the time offset and a possible phase shift.
  • the antenna 6 are the GPS signals from various satellites are broadcast, received and in the GPS receiver 5 evaluated. The GPS receiver 5 thus delivers the current one Position of the radio receiver according to the invention and one exact timing to the processor 4.
  • the processor 4 calculates a speed vector from the GPS data, by successive position determinations for the Evaluates radio receiver, and the processor 4 determines whether the on-board clock of the radio receiver according to the invention The default corresponds.
  • This data is then sent to processor 3 transferred so that the processor 3 by using a Filters and a predictor, here a Kalman filter, the correction of frequency, time and phase offset performs.
  • the DAB data thus synchronized are then on pass the audio decoding 7, which is just the Performs audio decoding on the DAB data.
  • This Audio decoding 7 is here to achieve a higher one Realized speed in hardware, including this on a processor can be implemented.
  • the digital Audio data are then converted from the audio decoding 7 into analog Audio signals are converted to the audio amplifier. 8 transmit, which amplifies the audio signals so that they can be played with the speaker 9.
  • process step 10 digital broadcast signals, i.e. the DAB signals received and there is a rough synchronization to the zero symbol.
  • method step 11 the process takes place in processor 3 Fine synchronization with the TFPR symbol to adjust the frequency, Calculate time and phase offset.
  • process step 12 the GPS data with the GPS receiver 5 and the antenna 6 determined so that the GPS receiver 5 the current Position and the exact time can determine.
  • Method step 13 are the on-board clock of the radio receiver according to the invention and the speed of the radio receiver according to the invention determined. These dates are then in step 14 to correct the Frequency, time and phase offset used.
  • Method step 15 is used to process the synchronized data by a channel and Source coding is performed.
  • process step 16 the audio data is played back.
  • DAB multimedia data are received, which are then decoded accordingly and shown on a display or a loudspeaker become.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Verfahren zur Synchronisation eines Funkempfängers auf Funksignale nach der Gattung des unabhängigen Patentanspruchs.The invention is based on a method for Synchronization of a radio receiver to radio signals after the genus of the independent claim.

Es ist bereits bekannt, dass bei DAB (Digital Audio Broadcasting) eine grobe Zeitsynchronisation mit einem Nullsymbol erfolgt, dass den Beginn eines jeden DAB-Rahmens bildet. Dies kann beispielsweise durch eine Leistungsmessung erfolgen, da das Nullsymbol, wie es sein Name andeutet, keine Signalleistung aufweist. Eine genauere Synchronisation erfolgt bei DAB durch die im DAB-Datenstrom periodisch angeordneten TFPR-Symbole. Diese TFPR-Symbole, auch Phasenreferenzsymbole genannt, sind Autokorrelationssequenzen, wofür insbesondere die sogenannten CAZAC-Sequenzen verwendet werden. Solche CAZAC-Sequenzen weisen solche Korrelationseigenschaften auf, dass bei einer Übereinstimmung ein hohes Autokorrelationssignal und bei einer fehlenden Übereinstimmung eine Null als Autokorrelationssignal ausgegeben wird. Mit dem TFPR-Symbol kann dann die Frequenzablage, die durch eine nicht-ideale Taktfrequenz im Rundfunkempfänger, eine Dopplerverschiebung durch eine Bewegung des Rundfunkempfängers oder eine Frequenzablage des Senders begründet ist, ermittelt werden. It is already known that DAB (Digital Audio Broadcasting) a rough time synchronization with a Zero symbol is the beginning of every DAB frame forms. This can be done, for example, by measuring the power because the zero symbol, as its name suggests, has no signal power. A more accurate synchronization is done periodically at DAB by the in the DAB data stream arranged TFPR symbols. These TFPR symbols, too Are called phase reference symbols Autocorrelation sequences, for which in particular the so-called CAZAC sequences can be used. Such CAZAC sequences have such correlation properties that if there is a match, a high autocorrelation signal and if there is no match, a zero as Autocorrelation signal is output. With the TFPR symbol can then the frequency offset by a non-ideal Clock frequency in the radio receiver, a Doppler shift by movement of the radio receiver or Frequency storage of the transmitter is justified.

