EP1336003A1 - Multilayered, flexible paper containing carbon, with good flexural strength - Google Patents

Multilayered, flexible paper containing carbon, with good flexural strength

Info

Publication number
EP1336003A1
EP1336003A1 EP01983547A EP01983547A EP1336003A1 EP 1336003 A1 EP1336003 A1 EP 1336003A1 EP 01983547 A EP01983547 A EP 01983547A EP 01983547 A EP01983547 A EP 01983547A EP 1336003 A1 EP1336003 A1 EP 1336003A1
Authority
EP
European Patent Office
Prior art keywords
layer
electrically conductive
paper according
fibers
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01983547A
Other languages
German (de)
French (fr)
Inventor
Thomas Dolny
Eberhard Kübler
Karsten LÖHR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1336003A1 publication Critical patent/EP1336003A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/632A single nonwoven layer comprising non-linear synthetic polymeric strand or fiber material and strand or fiber material not specified as non-linear
    • Y10T442/633Synthetic polymeric strand or fiber material is of staple length

Definitions

  • the invention relates to an electrically conductive layer paper with a layer structure of at least a first, a second and a third layer, a method for producing such an electrically conductive layer paper and its use as a gas diffusion electrode, in particular in polymer electrolyte membrane fuel cells.
  • Fuel cells are systems that convert chemical energy into electrical energy.
  • PEM fuel cells have a central membrane / electrode unit, which consists of a polymeric, proton-conducting solid electrolyte, on which the smoothest possible hydrophobic, porous gas diffusion electrodes with a catalyst coating are arranged.
  • Oxygen or air is supplied to the electrode on the cathode side and hydrogen to the electrode on the anode side.
  • Protons are released from the fuel at the anode, releasing electrons.
  • the protons migrate through the proton-conductive electrolyte to the cathode, where they react with the oxygen by taking up electrons to form water.
  • the electrodes must therefore have good electrical conductivity, good gas permeability, sufficient mechanical stability, and ensure good contact with the electrolyte on the side facing the electrolyte due to a smooth surface.
  • modified carbon papers are used in gas diffusion electrodes used, ie carbon papers that are compacted on the surface with soot or graphite.
  • these materials are not sufficient in terms of surface smoothness and pore size.
  • gas diffusion layers which are made of powdery or dusty electrically conductive material in connection with particles of a thermoplastic binder.
  • these layers may contain a 'small amount of carbonized carbon fibers or fibers of polymers.
  • Chemical or physical blowing agents or so-called placeholders are used to adjust the porosity of these gas diffusion layers, some of which have to be removed again.
  • the complex process requires precise reaction management, especially with regard to the formation of percolation paths.
  • the invention is therefore based on the object of providing an electrically conductive laminated paper which ensures reproducible porosity with simultaneous dimensional stability in order to avoid deformations.
  • the present invention provides a laminated paper with the features of claim 1, a method for producing such a laminated paper according to claim 16 and the use of this laminated paper as a gas diffusion electrode in a fuel cell according to claim 15.
  • the layer paper is also subject to the following requirement: it must have sufficient tensile strength in addition to high flexural strength and rollability for paper processing in a continuous or discontinuous process.
  • FIG. 1 schematically shows a possible structure of the laminated paper according to the invention.
  • the electrically conductive layer paper according to the invention consists of a layer structure of at least a first, a second and a third layer, which differ significantly in their functionality. This is controlled by the geometry (length, etc.), the morphology (smoothness, crimp, etc.) and the chemical nature (temperature resistance,
  • Each of these layers comprises at least one electrically conductive material in the form of carbon fibers, the first, second and third layers being successively produced or deposited in an air stream by means of airlaid technology.
  • the carbon fibers in the first layer 1 are predominantly arranged in the layer plane, those in the second layer 2 increasingly obliquely and / or increasingly perpendicular to the layer plane, and those in the third layer 3 in ground form above the second layer.
  • the first and the second layer contain long, smooth carbon- or carbon-containing fibers with a length in the range of approximately 1 mm and 12 mm, the first layer 1 having a basis weight of at least 5 g / m 2 and has a maximum of 50 g / m 2 .
  • the third layer has ground carbon or carbon-containing fibers with a length in the range of less than 0.5 mm.
  • the electrically conductive layer paper contains a binder made of thermoplastic material in the first layer 1 and / or second layer 2 and / or third layer 3.
  • the proportion of the binder can be at least 0% by weight to at most 30% by weight, preferably at least 2 to at most 20, particularly preferably at least 5 to at most 15% by weight.
  • Polymers made from polyethylene and / or polyethylene-containing polymers, from polypropylene and / or polypropylene-containing polymers, from polysulfone and / or polysulfone-containing polymers, from polyethylene terephthalate and / or polyethylene terephthalate-containing polymers, from polyamide and / or polyamide-containing polymers, fluorinated polymers, in particular polytetrafluoroethylene, are preferably used as binders (PTFE) and / or bicomponent fibers and / or mixtures of several different binders.
  • bicomponent fibers are used, the geometric arrangement of the core / sheath (C / C) type is preferred.
  • a bicomponent fiber based on polyester is used, for example the Trevira brand XXX from polyester is mentioned here.
  • binding fibers of the aramid type for example the trademark Kevlar of type XXX from Du Pont or Twaron from Nippon Aramid Yugen (PPTA (poly (p-phenylene terephthalamide)).
  • PPTA poly (p-phenylene terephthalamide)
  • the binder is mixed or applied as a powder and / or fiber in one or more layers 1, 2 and / or 3, e.g. B. sprayed.
  • the layered paper can be hydrophobized by at least one fluorinated polymer, the fluorinated polymer being partially and / or perfluorinated and being a thermoplastic.
  • Polytetrafluoroethylene is particularly preferably used as the fluorinated polymer.
  • the layered paper can also be equipped with a catalytically active layer.
  • Supported and unsupported catalysts can be used as catalyst or catalyst-containing materials.
  • Platinum-containing and platinum-free catalysts are used.
  • Preferred platinum-free catalysts are those which contain or consist of at least one transition metal and at least one chalcogen, the at least one transition metal being selected from the sub-groups of the Periodic Table VI b and / or VIII b.
  • Ruthenium chalcogenides are particularly preferably used. Platinum or platinum complexes with elements of subgroup VIII b, in particular platinum-ruthenium complexes, can be used as platinum-containing catalysts.
  • FIG. 1 The structure of the electrically conductive laminated paper is explained using FIG. 1 as an example:
