EP1331749B1 - Multiple signal transmission on a coaxial cable - Google Patents

Multiple signal transmission on a coaxial cable Download PDF

Info

Publication number
EP1331749B1
EP1331749B1 EP03354008A EP03354008A EP1331749B1 EP 1331749 B1 EP1331749 B1 EP 1331749B1 EP 03354008 A EP03354008 A EP 03354008A EP 03354008 A EP03354008 A EP 03354008A EP 1331749 B1 EP1331749 B1 EP 1331749B1
Authority
EP
European Patent Office
Prior art keywords
signal
frequency
signals
transmission band
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03354008A
Other languages
German (de)
French (fr)
Other versions
EP1331749A1 (en
Inventor
Jean-Yves Couet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1331749A1 publication Critical patent/EP1331749A1/en
Application granted granted Critical
Publication of EP1331749B1 publication Critical patent/EP1331749B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/52Systems for transmission between fixed stations via waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/20Adaptations for transmission via a GHz frequency band, e.g. via satellite

Definitions

  • the present invention relates to a method and a signal processing device for their transmission over a coaxial cable.
  • the figure 1 schematically represents a device for receiving and processing modulated analog signals transmitted over the air, for example signals corresponding to video images.
  • This architecture comprises a reception unit 10 which receives, via a receiving antenna, a modulated analog signal corresponding to an electromagnetic wave transmitted over the air.
  • the receiving unit 10 comprises a low noise LNB block 11 (Low Noise Block) which performs preprocessing on the received modulated signal.
  • the pre-processed modulated signal is transmitted to a signal processing unit 12 via a coaxial cable 14.
  • the processing unit 12 comprises a demodulation block DEMOD 15 which extracts a modulated signal "useful" in the modulated signal transmitted on the coaxial cable 14 and demodulates the "useful" signal extracted.
  • the demodulated "useful" signal may, for example, be used for displaying video images on a television screen.
  • the reception unit 10 is located at the receiving antenna and the processing unit 12, on which the viewer must be able to act, is located at the television set.
  • the figure 2 represents a schematic example of the spectrum of a modulated analog or digital signal received by the LNB block 11.
  • the signal has an initial frequency band IBW which extends, for example, between 10.7 GHz and 12.75 GHz, which corresponds to a frequency band generally used for the transmission of signals between a satellite and a receiving station on the ground.
  • the initial frequency band IBW is divided into frequency channels.
  • the width ⁇ B of the frequency band of each channel may vary, for example, from 24 MHz to 36 MHz, four channels CH1 to CH4 being represented for illustrative purposes on the figure 2 .
  • the initial modulated signal received by the reception unit corresponds to the sum of modulated "useful" signals.
  • the frequency band of each modulated "useful” signal is included in one of the frequency channels CH1 to CH4.
  • the frequency channels CH1 to CH4 associated with "useful" signals of the same polarization are distinct.
  • the initial modulated signal may correspond to the sum of signals whose polarizations are different.
  • the polarization can be, for example, rectilinear (horizontal or vertical), or circular (right or left). Since different polarization waves can be easily separated in the same signal, it is possible to transmit in the same initial signal "useful" signals of different polarization associated with overlapping frequency channels.
  • the figure 3 schematically represents an example of a conventional architecture of the LNB block 11.
  • the LNB block 11 is connected to an antenna 16 receiving the initial signal transmitted over the air.
  • the antenna 16 comprises two foci 17, 18.
  • Each focus 17, 18 captures an initial signal of polarization determined in the initial frequency band IBW.
  • focus 18 may pick up an initial signal horizontally polarized, and focus 17 an initial signal vertically polarized.
  • Each focus 17, 18 is connected via an amplifier 20, 21 to a first IRF filter 22 (Image Rejection Filter).
  • Amplifiers 20, 21 may consist of low noise field effect transistors.
  • a control unit 23 drives the amplifiers 20, 21 to select one of the two initial signals with determined polarization.
  • the initial signal with determined polarization is then transmitted to a mixer 25 which mixes the initial signal with a mixing frequency f M , emitted by a frequency synthesizer 26, to move the initial frequency band IBW from the initial signal to the transmission band .
  • the function of the IRF filter 22 is to prevent spurious signals from disturbing the signal obtained following passage through the mixer 25.
  • the frequency f M is a function of the initial frequency band IBW and of the transmission band.
  • the signal thus mixed is transmitted to a bandpass filter BPF 27 which limits the frequency band of the signal to be transmitted to minimize the amount of power on the coaxial cable 14.
  • the mixed and filtered signal is finally amplified by an amplifier 28 before the be transmitted over the coaxial cable 14.
  • the width of the initial frequency band IBW may be wider than the transmission band.
  • the frequency synthesizer 26 can produce several mixing frequencies. Each mixing frequency is adapted so that, during the mixing operation, a particular portion of the initial frequency band IBW, of width similar to the width of the transmission band, is shifted to the frequencies of the transmission band.
  • the choice of the mixing frequency is then determined by the control unit 23 as a function of control signals transmitted by the processing unit 12 and transmitted to the LNB block 11 by the coaxial cable 14.
  • a processing unit may comprise several demodulation blocks so as to simultaneously process a plurality of "useful" signals of the same polarization that are extracted from the signal transmitted by the coaxial cable.
  • a processing unit may be desirable for a processing unit to process several "useful" signals of different polarizations in parallel. Similarly, it may be desirable for a processing unit to process in parallel a plurality of "useful" signals from an initial signal having an initial frequency band wider than the transmission band, the "useful” signals being derived from portions of different initial frequency band. Finally, it may be desirable for a processing unit to be able to process several "useful" signals from initial signals having distinct initial frequency bands in parallel, in particular in the case of a so-called multi-orbit antenna which has a plurality of oriented focal points. to receive radio signals of distinct initial frequency bands.
  • the device of the figure 1 is no longer suitable. Indeed, at the same time, the signal transmitted on the coaxial cable 14 can come only from a single initial signal and have only one specific polarization. In addition, when the initial frequency band is wider than the transmission band, the signal transmitted on the coaxial cable 14 can only correspond to a single portion of the initial frequency band.
  • Each LNB block then transmits, on the associated coaxial cable, a signal of a certain polarization, and which corresponds to a determined initial frequency band signal (and possibly to a certain portion of the frequency band of the initial signal).
  • each coaxial cable corresponds to at least four connectors, and the processing unit 12 must include switches associated with each cable.
  • the installation and maintenance of cables are expensive.
  • the document WO 99 37092 describes a system for distributing television signals, audio signals, digital audio signals and / or video signals.
  • the present invention aims at transmitting on a single coaxial cable, at the same time, "useful" signals that may have different polarizations, and / or be derived from initial signals of distinct initial frequency bands, and / or, when the band initial frequency is wider than the transmission band, be derived from distinct portions of the initial frequency band.
  • the present invention provides a receiver that can receive several initial modulated signals in the same initial frequency band and / or separate initial frequency bands and produce a modulated signal in a transmission band to be transmitted over a coaxial cable, the receiver having a selector capable of selecting a plurality of signals from the received signals; for each selected signal, a mixer capable of transforming the selected signal into a signal at least partly in the transmission band, and a filter adapted to extract from the transformed signal a signal associated with a portion of the transmission band among several portions of the transmission band at least partly distinct; and means for forming the modulated signal in the transmission band from the signals associated with the transmission band portions.
  • Each mixer is connected to a frequency synthesizer specific to produce a determined mixing frequency, the determined frequency being a function of the portion of the transmission band and the selected signal.
  • the receiver has reception points, associated with an antenna, each reception center being able to receive an initial modulated signal, and intermediate mixers, each intermediate mixer being able to transform the initial signal received by a reception focus into an intermediate signal in an intermediate frequency band different from the transmission band, the selector receiving the intermediate signals.
  • the receiver comprises a control unit receiving control signals via the coaxial cable and driving the frequency synthesizers according to the control signals for the production of the mixing frequency, and the selector for the selection of the received signals.
  • the filters are bandpass filters of distinct bandwidths, and for a first filter whose bandwidth is at frequencies greater than those of the bandwidth of a second filter, the difference between the gain of the second filter and the gain of the first filter at the upper limit frequency of the bandwidth of the second filter is greater than 30 decibels, and the difference between the gain of the first filter and the gain of the second filter at the limit frequency lower bandwidth of the first filter is greater than 30 decibels.
  • the frequency synthesizer is able to produce a mixing frequency in a frequency band whose width is greater than the width of the initial frequency band or the sum of the widths of the frequency bands. different initial frequencies.
  • At least one frequency synthesizer is adapted to transmit directly to the corresponding filter a periodic signal of determined frequency and power.
  • the present invention also provides a method of transforming a plurality of modulated signals received in the same initial transmission band and / or distinct initial frequency bands into a modulated signal in a transmission band, comprising the steps of selecting a plurality of signals from among the received signals; for each selected signal, transforming the selected signal into a signal at least partly in the transmission band, and extracting from the transformed signal a signal associated with a portion of the transmission band among several portions of the transmission band at least in part distinct; and forming the modulated signal in the transmission band from the signals associated with the portions of the transmission band.
  • each received modulated signal is transformed into an intermediate signal in an intermediate frequency band different from the transmission band.
  • Each selected signal is converted into a signal at least partly in the transmission band by mixing the selected signal with a mixing frequency depending on the selected signal and the portion of the transmission band.
  • Each selected signal can be amplified by a variable gain before being transformed and / or after having been transformed into a signal at least partly in the transmission band, the gain depending on the selected signal.
  • the invention also relates to a method of testing a receiver according to the invention connected, via the coaxial cable, to a processing unit adapted to process the modulated signal in the transmission band provided by the receiver. in a normal operating mode, comprising the steps of the transmission by the processing unit to the receiver of a request associated with a determined frequency; the transmission by the receiver of a periodic signal corresponding to the reception by the processing unit of a periodic signal at the determined frequency; the determination by the processing unit of the power of the periodic signal received at the determined frequency; and determining by the processing unit the power attenuation of the coaxial cable from the power of the periodic signal received at the determined frequency and the power of the periodic signal transmitted by the receiver.
  • the receiver transmits successively on the coaxial cable, on receipt of requests sent by the processing unit, periodic signals at different fixed frequencies.
  • the receiver transmits on the coaxial cable a periodic signal at a first frequency corresponding to the reception by the processing unit of a periodic signal at the determined frequency, and a periodic signal to a second frequency different from the first frequency, the difference between the first and second frequencies being representative of the power of the periodic signal at the first frequency transmitted by the receiver.
  • each frequency synthesizer of the receiver is adapted to transmit directly to the corresponding filter a periodic signal and the receiver transmits to the processing unit by the coaxial cable a signal corresponding to the sum of periodic signals.
  • each periodic signal being at a frequency equal to the average frequency of one of the transmission band portions.
  • the device comprises a reception unit 10 connected by a coaxial cable 14 to a processing unit 12.
  • the processing unit 12 comprises four demodulation blocks DEMODA to DEMODD, each demodulation block DEMODA to DEMODD including, among others, a channel selector and a demodulator.
  • the reception unit 10 comprises three low-noise blocks LNB1, LNB2, LNB3, which have a similar architecture to that of the LNB block 11 shown in FIG. figure 2 . More specifically, each low-noise block LNB1 to LNB3 is adapted to receive a radio signal in an initial frequency band and output a signal of a determined polarization in an intermediate frequency band which is less than the initial frequency band and greater than the transmission band, or similar to the transmission band.
  • the intermediate frequency band is approximately 2 to 4 GHz when it is lower than the initial frequency band and greater than the transmission band or 0.9 to 2.15 GHz when it is similar to the transmission band.
  • Each low-noise block LNB1 to LNB3 is connected to a selector 30, itself connected to four mixing and filtering blocks MFA to MFD.
  • the selector 30 may transmit any of the outputs of the low noise blocks LNB1 to LNB3 to any of the mixing and filtering blocks MFA to MFD.
  • the figure 5 illustrates the principle of the invention. From top to bottom are represented schematically the spectra SLNB1 to SLNB3 of the signals respectively emitted by the blocks LNB1 to LNB3.
  • the spectrum of a "useful" signal, respectively S1 and S2 is shown by way of illustration.
  • the spectra of two "useful" signals S3 and S4 are represented.