Durch das TFPR-Symbol ist weiterhin die Kanalimpulsantwort bestimmbar, mit der die Zeitabweichung und andere Signalparameter bestimmt werden können. Dann kann mit einer sogenannten FFT (Fast Fourier Transform = schnelle Fouriertransformation) die Zeit-, die Frequenz- und die Phasenabweichung bestimmt werden, um diese Abweichungen dann zu korrigieren.The channel impulse response remains with the TFPR symbol determinable with which the time deviation and others Signal parameters can be determined. Then with one so-called FFT (Fast Fourier Transform = fast Fourier transform) the time, the frequency and the Phase deviation can then be determined by these deviations to correct.

Ein Funkempfänger dieser Art wird in EP 938 203 offenbart.A radio receiver of this type will disclosed in EP 938 203.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren zur Synchronisation eines Funkempfängers auf Funksignale mit den Merkmalen des unabhängigen Patentanspruchs hat demgegenüber den Vorteil, dass mit dem Ortungssignal, vorzugsweise einem GPS (Global Positioning System) Signal, eine genaue Zeit und damit ein genauer Zeittakt bestimmbar ist und somit nach einer erfolgten Grobsynchronisation ein fester Zeittakt vorliegt und mit dem gegebenenfalls der Bordtakt des Rundfunkempfängers korrigiert werden kann. Mit dem Ortungssignal sind auch weiterhin Geschwindigkeitsvektoren bestimmbar, um so eine Dopplerverschiebung in der Frequenz der Rundfunksignale zu korrigieren. Damit wird insgesamt die Synchronisation erheblich verbessert, wobei dies vor allem darin begründet ist, dass GPS und DAB unkorrelierte Verfahren sind und sich so ein systematischer Fehler in einem Übertragungsverfahren nicht auch auf die Korrektursignale im Rundfunkempfänger auswirkt. Die Audioqualität oder die Qualität der empfangenen Daten wird dadurch erheblich gesteigert. Eine grobe Synchronisation auf den DAB-Datenstrom ist nach einem Ausfall eines DAB-Signals dann auch nicht mehr nötig, da mit dem Zeittakt des Ortungssignals (GPS-Signals) der Takt des Rahmens gehalten werden kann und damit die Synchronisation aufrechterhalten wird. The inventive method for synchronizing a Radio receiver on radio signals with the characteristics of In contrast, independent patent claims have the advantage that with the location signal, preferably a GPS (Global Positioning System) signal, an exact time and therefore a exact timing can be determined and thus after one coarse synchronization there is a fixed timing and with which the on-board clock of the Broadcast receiver can be corrected. With the Location signals continue to be speed vectors determinable, so a Doppler shift in frequency to correct the broadcast signals. This makes the Synchronization significantly improved, above all the reason for this is that GPS and DAB are uncorrelated Procedures are and so a systematic error in a transfer procedure not also to the Correction signals in the radio receiver affects. The Audio quality or the quality of the data received thereby significantly increased. A rough sync up the DAB data stream is after a failure of a DAB signal then no longer necessary, since with the timing of the Location signal (GPS signal) the clock of the frame kept can be maintained and thus the synchronization becomes.

Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Anspruch angegebenen Verfahrens zur Synchronisation eines Funkempfängers auf Funksignale möglich.By those listed in the dependent claims Measures and further training are advantageous Improvements to what is stated in the independent claim Procedure for synchronization of a radio receiver Radio signals possible.

Besonders vorteilhaft ist, dass die Korrektur mit den Ortungssignalen durch einen Filter, vorzugsweise einen Prädiktor durchgeführt wird. Dafür kann dann ein Kalman-Filter, der dafür ausgezeichnete Eigenschaften aufweist, verwendet werden. Bei einem Prädiktor wird eine Vorhersage eines Nachrichtensignals verlangt, also eine negative Totzeit. Unter dem Begriff Kalman-Filter wird ein Rechenverfahren verstanden, das einen Schätzwert für eine gestört meßbare Größe bestimmt. Der Kalman-Filter ist insbesondere rekursiv und kann auf einem Prozessor realisiert sein.It is particularly advantageous that the correction with the Location signals through a filter, preferably a Predictor is performed. Then a Kalman filter which has excellent properties for this, be used. A predictor becomes a prediction of a message signal, i.e. a negative one Dead time. Under the term Kalman filter is a Understanding calculation methods that an estimate for a disturbed measurable size determined. The Kalman filter is particularly recursive and can be on a processor be realized.