  • Layer (1) is an airy scrim made of long, smooth, high tensile fibers. This layer is produced using the airlaid technique known per se, the fibers being predominantly arranged in the layer plane. Airlaid technology is a so-called aerodynamic fleece layer. The fibers are dispersed in the air by means of air swirling and placed on a support in the form of a pile. An isotropic confusion arises with greater degrees of freedom than a hydrodynamic treatment would result. This layer is characterized by increased dimensional stability Press pressure during the further processing of the layer paper and shows an increased tensile strength. Materials with good gas distribution properties are preferred as the carrier material. This can be carbon paper, fiberglass cloth, metal wire cloth or the like.
  • Layer 2 likewise represents a mixture of long, smooth fibers and is likewise produced by means of airlaid technology, with the fibers being arranged increasingly obliquely and / or increasingly perpendicular to the layer plane due to the application to layer 1.
  • Layer 2 is characterized by a high porosity for gases and contributes to an optimized gas distribution due to the special arrangement of the fibers.
  • the high bending stiffness of this layer is also advantageous.
  • the porosity can be optimally and reproducibly adjusted by varying the process parameters.
  • Layer 3 contains ground fibers with a large surface area and, after further processing, shows an extremely smooth, microporous surface, which ensures good contact between the electrode, catalyst and electrolyte if the layered paper is formed as a gas diffusion electrode.
  • Layer 1, 2 and / or 3 can additionally contain at least one binder and optionally a hydrophobizing agent.
  • the fibrous and / or powdered hydrophobizing agent can contain, for example, fluorinated polymers such as polytetrafluoroethylene. If a fluorinated polymer binder is used, it is not necessary to add a hydrophobizing agent.
  • the fibers acting as binders are applied or mixed into the respective layers 1, 2 and / or 3 as powder and / or fiber by means of technology known per se. These fibers have a thermoplastic area, the adhesive effect of which is used as a binder or glue.
  • the layer paper 3 according to the invention has a very smooth, fine-pored surface due to its layer 3, which is excellently suitable for further coating with polymer films (electrolytes), the layer paper additionally being carbonized, bonded, compacted and smoothed by post-treatment (oxidation, pyrolysis and pressing) is.
  • the invention also has, on the one hand, a layer with high porosity so that the reaction gases can diffuse through to the catalytic layer, and on the other hand, its gradient structure formed after hot pressing under pressure ensures very good electrical conductivity in order to discharge the current generated in the membrane.
  • the dimensional stability given by the structure saves the use of additional reinforcement structures. If the electrode does not contain a catalytically active layer, a membrane coated with a catalyst must be used.
  • the laminated paper according to the invention can also be equipped with a catalytically active layer.
  • the catalytic layer must be gas-permeable, electrically conductive and catalyze the electrochemical reaction.
  • the layered paper according to the invention as described above can be used in a polyelectrolyte membrane fuel cell as a gas diffusion electrode.
  • the method for producing an electrically conductive laminated paper using airlaid technology can be carried out, for example, using a system such as that described in the company brochure M&J Fibretech A / S, 8700 Horsens / Denmark, under "Hybrid plants".
  • the technology itself is in principle already well-known from the non-wovens sector, for example from the field of fiber composites and textile composites, especially nonwovens, a reference to which can also be found at the following internet address http: //www.nonwovens. com / facts / technology / overview.htm be removed.
  • a system with three or more laying heads, which are arranged one behind the other in tandem formation, is used in the production of an electrically conductive laminated paper.
  • the first, second and third layers of the laminated paper are produced by depositing the carbon fibers in an air flow using the airlaid technique, the length of the fibers in the first and second layers being chosen to be greater than that in the third layer.
  • the first layer is formed by depositing carbon fibers with a length of 1 to 12 mm with a fiber cross section of approximately 5 to 15 ⁇ m 2 in an air flow of 1 to 7 m / s and a deposition speed of 0.02 m / s to 5 m / s with a weight per unit area of 5 to 50 g / m 2 on a smooth surface or a support, the fibers being predominantly arranged in the layer plane.
  • the second layer is then subsequently produced with a second laying head under approximately the same operating conditions as the first layer.
  • a second laying head under approximately the same operating conditions as the first layer.
  • the layers lying one on top of the other with a binder introduced into at least one of the layers are covered Pressure and temperature hot pressed, whereby the ground fibers penetrate further into the other layers, decreasing from top to bottom.
  • these layers lose their discrete design and mix with one another in their adjacent areas, so that in addition to the gradient built up by the carbon and grinding fibers, this results in a gradual gradation of the layers within the overall structure and thus a continuous transition from one layer to the other layer.
  • the interstices of the structure are filled with the grinding fibers.
  • the denser packing results, on the one hand, in greater electrical conductivity and, on the other hand, in greater dimensional stability, for example against pressure, as occurs, for example, when assembling a membrane electrolyte unit.
  • the ground fibers also result in a layer of high density and fine pore structure, which has a very smooth surface, which is extremely advantageous for coating with polymer films.
  • the aforementioned binders develop their adhesive properties at temperatures between 80 and 500 ° C., preferably between 120 and 420 ° C., and then combine the different fibers with one another. This creates an inner network that counteracts delamination or warping of the individual layers.
  • the layers laid on top of one another or the already hot-pressed layered paper are subjected to an oxidation, pyrolysis and pressing step by means of known technology for the production of carbon paper, the paper being additionally carbonized, bonded, compressed and smoothed.
  • the thickness of the layered paper is in the range from 30 to 150 ⁇ m, preferably in the range from 50 to 120 ⁇ m.
  • the laminated paper according to the invention can advantageously be used as roll goods in paper processing due to its flexibility and flexural strength. If the electrode does not contain a catalytically active layer, a membrane coated with a catalyst must be used.
  • the laminated paper according to the invention can also be equipped with a catalytically active layer.
  • This layer can be applied, for example, by screen printing, spraying or by means of electrochemical deposition according to the prior art.
  • the claimed laminated paper can be combined with a polymer electrolyte membrane to form a membrane electrode unit in such a way that the smooth side of the laminated paper 1 , which optionally contains the catalytically active layer, is pressed with the electrolyte membrane under a defined temperature and pressure.
  • the layer paper obtained in this way is used as a gas diffusion electrode in fuel cells.