  • One of the signals emitted by the blocks LNB1 to LNB3 is transmitted by the selector 30 to each of the blocks MFA to MFD.
  • the blocks MFA and MFB are respectively transmitted the signals transmitted by the LNB1 and LNB2 blocks, and the MFC and MFD blocks is transmitted the signal transmitted by the LNB3 block.
  • Each MFA block MFD performs a signal shift operation from the intermediate frequency band in a frequency band that completely or partially overlaps the transmission band.
  • the intermediate frequency band is chosen to limit the formation of spurious signals during the shifting operation.
  • Each MFA to MFD block then filters the shifted signal and retains a portion of the shifted frequency band included in the transmission band and including the wanted signal spectrum.
  • the different portions of the transmission band are respectively referenced SA to SD for the mixing and selection blocks MFA to MFD.
  • Each demodulator block DEMODA to DEMODD is adapted to extract and process in the transmission band signal a signal corresponding to one of the portions of the band. transmission.
  • the figure 6 represents an example of a more detailed architecture of the reception unit of the figure 5 .
  • On the left of the figure are only represented the mixers 35, 36, 37 associated with the blocks LNB1 to LNB3.
  • the mixing frequencies fed to the mixers 35, 36 are produced by a single frequency synthesizer 38.
  • the mixing frequency fed to the mixer 37 is produced by a frequency synthesizer 39.
  • the selector 30 receives as input the signals emitted by the blocks LNB1 to LNB3 and is connected at the output to four blocks MFA to MFD and to a mixer block M.
  • Each mixing and selection block MFA to MFD comprises, in series, a mixing block MA to MD, a bandpass filter BPFA to BPFD and an isolation amplifier 40A to 40D.
  • the signals produced by the four mixing and selection blocks MFA to MFD are added and then amplified by a fixed gain amplifier 45 before being transmitted by the coaxial cable 14.
  • the signal from the mixer block M is amplified by an amplifier 46. and transmitted by an auxiliary coaxial cable 47.
  • a control unit 48 is connected by a first control bus 50 to the different mixer blocks M, MA to MD.
  • the control unit is also connected to the coaxial cables 14, 47 by a second control bus 51.
  • the figure 7 shows in more detail the architecture of mixing blocks M, MA to MD.
  • Each mixer block comprises, connected in series, a first fixed gain amplifier 52, a first variable gain amplifier 53, a mixer 54, a second variable gain amplifier 55 and a second fixed gain amplifier 56.
  • the mixer 54 is powered by a frequency
  • the mixing block M, MA to MD also comprises a control unit 58 connected to the first control bus 50 and able to control the selector 30, the frequency synthesizer 54, and the amplifiers. at variable gain 53, 55.
  • the processing unit 12 transmits control signals to the control unit 48, for example according to the communication protocol FSK (Frequency Shift Keying) or the protocol known as DiSEqC (Digital Satellite Equipment Control).
  • the control unit 48 consequently transmits control signals to the control units 58 of one or more mixer blocks M, MA to MD, via the first control block 50, for example according to the communication protocol. known as I 2 C (Integrated Circuit Control).
  • the control unit 58 having received the control signals then drives the selectors 30 so that one of the signals produced by the LNB1 to LNB3 blocks is transmitted to the associated mixer block M, MA to MD.
  • the control unit 58 also drives the frequency synthesizer 57 of the mixer block MA to MD to produce a suitable mixing frequency so that the signal received by the mixer block MA to MD is correctly shifted in frequency so that the frequency band of the "useful" signal S1 to S4, after passing through the mixer 54, being in the bandwidth of the bandpass filter BPFA to BPFD associated with the mixing block MA to MD.
  • the control unit 58 controls the frequency synthesizer 57 of the mixer block M to produce a mixing frequency adapted so that the signal received by the mixer block M is correctly shifted in frequency so that the frequency band of the signal emitted by the mixer unit M is contained in the bandwidth of the auxiliary coaxial cable 47, generally the transmission band.
  • variable gain amplifiers 53, 55 make it possible to adjust the amplification of the signal upstream or downstream of the mixer 54. For example, if the initial signal is of low amplitude, it may be preferable to amplify it upstream of the mixer. If the amplitude of the initial signal is sufficient, but the coaxial cable is of long length, it may be preferable to amplify the signal downstream of the mixer 54 to avoid clipping phenomena during the offset operation. .
  • Each mixer block M, MA to MD may consist of an integrated circuit.
  • the auxiliary coaxial cable 47 is provided so as to allow the use of the reception unit according to the invention with a conventional processing unit which can not process the signal transmitted on the coaxial cable 14. Indeed, the signal transmitted on the coaxial cable 47 is similar with the signal from the LNB block of the figure 3 .
  • the figure 8 represents an example of the templates of two bandpass filters, for example BPFA and BPFB, whose bandwidths are similar.
  • Each filter has a bandwidth, WA, WB, centered on an average frequency f A , f B , and limited by a higher frequency f ASUP , f BSUP and a lower frequency f AINF , f BINF .
  • the templates are determined such that the gain of the BPFB filter at the frequency ASUP has a difference ⁇ GA of at least 30 dB with the gain of the BPFA filter, and that the gain of the BPFA filter at the frequency f BINF has a difference ⁇ GB at least 30 dB with the gain of the BPFB filter.
  • the figure 9 there are numerical values of the characteristics of the templates of the bandpass filters of mixing and selection blocks in three different configurations.
  • the first configuration includes two mixing and selection blocks (bandpass filters BPF1 and BPF2)
  • the second configuration comprises four mixing and selection blocks (bandpass filters BPFA to BPFD), which corresponds, for example, to the architecture of the figure 4
  • the third configuration comprises six mix and select blocks (BPFI and BPFVI bandpass filters).
  • the second column represents the average frequency f of the bandwidth of each bandpass filter.
  • the third column represents the width W of the bandwidth of each bandpass filter.
  • the fourth column represents the lower frequency f INF of the bandwidth of each bandpass filter and the fifth column represents the upper frequency f SUP of the bandwidth of each bandpass filter.
  • Band pass filter bandwidths in all configurations are larger than the usual channel bandwidths (about 24 to 36 MHz). Band pass filters can be made discretely.
  • the present invention has many advantages.
  • the present invention makes it possible to compactly form a reception unit of reduced volume.
  • the present invention finally makes it possible to produce bandpass filters by relatively inexpensive discrete components.
  • the frequency synthesizer of each mixing block which shifts the signal from the intermediate frequency band to the final frequency band, provides a mixing frequency, called a second mixing frequency, which may vary in a frequency band wider than the initial band.
  • the range of the second mixing frequency is such that a single frequency synthesizer can be used to convert the signal from the initial frequency band to the intermediate frequency band.
  • This synthesizer provides the same determined mixing frequency, called the first mixing frequency, for all the signals from the low noise blocks.
  • the conversions of the signal to be processed from the initial frequency band to the intermediate frequency band and from the intermediate frequency band to the final frequency band may be two infra-heterodyne or supra-heterodyne conversions.
  • the bandpass filter associated with a mixing block has a bandwidth adapted to select, in the signal supplied by the mixer unit, the "useful" signal. The selected "useful" signals are then added to form the transmitted signal on the coaxial cable as previously described.
  • the first mixing frequency can be 13.25 GHz and the second mixing frequency can be chosen between 1.9 GHz and 4.3 GHz.
  • the conversions of the received signal from the initial frequency band to the intermediate frequency band and from the intermediate frequency band to the final frequency band are supra-heterodyne conversions.
  • the spectrum of the signal to be processed is therefore inverted twice.
  • the width of the bandpass filter associated with a mixer block can be chosen such that the lower frequency of the bandpass filter corresponds to the highest frequency of the final frequency band when the second mixing frequency is set to its value. the lowest.
  • the lower frequency of the bandpass filter is 1.4 GHz when the second mixing frequency is 1.9 GHz.
  • the upper frequency of the bandpass filter corresponds to the lowest frequency when the second mixing frequency is set to its highest value.
  • the upper frequency of the bandpass filter is 1.75 GHz when the second mixing frequency is 4.3 GHz.
  • three mixer blocks and the associated filters may be provided in the present example.
  • This embodiment of the invention provides additional advantages.
  • this embodiment allows the use of a single first mixing frequency for converting the signal to be processed from the initial frequency band to the intermediate frequency band.
  • a single synthesizer can then be used to provide the first mixing frequency.
  • the number of low noise blocks can then be reduced to the number of possible polarizations of the signal to be processed.
  • a smaller and lighter housing may further be provided to receive the receiving unit, and the shields of protection of lines carrying high voltage signals and the breeder are simplified.
  • This embodiment can easily be made compatible with a reception unit according to the prior art which transmits on the coaxial cable a single signal occupying the entire transmission band.
  • a large additional bandpass filter for example having a bandwidth equal to the transmission band, is provided in parallel with a "normal" bandpass filter connected to a mixer block.
  • the broad bandpass filter is disabled.
  • the receiving unit is to function as a reception unit according to the prior art, the broad bandpass filter is switched and all mixer blocks are switched off, with the exception of the mixer block connected to the large additional bandpass filter. .
  • the "normal" bandpass filter connected to the activated mixer block is also disabled.
  • the second mixing frequency of the activated mixer block is chosen so that the conversions of the signal to be processed from the initial frequency band to the intermediate frequency band and from the intermediate frequency band to the final frequency band are equivalent to one single conversion with an equivalent mixing frequency equal to 9.75 GHz or 10.6 GHz, in the present example, according to the band of the received signal that it is desired to transmit on the coaxial cable.
  • the second mixing frequency is set at 3500 MHz.
  • the second mixing frequency is set at 2650 MHz.
  • This embodiment is therefore compatible with a processing unit according to the prior art without requiring the addition of another coaxial cable or without modifying the breeder.
  • the reception unit can operate in a control mode.
  • the frequency synthesizer 57 of one of the mixing blocks MA to MD no longer provides a mixing frequency to mixer 54 of the mixing block as previously described, but directly to the BPFA BPFD bandpass filter connected to it. to the mixer block, via a frequency divider.
  • This frequency synthesizer is subsequently called a control synthesizer when performing a control operation.
  • the frequency of the signal emitted by the frequency synthesizer 57 is divided when this signal is directly transmitted to the bandpass filter BPFA to BPFD so that the latter receives a signal having a fixed frequency belonging to the transmission band.
  • the present embodiment allows a simple way to determine the characteristics of the coaxial cable.
  • the attenuation control operation can be performed for several evenly distributed frequencies, for example with a pitch of 50 MHz.
  • a processing is then performed on the received power values P R to obtain a function representative of the received power P R as a function of frequency.
  • the function representative of the received power P R as a function of the frequency comprises ripples, this may correspond to poor impedance matching, to an incorrectly screwed connector, etc.
  • the received power P R drops sharply as a function of frequency, this may correspond to a cable of poor quality.
  • the processing unit may include an interface to indicate to a user the results of the control.
  • This embodiment also enables the receiving unit 10 to transmit data to the processing unit 12 even if it does not have a bidirectional data exchange protocol between the receiving unit and the unit. treatment, for example the protocol known as DiSEqC 2.
  • the transmitted data may correspond to the average frequencies of the frequency subbands provided by the BPFA to BPFD bandpass filters.
  • each frequency synthesizer of an MDA to MDD mixer block can provide a given frequency signal directly to the BPFA to BPFD bandpass filter associated with said mixer block.
  • the control unit 58 controls the frequency synthesizers so that each frequency synthesizer provides the associated bandpass filter a signal whose frequency corresponds to the average frequency of the passband of the bandpass filter associated.
  • the various fixed frequency signals are then added and the signal thus formed is transmitted on the coaxial cable.
  • the values of the average frequencies are for example stored at the level of the control unit.
  • the processing unit then scans the received signal over the entire transmission band to determine the average frequencies.
  • the transmitted data may also correspond to the transmitted power P T. Only one control synthesizer is needed. Values of the transmitted power P T by the reception unit 10 at different frequencies are in this case stored at the reception unit 10.
  • the processing unit 12 transmits to the reception unit 10 a request which indicates a determined frequency for which the processing unit 12 wishes to know the transmitted power P T by the reception unit 10.
  • the control unit 48 controls the control synthesizer so that it provides directly to the pass filter. associated band a first signal whose frequency, after division, is equal to the determined frequency.
  • the processing unit 12 has determined the frequency of the signal transmitted on the coaxial cable 14, it transmits to the reception unit 10 a continuation request.
  • the control unit 48 then controls the control synthesizer so that it provides directly to the associated bandpass filter a second signal whose frequency, after division, is shifted with respect to the determined frequency.
  • the offset between the determined frequency of the first signal and the frequency of the second signal is representative of the transmitted power P T at the determined frequency.
  • control unit 48 can be deleted, the control units 58 of the mixer blocks M, MA to MD being directly connected to the second control bus and directly receiving the signals transmitted by the processing unit 12.