Darüber hinaus ist es von Vorteil, dass zur Durchführung des Verfahrens ein Funkempfänger vorliegt, der mit einer Ortungsvorrichtung wie einem GPS-Empfänger verbindbar ist und der eine Korrektureinheit aufweist, der Kalman-Filter, mit der die Korrektur der Synchronisation der empfangenen Funksignale durchgeführt werden kann.In addition, it is advantageous that to carry out the Procedure there is a radio receiver with a Location device such as a GPS receiver can be connected and which has a correction unit, the Kalman filter, with which the correction of the synchronization of the received Radio signals can be carried out.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigt Figur 1 ein Blockschaltbild des erfindungsgemäßen Funkempfängers und Figur 2 ein Flußdiagramm des erfindungsgemäßen Verfahrens. Embodiments of the invention are in the drawing are shown and are described in the following description explained in more detail. 1 shows a block diagram of the radio receiver according to the invention and FIG Flow chart of the method according to the invention.

Beschreibungdescription

Die Synchronisation bei digitalen Funksignalen im Funkempfänger ist von entscheidender Bedeutung für die Qualität der empfangenen Daten. Bei digitalen Rundfunksignalen, wie es beispielsweise bei DAB der Fall ist, wird diese Synchronisation zunächst mit einer Grobsynchronisation und dann mit einer Feinsynchronisation durchgeführt. Die Grobsynchronisation reicht nicht aus, um das DAB-Signal möglichst fehlerfrei zu dekodieren, da der Mobilfunkkanal starke Leistungsschwankungen des DAB-Funksignals bedingt. Darüber hinaus muß die eingestellte Empfangsfrequenz sehr genau auf die tatsächlich ausgestrahlte Frequenz synchronisiert werden. Eine weitere Problemstellung liefert der Bordtakt. Ist der Bordtakt des Empfängers zu weit von der idealen Frequenz entfernt, ist eine Synchronisation gar nicht erst möglich.The synchronization with digital radio signals in Radio receiver is crucial for that Quality of the data received. With digital Broadcast signals, as is the case with DAB, for example is this synchronization with a first Coarse synchronization and then with a fine synchronization carried out. The coarse synchronization is not enough to decode the DAB signal as error-free as possible, since the Strong fluctuations in the performance of the DAB radio signal conditionally. In addition, the set Receiving frequency very closely to the actually broadcast frequency can be synchronized. Another The on-board clock provides the problem. Is the onboard clock of the Is too far from the ideal frequency synchronization is not possible at all.

Da die Qualität der empfangenen DAB-Signale im Mobilfunkkanal sehr stark schwankt, ist die Berechnung der Abweichungswerte durch die Feinsynchronisation mit einem TFPR-Symbol fehlerbehaftet. Wird.dabei der Fehler so groß, dass auch die Zeit- und Frequenzablage derart ansteigen, so dass aus dem nächsten TFPR-Symbol keine gültigen Werte mehr errechnet werden können. In diesem Fall reißt dann die Synchronisation ab, was eine erneute Grobsynchronisation anhand des Nullsymbols erfordert. Eine Begleiterscheinung davon ist, dass die Nutzsignale, also die Audio- oder Multimediadaten eine ansteigende Bitfehlerrate aufweisen, die so groß werden kann, dass die Nutzsignale unbrauchbar werden.Since the quality of the received DAB signals in Cellular channel fluctuates very strongly, is the calculation of the Deviation values due to fine synchronization with a TFPR symbol has errors. If the error becomes so big, that the time and frequency storage also increase so that from the next TFPR symbol no more valid values can be calculated. In this case, the tears Synchronization starting, which is a rough re-synchronization based on the zero symbol. A side effect of which is that the useful signals, i.e. the audio or Multimedia data have an increasing bit error rate, which can become so large that the useful signals are unusable become.