Abstract

The invention relates to electroconductive layered paper with a layer structure consisting of at least one first, one second and one third layer, comprising at least one electroconductive material in the form of carbon fibres. Said first, second and third layers are produced or deposited one after the other in an air stream, using the Airlaid technique. The carbon fibres lie predominantly in the plane of the layer in the first layer (1), increasingly at a slant and/or increasingly perpendicular to the plane of the layer in the second layer (2) and are located on top of the second layer in the third layer (3) in a ground form. The invention also relates to a method for producing electroconductive layered paper and to its use as a gas diffusion electrode in polymer electrolyte membrane fuel cells.

Description

Mehrschichtiges, flexibles, kohlenstoffhaltiges Schichtpapier mit hoher Biegesteifigkeit Multi-layer, flexible, carbon-containing layer paper with high bending stiffness
Die Erfindung betrifft ein elektrisch leitfähiges Schichtpapier mit einem Schichtaufbau aus mindestens einer ersten, einer zweiten und einer dritten Schicht, ein Verfahren zur Herstellung eines solchen elektrisch leitfähigen Schichtpapiers und seine Verwendung als Gasdiffusionselektrode, insbesondere in Polymerelektrolytmembran-Brennstoffzellen.The invention relates to an electrically conductive layer paper with a layer structure of at least a first, a second and a third layer, a method for producing such an electrically conductive layer paper and its use as a gas diffusion electrode, in particular in polymer electrolyte membrane fuel cells.
Brennstoffzellen sind Systeme, die chemische in elektrische Energie umwandeln. PEM-Brennstoffzellen weisen eine zentrale Membran/Elektroden-Einheit auf, die aus einem polymeren, protonenleitenden Festkörperelektrolyt besteht, an dem beidseitig möglichst glatte hydrophobe, poröse Gasdiffusionselektroden mit einer Katalysatorbeschichtung angeordnet sind. Der Elektrode auf der Kathodenseite wird Sauerstoff oder Luft zugeführt, der Elektrode auf der Anodenseite Wasserstoff. An der Anode werden aus dem Brennstoff Protonen unter Freisetzung von Elektronen abgespalten. Die Protonen wandern durch den protonenleitfähigen Elektrolyten zu der Kathode, an der sie mit dem Sauerstoff unter Aufnahme von Elektronen zu Wasser reagieren. Die Elektroden müssen daher eine gute elektrische Leitfähigkeit, eine gute Gasdurchlässigkeit, ausreichende mechanische Stabilität aufweisen, und an der zum Elektrolyten weisenden Seite durch eine glatte Oberfläche einen guten Kontakt zum Elektrolyten gewährleisten.Fuel cells are systems that convert chemical energy into electrical energy. PEM fuel cells have a central membrane / electrode unit, which consists of a polymeric, proton-conducting solid electrolyte, on which the smoothest possible hydrophobic, porous gas diffusion electrodes with a catalyst coating are arranged. Oxygen or air is supplied to the electrode on the cathode side and hydrogen to the electrode on the anode side. Protons are released from the fuel at the anode, releasing electrons. The protons migrate through the proton-conductive electrolyte to the cathode, where they react with the oxygen by taking up electrons to form water. The electrodes must therefore have good electrical conductivity, good gas permeability, sufficient mechanical stability, and ensure good contact with the electrolyte on the side facing the electrolyte due to a smooth surface.
Um die genannten' Anforderungen zu erfüllen, werden in Gasdiffusionselektroden modifizierte Kohlepapiere eingesetzt, d.h. Kohlepapiere, die an der Oberfläche mit Ruß oder Graphit verdichtet sind. Diese Materialien sind aber hinsichtlich Oberflächenglätte und Porengröße nicht ausreichend.In order to meet the above requirements, modified carbon papers are used in gas diffusion electrodes used, ie carbon papers that are compacted on the surface with soot or graphite. However, these materials are not sufficient in terms of surface smoothness and pore size.
Aus der DE-Al-19721952 ist es bekannt,From DE-Al-19721952 it is known
Gasdiffusionsschichten einzusetzen, die aus pulver- oder staubtörmigen elektrisch leitfähigem Material in Verbindung mit Partikeln eines thermoplastischen Binders hergestellt werden. Zur Verbesserung der mechanischen Eigenschaften können diese Schichten noch eine' geringe Menge an carbonisierten Kohlefasern oder Fasern aus Polymeren enthalten. Zur Einstellung der Porosität dieser Gasdiffusionsschichten werden chemische oder physikalische Treibmittel bzw. sogenannte Platzhalter eingesetzt, die zum Teil wieder entfernt werden müssen. Das aufwendige Verfahren setzt eine exakte Reaktionsführung voraus, vor allem auch im Hinblick auf die Ausbildung von Perkolationspfaden.To use gas diffusion layers, which are made of powdery or dusty electrically conductive material in connection with particles of a thermoplastic binder. To improve the mechanical properties of these layers may contain a 'small amount of carbonized carbon fibers or fibers of polymers. Chemical or physical blowing agents or so-called placeholders are used to adjust the porosity of these gas diffusion layers, some of which have to be removed again. The complex process requires precise reaction management, especially with regard to the formation of percolation paths.
Der Erfindung liegt daher die Aufgabe zugrunde, ein elektrisch leitfähiges Schichtpapier bereitzustellen, das eine reproduzierbare Porosität bei gleichzeitiger Formstabilität zur Vermeidung von Deformationen gewährleistet .The invention is therefore based on the object of providing an electrically conductive laminated paper which ensures reproducible porosity with simultaneous dimensional stability in order to avoid deformations.
Zur Lösung dieser Aufgabe sieht die vorliegende Erfindung ein Schichtpapier mit den Merkmalen des Patentanspruchs 1, ein Verfahren zur Herstellung eines solchen Schichtpapiers gemäß Anspruch 16 bzw. die Verwendung dieses Schichtpapiers als Gasdiffusionselektrode in einer Brennstoffzelle nach Anspruch 15 vor.To achieve this object, the present invention provides a laminated paper with the features of claim 1, a method for producing such a laminated paper according to claim 16 and the use of this laminated paper as a gas diffusion electrode in a fuel cell according to claim 15.
Weitere Vorteile des erfindungsgemäßen Schichtpapiers sind neben einer verbesserten elektrischen Leitfähigkeit auch eine optimierte Beschichtbarkeit hinsichtlich der Beschichtung mit Polymerfilmen und eine auf den HerStellprozeß/Einsatzzweck abgestimmte Temperaturstabilität . Die gewünschten Produkteigenschaften können gezielt und vor allem kostengünstig generiert werden.In addition to improved electrical conductivity, further advantages of the laminated paper according to the invention are also an optimized coatability with regard to the coating with polymer films and a matched to the manufacturing process / intended use Temperature stability. The desired product properties can be generated specifically and, above all, inexpensively.
An das Schichtpapier wird außerdem noch folgende Anforderung gestellt: es muß eine ausreichende Zugfestigkeit neben einer hohen Biegesteifigkeit und Rollbarkeit für die papiertechnische Verarbeitung in einem kontinuierlichen oder diskontinuierlichen Verahren aufweisen.The layer paper is also subject to the following requirement: it must have sufficient tensile strength in addition to high flexural strength and rollability for paper processing in a continuous or discontinuous process.
Die weiteren Ansprüche enthalten vorteilhafte Ausgestaltungen der Erfindung.The further claims contain advantageous embodiments of the invention.
Fig. 1 zeigt schematisch einen möglichen Aufbau des erfindungsgemäßen Schichtpapiers .1 schematically shows a possible structure of the laminated paper according to the invention.
Das elektrisch leitfähige Schichtpapier gemäß der Erfindung besteht aus einem Schichtaufbau aus mindestens einer ersten, einer zweiten und einer dritten Schicht, die sich in Ihrer Funktionalität deutlich unterscheiden. Gesteuert wird dies durch die Geometrie (Länge etc.), die Morphologie (Glattheit, Kräuselung etc.) und die chemische Beschaffenheit ( Temperatur- beständigkeit,The electrically conductive layer paper according to the invention consists of a layer structure of at least a first, a second and a third layer, which differ significantly in their functionality. This is controlled by the geometry (length, etc.), the morphology (smoothness, crimp, etc.) and the chemical nature (temperature resistance,