Description

La présente invention concerne un procédé et un dispositif de traitement de signaux pour leur transmission sur un câble coaxial.The present invention relates to a method and a signal processing device for their transmission over a coaxial cable.

La figure 1 représente, de façon schématique, un dispositif de réception et de traitement de signaux analogiques modulés transmis par voie hertzienne, par exemple de signaux correspondant à des images vidéo. Cette architecture comprend une unité de réception 10 qui reçoit, par l'intermédiaire d'une antenne de réception, un signal analogique modulé correspondant à une onde électromagnétique transmise par voie hertzienne. L'unité de réception 10 comprend un bloc à faible bruit LNB 11 (Low Noise Block) qui réalise un prétraitement sur le signal modulé reçu. Le signal modulé prétraité est transmis à une unité de traitement de signaux 12 par l'intermédiaire d'un câble coaxial 14. L'unité de traitement 12 comprend un bloc de démodulation DEMOD 15 qui extrait un signal modulé "utile" dans le signal modulé transmis sur le câble coaxial 14 et démodule le signal "utile" extrait. Le signal "utile" démodulé peut, par exemple, être utilisé pour l'affichage d'images vidéo sur un écran de télévision. Dans ce cas, l'unité de réception 10 est située au niveau de l'antenne réceptrice et l'unité de traitement 12, sur laquelle le téléspectateur doit pouvoir agir, est située au niveau du poste de télévision.The figure 1 schematically represents a device for receiving and processing modulated analog signals transmitted over the air, for example signals corresponding to video images. This architecture comprises a reception unit 10 which receives, via a receiving antenna, a modulated analog signal corresponding to an electromagnetic wave transmitted over the air. The receiving unit 10 comprises a low noise LNB block 11 (Low Noise Block) which performs preprocessing on the received modulated signal. The pre-processed modulated signal is transmitted to a signal processing unit 12 via a coaxial cable 14. The processing unit 12 comprises a demodulation block DEMOD 15 which extracts a modulated signal "useful" in the modulated signal transmitted on the coaxial cable 14 and demodulates the "useful" signal extracted. The demodulated "useful" signal may, for example, be used for displaying video images on a television screen. In this case, the reception unit 10 is located at the receiving antenna and the processing unit 12, on which the viewer must be able to act, is located at the television set.

La figure 2 représente un exemple schématique du spectre d'un signal analogique ou numérique modulé reçu par le bloc LNB 11. Le signal possède une bande de fréquence initiale IBW qui s'étend, par exemple, entre 10,7 GHz et 12,75 GHz, ce qui correspond à une bande de fréquence généralement utilisée pour la transmission de signaux entre un satellite et une station réceptrice au sol.The figure 2 represents a schematic example of the spectrum of a modulated analog or digital signal received by the LNB block 11. The signal has an initial frequency band IBW which extends, for example, between 10.7 GHz and 12.75 GHz, which corresponds to a frequency band generally used for the transmission of signals between a satellite and a receiving station on the ground.

La bande de fréquence initiale IBW est divisée en canaux de fréquence. La largeur ΔB de bande de fréquence de chaque canal peut varier, par exemple, de 24 MHz à 36 MHz, quatre canaux CH1 à CH4 étant représentés à titre illustratif sur la figure 2. Le signal modulé initial reçu par l'unité de réception correspond à la somme de signaux "utiles" modulés. La bande de fréquence de chaque signal "utile" modulé est comprise dans l'un des canaux de fréquence CH1 à CH4. Les canaux de fréquence CH1 à CH4 associés à des signaux "utiles" d'une même polarisation sont distincts. Toutefois, le signal modulé initial peut correspondre à la somme de signaux dont les polarisations sont différentes. La polarisation peut être, par exemple, rectiligne (horizontale ou verticale), ou bien circulaire (droite ou gauche). Des ondes de polarisation différentes pouvant être aisément séparées dans un même signal, il est possible de transmettre dans un même signal initial des signaux "utiles" de polarisation différente associés à des canaux de fréquence qui se chevauchent.The initial frequency band IBW is divided into frequency channels. The width ΔB of the frequency band of each channel may vary, for example, from 24 MHz to 36 MHz, four channels CH1 to CH4 being represented for illustrative purposes on the figure 2 . The initial modulated signal received by the reception unit corresponds to the sum of modulated "useful" signals. The frequency band of each modulated "useful" signal is included in one of the frequency channels CH1 to CH4. The frequency channels CH1 to CH4 associated with "useful" signals of the same polarization are distinct. However, the initial modulated signal may correspond to the sum of signals whose polarizations are different. The polarization can be, for example, rectilinear (horizontal or vertical), or circular (right or left). Since different polarization waves can be easily separated in the same signal, it is possible to transmit in the same initial signal "useful" signals of different polarization associated with overlapping frequency channels.

Les principales fonctions du bloc LNB 11 sont les suivantes :

  • amplifier les signaux reçus avec le plus petit facteur de bruit possible, typiquement de l'ordre du décibel ;
  • sélectionner la polarisation du signal, par exemple horizontale ou verticale ;
  • convertir les signaux reçus de la bande de fréquence initiale IBW en une bande de fréquence, appelée bande de transmission, adaptée à la bande passante du câble coaxial 14 et à la bande de fréquence de l'unité de traitement 12 (de façon typique entre 950 MHz et 2150 MHz), et
  • limiter les signaux à transmettre à une certaine bande de fréquence.
The main functions of the LNB block 11 are:
  • amplifying the received signals with the smallest possible noise factor, typically of the order of the decibel;
  • select the polarization of the signal, for example horizontal or vertical;
  • converting the signals received from the initial frequency band IBW into a frequency band, called a transmission band, adapted to the bandwidth of the coaxial cable 14 and to the frequency band of the processing unit 12 (typically between 950 and MHz and 2150 MHz), and
  • limit the signals to be transmitted to a certain frequency band.

La figure 3 représente de façon schématique un exemple d'architecture classique du bloc LNB 11. Le bloc LNB 11 est relié à une antenne 16 recevant le signal initial transmis par voie hertzienne. L'antenne 16 comprend deux foyers 17, 18. Chaque foyer 17, 18 capte un signal initial de polarisation déterminée dans la bande de fréquence initiale IBW. Par exemple, le foyer 18 peut capter un signal initial polarisé horizontalement, et le foyer 17 un signal initial polarisé verticalement. Chaque foyer 17, 18 est connecté par l'intermédiaire d'un amplificateur 20, 21 à un premier filtre IRF 22 (Image Rejection Filter). Les amplificateurs 20, 21 peuvent consister en des transistors à effet de champ à faible bruit. Une unité de contrôle 23 pilote les amplificateurs 20, 21 pour sélectionner l'un des deux signaux initiaux à polarisation déterminée.The figure 3 schematically represents an example of a conventional architecture of the LNB block 11. The LNB block 11 is connected to an antenna 16 receiving the initial signal transmitted over the air. The antenna 16 comprises two foci 17, 18. Each focus 17, 18 captures an initial signal of polarization determined in the initial frequency band IBW. For example, focus 18 may pick up an initial signal horizontally polarized, and focus 17 an initial signal vertically polarized. Each focus 17, 18 is connected via an amplifier 20, 21 to a first IRF filter 22 (Image Rejection Filter). Amplifiers 20, 21 may consist of low noise field effect transistors. A control unit 23 drives the amplifiers 20, 21 to select one of the two initial signals with determined polarization.

Le signal initial à polarisation déterminée est alors transmis à un mélangeur 25 qui mélange le signal initial avec une fréquence de mélange fM, émise par un synthétiseur de fréquence 26, pour déplacer la bande de fréquence initiale IBW du signal initial vers la bande de transmission. Le filtre IRF 22 a pour rôle d'éviter que des signaux parasites ne viennent perturber le signal obtenu suite au passage par le mélangeur 25. La fréquence fM est fonction de la bande de fréquence initiale IBW et de la bande de transmission.The initial signal with determined polarization is then transmitted to a mixer 25 which mixes the initial signal with a mixing frequency f M , emitted by a frequency synthesizer 26, to move the initial frequency band IBW from the initial signal to the transmission band . The function of the IRF filter 22 is to prevent spurious signals from disturbing the signal obtained following passage through the mixer 25. The frequency f M is a function of the initial frequency band IBW and of the transmission band.

Le signal ainsi mélangé est transmis à un filtre passe-bande BPF 27 qui limite la bande de fréquence du signal à transmettre pour minimiser la quantité de puissance sur le câble coaxial 14. Le signal mélangé et filtré est enfin amplifié par un amplificateur 28 avant d'être transmis sur le câble coaxial 14.The signal thus mixed is transmitted to a bandpass filter BPF 27 which limits the frequency band of the signal to be transmitted to minimize the amount of power on the coaxial cable 14. The mixed and filtered signal is finally amplified by an amplifier 28 before the be transmitted over the coaxial cable 14.

La largeur de la bande de fréquence initiale IBW peut être plus large que la bande de transmission. Dans ce cas, le synthétiseur de fréquence 26 peut produire plusieurs fréquences de mélange. Chaque fréquence de mélange est adaptée pour que, lors de l'opération de mélange, une portion particulière de la bande de fréquence initiale IBW, de largeur similaire à la largeur de la bande de transmission, soit décalée vers les fréquences de la bande de transmission. Le choix de la fréquence de mélange est alors déterminé par l'unité de contrôle 23 en fonction de signaux de commande émis par l'unité de traitement 12 et transmis au bloc LNB 11 par le câble coaxial 14.The width of the initial frequency band IBW may be wider than the transmission band. In this case, the frequency synthesizer 26 can produce several mixing frequencies. Each mixing frequency is adapted so that, during the mixing operation, a particular portion of the initial frequency band IBW, of width similar to the width of the transmission band, is shifted to the frequencies of the transmission band. The choice of the mixing frequency is then determined by the control unit 23 as a function of control signals transmitted by the processing unit 12 and transmitted to the LNB block 11 by the coaxial cable 14.

Une unité de traitement peut comprendre plusieurs blocs de démodulation de façon à traiter parallèlement plusieurs signaux "utiles" de même polarisation qui sont extraits du signal transmis par le câble coaxial.A processing unit may comprise several demodulation blocks so as to simultaneously process a plurality of "useful" signals of the same polarization that are extracted from the signal transmitted by the coaxial cable.

Toutefois, il peut être souhaitable qu'une unité de traitement puisse traiter parallèlement plusieurs signaux "utiles" de polarisations différentes. De même, il peut être souhaitable qu'une unité de traitement puisse traiter parallèlement plusieurs signaux "utiles" issus d'un signal initial ayant une bande de fréquence initiale plus large que la bande de transmission, les signaux "utiles" étant issus de portions de bande de fréquence initiale différentes. Enfin, il peut être souhaitable qu'une unité de traitement puisse traiter parallèlement plusieurs signaux "utiles" issus de signaux initiaux ayant des bandes de fréquence initiale distinctes, en particulier dans le cas d'une antenne dite à orbites multiples qui comporte plusieurs foyers orientés pour recevoir des signaux hertziens de bandes de fréquence initiale distinctes.However, it may be desirable for a processing unit to process several "useful" signals of different polarizations in parallel. Similarly, it may be desirable for a processing unit to process in parallel a plurality of "useful" signals from an initial signal having an initial frequency band wider than the transmission band, the "useful" signals being derived from portions of different initial frequency band. Finally, it may be desirable for a processing unit to be able to process several "useful" signals from initial signals having distinct initial frequency bands in parallel, in particular in the case of a so-called multi-orbit antenna which has a plurality of oriented focal points. to receive radio signals of distinct initial frequency bands.