Erfindungsgemäß werden daher die mit dem TFPR-Symbol berechneten Abweichungen selbst einer Korrektur unterzogen, die auf einem empfangenen Ortungssignal fußt. Als Ortungssignal wird dabei das bekannte GPS-Signal verwendet. Es sind jedoch auch andere Ortungssignale möglich, die eine genaue Zeitbestimmung ermöglichen. Das GPS-Signal liefert eine sehr genaue Zeitreferenz und gattungsgemäß eine sehr genaue Positionsbestimmung. Beide Informationen können für die Verbesserung der DAB-Synchronisation benutzt werden. Dies verlangt eine vorverarbeitung, denn erst aus den Positionsdaten ist durch eine zeitliche Ableitung ein Geschwindigkeitsvektor errechenbar. Außerdem kann die tatsächliche Bordtaktfrequenz aus der GPS-Zeit und der Sollfrequenz des Bordtaktes ermittelt werden. Dabei wird vorzugsweise ein Zähler verwendet, der eine vorgegebene Schwingung oder Takt durch die GPS-Zeit und durch den Bordtakt zählt und dann einen Vergleich durchführt. Es ist dabei ausreichend, wenn der DAB-Empfänger eine GPS-genaue Zeit erhält: er kann dann selbst die Abweichung seines Bordtakts vom Ideal errechnen. Bei der erstmaligen Synchronisation auf den DAB-Datenstrom ist wie oben beschrieben lediglich eine grobe Zeitsynchronisation möglich. Ist die tatsächliche Taktfrequenz bekannt, kann die oben beschriebene Frequenzkorrektureinheit schon vor dem Empfang der ersten DAB-Daten so eingestellt werden, dass der nichtideale Bordtakt bei den ersten Daten bereits ausgeglichen wird. Hierdurch wird die Erstsynchronisation deutlich beschleunigt und ist jetzt in einem weiteren Rahmen von der Taktfrequenz unabhängig.According to the invention, therefore, those with the TFPR symbol corrected calculated deviations themselves, which is based on a received location signal. As The known GPS signal is used for the location signal. However, other location signals are also possible, the one enable accurate timing. The GPS signal delivers a very precise time reference and a very generic one exact position determination. Both information can be used for the improvement of DAB synchronization can be used. This requires preprocessing, because only from the Position data is derived by a time derivative Speed vector can be calculated. In addition, the actual on-board clock frequency from the GPS time and the Target frequency of the on-board clock are determined. Doing so preferably uses a counter that has a predetermined Vibration or cycle through the GPS time and through the On-board clock counts and then carries out a comparison. It is sufficient if the DAB receiver is GPS-accurate Receives time: he can then deviate his own Calculate on-board clocks from the ideal. At the first time Synchronization on the DAB data stream is as above just described a rough time synchronization possible. If the actual clock frequency is known, the Frequency correction unit described above even before Reception of the first DAB data can be set so that the non-ideal on-board clock with the first data already is balanced. This is the first synchronization significantly accelerated and is now in a wider framework independent of the clock frequency.

Ein weiterer Aspekt ist die Nutzung des genauen Zeittaktes des GPS-Empfängers zur Zeitsynchronisation. Viele DAB-Sendernetze sind bereits per GPS synchronisiert. In diesen Fällen kann der Zeittakt des GPS-Empfängers direkt verwendet werden, sofern sich der Funkempfänger nicht bewegt. Diese Information liefert der GPS-Empfänger über den Umweg der Positionsdaten. Bei bewegten Empfängern muß die TFPR-Analyse lediglich die durch die Bewegung entstehenden zusätzlichen Abweichungen eliminieren. Bricht die Leistung des DAB-Signals so weit ein, dass eine Dekodierung des TFPR-Symbols nicht mehr möglich ist, kann der GPS-Zeittakt die Synchronisation so weit aufrechterhalten, dass beim erneuten Einsetzen des DAB-Signals keine grobe Zeitsynchronisation mit dem Nullsymbol mehr nötig ist.Another aspect is the use of the exact time cycle of the GPS receiver for time synchronization. Many DAB broadcasting networks are already synchronized via GPS. In these In cases, the timing of the GPS receiver can be used directly if the radio receiver is not moving. This The GPS receiver provides information about the detour Position data. The TFPR analysis must be carried out for moving receivers only the additional ones created by the movement Eliminate deviations. Breaks the performance of the DAB signal so far that a decoding of the TFPR symbol is no longer possible, the GPS time clock can Maintain synchronization so far that when it is restarted Use of the DAB signal no rough time synchronization with the zero symbol is more necessary.