Widerstandsfähigkeit etc.) der Fasern und letzlich durch die Herstellungstechnik des Papiers (Airlaid-Technik, Heißpressen, Nachbehandlungen etc.). Jede dieser Schichten umfaßt mindestens ein elektrisch leitfähiges Material in Form von Kohlefasern, wobei die erste, zweite und dritte Schicht nacheinander mittels Airlaid-Technik in einem Luftstrom hergestellt oder abgelegt sind. Die Kohlefasern in der ersten Schicht 1 sind überwiegend in der Schichtebene, die in der zweiten Schicht 2 zunehmend schräg und/oder zunehmend senkrecht zur Schichtebene und die in der dritten Schicht 3 in gemahlener Form oberhalb der zweiten Schicht angeordnet. Die erste und die zweite Schicht enthalten lange, glatte Kohlenstoff- oder kohlenstoffhaltige Fasern einer Länge im Bereich von ca. 1 mm und 12 mm, wobei die erste Schicht 1 ein Flächengewicht von mindestens 5 g/m2 und höchstens 50 g/m2 aufweist. Die dritte Schicht weist dagegen gemahlene Kohlenstoff- oder kohlenstoffhaltige Fasern einer Länge im Bereich von kleiner 0,5 mm auf. Das elektrisch leitfähige Schichtpapier enthält in der ersten Schicht 1 und/oder zweiten Schicht 2 und/oder dritten Schicht 3 ein Bindemittel aus thermoplastischem Material. Der Anteil des Binders kann bezogen auf das gesamte Schichtpapier oder auf die jeweilige Schicht mindestens 0 Gewichtsprozent bis höchstens 30 Gewichtsprozent, bevorzugt mindestens 2 bis höchstens 20, besonders bevorzugt mindestens 5 bis höchstens 15 Gewichtsprozent betragen. Als Binder kommen vorzugsweise Polymere aus Polyethylen und/oder polyethylenhaltigen Polymeren, aus Polypropylen und/oder polypropylenhaltigen Polymeren, aus Polysulfon und/oder polysulfonhaltigen Polymeren, aus Polyethylenterephthalat und/oder polyethylenterephthalathaltigen Polymeren, aus Polyamid und/oder polyamidhaltigen Polymeren, fluorierte Polymere, insbesondere Polytetrafluorethylen (PTFE) und/oder Bikomponentenfaserri und/oder Gemische aus mehreren verschiedenen Bindern in Betracht.Resilience etc.) of the fibers and ultimately through the manufacturing technique of the paper (airlaid technique, hot pressing, post-treatments etc.). Each of these layers comprises at least one electrically conductive material in the form of carbon fibers, the first, second and third layers being successively produced or deposited in an air stream by means of airlaid technology. The carbon fibers in the first layer 1 are predominantly arranged in the layer plane, those in the second layer 2 increasingly obliquely and / or increasingly perpendicular to the layer plane, and those in the third layer 3 in ground form above the second layer. The first and the second layer contain long, smooth carbon- or carbon-containing fibers with a length in the range of approximately 1 mm and 12 mm, the first layer 1 having a basis weight of at least 5 g / m 2 and has a maximum of 50 g / m 2 . The third layer, on the other hand, has ground carbon or carbon-containing fibers with a length in the range of less than 0.5 mm. The electrically conductive layer paper contains a binder made of thermoplastic material in the first layer 1 and / or second layer 2 and / or third layer 3. The proportion of the binder, based on the total layer paper or on the respective layer, can be at least 0% by weight to at most 30% by weight, preferably at least 2 to at most 20, particularly preferably at least 5 to at most 15% by weight. Polymers made from polyethylene and / or polyethylene-containing polymers, from polypropylene and / or polypropylene-containing polymers, from polysulfone and / or polysulfone-containing polymers, from polyethylene terephthalate and / or polyethylene terephthalate-containing polymers, from polyamide and / or polyamide-containing polymers, fluorinated polymers, in particular polytetrafluoroethylene, are preferably used as binders (PTFE) and / or bicomponent fibers and / or mixtures of several different binders.
Bei Verwendung von Bikomponentenfasern ist die geometrische Anordnung vom Typ Kern/Mantel (C/C) bevorzugt. In einer vorzugsweisen Ausführungsform wird eine Bikomponentenfaser auf Polyesterbasis verwendet, beispielhaft sei an dieser Stelle die Handelsmarke Trevira des Typs XXX der Fa. Höchst erwähnt.If bicomponent fibers are used, the geometric arrangement of the core / sheath (C / C) type is preferred. In a preferred embodiment, a bicomponent fiber based on polyester is used, for example the Trevira brand XXX from Höchst is mentioned here.
Besonders bevorzugt werden jedoch Bindefasern des Aramid- Typs, beispielsweise die Handelsmarke Kevlar des Typs XXX der Fa. Du Pont oder Twaron der Fa. Nippon Aramid Yugen (PPTA (Poly (p-Phenylenterephthalamid) ) eingesetzt. Als besonders vorteilhaft hat sich auch die Verwendung von Bindefasern aus einem fluoriertem Polymer herausgestellt, insbesondere PTFE-Fasern. Das Bindemittel ist als Pulver und/oder Faser in eine oder mehrere Schichten 1, 2 und/oder 3 eingemischt oder aufgebracht, z. B. aufgesprüht. Erfindungsgemäß kann das Schichtpapier durch mindestens ein fluoriertes Polymer hydrophobiert sein, wobei das fluorierte Polymer teil- und/oder perfluoriert und ein Thermoplast sein kann. Besonders bevorzugt wird als fluoriertes Polymer Polytetrafluorethylen verwendet. Das Schichtpapier kann im weiteren mit einer katalytisch aktiven Schicht ausgerüstet sein. Als Katalysator bzw. katalysatorhaltige Materialien können geträgerte und ungeträgerte Katalysatoren eingesetzt werden. Es finden platinhaltige und platinfreie Katalysatoren Anwendung. Als platinfreie Katalysatoren sind solche bevorzugt, die mindestens ein Übergangsmetall und mindestens ein Chalkogen enthalten oder daraus bestehen, wobei das mindestens eine Übergangsmetall aus den Nebengruppen des Periodensystems VI b und/oder VIII b ausgewählt ist. Besonders bevorzugt werden Rutheniumchalkogenide eingesetzt. Als platinhaltige Katalysatoren können beispielsweise Platin oder Platinkomplexe mit Elementen der Nebengruppe VIII b, insbesondere Platin-Ruthenium-Komplexe, Einsatz finden.However, particularly preferred are binding fibers of the aramid type, for example the trademark Kevlar of type XXX from Du Pont or Twaron from Nippon Aramid Yugen (PPTA (poly (p-phenylene terephthalamide)). The use has also been particularly advantageous exposed of binding fibers from a fluorinated polymer, in particular PTFE fibers. The binder is mixed or applied as a powder and / or fiber in one or more layers 1, 2 and / or 3, e.g. B. sprayed. According to the invention, the layered paper can be hydrophobized by at least one fluorinated polymer, the fluorinated polymer being partially and / or perfluorinated and being a thermoplastic. Polytetrafluoroethylene is particularly preferably used as the fluorinated polymer. The layered paper can also be equipped with a catalytically active layer. Supported and unsupported catalysts can be used as catalyst or catalyst-containing materials. Platinum-containing and platinum-free catalysts are used. Preferred platinum-free catalysts are those which contain or consist of at least one transition metal and at least one chalcogen, the at least one transition metal being selected from the sub-groups of the Periodic Table VI b and / or VIII b. Ruthenium chalcogenides are particularly preferably used. Platinum or platinum complexes with elements of subgroup VIII b, in particular platinum-ruthenium complexes, can be used as platinum-containing catalysts.
Der Aufbau des elektrisch leitfähigen Schichtpapiers wird anhand Fig. 1 beispielhaft erläutert:The structure of the electrically conductive laminated paper is explained using FIG. 1 as an example:
Schicht (1) stellt ein luftiges Gelege aus langen, glatten, zugfesten großen Fasern dar. Diese Schicht wird mittels der an sich bekannten Airlaid-Technik hergestellt, wobei sich die Fasern überwiegend in der Schichtebene anordnen. Bei der Airlaid-Technik handelt es sich um eine sogenannte aerodynamische Vlieslegung. Die Fasern werden mittels Luftverwirbelung in der Luft fein verteilt und in Form eines Flores auf einen Träger abgelegt. Es entsteht eine isotrope Wirrlage mit größeren Freiheitsgraden als es eine hydrodynamische Behandlung ergeben würde. Diese Schicht zeichnet sich durch eine erhöhte Formstabilität gegen Preßdruck bei der Weiterverarbeitung des Schichtpapiers aus und zeigt eine erhöhte Zugfestigkeit. Als Trägermaterial sind Materialien mit guten Gasverteilungseigenschaften bevorzugt. Dies kann ein Kohlepapier, Glasfasergewebe, Metalldrahtgewebe oder Vergleichbares sein.Layer (1) is an airy scrim made of long, smooth, high tensile fibers. This layer is produced using the airlaid technique known per se, the fibers being predominantly arranged in the layer plane. Airlaid technology is a so-called aerodynamic fleece layer. The fibers are dispersed in the air by means of air swirling and placed on a support in the form of a pile. An isotropic confusion arises with greater degrees of freedom than a hydrodynamic treatment would result. This layer is characterized by increased dimensional stability Press pressure during the further processing of the layer paper and shows an increased tensile strength. Materials with good gas distribution properties are preferred as the carrier material. This can be carbon paper, fiberglass cloth, metal wire cloth or the like.
Schicht 2 stellt ebenfalls eine Mischung aus langen, glatten Fasern dar und wird gleichermaßen mittels Airlaidtechnik hergestellt, wobei sich hier durch das Aufbringen auf Schicht 1 die Fasern zunehmend schräg und/oder zunehmend senkrecht zur Schichtebene anordnen. Schicht 2 zeichnet sich durch eine hohe Porosität für Gase aus und trägt durch die spezielle Anordnung der Fasern zu einer optimierten Gasverteilung bei. Vorteilhaft ist außerdem die hohe Biegesteifigkeit dieser Schicht. Durch Variation der Verfahrensparameter läßt sich die Porosität optimal und reproduzierbar einstellen.Layer 2 likewise represents a mixture of long, smooth fibers and is likewise produced by means of airlaid technology, with the fibers being arranged increasingly obliquely and / or increasingly perpendicular to the layer plane due to the application to layer 1. Layer 2 is characterized by a high porosity for gases and contributes to an optimized gas distribution due to the special arrangement of the fibers. The high bending stiffness of this layer is also advantageous. The porosity can be optimally and reproducibly adjusted by varying the process parameters.
Schicht 3 enthält gemahlene Fasern mit großer Oberfläche und zeigt nach der Weiterverarbeitung eine äußerst glatte, mikroporöse Oberfläche, die im Falle der Ausbildung des Schichtpapiers als Gasdiffusionselektrode für einen guten Kontakt zwischen Elektrode, Katalysator und Elektrolyt sorgt.Layer 3 contains ground fibers with a large surface area and, after further processing, shows an extremely smooth, microporous surface, which ensures good contact between the electrode, catalyst and electrolyte if the layered paper is formed as a gas diffusion electrode.
Schicht 1, 2 und/oder 3 können noch zusätzlich mindestens ein Bindemittel und wahlweise ein Hydrophobierungsmittel enthalten. Das faserförmige und/oder pulverförmige Hydrophobierungsmittel kann z.B. fluorierte Polymere wie Polytetrafluorethylen enthalten. Bei Verwendung eines Bindemittels aus fluoriertem Polymer kann die Zugabe eines Hydrophobierungsmittels entfallen. Die als Binder wirkenden Fasern sind als Pulver und/oder Faser mittels an sich bekannter Technik in die jeweilige Schicht 1, 2 und/oder 3 aufgebracht oder eingemischt. Diese Fasern haben einen thermoplastischen Bereich, dessen klebende Wirkung als Bindemittel oder Kleber ausgenützt wird. Das erfindungsgemäße Schichtpapier besitzt durch seine Schicht 3 eine sehr glatte, feinporige Oberfläche, die für eine weitere Beschichtung mit Polymerfilmen (Elektrolyten) vorzüglich geeignet ist, wobei das Schichtpapier durch eine Nachbehandlung (Oxidieren, Pyrolysieren und Pressen) zusätzlich carbonisiert, verbunden, verdichtet und geglättet ist. Die Erfindung weist außerdem zum einen eine Schicht mit hoher Porosität auf, damit die Reaktionsgase zur katalytischen Schicht durchdiffundieren können, zum anderen gewährleistet ihre nach dem Heißverpressen unter Druck ausgebildete Gradientenstruktur eine sehr gute elektrische Leitfähigkeit, um den in der Membran erzeugten Strom abzuleiten. Die durch den Aufbau vorgegebene Formstabilität erspart den Einsatz weiterer Verstärkungsgerüste. Sofern die Elektrode keine katalytisch aktive Schicht enthält, muß eine mit Katalysator beschichtete Membran verwendet werden. Alternativ kann jedoch auch das erfindungsgemäße Schichtpapier mit einer katalytisch aktiven Schicht ausgerüstet sein. Die katalytische Schicht muß gasdurchlässig sein, elektrisch leitfähig sein und die elektrochemische Reaktion katalysieren. Das wie vorstehend beschriebene erfindungsgemäße Schichtpapier kann in einer Polyelektrolytmembran-Brennstoffzelle als Gasdiffusionselektrode eingesetzt werden.Layer 1, 2 and / or 3 can additionally contain at least one binder and optionally a hydrophobizing agent. The fibrous and / or powdered hydrophobizing agent can contain, for example, fluorinated polymers such as polytetrafluoroethylene. If a fluorinated polymer binder is used, it is not necessary to add a hydrophobizing agent. The fibers acting as binders are applied or mixed into the respective layers 1, 2 and / or 3 as powder and / or fiber by means of technology known per se. These fibers have a thermoplastic area, the adhesive effect of which is used as a binder or glue. The layer paper 3 according to the invention has a very smooth, fine-pored surface due to its layer 3, which is excellently suitable for further coating with polymer films (electrolytes), the layer paper additionally being carbonized, bonded, compacted and smoothed by post-treatment (oxidation, pyrolysis and pressing) is. The invention also has, on the one hand, a layer with high porosity so that the reaction gases can diffuse through to the catalytic layer, and on the other hand, its gradient structure formed after hot pressing under pressure ensures very good electrical conductivity in order to discharge the current generated in the membrane. The dimensional stability given by the structure saves the use of additional reinforcement structures. If the electrode does not contain a catalytically active layer, a membrane coated with a catalyst must be used. Alternatively, however, the laminated paper according to the invention can also be equipped with a catalytically active layer. The catalytic layer must be gas-permeable, electrically conductive and catalyze the electrochemical reaction. The layered paper according to the invention as described above can be used in a polyelectrolyte membrane fuel cell as a gas diffusion electrode.
Das Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers mittels Airlaid-Technik kann beispielsweise mit einer Anlage, wie sie in dem Firmenprospekt M&J Fibretech A/S, 8700 Horsens/Dänemark, unter „Hybrid plants" beschrieben ist, durchgeführt werden. Die Technik selbst ist prinzipiell bereits aus dem Bereich Non-wovens, d.h. beispielsweise aus dem Bereich der Faserverbundstoffe und Textilverbundstoffe, insbesondere Vliesstoffe, hinreichend bekannt. Ein Hinweis hierauf kann auch der nachfolgend angegebenen Internetadresse http: //www.nonwovens . com/facts/technology/overview.htm entnommen werden. Bei der Herstellung eines elektrisch leitfähigen Schichtpapiers wird eine Anlage mit drei oder mehr Legeköpfen, die in Tandem-Formation hintereinander angeordnet sind, verwendet. Die erste, zweite und dritte Schicht des Schichtpapiers wird durch Ablegen der Kohlefasern in einem Luftstrom mittels Airlaid-Technik hergestellt, wobei die Länge der Fasern in der ersten und zweiten Schicht größer als die in der dritten Schicht gewählt ist. Der Bildung der ersten Schicht erfolgt durch Ablegen von Kohlefasern einer Länge von 1 bis 12 mm mit einem Faserquerschnitt von etwa 5 bis 15 μm2 in einem Luftstrom von 1 bis 7 m/s und einer Ablegegeschwindigkeit von 0,02 m/s bis 5 m/s mit einem Flächengewicht von 5 bis 50 g/m2 auf einer glatten Unterlage bzw. einem Träger, wobei sich die Fasern überwiegend in der Schichtebene anordnen. Die zweite Schicht wird nun anschließend mit einem zweiten Legekopf unter annähernd den gleichen Betriebsbedingungen wie die erste Schicht hergestellt. Überraschenderweise wurde festgestellt, daß hier eine zunehmende Orientierung der Fasern schräg und/oder senkrecht zur Schichtebene stattfindet, wobei sich ein kontinuierlicher, gradierter Übergang zwischen den beiden benachbarten Schichten durch eine lokale Faserorientierung ausbildet, der für einen ersten Gradienten hinsichtlich der morphologischen Eigenschaften des Schichtpapiers sorgt. Ein darauffolgender dritter Legekopf