Le dispositif de la figure 1 n'est alors plus adapté. En effet, à un même instant, le signal transmis sur le câble coaxial 14 ne peut provenir que d'un unique signal initial et n'avoir qu'une unique polarisation déterminée. En outre, lorsque la bande de fréquence initiale est plus large que la bande de transmission, le signal transmis sur le câble coaxial 14 ne peut correspondre qu'à une unique portion de la bande de fréquence initiale.The device of the figure 1 is no longer suitable. Indeed, at the same time, the signal transmitted on the coaxial cable 14 can come only from a single initial signal and have only one specific polarization. In addition, when the initial frequency band is wider than the transmission band, the signal transmitted on the coaxial cable 14 can only correspond to a single portion of the initial frequency band.

Il est alors nécessaire de prévoir plusieurs blocs LNB et de relier chacun d'entre eux à l'unité de traitement 12 par un câble coaxial dédié. Chaque bloc LNB transmet alors, sur le câble coaxial associé, un signal d'une certaine polarisation, et qui correspond à un signal de bande de fréquence initiale déterminée (et éventuellement à une certaine portion de la bande de fréquence du signal initial).It is then necessary to provide several LNB blocks and to connect each of them to the processing unit 12 by a dedicated coaxial cable. Each LNB block then transmits, on the associated coaxial cable, a signal of a certain polarization, and which corresponds to a determined initial frequency band signal (and possibly to a certain portion of the frequency band of the initial signal).

La multiplication des câbles coaxiaux présente un coût important étant donné qu'à chaque câble coaxial correspondent au moins quatre connecteurs, et que l'unité de traitement 12 doit comprendre des commutateurs associés à chaque câble. De plus, l'installation et l'entretien des câbles présentent un coût important.The multiplication of coaxial cables is a significant cost since each coaxial cable corresponds to at least four connectors, and the processing unit 12 must include switches associated with each cable. In addition, the installation and maintenance of cables are expensive.

Le document WO 99 37092 décrit un système de distribution de signaux de télévision, de signaux audio, de signaux audio numériques et/ou de signaux vidéo.The document WO 99 37092 describes a system for distributing television signals, audio signals, digital audio signals and / or video signals.

La présente invention vise à transmettre sur un unique câble coaxial, à un même instant, des signaux "utiles" pouvant présenter des polarisations différentes, et/ou être issus de signaux initiaux de bandes de fréquence initiales distinctes, et/ou, lorsque la bande de fréquence initiale est plus large que la bande de transmission, être issus de portions distinctes de la bande de fréquence initiale.The present invention aims at transmitting on a single coaxial cable, at the same time, "useful" signals that may have different polarizations, and / or be derived from initial signals of distinct initial frequency bands, and / or, when the band initial frequency is wider than the transmission band, be derived from distinct portions of the initial frequency band.

Pour atteindre cet objet, la présente invention prévoit un récepteur pouvant recevoir plusieurs signaux modulés initiaux dans une même bande de fréquence initiale et/ou des bandes de fréquences initiales distinctes et produire un signal modulé dans une bande de transmission à transmettre sur un câble coaxial, le récepteur comportant un sélectionneur pouvant sélectionner plusieurs signaux parmi les signaux reçus ; pour chaque signal sélectionné, un mélangeur propre à transformer le signal sélectionné en un signal au moins en partie dans la bande de transmission, et un filtre propre à extraire du signal transformé un signal associé à une portion de la bande de transmission parmi plusieurs portions de la bande de transmission au moins en partie distinctes ; et des moyens pour former le signal modulé dans la bande de transmission à partir des signaux associés aux portions de bande de transmission.To achieve this object, the present invention provides a receiver that can receive several initial modulated signals in the same initial frequency band and / or separate initial frequency bands and produce a modulated signal in a transmission band to be transmitted over a coaxial cable, the receiver having a selector capable of selecting a plurality of signals from the received signals; for each selected signal, a mixer capable of transforming the selected signal into a signal at least partly in the transmission band, and a filter adapted to extract from the transformed signal a signal associated with a portion of the transmission band among several portions of the transmission band at least partly distinct; and means for forming the modulated signal in the transmission band from the signals associated with the transmission band portions.

Chaque mélangeur est relié à un synthétiseur de fréquence propre à produire une fréquence de mélange déterminée, la fréquence déterminée étant fonction de la portion de la bande de transmission et du signal sélectionné.Each mixer is connected to a frequency synthesizer specific to produce a determined mixing frequency, the determined frequency being a function of the portion of the transmission band and the selected signal.

Le récepteur comporte des foyers de réception, associés à une antenne, chaque foyer de réception pouvant recevoir un signal modulé initial, et des mélangeurs intermédiaires, chaque mélangeur intermédiaire étant propre à transformer le signal initial reçu par un foyer de réception en un signal intermédiaire dans une bande de fréquence intermédiaire différente de la bande de transmission, le sélectionneur recevant les signaux intermédiaires.The receiver has reception points, associated with an antenna, each reception center being able to receive an initial modulated signal, and intermediate mixers, each intermediate mixer being able to transform the initial signal received by a reception focus into an intermediate signal in an intermediate frequency band different from the transmission band, the selector receiving the intermediate signals.

Le récepteur comporte une unité de contrôle recevant des signaux de commande par l'intermédiaire du câble coaxial et pilotant les synthétiseurs de fréquence en fonction des signaux de commande pour la production de la fréquence de mélange, et le sélectionneur pour la sélection des signaux reçus.The receiver comprises a control unit receiving control signals via the coaxial cable and driving the frequency synthesizers according to the control signals for the production of the mixing frequency, and the selector for the selection of the received signals.

Selon un mode de réalisation de l'invention, les filtres sont des filtres passe-bande de bandes passantes distinctes, et pour un premier filtre dont la bande passante est à des fréquences supérieures à celles de la bande passante d'un second filtre, la différence entre le gain du second filtre et le gain du premier filtre à la fréquence limite supérieure de la bande passante du second filtre est supérieure à 30 décibels, et la différence entre le gain du premier filtre et le gain du second filtre à la fréquence limite inférieure de la bande passante du premier filtre est supérieure à 30 décibels.According to one embodiment of the invention, the filters are bandpass filters of distinct bandwidths, and for a first filter whose bandwidth is at frequencies greater than those of the bandwidth of a second filter, the difference between the gain of the second filter and the gain of the first filter at the upper limit frequency of the bandwidth of the second filter is greater than 30 decibels, and the difference between the gain of the first filter and the gain of the second filter at the limit frequency lower bandwidth of the first filter is greater than 30 decibels.

Selon un mode de réalisation de l'invention, le synthétiseur de fréquence est propre à produire une fréquence de mélange dans une bande de fréquence dont la largeur est supérieure à la largeur de la bande de fréquence initiale ou à la somme des largeurs des bandes de fréquences initiales distinctes.According to one embodiment of the invention, the frequency synthesizer is able to produce a mixing frequency in a frequency band whose width is greater than the width of the initial frequency band or the sum of the widths of the frequency bands. different initial frequencies.

Selon un mode de réalisation de l'invention, au moins un synthétiseur de fréquence est adapté à transmettre directement au filtre correspondant un signal périodique de fréquence et de puissance déterminées.According to one embodiment of the invention, at least one frequency synthesizer is adapted to transmit directly to the corresponding filter a periodic signal of determined frequency and power.

La présente invention prévoit également un procédé de transformation de plusieurs signaux modulés reçus dans une même bande de transmission initiale et/ou des bandes de fréquence initiale distinctes en un signal modulé dans une bande de transmission, comportant les étapes consistant à sélectionner plusieurs signaux parmi les signaux reçus ; pour chaque signal sélectionné, transformer le signal sélectionné en un signal au moins en partie dans la bande de transmission, et extraire du signal transformé un signal associé à une portion de la bande de transmission parmi plusieurs portions de la bande de transmission au moins en partie distinctes ; et former le signal modulé dans la bande de transmission à partir des signaux associés aux portions de la bande de transmission.The present invention also provides a method of transforming a plurality of modulated signals received in the same initial transmission band and / or distinct initial frequency bands into a modulated signal in a transmission band, comprising the steps of selecting a plurality of signals from among the received signals; for each selected signal, transforming the selected signal into a signal at least partly in the transmission band, and extracting from the transformed signal a signal associated with a portion of the transmission band among several portions of the transmission band at least in part distinct; and forming the modulated signal in the transmission band from the signals associated with the portions of the transmission band.

Avant l'étape de sélection, chaque signal modulé reçu est transformé en un signal intermédiaire dans une bande de fréquence intermédiaire différente de la bande de transmission.Prior to the selection step, each received modulated signal is transformed into an intermediate signal in an intermediate frequency band different from the transmission band.

Chaque signal sélectionné est transformé en un signal au moins en partie dans la bande de transmission en mélangeant le signal sélectionné avec une fréquence de mélange fonction du signal sélectionné et de la portion de la bande de transmission.Each selected signal is converted into a signal at least partly in the transmission band by mixing the selected signal with a mixing frequency depending on the selected signal and the portion of the transmission band.

Chaque signal sélectionné peut être amplifié par un gain variable avant d'être transformé et/ou après avoir été transformé en un signal au moins en partie dans la bande de transmission, le gain dépendant du signal sélectionné.Each selected signal can be amplified by a variable gain before being transformed and / or after having been transformed into a signal at least partly in the transmission band, the gain depending on the selected signal.

L'invention concerne également un procédé de test d'un récepteur selon l'invention relié, par l'intermédiaire du câble coaxial, à une unité de traitement adaptée à traiter le signal modulé dans la bande de transmission fourni par le récepteur dans un mode de fonctionnement normal, comprenant les étapes consistant en la transmission par l'unité de traitement au récepteur d'une requête associée à une fréquence déterminée ; l'émission par le récepteur d'un signal périodique correspondant à la réception par l'unité de traitement d'un signal périodique à la fréquence déterminée ; la détermination par l'unité de traitement de la puissance du signal périodique reçu à la fréquence déterminée ; et la détermination par l'unité de traitement de l'atténuation de puissance du câble coaxial à partir de la puissance du signal périodique reçu à la fréquence déterminée et de la puissance du signal périodique émis par le récepteur.The invention also relates to a method of testing a receiver according to the invention connected, via the coaxial cable, to a processing unit adapted to process the modulated signal in the transmission band provided by the receiver. in a normal operating mode, comprising the steps of the transmission by the processing unit to the receiver of a request associated with a determined frequency; the transmission by the receiver of a periodic signal corresponding to the reception by the processing unit of a periodic signal at the determined frequency; the determination by the processing unit of the power of the periodic signal received at the determined frequency; and determining by the processing unit the power attenuation of the coaxial cable from the power of the periodic signal received at the determined frequency and the power of the periodic signal transmitted by the receiver.

Selon un mode de réalisation de l'invention, le récepteur transmet successivement sur le câble coaxial, à réception de requêtes émises par l'unité de traitement, des signaux périodiques à des fréquences fixes différentes.According to one embodiment of the invention, the receiver transmits successively on the coaxial cable, on receipt of requests sent by the processing unit, periodic signals at different fixed frequencies.

Selon un mode de réalisation de l'invention, le récepteur émet sur le câble coaxial un signal périodique à une première fréquence correspondant à la réception par l'unité de traitement d'un signal périodique à la fréquence déterminée, et un signal périodique à une seconde fréquence différente de la première fréquence, la différence entre les première et seconde fréquences étant représentative de la puissance du signal périodique à la première fréquence transmis par le récepteur.According to one embodiment of the invention, the receiver transmits on the coaxial cable a periodic signal at a first frequency corresponding to the reception by the processing unit of a periodic signal at the determined frequency, and a periodic signal to a second frequency different from the first frequency, the difference between the first and second frequencies being representative of the power of the periodic signal at the first frequency transmitted by the receiver.