Die aus den Positionsdaten ermittelten Geschwindigkeitsinformationen können in einer anderen Weise zur Verbesserung der DAB-Synchronisation beitragen. Da die Dopplerverschiebung lediglich von der Empfangsfrequenz und der relativen Geschwindigkeit zwischen Sender und Empfänger abhängt, kann berechnet werden, welche Dopplerverschiebung bei den aktuellen Werten maximal auftreten kann. Diese Information kann wiederum in die Fehlererkennung der Korrekturwertberechnung einfließen. Die Korrekturwertberechnung wird vorzugsweise mit einem Filter, einem Prädiktor, durchgeführt und hier wird ein Kalman-Filter eingesetzt. Ein solches Filter kann auf einem digitalem Signalprozessor implementiert werden.The speed information determined from the position data can improve in another way contribute to the DAB synchronization. Because the Doppler shift only from the reception frequency and the relative speed between transmitter and receiver depends, can be calculated which Doppler shift can occur at maximum with the current values. This Information can in turn be included in the error detection Include correction value calculation. The Correction value calculation is preferably carried out with a filter, a predictor, and here is a Kalman filter used. Such a filter can be on a digital signal processor can be implemented.

In Figur 1 ist ein Blockschaltbild des erfindungsgemäßen Funkempfängers dargestellt. Eine Antenne 1 ist an einen Eingang eines Hochfrequenzempfangsteils 2 angeschlossen. Ein Ausgang des Hochfrequenzempfängers 2 ist an einen ersten Eingang eines Prozessors 3 angeschlossen. An einen zweiten Eingang des Prozessors 3 ist ein Prozessor 4 angeschlossen. Ein Ausgang des Prozessors 3 führt zu einer Audiodekodierung. 7, deren Ausgang wiederum an einen Audioverstärker 8 angeschlossen ist. Der Audioverstärker 8 ist an einen Eingang eines Lautsprechers 9 angeschlossen. An einen Eingang des Prozessors 4 ist ein GPS-Empfänger 5 angeschlossen. An einen Eingang des GPS-Empfängers 5 ist eine Antenne 6 angeschlossen. In Figure 1 is a block diagram of the invention Shown radio receiver. An antenna 1 is connected to one Input of a radio frequency receiving part 2 connected. On The output of the radio frequency receiver 2 is at a first Input of a processor 3 connected. To a second A processor 4 is connected to the input of the processor 3. An output of the processor 3 leads to audio decoding. 7, whose output in turn to an audio amplifier 8 connected. The audio amplifier 8 is connected to one Input of a speaker 9 connected. At one The input of the processor 4 is a GPS receiver 5 connected. At an input of the GPS receiver 5 is an antenna 6 connected.