legt bei etwa denselben Betriebsbedingungen, die bei der Herstellung der beiden ersten Schichten bereits verwandt wurden, gemahlene Fasern einer Länge kleiner als 0,5 mm auf die zweite Schicht ab. Diese sinken bereits bei diesem Verfahrensschritt teilweise in die darunterliegenden Schichten ein und stellen auf diese Weise wiederum einen gradierten, kontinuierlichen Übergang hinsichtlich der morphologischen Eigenschaften des Schichtpapiers dar.The method for producing an electrically conductive laminated paper using airlaid technology can be carried out, for example, using a system such as that described in the company brochure M&J Fibretech A / S, 8700 Horsens / Denmark, under "Hybrid plants". The technology itself is in principle already well-known from the non-wovens sector, for example from the field of fiber composites and textile composites, especially nonwovens, a reference to which can also be found at the following internet address http: //www.nonwovens. com / facts / technology / overview.htm be removed. A system with three or more laying heads, which are arranged one behind the other in tandem formation, is used in the production of an electrically conductive laminated paper. The first, second and third layers of the laminated paper are produced by depositing the carbon fibers in an air flow using the airlaid technique, the length of the fibers in the first and second layers being chosen to be greater than that in the third layer. The first layer is formed by depositing carbon fibers with a length of 1 to 12 mm with a fiber cross section of approximately 5 to 15 μm 2 in an air flow of 1 to 7 m / s and a deposition speed of 0.02 m / s to 5 m / s with a weight per unit area of 5 to 50 g / m 2 on a smooth surface or a support, the fibers being predominantly arranged in the layer plane. The second layer is then subsequently produced with a second laying head under approximately the same operating conditions as the first layer. Surprisingly, it was found that there is an increasing orientation of the fibers obliquely and / or perpendicular to the layer plane, with a continuous, graded transition between the two adjacent layers being formed by a local fiber orientation, which provides a first gradient with regard to the morphological properties of the layer paper , A subsequent third laying head deposits ground fibers with a length of less than 0.5 mm on the second layer under roughly the same operating conditions that were already used in the production of the first two layers. Already during this process step, these partially sink into the layers below and in this way in turn represent a graded, continuous transition with regard to the morphological properties of the layer paper.
Die aufeinanderliegenden Schichten mit einem in mindestens eine der Schichten eingebrachten Bindemittel werden unter Druck und Temperatur heißverpreßt, wobei die gemahlenen Fasern in die anderen Schichten weiter eindringen, von oben nach unten abnehmend. Durch das Herstellverfahren verlieren diese Schichten ihre diskrete Ausbildung und vermischen sich in ihren angrenzenden Bereichen miteinander, so daß zusätzlich zu dem durch die Kohle- und die Mahlfasern aufgebauten Gradienten eine graduelle Abstufung der Schichten innerhalb des Gesamtaufbaus daraus resultiert und somit ein kontinuierlicher Übergang von einer Schicht zur anderen Schicht geschaffen wird. Die Zwischenräume des Aufbaus werden durch die Mahlfasern gefüllt. Durch die dichtere Packung resultiert zum einen eine größere elektrische Leitfähigkeit und zum anderen eine größere Formstabilität z.B. gegen Preßdruck, wie er beispielsweise beim Zusammenbau einer Membranelektrolyteinheit auftritt. Die gemahlenen Fasern ergeben nach dem Preßschritt außerdem eine Schicht hoher Dichte und feiner Porenstruktur, die eine sehr glatte Oberfläche aufweist, die sich äußerst vorteilhaft zur Beschichtung mit Polymerfilmen eignet. Die vorgenannten Binder entfalten gleichzeitig bei Temperaturen zwischen 80 und 500°C, bevorzugt zwischen 120 und 420°C ihre klebende Wirkung und verbinden dann die verschiedenen Fasern miteinander. Hierdurch bildet sich ein inneres Netz, das einer Delaminierung oder Verwerfung der einzelnen Schichten gezielt entgegenwirkt.The layers lying one on top of the other with a binder introduced into at least one of the layers are covered Pressure and temperature hot pressed, whereby the ground fibers penetrate further into the other layers, decreasing from top to bottom. As a result of the manufacturing process, these layers lose their discrete design and mix with one another in their adjacent areas, so that in addition to the gradient built up by the carbon and grinding fibers, this results in a gradual gradation of the layers within the overall structure and thus a continuous transition from one layer to the other layer. The interstices of the structure are filled with the grinding fibers. The denser packing results, on the one hand, in greater electrical conductivity and, on the other hand, in greater dimensional stability, for example against pressure, as occurs, for example, when assembling a membrane electrolyte unit. After the pressing step, the ground fibers also result in a layer of high density and fine pore structure, which has a very smooth surface, which is extremely advantageous for coating with polymer films. The aforementioned binders develop their adhesive properties at temperatures between 80 and 500 ° C., preferably between 120 and 420 ° C., and then combine the different fibers with one another. This creates an inner network that counteracts delamination or warping of the individual layers.
Gleichzeitig oder als Nachbehandlung in einem weiteren Arbeitsschritt werden die aufeinandergelegten Schichten bzw. das bereits heißverpreßte Schichtpapier mittels bekannter Technik zur Herstellung von Kohlepapieren einem Oxidations-, Pyrolyse- und Preßschritt unterworfen, wobei das Papier zusätzlich carbonisiert, verbunden, verdichtet und geglättet wird. Die Dicke des Schichtpapiers liegt im Bereich von 30 bis 150 μm, bevorzugt im Bereich von 50 bis 120 μm. Das erfindungsgemäße Schichtpapier läßt sich vorteilhafterweise aufgrund seiner Flexibilität und Biegefestigkeit als Rollenware in der papiertechnischen Verarbeitung einsetzen. Sofern die Elektrode keine katalytisch aktive Schicht enthält, muß eine mit Katalysator beschichtete Membran verwendet werden. Alternativ kann jedoch auch das erfindungsgemäße Schichtpapier mit einer katalytisch aktiven Schicht ausgerüstet sein. Das Aufbringen dieser Schicht kann z.B. durch Siebdruck, Aufsprühen oder mittels elektrochemischer Abscheidung gemäß dem Stand der Technik erfolgen. Das beanspruchte Schichtpapier kann mit einer Polymerelektrolytmembran zu einer Membran-Elektrodeneinheit kombiniert werden und zwar dergestalt, daß die glatte Seite des Schichtpapiers1, das gegebenenfalls die katalytisch aktive Schicht enthält, unter definierter Temperatur und definiertem Druck mit der Elektrolytmembran verpreßt wird. Das so erhaltene Schichtpapier findet als Gasdiffusionselektrode in Brennstoffzellen Verwendung. Simultaneously or as a post-treatment in a further working step, the layers laid on top of one another or the already hot-pressed layered paper are subjected to an oxidation, pyrolysis and pressing step by means of known technology for the production of carbon paper, the paper being additionally carbonized, bonded, compressed and smoothed. The thickness of the layered paper is in the range from 30 to 150 μm, preferably in the range from 50 to 120 μm. The laminated paper according to the invention can advantageously be used as roll goods in paper processing due to its flexibility and flexural strength. If the electrode does not contain a catalytically active layer, a membrane coated with a catalyst must be used. Alternatively, however, the laminated paper according to the invention can also be equipped with a catalytically active layer. This layer can be applied, for example, by screen printing, spraying or by means of electrochemical deposition according to the prior art. The claimed laminated paper can be combined with a polymer electrolyte membrane to form a membrane electrode unit in such a way that the smooth side of the laminated paper 1 , which optionally contains the catalytically active layer, is pressed with the electrolyte membrane under a defined temperature and pressure. The layer paper obtained in this way is used as a gas diffusion electrode in fuel cells.