Selon un mode de réalisation de l'invention, chaque synthétiseur de fréquence du récepteur est adapté à transmettre directement au filtre correspondant un signal périodique et le récepteur transmet à l'unité de traitement par le câble coaxial un signal correspondant à la somme de signaux périodiques fournis par les synthétiseurs de fréquence, chaque signal périodique étant à une fréquence égale à la fréquence moyenne d'une des portions de bande de transmission.According to one embodiment of the invention, each frequency synthesizer of the receiver is adapted to transmit directly to the corresponding filter a periodic signal and the receiver transmits to the processing unit by the coaxial cable a signal corresponding to the sum of periodic signals. provided by the frequency synthesizers, each periodic signal being at a frequency equal to the average frequency of one of the transmission band portions.

Cet objet, ces caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1, mentionnée précédemment, représente de façon schématique un dispositif classique pour la réception et le traitement de signaux hertziens ;
  • la figure 2, mentionnée précédemment, illustre un exemple de représentation spectrale d'un signal hertzien ;
  • la figure 3, mentionnée précédemment, représente un exemple d'architecture classique d'un bloc à faible bruit ;
  • la figure 4 représente, de façon schématique, une architecture pour la réception et le traitement de signaux hertziens selon la présente invention ;
  • la figure 5 représente les spectres de plusieurs signaux illustrant le principe de l'invention ;
  • la figure 6 représente un exemple de réalisation de l'unité de réception de la figure 4 ;
  • la figure 7 représente un exemple de réalisation d'un élément de la figure 6 ;
  • la figure 8 représente l'allure du gabarit d'un filtre passe-bande utilisé dans la présente invention ; et
  • la figure 9 représente des exemples de valeur de gabarit du filtre passe-bande de la figure 8.
This and other objects, features, and advantages of the present invention will be set forth in detail in the following description of particular embodiments. made in a non-limiting manner in relation to the appended figures among which:
  • the figure 1 , mentioned above, schematically represents a conventional device for receiving and processing radio signals;
  • the figure 2 , mentioned above, illustrates an example of a spectral representation of a radio signal;
  • the figure 3 , mentioned above, represents an example of a conventional architecture of a low noise block;
  • the figure 4 schematically shows an architecture for receiving and processing radio signals according to the present invention;
  • the figure 5 represents the spectra of several signals illustrating the principle of the invention;
  • the figure 6 represents an embodiment of the reception unit of the figure 4 ;
  • the figure 7 represents an embodiment of an element of the figure 6 ;
  • the figure 8 represents the shape of the template of a bandpass filter used in the present invention; and
  • the figure 9 represents examples of the template value of the bandpass filter of the figure 8 .

Comme cela est illustré sur la figure 4, le dispositif comprend une unité de réception 10 reliée par un câble coaxial 14 à une unité de traitement 12. A titre d'exemple, l'unité de traitement 12 comprend quatre blocs de démodulation DEMODA à DEMODD, chaque bloc de démodulation DEMODA à DEMODD comprenant, entre autre, un sélecteur de canaux et un démodulateur.As illustrated on the figure 4 , the device comprises a reception unit 10 connected by a coaxial cable 14 to a processing unit 12. For example, the processing unit 12 comprises four demodulation blocks DEMODA to DEMODD, each demodulation block DEMODA to DEMODD including, among others, a channel selector and a demodulator.

L'unité de réception 10 comprend trois blocs à faible bruit LNB1, LNB2, LNB3, qui ont une architecture similaire à celle du bloc LNB 11 représenté sur la figure 2. Plus précisément, chaque bloc à faible bruit LNB1 à LNB3 est adapté pour recevoir un signal hertzien dans une bande de fréquence initiale et émettre en sortie un signal d'une polarisation déterminée dans une bande de fréquence intermédiaire qui est inférieure à la bande de fréquence initiale et supérieure à la bande de transmission, ou similaire à la bande de transmission. A titre d'exemple, la bande de fréquence intermédiaire est d'environ de 2 à 4 GHz lorsqu'elle est inférieure à la bande de fréquence initiale et supérieure à la bande de transmission ou de 0.9 à 2.15 GHz lorsqu'elle est similaire à la bande de transmission. Chaque bloc à faible bruit LNB1 à LNB3 est connecté à un sélectionneur 30, lui-même relié à quatre blocs de mélange et de filtrage MFA à MFD. Le sélectionneur 30 peut transmettre l'une quelconque des sorties des blocs à faible bruit LNB1 à LNB3 à l'un quelconque des blocs de mélange et de filtrage MFA à MFD.The reception unit 10 comprises three low-noise blocks LNB1, LNB2, LNB3, which have a similar architecture to that of the LNB block 11 shown in FIG. figure 2 . More specifically, each low-noise block LNB1 to LNB3 is adapted to receive a radio signal in an initial frequency band and output a signal of a determined polarization in an intermediate frequency band which is less than the initial frequency band and greater than the transmission band, or similar to the transmission band. For example, the intermediate frequency band is approximately 2 to 4 GHz when it is lower than the initial frequency band and greater than the transmission band or 0.9 to 2.15 GHz when it is similar to the transmission band. Each low-noise block LNB1 to LNB3 is connected to a selector 30, itself connected to four mixing and filtering blocks MFA to MFD. The selector 30 may transmit any of the outputs of the low noise blocks LNB1 to LNB3 to any of the mixing and filtering blocks MFA to MFD.

La figure 5 illustre le principe de l'invention. De haut en bas sont représentés de façon schématique les spectres SLNB1 à SLNB3 des signaux respectivement émis par les blocs LNB1 à LNB3. Pour les spectres SLNB1 et SLNB2, on a représenté à titre illustratif le spectre d'un signal "utile", respectivement S1 et S2. Pour le spectre SLNB3, on a représenté les spectres de deux signaux "utiles" S3 et S4. L'un des signaux émis par les blocs LNB1 à LNB3 est transmis par le sélectionneur 30 à chacun des blocs MFA à MFD. Par exemple, aux blocs MFA et MFB sont respectivement transmis les signaux émis par les blocs LNB1 et LNB2, et aux blocs MFC et MFD est transmis le signal émis par le bloc LNB3.The figure 5 illustrates the principle of the invention. From top to bottom are represented schematically the spectra SLNB1 to SLNB3 of the signals respectively emitted by the blocks LNB1 to LNB3. For the SLNB1 and SLNB2 spectra, the spectrum of a "useful" signal, respectively S1 and S2, is shown by way of illustration. For spectrum SLNB3, the spectra of two "useful" signals S3 and S4 are represented. One of the signals emitted by the blocks LNB1 to LNB3 is transmitted by the selector 30 to each of the blocks MFA to MFD. For example, the blocks MFA and MFB are respectively transmitted the signals transmitted by the LNB1 and LNB2 blocks, and the MFC and MFD blocks is transmitted the signal transmitted by the LNB3 block.

Chaque bloc MFA à MFD réalise une opération de décalage du signal depuis la bande de fréquence intermédiaire dans une bande de fréquence qui chevauche complètement ou en partie la bande de transmission. La bande de fréquence intermédiaire est choisie de façon à limiter la formation de signaux parasites lors de l'opération de décalage.Each MFA block MFD performs a signal shift operation from the intermediate frequency band in a frequency band that completely or partially overlaps the transmission band. The intermediate frequency band is chosen to limit the formation of spurious signals during the shifting operation.

Chaque bloc MFA à MFD filtre ensuite le signal décalé et conserve une portion de la bande de fréquence décalée incluse dans la bande de transmission et comprenant le spectre du signal utile. Les différentes portions de bande de transmission sont respectivement référencées SA à SD pour les blocs de mélange et de sélection MFA à MFD.Each MFA to MFD block then filters the shifted signal and retains a portion of the shifted frequency band included in the transmission band and including the wanted signal spectrum. The different portions of the transmission band are respectively referenced SA to SD for the mixing and selection blocks MFA to MFD.

Les différents signaux associés aux portions de bande de transmission SA à SD sont additionnés pour former un signal dont la bande de fréquence BS correspond sensiblement à la bande de transmission. Ce signal est ensuite transmis à l'unité de traitement 12 par le câble coaxial 14. Chaque bloc démodulateur DEMODA à DEMODD est adapté pour extraire et traiter dans le signal en bande de transmission un signal correspondant à l'une des portions de la bande de transmission.The various signals associated with the portions of transmission band SA to SD are added to form a signal whose frequency band BS substantially corresponds to the transmission band. This signal is then transmitted to the processing unit 12 by the coaxial cable 14. Each demodulator block DEMODA to DEMODD is adapted to extract and process in the transmission band signal a signal corresponding to one of the portions of the band. transmission.

La figure 6 représente un exemple d'architecture plus détaillée de l'unité de réception de la figure 5. Sur la gauche de la figure sont seulement représentés les mélangeurs 35, 36, 37 associés aux blocs LNB1 à LNB3. A titre d'exemple, les fréquences de mélange alimentant les mélangeurs 35, 36 sont produites par un unique synthétiseur de fréquence 38. La fréquence de mélange alimentant le mélangeur 37 est produite par un synthétiseur de fréquence 39.The figure 6 represents an example of a more detailed architecture of the reception unit of the figure 5 . On the left of the figure are only represented the mixers 35, 36, 37 associated with the blocks LNB1 to LNB3. By way of example, the mixing frequencies fed to the mixers 35, 36 are produced by a single frequency synthesizer 38. The mixing frequency fed to the mixer 37 is produced by a frequency synthesizer 39.

Le sélectionneur 30 reçoit en entrée les signaux émis par les blocs LNB1 à LNB3 et est relié en sortie à quatre blocs MFA à MFD, et à un bloc mélangeur M.The selector 30 receives as input the signals emitted by the blocks LNB1 to LNB3 and is connected at the output to four blocks MFA to MFD and to a mixer block M.

Chaque bloc de mélange et de sélection MFA à MFD comprend, montés en série, un bloc mélangeur MA à MD, un filtre passe-bande BPFA à BPFD et un amplificateur d'isolation 40A à 40D. Les signaux produits par les quatre blocs de mélange et de sélection MFA à MFD sont additionnés puis amplifiés par un amplificateur à gain fixe 45 avant d'être transmis par le câble coaxial 14. Le signal issu du bloc mélangeur M est amplifié par un amplificateur 46 et transmis par un câble coaxial auxiliaire 47. Une unité de contrôle 48 est reliée par un premier bus de commande 50 aux différents blocs mélangeurs M, MA à MD. L'unité de contrôle est également reliée aux câbles coaxiaux 14, 47 par un second bus de commande 51.Each mixing and selection block MFA to MFD comprises, in series, a mixing block MA to MD, a bandpass filter BPFA to BPFD and an isolation amplifier 40A to 40D. The signals produced by the four mixing and selection blocks MFA to MFD are added and then amplified by a fixed gain amplifier 45 before being transmitted by the coaxial cable 14. The signal from the mixer block M is amplified by an amplifier 46. and transmitted by an auxiliary coaxial cable 47. A control unit 48 is connected by a first control bus 50 to the different mixer blocks M, MA to MD. The control unit is also connected to the coaxial cables 14, 47 by a second control bus 51.

La figure 7 représente de façon plus détaillée l'architecture des blocs mélangeurs M, MA à MD. Chaque bloc mélangeur comprend, montés en série, un premier amplificateur à gain fixe 52, un premier amplificateur à gain variable 53, un mélangeur 54, un second amplificateur à gain variable 55 et un second amplificateur à gain fixe 56. Le mélangeur 54 est alimenté par une fréquence de mélange issue d'un synthétiseur de fréquence 57. Chaque bloc mélangeur M, MA à MD comprend également une unité de commande 58 connectée au premier bus de commande 50 et propre à commander le sélectionneur 30, le synthétiseur de fréquence 54, et les amplificateurs à gain variable 53, 55.The figure 7 shows in more detail the architecture of mixing blocks M, MA to MD. Each mixer block comprises, connected in series, a first fixed gain amplifier 52, a first variable gain amplifier 53, a mixer 54, a second variable gain amplifier 55 and a second fixed gain amplifier 56. The mixer 54 is powered by a frequency The mixing block M, MA to MD also comprises a control unit 58 connected to the first control bus 50 and able to control the selector 30, the frequency synthesizer 54, and the amplifiers. at variable gain 53, 55.