Die mit der Antenne 1 empfangenen Rundfunk- bzw. Funksignale werden von dem Hochfrequenzempfänger 2 verstärkt, gefiltert und auf eine Zwischenfrequenz heruntergemischt sowie digitalisiert. Der so entstandene digitale Datenstrom wird dann vom Prozessor 3 zunächst auf eine mögliche Synchronisation hin überprüft. Dazu führt zunächst der Prozessor 3 beim ersten Empfang des DAB-Signals eine Grobsynchronisation mit dem Nullsymbol im DAB-Rahmen durch. Nach einer erfolgreichen groben Zeitsynchronisation führt der Prozessor 3 eine Feinsynchronisation mit dem TFPR-Symbol durch und bestimmt dabei die Frequenzablage, die Zeitablage und eine mögliche Phasenverschiebung. Mit der Antenne 6 werden die GPS-Signale, die von verschiedenen Satelliten ausgestrahlt werden, empfangen und im GPS-Empfänger 5 ausgewertet. Der GPS-Empfänger 5 liefert damit die aktuelle Position des erfindungsgemäßen Funkempfängers und einen genauen Zeittakt an den Prozessor 4. Der Prozessor 4 berechnet aus den GPS-Daten einen Geschwindigkeitsvektor, indem er aufeinanderfolgende Positionsbestimmungen für den Funkempfänger auswertet, und der Prozessor 4 ermittelt, ob der Bordtakt des erfindungsgemäßen Funkempfängers der Vorgabe entspricht. Diese Daten werden dann dem Prozessor 3 übertragen, so dass der Prozessor 3 durch Verwendung eines Filters und zwar eine Prädiktors, hier eines Kalman-Filters, die Korrektur der Frequenz-, Zeit- und Phasenablage durchführt. Die so synchronisierten DAB-Daten werden dann an die Audiodekodierung 7 übergeben, die eben die Audiodekodierung an den DAB-Daten durchführt. Diese Audiodekodierung 7 ist hier zur Erzielung einer höheren Geschwindigkeit in Hardware realisiert, wobei dies auch auf einem Prozessor implementierbar ist. Die digitalen Audiodaten werden dann von der Audiodekodierung 7 in analoge Audiosignale umgewandelt, um sie dann an den Audioverstärker. 8 zu übertragen, der die Audiosignale verstärkt, so dass sie mit dem Lautsprecher 9 wiedergegeben werden können. The radio or radio signals received with antenna 1 are amplified by the high-frequency receiver 2, filtered and mixed down to an intermediate frequency as well digitized. The resulting digital data stream is then from processor 3 first to a possible one Checked synchronization. This leads to the first Processor 3 the first time the DAB signal is received Coarse synchronization with the zero symbol in the DAB frame. After a successful rough time synchronization leads the processor 3 has a fine synchronization with the TFPR symbol and determines the frequency offset, the time offset and a possible phase shift. With the antenna 6 are the GPS signals from various satellites are broadcast, received and in the GPS receiver 5 evaluated. The GPS receiver 5 thus delivers the current one Position of the radio receiver according to the invention and one exact timing to the processor 4. the processor 4 calculates a speed vector from the GPS data, by successive position determinations for the Evaluates radio receiver, and the processor 4 determines whether the on-board clock of the radio receiver according to the invention The default corresponds. This data is then sent to processor 3 transferred so that the processor 3 by using a Filters and a predictor, here a Kalman filter, the correction of frequency, time and phase offset performs. The DAB data thus synchronized are then on pass the audio decoding 7, which is just the Performs audio decoding on the DAB data. This Audio decoding 7 is here to achieve a higher one Realized speed in hardware, including this on a processor can be implemented. The digital Audio data are then converted from the audio decoding 7 into analog Audio signals are converted to the audio amplifier. 8 transmit, which amplifies the audio signals so that they can be played with the speaker 9.

In Figur 2 ist das erfindungsgemäße Verfahren als Flußdiagramm dargestellt. In Verfahrensschritt 10 werden die digitalen Rundfunksignale, also die DAB-Signale empfangen und es erfolgt eine Grobsynchronisation auf das Nullsymbol. In Verfahrensschritt 11 erfolgt im Prozessor 3 die Feinsynchronisation mit dem TFPR-Symbol, um die Frequenz-, Zeit- und Phasenablage zu berechnen. In Verfahrensschritt 12 werden mit dem GPS-Empfänger 5 und der Antenne 6 die GPS-Daten ermittelt, so dass der GPS-Empfänger 5 die aktuelle Position und den genauen Zeittakt ermitteln kann. In Verfahrensschritt 13 werden damit der Bordtakt des erfindungsgemäßen Funkempfängers und die Geschwindigkeit des erfindungsgemäßen Funkempfängers ermittelt. Diese Daten werden dann in Verfahrensschritt 14 zur Korrektur der Frequenz-, Zeit- und Phasenablage verwendet. In Verfahrensschritt 15 erfolgt die Verarbeitung der synchronisierten Daten, indem eine Kanal- und Quellencodierung durchgeführt wird. In Verfahrensschritt 16 werden die Audiodaten wiedergegeben.The method according to the invention is shown in FIG Flow chart shown. In process step 10 digital broadcast signals, i.e. the DAB signals received and there is a rough synchronization to the zero symbol. In method step 11, the process takes place in processor 3 Fine synchronization with the TFPR symbol to adjust the frequency, Calculate time and phase offset. In process step 12 the GPS data with the GPS receiver 5 and the antenna 6 determined so that the GPS receiver 5 the current Position and the exact time can determine. In Method step 13 are the on-board clock of the radio receiver according to the invention and the speed of the radio receiver according to the invention determined. These dates are then in step 14 to correct the Frequency, time and phase offset used. In Method step 15 is used to process the synchronized data by a channel and Source coding is performed. In process step 16 the audio data is played back.