Claims

Patentansprüche claims
1. Elektrisch leitfähiges Schichtpapier mit einem Schichtaufbau aus mindestens einer ersten, einer zweiten und einer dritten Schicht, umfassend mindestens ein elektrisch leitfähiges Material in Form von Kohlefasern, wobei die erste, zweite und dritte Schicht nacheinander mittels Airlaid-Technik in einem Luftstrom hergestellt oder abgelegt sind und die Kohlefasern in der ersten Schicht 1 überwiegend in der Schichtebene, in der zweiten Schicht 2 zunehmend schräg und/oder zunehmend senkrecht zur Schichtebene und in der dritten Schicht 3 in gemahlener Form oberhalb der zweiten Schicht angeordnet sind.1. Electrically conductive layer paper with a layer structure of at least a first, a second and a third layer, comprising at least one electrically conductive material in the form of carbon fibers, the first, second and third layers being produced or deposited in succession by means of airlaid technology in an air stream and the carbon fibers in the first layer 1 are predominantly arranged in the layer plane, in the second layer 2 increasingly obliquely and / or increasingly perpendicular to the layer plane and in the third layer 3 in ground form above the second layer.
2. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß die erste Schicht 1 und die zweite Schicht 2 glatte Kohlenstoff- und/oder kohlenstoffhaltige Fasern einer Länge im Bereich von ca. 1 mm und 12 mm enthält.2. Electrically conductive layer paper according to claim 1, characterized in that the first layer 1 and the second layer 2 contains smooth carbon and / or carbon-containing fibers with a length in the range of approximately 1 mm and 12 mm.
3. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß die dritte Schicht 3 gemahlene Kohlenstoff- und/oder kohlenstoffhaltige Fasern einer Länge im Bereich von kleiner 0,5 mm aufweist.3. Electrically conductive laminated paper according to claim 1, characterized in that the third layer 3 has ground carbon and / or carbon-containing fibers with a length in the range of less than 0.5 mm.
4. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß die erste Schicht 1 ein Flächengewicht von mindestens 5 g/m2 und höchstens 50 g/m2 aufweist. 4. Electrically conductive laminated paper according to claim 1, characterized in that the first layer 1 has a basis weight of at least 5 g / m 2 and at most 50 g / m 2 .
5. Elektrisch leitfähiges Schichtpapier nach Anspruch 1 dadurch gekennzeichnet, daß in der ersten Schicht 1 und/oder zweiten Schicht 2 und/oder dritten Schicht 3 ein Bindemittel enthalten ist.5. Electrically conductive layer paper according to claim 1, characterized in that a binder is contained in the first layer 1 and / or second layer 2 and / or third layer 3.
6. Elektrisch leitfähiges Schichtpapier nach Anspruch 5, dadurch gekennzeichnet, daß das Bindemittel ein thermoplastisches Material ist.6. Electrically conductive laminated paper according to claim 5, characterized in that the binder is a thermoplastic material.
7. Elektrisch leitfähiges Schichtpapier nach Anspruch 6, dadurch gekennzeichnet, daß das thermoplastische Material Polyethylen, Polypropylen, Polysulfon, Polyethylenterephthalat, Polyamid, fluorierter Thermoplast und/oder Bikomponentenfasern enthält.7. Electrically conductive laminated paper according to claim 6, characterized in that the thermoplastic material contains polyethylene, polypropylene, polysulfone, polyethylene terephthalate, polyamide, fluorinated thermoplastic and / or bicomponent fibers.
8. Elektrisch leitfähiges Schichtpapier nach Anspruch 7, dadurch gekennzeichnet, daß die geometrische Anordnung der Bikomponenten-Fasern vorzugsweise vom Typ Kern/Mantel (C/C) ist.8. Electrically conductive laminated paper according to claim 7, characterized in that the geometric arrangement of the bicomponent fibers is preferably of the core / sheath type (C / C).
9. Elektrisch leitfähiges Schichtpapier nach Anspruch 8, dadurch gekennzeichnet, daß die Bikomponentenfaser bevorzugt auf Polyesterbasis ist.9. Electrically conductive layer paper according to claim 8, characterized in that the bicomponent fiber is preferably based on polyester.
10. Elektrisch leitfähiges Schichtpapier nach Anspruch 5, dadurch gekennzeichnet, daß das Bindemittel als Pulver und/oder Faser in eine oder mehrere Schichten 1, 2 und/oder 3 eingemischt oder aufgebracht ist.10. Electrically conductive layer paper according to claim 5, characterized in that the binder is mixed or applied as a powder and / or fiber in one or more layers 1, 2 and / or 3.
11. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß das Schichtpapier durch ein fluoriertes Polymer hydrophobiert ist.11. Electrically conductive layer paper according to claim 1, characterized in that the layer paper is hydrophobized by a fluorinated polymer.
12. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß das Schichtpapier mit einer katalytisch aktiven Schicht ausgerüstet ist.12. Electrically conductive laminated paper according to claim 1, characterized in that that the layer paper is equipped with a catalytically active layer.
13. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß in dem Schichtpapier nach dem Heißverpressen unter Druck eine gradientenartige Struktur ausbildet ist.13. Electrically conductive layer paper according to claim 1, characterized in that a gradient-like structure is formed in the layer paper after hot pressing under pressure.
14. Elektrisch leitfähiges Schichtpapier nach Anspruch 1, dadurch gekennzeichnet, daß das Schichtpapier durch eine Nachbehandlung ( Oxidieren, Pyrolysieren und Pressen) zusätzlich carbonisiert, verbunden, verdichtet und geglättet ist.14. Electrically conductive laminated paper according to claim 1, characterized in that the laminated paper is additionally carbonized, bonded, compressed and smoothed by an aftertreatment (oxidizing, pyrolyzing and pressing).
15. Verwendung des elektrisch leitfähigen Schichtpapiers nach mindestens einem der Ansprüche 1 bis 14 als Gasdiffusionselektrode für eine Polymerelektrolytmembran- Brennstoffzelle.15. Use of the electrically conductive layer paper according to at least one of claims 1 to 14 as a gas diffusion electrode for a polymer electrolyte membrane fuel cell.
16. Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers nach einem der Ansprüche 1 bis 14, bei dem die erste, zweite und dritte Schicht durch Ablegen von Kohlefasern in einem Luftstrom mittels Airlaid-Technik erfolgt, wobei die Länge der Fasern in der ersten und zweiten Schicht größer als die der dritten Schicht gewählt ist .16. A method for producing an electrically conductive laminated paper according to any one of claims 1 to 14, wherein the first, second and third layers are carried out by depositing carbon fibers in an air stream using airlaid technology, the length of the fibers in the first and second layers is larger than that of the third layer.
17. Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers nach Anspruch 16, bei dem die erste Schicht durch Ablegen von Kohlefasern einer Länge von 1 bis 12 mm in einem Luftstrom von 1 bis 7 m/s und einer Ablegegeschwindigkeit von 0,02 m/s bis 5 m/s mit einem Flächengewicht von 5 bis 50 g/m2 auf einer glatten Unterlage erfolgt .17. A method for producing an electrically conductive laminated paper according to claim 16, wherein the first layer by depositing carbon fibers of a length of 1 to 12 mm in an air flow of 1 to 7 m / s and a deposition speed of 0.02 m / s to 5 m / s with a weight per unit area of 5 to 50 g / m 2 on a smooth surface.
18. Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers gemäß Anspruch 17, bei dem die zweite Schicht unter annähernd gleichen Betriebsbedingungen wie die erste hergestellt wird.18. A method for producing an electrically conductive laminated paper according to claim 17, in which the second layer is produced under approximately the same operating conditions as the first.
19. Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers gemäß Anspruch 18, wobei die Faserlänge bei der Herstellung der dritten Schicht weniger als 0,5 mm beträgt und wobei die dritte Schicht unter annähernd gleichen Betriebsbedingungen wie die ersten beiden Schichten hergestellt wird.19. A method for producing an electrically conductive layer paper according to claim 18, wherein the fiber length in the production of the third layer is less than 0.5 mm and wherein the third layer is produced under approximately the same operating conditions as the first two layers.
20. Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers gemäß Anspruch 19, wobei nach dem Herstellen der drei Schichten der Schichtaufbau unter Druck und Temperatur mit einem in mindestens eine der Schichten eingebrachten Bindemittel verpresst wird.20. A method for producing an electrically conductive layer paper according to claim 19, wherein after the three layers have been produced, the layer structure is pressed under pressure and temperature with a binder introduced into at least one of the layers.
21. Verfahren zur Herstellung eines elektrisch leitfähigen Schichtpapiers nach Anspruch 20, wobei in dem Schichtaufbau nach dem Heißverpressen unter Druck eine gradientenartige Struktur erzeugt wird. 21. A method for producing an electrically conductive laminated paper according to claim 20, wherein a gradient-like structure is produced in the layer structure after hot pressing under pressure.
EP01983547A 2000-10-21 2001-10-13 Multilayered, flexible paper containing carbon, with good flexural strength Withdrawn EP1336003A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2000152223 DE10052223A1 (en) 2000-10-21 2000-10-21 Multi-layer, flexible, carbon-containing layer paper with high bending stiffness
DE10052223 2000-10-21
PCT/EP2001/011859 WO2002034989A1 (en) 2000-10-21 2001-10-13 Multilayered, flexible paper containing carbon, with good flexural strength