Le fonctionnement du dispositif des figures 6 et 7 est le suivant. En fonction des signaux « utiles » S1 à S4 à traiter par les blocs de démodulation DEMODA à DEMODD, l'unité de traitement 12 transmet des signaux de commande à l'unité de contrôle 48, par exemple selon le protocole de communication FSK (Frequency Shift Keying) ou le protocole connu sous la marque DiSEqC (Digital Satellite Equipment Control). L'unité de contrôle 48 transmet en conséquence des signaux de commande aux unités de commande 58 d'un ou de plusieurs blocs mélangeurs M, MA à MD, par l'intermédiaire du premier bloc de commande 50, par exemple selon le protocole de communication connu sous la marque I2C (Integrated Circuit Control).The operation of the device Figures 6 and 7 is the next. According to the "useful" signals S1 to S4 to be processed by the demodulation blocks DEMODA to DEMODD, the processing unit 12 transmits control signals to the control unit 48, for example according to the communication protocol FSK (Frequency Shift Keying) or the protocol known as DiSEqC (Digital Satellite Equipment Control). The control unit 48 consequently transmits control signals to the control units 58 of one or more mixer blocks M, MA to MD, via the first control block 50, for example according to the communication protocol. known as I 2 C (Integrated Circuit Control).

L'unité de contrôle 58 ayant reçu les signaux de commande pilote alors les sélectionneurs 30 de façon que l'un des signaux produits par les blocs LNB1 à LNB3 soit transmis au bloc mélangeur associé M, MA à MD. L'unité de commande 58 pilote également le synthétiseur de fréquence 57 du bloc mélangeur MA à MD pour qu'il produise une fréquence de mélange adaptée de sorte que le signal reçu par le bloc mélangeur MA à MD soit correctement décalé en fréquence pour que la bande de fréquence du signal « utile » S1 à S4, après passage par le mélangeur 54, soit comprise dans la bande passante du filtre passe-bande BPFA à BPFD associé au bloc mélangeur MA à MD. Pour le bloc mélangeur M, l'unité de commande 58 pilote le synthétiseur de fréquence 57 du bloc mélangeur M pour qu'il produise une fréquence de mélange adaptée de sorte que le signal reçu par le bloc mélangeur M soit correctement décalé en fréquence pour que la bande de fréquence du signal émis par le bloc mélangeur M soit contenue dans la bande passante du câble coaxial auxiliaire 47, de façon générale la bande de transmission.The control unit 58 having received the control signals then drives the selectors 30 so that one of the signals produced by the LNB1 to LNB3 blocks is transmitted to the associated mixer block M, MA to MD. The control unit 58 also drives the frequency synthesizer 57 of the mixer block MA to MD to produce a suitable mixing frequency so that the signal received by the mixer block MA to MD is correctly shifted in frequency so that the frequency band of the "useful" signal S1 to S4, after passing through the mixer 54, being in the bandwidth of the bandpass filter BPFA to BPFD associated with the mixing block MA to MD. For the mixer block M, the control unit 58 controls the frequency synthesizer 57 of the mixer block M to produce a mixing frequency adapted so that the signal received by the mixer block M is correctly shifted in frequency so that the frequency band of the signal emitted by the mixer unit M is contained in the bandwidth of the auxiliary coaxial cable 47, generally the transmission band.

Les amplificateurs à gain variable 53, 55 permettent d'ajuster l'amplification du signal en amont ou en aval du mélangeur 54. Par exemple, si le signal initial est de faible amplitude, il peut être préférable de l'amplifier en amont du mélangeur 54. Si l'amplitude du signal initial est suffisante, mais que le câble coaxial est de longueur élevée, il peut être préférable d'amplifier le signal en aval du mélangeur 54 pour éviter des phénomènes d'écrêtage lors de l'opération de décalage. Chaque bloc mélangeur M, MA à MD peut consister en un circuit intégré.The variable gain amplifiers 53, 55 make it possible to adjust the amplification of the signal upstream or downstream of the mixer 54. For example, if the initial signal is of low amplitude, it may be preferable to amplify it upstream of the mixer. If the amplitude of the initial signal is sufficient, but the coaxial cable is of long length, it may be preferable to amplify the signal downstream of the mixer 54 to avoid clipping phenomena during the offset operation. . Each mixer block M, MA to MD may consist of an integrated circuit.

Le câble coaxial auxiliaire 47 est prévu de façon à permettre l'utilisation de l'unité de réception selon l'invention avec une unité de traitement classique ne pouvant traiter le signal transmis sur le câble coaxial 14. En effet, le signal transmis sur le câble coaxial 47 est similaire avec le signal issu du bloc LNB de la figure 3.The auxiliary coaxial cable 47 is provided so as to allow the use of the reception unit according to the invention with a conventional processing unit which can not process the signal transmitted on the coaxial cable 14. Indeed, the signal transmitted on the coaxial cable 47 is similar with the signal from the LNB block of the figure 3 .

La figure 8 représente un exemple des gabarits de deux filtres passe-bande, par exemple BPFA et BPFB, dont les bandes passantes sont voisines. Chaque filtre comporte une bande passante, de largeur WA, WB, centrée sur une fréquence moyenne fA, fB, et limitée par une fréquence supérieure fASUP, fBSUP et une fréquence inférieure fAINF, fBINF. Les gabarits sont déterminés de sorte que le gain du filtre BPFB à la fréquence fASUP présente un écart ΔGA d'au moins 30 dB avec le gain du filtre BPFA, et que le gain du filtre BPFA à la fréquence fBINF présente un écart ΔGB d'au moins 30 dB avec le gain du filtre BPFB.The figure 8 represents an example of the templates of two bandpass filters, for example BPFA and BPFB, whose bandwidths are similar. Each filter has a bandwidth, WA, WB, centered on an average frequency f A , f B , and limited by a higher frequency f ASUP , f BSUP and a lower frequency f AINF , f BINF . The templates are determined such that the gain of the BPFB filter at the frequency ASUP has a difference ΔGA of at least 30 dB with the gain of the BPFA filter, and that the gain of the BPFA filter at the frequency f BINF has a difference ΔGB at least 30 dB with the gain of the BPFB filter.

La figure 9 représente à titre d'exemple des valeurs numériques des caractéristiques des gabarits des filtres passe-bande de blocs de mélange et de sélection dans trois configurations différentes. La première configuration comprend deux blocs de mélange et de sélection (filtres passe-bande BPF1 et BPF2), la deuxième configuration comprend quatre blocs de mélange et de sélection (filtres passe-bande BPFA à BPFD), ce qui correspond par exemple à l'architecture de la figure 4, et la troisième configuration comprend six blocs de mélange et de sélection (filtres passe-bande BPFI et BPFVI). La deuxième colonne représente la fréquence moyenne f de la bande passante de chaque filtre passe-bande. La troisième colonne représente la largeur W de la bande passante de chaque filtre passe-bande. La quatrième colonne représente la fréquence inférieure fINF de la bande passante de chaque filtre passe-bande et la cinquième colonne représente la fréquence supérieure fSUP de la bande passante de chaque filtre passe-bande.The figure 9 As an example, there are numerical values of the characteristics of the templates of the bandpass filters of mixing and selection blocks in three different configurations. The first configuration includes two mixing and selection blocks (bandpass filters BPF1 and BPF2), the second configuration comprises four mixing and selection blocks (bandpass filters BPFA to BPFD), which corresponds, for example, to the architecture of the figure 4 and the third configuration comprises six mix and select blocks (BPFI and BPFVI bandpass filters). The second column represents the average frequency f of the bandwidth of each bandpass filter. The third column represents the width W of the bandwidth of each bandpass filter. The fourth column represents the lower frequency f INF of the bandwidth of each bandpass filter and the fifth column represents the upper frequency f SUP of the bandwidth of each bandpass filter.

Comme cela apparaît sur la figure 8, les bandes passantes des filtres passe-bande dans toutes les configurations sont plus importantes que les largeurs de bande habituelles des canaux (d'environ 24 à 36 MHz). Les filtres passe bande peuvent être fabriqués de façon discrète.As it appears on the figure 8 Band pass filter bandwidths in all configurations are larger than the usual channel bandwidths (about 24 to 36 MHz). Band pass filters can be made discretely.

La présente invention comporte de nombreux avantages.The present invention has many advantages.

Elle permet la transmission sur un même câble coaxial de signaux "utiles" pouvant présenter des polarisations différentes. En effet, les signaux issus des blocs à faible bruit LNB1 à LNB3, et qui seront traités par les blocs de mélange et de filtrage MFA à MFD, peuvent avoir des polarisations distinctes.It allows the transmission on the same coaxial cable of "useful" signals may have different polarizations. Indeed, the signals from the low noise blocks LNB1 to LNB3, which will be processed by the mixing and filtering blocks MFA to MFD, may have distinct polarizations.

De plus, elle permet la transmission sur un même câble coaxial de signaux "utiles" pouvant être issus de signaux de bandes de fréquence initiales distinctes. En effet, deux signaux émis par deux blocs LNB1 à LNB3 peuvent avoir des bandes de fréquence initiales distinctes.In addition, it allows the transmission on the same coaxial cable of "useful" signals that can be derived from signals of different initial frequency bands. Indeed, two signals emitted by two blocks LNB1 to LNB3 may have distinct initial frequency bands.

En outre, elle permet la transmission sur un même câble coaxial de signaux "utiles" pouvant, lorsque la bande de fréquence initiale est plus large que la bande de transmission, être issus de portions distinctes de la bande de fréquence initiale. En effet, deux signaux émis par deux blocs LNB1 à LNB3 peuvent correspondre à des portions distinctes de la bande de fréquence initiale d'un même signal.In addition, it allows the transmission on the same coaxial cable of "useful" signals that may, when the initial frequency band is wider than the transmission band, be derived from distinct portions of the initial frequency band. Indeed, two signals emitted by two blocks LNB1 to LNB3 may correspond to distinct portions of the initial frequency band of the same signal.

La présente invention permet de réaliser de façon compacte une unité de réception de volume réduit.The present invention makes it possible to compactly form a reception unit of reduced volume.

La présente invention permet enfin de réaliser les filtres passe-bande par des composants discrets relativement peu coûteux.The present invention finally makes it possible to produce bandpass filters by relatively inexpensive discrete components.

Selon un autre mode de réalisation de l'invention, le synthétiseur de fréquence de chaque bloc de mélange, qui décale le signal depuis la bande de fréquence intermédiaire vers la bande de fréquence finale, fournit une fréquence de mélange, appelée seconde fréquence de mélange, qui peut varier dans une bande de fréquence plus large que la bande initiale. La plage de la seconde fréquence de mélange est telle qu'un seul synthétiseur de fréquence peut être utilisé pour la conversion du signal depuis la bande de fréquence initiale vers la bande de fréquence intermédiaire. Ce synthétiseur fournit la même fréquence de mélange déterminée, appelée première fréquence de mélange, pour tous les signaux issus des blocs à faible bruit. Les conversions du signal à traiter depuis la bande de fréquence initiale vers la bande de fréquence intermédiaire et depuis la bande de fréquence intermédiaire vers la bande de fréquence finale peuvent être deux conversions infra-hétérodynes ou supra-hétérodynes. Le filtre passe-bande associé à un bloc de mélange a une largeur de bande adaptée à sélectionner, dans le signal fourni par le bloc mélangeur, le signal "utile". Les signaux "utiles" sélectionnés sont alors ajoutés pour former le signal transmis sur le câble coaxial comme cela a été décrit précédemment.According to another embodiment of the invention, the frequency synthesizer of each mixing block, which shifts the signal from the intermediate frequency band to the final frequency band, provides a mixing frequency, called a second mixing frequency, which may vary in a frequency band wider than the initial band. The range of the second mixing frequency is such that a single frequency synthesizer can be used to convert the signal from the initial frequency band to the intermediate frequency band. This synthesizer provides the same determined mixing frequency, called the first mixing frequency, for all the signals from the low noise blocks. The conversions of the signal to be processed from the initial frequency band to the intermediate frequency band and from the intermediate frequency band to the final frequency band may be two infra-heterodyne or supra-heterodyne conversions. The bandpass filter associated with a mixing block has a bandwidth adapted to select, in the signal supplied by the mixer unit, the "useful" signal. The selected "useful" signals are then added to form the transmitted signal on the coaxial cable as previously described.