Alternativ ist es möglich, dass mit DAB Multimediadaten empfangen werden, die dann entsprechend decodiert werden und auf einer Anzeige bzw. einem Lautsprecher dargestellt werden.Alternatively, it is possible with DAB multimedia data are received, which are then decoded accordingly and shown on a display or a loudspeaker become.

Claims (8)

  1. Method for synchronization of a radio receiver to radio signals, with at least one reference symbol being used periodically in the radio signals for synchronization by the radio receiver, characterized in that the synchronization of the radio receiver is corrected as a function of a position-finding signal which is received by the radio receiver.
  2. Method according to Claim 1, characterized in that the synchronization is corrected by means of a filter.
  3. Method according to Claim 1 or 2, characterized in that coarse synchronization is achieved by means of a first reference symbol, and fine synchronization is achieved by means of a second reference symbol.
  4. Method according to Claim 3, characterized in that the zero symbol is used as the first reference symbol, and the TFPR symbol is used as the second reference symbol.
  5. Method according to one of the preceding claims, characterized in that an onboard clock and/or a velocity vector for the radio receiver is determined with the received position-finding signal, in order to correct the synchronization.
  6. Method according to one of the preceding claims,
    characterized in that a GPS signal is used as the position-finding signal.
  7. Radio receiver for carrying out the method according to one of Claims 1 to 6, characterized in that the radio receiver can be connected to a position-finding apparatus (5, 6), and in that the radio receiver has a correction unit (4, 3), which corrects the synchronization of received radio signals as a function of received position-finding signals.
  8. Radio receiver according to Claim 7, characterized in that the correction unit is a Kalman filter.
EP01993991A 2000-11-07 2001-10-09 Method for synchronizing a radio receiver to radio signals Expired - Lifetime EP1336266B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10055087 2000-11-07
DE10055087A DE10055087A1 (en) 2000-11-07 2000-11-07 Method for synchronizing a RF-receiver to RF-signals, involves using a phase-reference symbol as additional reference symbol in the RF-signals
PCT/DE2001/003860 WO2002039628A2 (en) 2000-11-07 2001-10-09 Method for synchronizing a radio receiver to radio signals

Publications (2)

Publication Number Publication Date
EP1336266A2 EP1336266A2 (en) 2003-08-20
EP1336266B1 true EP1336266B1 (en) 2004-06-09

Family

ID=7662392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993991A Expired - Lifetime EP1336266B1 (en) 2000-11-07 2001-10-09 Method for synchronizing a radio receiver to radio signals

Country Status (5)

Country Link
US (1) US20040057540A1 (en)
EP (1) EP1336266B1 (en)
JP (1) JP4047721B2 (en)
DE (2) DE10055087A1 (en)
WO (1) WO2002039628A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279908B2 (en) * 2008-12-31 2012-10-02 Ibiquity Digital Corporation Synchronization of separated platforms in an HD radio broadcast single frequency network
SG11201909943SA (en) * 2017-05-01 2019-11-28 Parkofon Inc System and method for high accuracy location determination and parking