Publications (1)

Publication Number Publication Date
EP1336003A1 true EP1336003A1 (en) 2003-08-20

Family

ID=7660556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01983547A Withdrawn EP1336003A1 (en) 2000-10-21 2001-10-13 Multilayered, flexible paper containing carbon, with good flexural strength

Country Status (5)

Country Link
US (1) US20040053112A1 (en)
EP (1) EP1336003A1 (en)
CA (1) CA2426355A1 (en)
DE (1) DE10052223A1 (en)
WO (1) WO2002034989A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10247363A1 (en) * 2002-10-10 2004-04-22 Daimlerchrysler Ag Process for optimizing the conductivity of a carbon fiber fleece bound using a binder used in polymer electrolyte fuel cells comprises introducing conducting particles into the binder
DE10260501A1 (en) * 2002-12-21 2004-07-01 Daimlerchrysler Ag Gas diffusion electrode for a fuel cell with a polymer electrolyte membrane has a layer containing hydrophilic non-hollow fibers for controlling the cross-diffusion of water
WO2005027244A2 (en) * 2003-09-10 2005-03-24 Hollingsworth & Vose Company Fuel cell gas diffusion layer
JP4530892B2 (en) * 2005-03-28 2010-08-25 三洋電機株式会社 Polymer electrolyte fuel cell
US20080199749A1 (en) * 2007-02-16 2008-08-21 Conocophillilps Company Organic anodes for hydrocarbon fuel cells
JP5213499B2 (en) * 2008-04-01 2013-06-19 新日鐵住金株式会社 Fuel cell
DE102013106457B3 (en) * 2013-06-20 2014-09-04 Grimm-Schirp Gs Technologie Gmbh Carbon fiber random web production process and three-dimensional nonwoven production process as well as carbon fiber random web manufacturing arrangement and nonwoven fabric
DE102015215381A1 (en) 2015-08-12 2017-02-16 Volkswagen Ag Membrane electrode unit for a fuel cell and fuel cell
DE102016210729A1 (en) * 2016-06-16 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Battery component and galvanic element with porous carbon fiber layer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1671713B2 (en) * 1967-09-16 1976-07-29 Battelle-Institut E.V., 6000 Frankfurt METHOD FOR THE PRODUCTION OF POROES, ELECTRODES FOR FUEL ELEMENTS, COMPOSING A HYDROPHILE AND A HYDROPHOBIC LAYER
US4017663A (en) * 1974-02-15 1977-04-12 United Technologies Corporation Electrodes for electrochemical cells
US4818640A (en) * 1985-09-25 1989-04-04 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous composite product produced by joining carbonaceous materials together by tetrafluoroethylene resin, and process for producing the same
DE68927342T2 (en) * 1988-07-30 1997-05-15 Pentel Kk INTERMEDIATE INK TANK AND WRITING INSTRUMENT USING IT
CN1086929A (en) * 1992-09-04 1994-05-18 单一检索有限公司 Flexible, conducting plastic electrode and manufacture method thereof
DE19544323A1 (en) * 1995-11-28 1997-06-05 Magnet Motor Gmbh Gas diffusion electrode for polymer electrolyte membrane fuel cells
US5672439A (en) * 1995-12-18 1997-09-30 Ballard Power Systems, Inc. Method and apparatus for reducing reactant crossover in an electrochemical fuel cell
DE19709199A1 (en) * 1997-03-06 1998-09-17 Magnet Motor Gmbh Gas diffusion electrode with reduced diffusivity for water and method for operating a polymer electrolyte membrane fuel cell without supplying membrane dampening water
DE19721952A1 (en) * 1997-05-26 1998-12-03 Volker Rosenmayer Gas diffusion electrode used in electrochemical cells
DE19751297A1 (en) * 1997-11-19 1999-05-20 Siemens Ag Carbon gas diffusion electrode for batteries and fuel cells
DE19840517A1 (en) * 1998-09-04 2000-03-16 Manhattan Scientifics Inc Gas diffusion structure perpendicular to the membrane of polymer electrolyte membrane fuel cells
JP2000182625A (en) * 1998-12-11 2000-06-30 Toyota Motor Corp Electrode for fuel cell and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0234989A1 *

Also Published As

Publication number Publication date
CA2426355A1 (en) 2002-05-02
DE10052223A1 (en) 2002-05-02
US20040053112A1 (en) 2004-03-18
WO2002034989A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
EP1114475B1 (en) Gas diffusion structure perpendicular to the membrane of polymer-electrolyte membrane fuel cells
DE69711698T3 (en) Membrane electrode unit for electrochemical fuel cells
DE60319031T2 (en) Carbon fiber electrode substrate for electrochemical cells
DE69701103T3 (en) Catalytically active gas diffusion electrodes with fibrous substrate
EP0968542B1 (en) Gas diffusion electrode with reduced diffusing capacity for water and polymer electrolyte membrane fuel cells
DE102007012718B4 (en) Production of an Acrylic-Bonded Carbon Fiber Paper as a Gas Diffusion Medium for a Fuel Cell
DE3512326C2 (en)
EP0867048A1 (en) Gas diffusion electrode for polymer electrolyte membrane fuel cells
DE19548421A1 (en) Process for the continuous production of laminates
DE112007000928B4 (en) A fuel cell electrode and method of manufacturing a fuel cell electrode, membrane electrode assembly, and methods of manufacturing the membrane electrode assembly and solid polymer fuel cell
EP4016667B1 (en) Method for producing a gas diffusion layer
EP4062472B1 (en) Gas diffusion layer for fuel cells
WO2002034989A1 (en) Multilayered, flexible paper containing carbon, with good flexural strength
EP1108259B1 (en) Electrically conductive layer material
EP1784877B1 (en) A textile material for a fuel cell, production and use thereof
DE10259383A1 (en) Gas diffusion electrodes for polymer electrolyte membrane fuel cells and process for their manufacture
WO2022090196A1 (en) Electrode material
EP1790025B1 (en) Stackable high temperature fuel cell
DE10244228B4 (en) Process for producing a gas diffusion electrode and its use
WO2024083602A1 (en) Gas diffusion layer for fuel cells, having a gradient of properties and low plastic deformability, and method for producing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030521

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050405