A titre d'exemple, si la bande de fréquence initiale est entre 10.7 GHz et 12.75 GHz, la première fréquence de mélange peut être 13.25 GHz et la seconde fréquence de mélange peut être choisie entre 1.9 GHz et 4.3 GHz. Dans cet exemple, les conversions du signal reçu depuis la bande de fréquence initiale vers la bande de fréquence intermédiaire et depuis la bande de fréquence intermédiaire vers la bande de fréquence finale sont des conversions supra-hétérodynes. Le spectre du signal à traiter est donc inversé deux fois.For example, if the initial frequency band is between 10.7 GHz and 12.75 GHz, the first mixing frequency can be 13.25 GHz and the second mixing frequency can be chosen between 1.9 GHz and 4.3 GHz. In this example, the conversions of the received signal from the initial frequency band to the intermediate frequency band and from the intermediate frequency band to the final frequency band are supra-heterodyne conversions. The spectrum of the signal to be processed is therefore inverted twice.

La largeur du filtre passe-bande associé avec un bloc mélangeur peut être choisie de façon que la fréquence inférieure du filtre passe-bande correspond à la fréquence la plus élevée de la bande de fréquence finale lorsque la seconde fréquence de mélange est fixée à sa valeur la plus basse. Dans le présent exemple, la fréquence inférieure du filtre passe-bande est 1.4 GHz lorsque la seconde fréquence de mélange est à 1.9 GHz. La fréquence supérieure du filtre passe-bande correspond à la fréquence la plus basse lorsque la seconde fréquence de mélange est fixée à sa valeur la plus élevée. Dans le présent exemple, la fréquence supérieure du filtre passe-bande est 1.75 GHz lorsque la seconde fréquence de mélange est à 4.3 GHz. Pour un câble coaxial ayant une bande passante entre 950 MHz et 2150 MHz, trois blocs mélangeur et les filtres associés peuvent être prévus dans le présent exemple.The width of the bandpass filter associated with a mixer block can be chosen such that the lower frequency of the bandpass filter corresponds to the highest frequency of the final frequency band when the second mixing frequency is set to its value. the lowest. In the present example, the lower frequency of the bandpass filter is 1.4 GHz when the second mixing frequency is 1.9 GHz. The upper frequency of the bandpass filter corresponds to the lowest frequency when the second mixing frequency is set to its highest value. In the present example, the upper frequency of the bandpass filter is 1.75 GHz when the second mixing frequency is 4.3 GHz. For a coaxial cable having a bandwidth between 950 MHz and 2150 MHz, three mixer blocks and the associated filters may be provided in the present example.

Ce mode de réalisation de l'invention fournit des avantages supplémentaires.This embodiment of the invention provides additional advantages.

Lorsque la bande de fréquence de la seconde fréquence de mélange est suffisamment large, ce mode de réalisation permet l'utilisation d'une seule première fréquence de mélange pour la conversion du signal à traiter depuis la bande de fréquence initiale vers la bande de fréquence intermédiaire. Un seul synthétiseur peut alors être utilisé pour fournir la première fréquence de mélange. Le nombre de blocs à faible bruit peut alors être réduit au nombre de polarisations possibles du signal à traiter. Un boîtier plus petit et plus léger peut en outre être prévu pour recevoir l'unité de réception, et les blindages de protection des lignes transportant les signaux à haute tension et le sélectionneur sont simplifiés.When the frequency band of the second mixing frequency is sufficiently wide, this embodiment allows the use of a single first mixing frequency for converting the signal to be processed from the initial frequency band to the intermediate frequency band. . A single synthesizer can then be used to provide the first mixing frequency. The number of low noise blocks can then be reduced to the number of possible polarizations of the signal to be processed. A smaller and lighter housing may further be provided to receive the receiving unit, and the shields of protection of lines carrying high voltage signals and the breeder are simplified.

Ce mode de réalisation peut facilement être rendu compatible avec une unité de réception selon l'art antérieur qui transmet sur le câble coaxial un seul signal occupant la totalité de la bande de transmission. Un large filtre passe-bande supplémentaire, par exemple ayant une bande passante égale à la bande de transmission, est prévu en parallèle avec un filtre passe-bande "normal" relié à un bloc mélangeur. En mode de fonctionnement normal, le large filtre passe-bande est désactivé. Lorsque l'unité de réception doit fonctionner comme une unité de réception selon l'art antérieur, le large filtre passe-bande est commuté et tous les blocs mélangeurs sont désactivés, à l'exception du bloc mélangeur relié au large filtre passe-bande supplémentaire. Le filtre passe-bande "normal" relié au bloc mélangeur activé est également désactivé. La seconde fréquence de mélange du bloc mélangeur activé est choisie de façon que les conversions du signal à traiter depuis la bande de fréquence initiale vers la bande de fréquence intermédiaire et depuis la bande de fréquence intermédiaire vers la bande de fréquence finale sont équivalentes à une seule conversion avec une fréquence de mélange équivalente égale à 9.75 GHz ou 10.6 GHz, dans le présent exemple, selon la bande du signal reçu que l'on souhaite transmettre sur le câble coaxial. Dans l'exemple précédent, pour obtenir une fréquence de mélange équivalente égale à 9.75 GHz, la seconde fréquence de mélange est fixée à 3500 MHz. Pour obtenir une fréquence de mélange équivalente égale à 10.6 GHz, la seconde fréquence de mélange est fixée à 2650 MHz.This embodiment can easily be made compatible with a reception unit according to the prior art which transmits on the coaxial cable a single signal occupying the entire transmission band. A large additional bandpass filter, for example having a bandwidth equal to the transmission band, is provided in parallel with a "normal" bandpass filter connected to a mixer block. In normal operation, the broad bandpass filter is disabled. When the receiving unit is to function as a reception unit according to the prior art, the broad bandpass filter is switched and all mixer blocks are switched off, with the exception of the mixer block connected to the large additional bandpass filter. . The "normal" bandpass filter connected to the activated mixer block is also disabled. The second mixing frequency of the activated mixer block is chosen so that the conversions of the signal to be processed from the initial frequency band to the intermediate frequency band and from the intermediate frequency band to the final frequency band are equivalent to one single conversion with an equivalent mixing frequency equal to 9.75 GHz or 10.6 GHz, in the present example, according to the band of the received signal that it is desired to transmit on the coaxial cable. In the previous example, to obtain an equivalent mixing frequency equal to 9.75 GHz, the second mixing frequency is set at 3500 MHz. To obtain an equivalent mixing frequency equal to 10.6 GHz, the second mixing frequency is set at 2650 MHz.

Ce mode de réalisation est donc compatible avec une unité de traitement selon l'art antérieur sans nécessiter l'ajout d'un autre câble coaxial ou sans modifier le sélectionneur.This embodiment is therefore compatible with a processing unit according to the prior art without requiring the addition of another coaxial cable or without modifying the breeder.

Selon un autre mode de réalisation de l'invention, non représenté, l'unité de réception peut fonctionner dans un mode de contrôle. Dans un tel mode, le synthétiseur de fréquence 57 d'un des blocs mélangeurs MA à MD ne fournit plus une fréquence de mélange au mélangeur 54 du bloc mélangeur comme cela a été décrit précédemment, mais directement au filtre passe-bande BPFA à BPFD relié audit bloc mélangeur, par l'intermédiaire d'un diviseur de fréquence. Ce synthétiseur de fréquence est appelé par la suite synthétiseur de contrôle lorsqu'on réalise une opération de contrôle.According to another embodiment of the invention, not shown, the reception unit can operate in a control mode. In such a mode, the frequency synthesizer 57 of one of the mixing blocks MA to MD no longer provides a mixing frequency to mixer 54 of the mixing block as previously described, but directly to the BPFA BPFD bandpass filter connected to it. to the mixer block, via a frequency divider. This frequency synthesizer is subsequently called a control synthesizer when performing a control operation.

La fréquence du signal émis par le synthétiseur de fréquence 57 est divisée lorsque ce signal est directement transmis au filtre passe-bande BPFA à BPFD pour que ce dernier reçoive un signal ayant une fréquence fixe appartenant à la bande de transmission.The frequency of the signal emitted by the frequency synthesizer 57 is divided when this signal is directly transmitted to the bandpass filter BPFA to BPFD so that the latter receives a signal having a fixed frequency belonging to the transmission band.

Une opération de contrôle peut consister en la détermination des pertes du câble coaxial 14. Elle comprend alors, par exemple, les étapes suivantes :

  • l'unité de traitement 12 transmet à l'unité de contrôle 48 de l'unité de réception 10 une commande pour éteindre l'ensemble des blocs mélangeurs MA à MD, par exemple en coupant leur alimentation. La commande est transmise par exemple selon le protocole connu sous la marque DiSEq1. Il s'agit d'un protocole d'échange de données dans une seule direction à savoir depuis l'unité de traitement 12 vers l'unité de réception 10. Sa mise en oeuvre est plus simple que celle du protocole connu sous la marque DiSEq2 qui est adapté à un échange de données bidirectionnel entre l'unité de traitement 12 et l'unité de réception 10 ;
  • un des blocs de démodulation DEMODA à DEMODD de l'unité de traitement 12, ou l'unique bloc de démodulation, est piloté de façon à extraire du signal reçu depuis le câble coaxial un signal à une fréquence fixe déterminée, appelée fréquence de contrôle, par exemple 1700 MHz. On vérifie alors que la puissance du signal reçu à la fréquence de contrôle est très faible ;
  • l'unité de traitement 12 transmet à l'unité de contrôle 48 une nouvelle commande pour que le synthétiseur de contrôle fournisse au filtre passe-bande un signal de fréquence fixe. La fréquence du signal reçu par le filtre passe-bande est légèrement supérieure à la fréquence de contrôle, par exemple de 2 MHz pour tenir compte d'un décalage en fréquence systématique présent au niveau du bloc de démodulation ;
  • le bloc de démodulation de l'unité de traitement 12 extrait à nouveau le signal à la fréquence de contrôle. On détermine alors la puissance du signal reçu à la fréquence de contrôle, ou puissance reçue PR ;
  • l'atténuation du câble est obtenue en déterminant la différence entre la puissance émise au niveau de la sortie de l'unité de réception 10 (c'est-à-dire au niveau de la connexion entre l'unité de réception 10 et le câble coaxial 14), appelée puissance transmise PT, et la puissance reçue PR, exprimées en décibels ;
  • l'unité de traitement 12 transmet alors à l'unité de contrôle 48 une nouvelle commande pour éteindre le synthétiseur de contrôle. L'opération de contrôle est ainsi achevée.
A control operation may consist in determining the losses of the coaxial cable 14. It then comprises, for example, the following steps:
  • the processing unit 12 transmits to the control unit 48 of the reception unit 10 a command for switching off the set of mixer blocks MA to MD, for example by cutting off their power supply. The command is transmitted for example according to the protocol known under the brand DiSEq1. This is a data exchange protocol in only one direction, namely from the processing unit 12 to the reception unit 10. Its implementation is simpler than that of the protocol known under the brand DiSEq2 which is adapted to bidirectional data exchange between the processing unit 12 and the reception unit 10;
  • one of the demodulation units DEMODA to DEMODD of the processing unit 12, or the single demodulation block, is controlled so as to extract from the signal received from the coaxial cable a signal at a determined fixed frequency, called the control frequency, for example 1700 MHz. We then check that the power of the signal received at the control frequency is very low;
  • the processing unit 12 transmits to the control unit 48 a new command for the control synthesizer to provide the bandpass filter with a fixed frequency signal. The frequency of the signal received by the bandpass filter is slightly greater than the control frequency, for example 2 MHz to take account of a systematic frequency shift present at the demodulation block;
  • the demodulation block of the processing unit 12 retrieves the signal again at the control frequency. The power of the signal received at the control frequency, or received power P R, is then determined ;
  • the attenuation of the cable is obtained by determining the difference between the power emitted at the output of the reception unit 10 (that is to say at the level of the connection between the reception unit 10 and the cable coaxial 14), called transmitted power P T , and the received power P R , expressed in decibels;
  • the processing unit 12 then transmits to the control unit 48 a new command to turn off the control synthesizer. The control operation is thus completed.