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028322A1 (en) * 1990-09-06 1992-03-19 Bosch Gmbh Robert Improving channel parameter estimate - separating noise inhibited input signal into target magnitude by additional least-squares estimating device, e.g. kalman filter
US5689245A (en) * 1992-10-19 1997-11-18 Radio Satellite Corporation Integrated communications terminal
DE4330672A1 (en) * 1993-09-10 1995-03-16 Thomson Brandt Gmbh Method for transmitting digitised television and/or sound radio signals
US5596328A (en) * 1994-08-23 1997-01-21 Honeywell Inc. Fail-safe/fail-operational differential GPS ground station system
US5857155A (en) * 1996-07-10 1999-01-05 Motorola, Inc. Method and apparatus for geographic based control in a communication system
JPH10313286A (en) * 1997-05-13 1998-11-24 Sony Corp Receiver
JPH11252038A (en) * 1998-02-27 1999-09-17 Sony Corp Receiver for digital broadcasting
JPH11281377A (en) * 1998-03-31 1999-10-15 Sony Corp Map information obtaining method, navigation method, region information providing method, navigation apparatus, region information providing apparatus, and automobile
FR2791494B1 (en) * 1999-03-23 2001-06-01 France Telecom BI-MODE RADIO FREQUENCY RECEIVING DEVICE AND CORRESPONDING MULTIMEDIA RECEIVER
US6429808B1 (en) * 1999-11-12 2002-08-06 Motorola, Inc. Method and apparatus for assisted GPS integrity maintenance
US6611755B1 (en) * 1999-12-19 2003-08-26 Trimble Navigation Ltd. Vehicle tracking, communication and fleet management system

Also Published As

Publication number Publication date
JP2004535691A (en) 2004-11-25
WO2002039628A2 (en) 2002-05-16
EP1336266A2 (en) 2003-08-20
DE10055087A1 (en) 2002-05-16
DE50102552D1 (en) 2004-07-15
US20040057540A1 (en) 2004-03-25
JP4047721B2 (en) 2008-02-13
WO2002039628A3 (en) 2003-01-03

Similar Documents

Publication Publication Date Title
EP0895387A1 (en) Detection of the transmission mode of a DVB signal
DE102009043899B4 (en) Method for correcting the phase inversion of a data signal and system for implementing the same
DE69732549T2 (en) Fast resynchronization system for high-speed data transmission
DE69728383T2 (en) Method and apparatus for time synchronization in a receiver for a multicarrier signal
DE60216400T2 (en) Method and apparatus for noise pulse detection, demodulator operation method, demodulator and radio receiver
DE69734036T2 (en) Receiver and transmitter for a transmission system for digital audio broadcasting
DE10112773B4 (en) Method for frequency and time synchronization of an OFDM receiver
WO2010136498A1 (en) Method and receiver for receiving and processing satellite navigation signals
EP1336266B1 (en) Method for synchronizing a radio receiver to radio signals
EP1227608B1 (en) Method for switching a broadcast receiver to a different broadcast transmission with the same audio content
EP1287630B1 (en) Method for correcting the clock-pulse deviations of audio data
DE3000561A1 (en) CIRCULAR RADIO SPILLER
DE19516449B4 (en) Method for determining the frequency deviation
DE112012007046B4 (en) Digital transmission receiving device and digital transmission receiving method
EP1222788B1 (en) Method for receiving radio signals via a radio channel
DE10213262A1 (en) Device and method for controlling a transmission time of a continuous-time transmission signal
DE112009004337T5 (en) signal reception
DE102012214400A1 (en) Receiver for synchronizing clock frequency in radio communication system, has device that provides receiver timing signal to adjust receiver clock frequency as function of offset between transmitter and receiver carrier frequencies
WO2018146278A1 (en) Transmitter detection as vehicles drive through tunnel
EP1281247A1 (en) Transmitter and receiver device and method for synchronizing a receiver installation
AT517986B1 (en) Method and communication system for receiving frequency-multiplexed transmitted frames
EP1071247B1 (en) Channel estimation
DE102013219129B4 (en) Method for receiving and displaying text information
DE10328077B3 (en) Synchronization method for mobile radio system receiver using repetitive checking of reception signal for detection of synchronization time slot within signal structure contained in reception signal
EP1104138B1 (en) Descrambling of data frames

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20030703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50102552

Country of ref document: DE

Date of ref document: 20040715

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040901

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141024

Year of fee payment: 14

Ref country code: SE

Payment date: 20141024

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 16

Ref country code: FR

Payment date: 20161025

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161025

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50102552

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171009