La puissance transmise PT peut être déterminée selon l'une des façons suivantes :

  • la valeur de la puissance transmise PT correspond à une valeur prédéfinie fixée à l'avance. Bien que de conception particulièrement simple, la précision de l'atténuation ainsi déterminée est relativement faible ;
  • plusieurs valeurs de la puissance transmise PT à différentes fréquences sont stockées au niveau de l'unité de réception 10 et ces valeurs sont transmises par l'unité de réception à l'unité de traitement lors de l'opération de contrôle, par exemple en utilisant le protocole d'échange de données connu sous la marque DiSEqC 2 ;
  • la valeur de la puissance transmise PT est transmise par l'unité de réception 10 à l'unité de traitement 12 directement au moyen du synthétiseur de contrôle comme cela sera détaillé par la suite.
The transmitted power P T can be determined in one of the following ways:
  • the value of the transmitted power P T corresponds to a predefined value fixed in advance. Although of particularly simple design, the accuracy of the attenuation thus determined is relatively low;
  • several values of the transmitted power P T at different frequencies are stored at the reception unit 10 and these values are transmitted by the reception unit to the processing unit during the control operation, for example by using the data exchange protocol known as DiSEqC 2;
  • the value of the transmitted power P T is transmitted by the reception unit 10 to the processing unit 12 directly by means of the control synthesizer as will be detailed hereinafter.

Le présent mode de réalisation permet de façon simple de déterminer les caractéristiques du câble coaxial.The present embodiment allows a simple way to determine the characteristics of the coaxial cable.

De plus, l'opération de contrôle de l'atténuation peut être réalisée pour plusieurs fréquences également réparties, par exemple avec un pas de 50 MHz. Un traitement est alors effectué sur les valeurs de puissance reçues PR pour obtenir une fonction représentative de la puissance reçue PR en fonction de la fréquence. Lorsque la puissance reçue PR est faible pour toutes les fréquences, cela peut correspondre à un contact de mauvaise qualité ou à un mauvais fonctionnement de l'unité de réception. Lorsque la fonction représentative de la puissance reçue PR en fonction de la fréquence comporte des ondulations, cela peut correspondre à une mauvaise adaptation en impédance, à un connecteur mal vissé, etc. Lorsque la puissance reçue PR chute fortement en fonction de la fréquence, cela peut correspondre à un câble de mauvaise qualité. L'unité de traitement peut comprendre une interface pour indiquer à un utilisateur les résultats du contrôle.In addition, the attenuation control operation can be performed for several evenly distributed frequencies, for example with a pitch of 50 MHz. A processing is then performed on the received power values P R to obtain a function representative of the received power P R as a function of frequency. When the received power P R is low for all the frequencies, this may correspond to a poor quality contact or to a malfunction of the reception unit. When the function representative of the received power P R as a function of the frequency comprises ripples, this may correspond to poor impedance matching, to an incorrectly screwed connector, etc. When the received power P R drops sharply as a function of frequency, this may correspond to a cable of poor quality. The processing unit may include an interface to indicate to a user the results of the control.

Ce mode de réalisation permet également à l'unité de réception 10 de transmettre des données à l'unité de traitement 12 même si elle ne dispose pas d'un protocole d'échange de données bidirectionnel entre l'unité de réception et l'unité de traitement, par exemple le protocole connu sous la marque DiSEqC 2.This embodiment also enables the receiving unit 10 to transmit data to the processing unit 12 even if it does not have a bidirectional data exchange protocol between the receiving unit and the unit. treatment, for example the protocol known as DiSEqC 2.

A titre d'exemple, les données transmises peuvent correspondre aux fréquences moyennes des sous-bandes de fréquence fournies par les filtres passe-bande BPFA à BPFD. Dans cet exemple, chaque synthétiseur de fréquence d'un bloc mélangeur MDA à MDD peut fournir un signal de fréquence donnée directement au filtre passe-bande BPFA à BPFD associé audit bloc mélangeur. A réception d'une commande transmise par l'unité de traitement, l'unité de contrôle 58 commande les synthétiseurs de fréquence de façon que chaque synthétiseur de fréquence fournit au filtre passe-bande associé un signal dont la fréquence correspond à la fréquence moyenne de la bande passante du filtre passe-bande associé. Les différents signaux à fréquence fixe sont alors additionnés et le signal ainsi formé est transmis sur le câble coaxial. Les valeurs des fréquences moyennes sont par exemple mémorisées au niveau de l'unité de contrôle. L'unité de traitement balaye alors le signal reçu sur toute la bande de transmission pour déterminer les fréquences moyennes.For example, the transmitted data may correspond to the average frequencies of the frequency subbands provided by the BPFA to BPFD bandpass filters. In this example, each frequency synthesizer of an MDA to MDD mixer block can provide a given frequency signal directly to the BPFA to BPFD bandpass filter associated with said mixer block. On receipt of an order transmitted by the processing, the control unit 58 controls the frequency synthesizers so that each frequency synthesizer provides the associated bandpass filter a signal whose frequency corresponds to the average frequency of the passband of the bandpass filter associated. The various fixed frequency signals are then added and the signal thus formed is transmitted on the coaxial cable. The values of the average frequencies are for example stored at the level of the control unit. The processing unit then scans the received signal over the entire transmission band to determine the average frequencies.

La donnée transmise peut également correspondre à la puissance transmise PT. Un seul synthétiseur de contrôle est alors nécessaire. Des valeurs de la puissance transmise PT par l'unité de réception 10 à différentes fréquences sont dans ce cas mémorisées au niveau de l'unité de réception 10. L'unité de traitement 12 transmet à l'unité de réception 10 une requête qui indique une fréquence déterminée pour laquelle l'unité de traitement 12 souhaite connaître la puissance transmise PT par l'unité de réception 10. L'unité de contrôle 48 commande alors le synthétiseur de contrôle de sorte qu'il fournit directement au filtre passe-bande associé un premier signal dont la fréquence, après division, est égale à la fréquence déterminée. Lorsque l'unité de traitement 12 a déterminé la fréquence du signal transmis sur le câble coaxial 14, il transmet à l'unité de réception 10 une requête de poursuite. L'unité de contrôle 48 commande alors le synthétiseur de contrôle de sorte qu'il fournit directement au filtre passe-bande associé un second signal dont la fréquence, après division, est décalée par rapport à la fréquence déterminée. Le décalage entre la fréquence déterminée du premier signal et la fréquence du second signal est représentatif de la puissance transmise PT à la fréquence déterminée.The transmitted data may also correspond to the transmitted power P T. Only one control synthesizer is needed. Values of the transmitted power P T by the reception unit 10 at different frequencies are in this case stored at the reception unit 10. The processing unit 12 transmits to the reception unit 10 a request which indicates a determined frequency for which the processing unit 12 wishes to know the transmitted power P T by the reception unit 10. The control unit 48 then controls the control synthesizer so that it provides directly to the pass filter. associated band a first signal whose frequency, after division, is equal to the determined frequency. When the processing unit 12 has determined the frequency of the signal transmitted on the coaxial cable 14, it transmits to the reception unit 10 a continuation request. The control unit 48 then controls the control synthesizer so that it provides directly to the associated bandpass filter a second signal whose frequency, after division, is shifted with respect to the determined frequency. The offset between the determined frequency of the first signal and the frequency of the second signal is representative of the transmitted power P T at the determined frequency.

Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, l'unité de contrôle 48 peut être supprimée, les unités de commande 58 des blocs mélangeurs M, MA à MD étant directement connectées au second bus de commande et recevant directement les signaux émis par l'unité de traitement 12.Of course, the present invention is susceptible of various variations and modifications which will be apparent to those skilled in the art. In particular, the control unit 48 can be deleted, the control units 58 of the mixer blocks M, MA to MD being directly connected to the second control bus and directly receiving the signals transmitted by the processing unit 12.

Claims (10)

  1. A receiver (10) that can receive several initial signals modulated in a same initial frequency band and/or distinct initial frequency bands and generate a signal modulated in a transmission band to be transmitted on a coaxial cable (14), characterized in that it comprises:
    focal points, associated with an antenna, each receive focal point being able to receive one of the initial modulated signal having a determined polarization;
    first mixers (35, 36, 37), each intermediary mixer (35, 36, 37) being capable of transforming the initial signal received by each receive focal point into an intermediary signal in an intermediary frequency band different from the transmission band;
    a selector (30) receiving the intermediary signals and capable of selecting several signals from among the received intermediary signals;
    for each selected signal:
    a second mixer (54) connected to a frequency synthesizer (57) capable of generating a determined mixing frequency and adapted to transforming the selected signal into a signal at least partly in the transmission band; and
    a bandpass filter (BPFA to BPFD) capable of extracting from the transformed signal a signal associated with a portion of the transmission band from among several at least partly distinct portions of the transmission band, the mixing frequency being a function of the portion of the transmission band and of the selected signal;
    means adapted to add the signals associated with the transmission band portions to form the signal modulated in the transmission band; and
    a control unit (48) capable of receiving control signals via the coaxial cable and driving the frequency synthesizers (57) according to the control signals for the generation of the corresponding mixing frequencies, and the selector (30) for the selection of the intermediary signals.
  2. The receiver of claim 1, characterized in that the filters (BPFA to BPFD) are bandpass filters of distinct passbands (WA, WB), and wherein for a first filter, the passband of which is at frequencies greater than those of the passband of a second filter, the difference between the gain of the second filter and the gain of the first filter at the upper limiting frequency (fASUP) of the passband of the second filter is greater than 30 decibels and the difference between the gain of the first filter and the gain of the second filter at the lower limiting frequency (fBINF) of the passband of the first filter is greater than 30 decibels.
  3. The receiver of claim 1, characterized in that the frequency synthesizer (57) is adapted to provide a determined mixing frequency in a frequency band, the width of which being higher than the width of the initial frequency band or the sum of the widths of the distinct initial frequency bands.
  4. The receiver of claim 1, characterized in that at least one frequency synthesizer (57) is adapted to transmit directly to the respective filter (BPFA to BPFD) a periodic signal at a predetermined frequency and power.
  5. A method for transforming several modulated signals received in a same initial frequency band and/or distinct initial frequency bands into a signal modulated in a transmission band, characterized in that it comprises the steps of:
    receiving control signals via the coaxial cable;
    transforming each received modulated signal into an intermediary signal in an intermediary frequency band different from the transmission band;
    selecting several signals from among the intermediary signals as a function of control signals;
    for each selected signal, transforming the selected signal into a signal at least partly in the transmission band by mixing the selected signal with a mixing frequency, and extracting from the transformed signal by bandpass filtering a signal associated with a portion of the transmission band from among several portions of the transmission band, at least partly distinct the mixing frequency depending on the selected signal, on the portion of the transmission band and on control signal; and
    adding the signal associated with the transmissions and portions to form the modulated signal in the transmission band.
  6. The method of claim 5, characterized in that each selected signal is amplified at a variable gain before being transformed and/or after having been transformed into a signal at least partly in the transmission band, the gain depending on the selected signal.
  7. The method of claim 5 implemented by a receiver (10) according to claim 4, linked, by means of the coaxial cable (14), to a processing unit (12) adapted to process the signal modulated in the transmission band provided by the receiver in normal operation, further comprising:
    the transmission from the processing unit to the receiver of a request related to a determined frequency;
    the transmission from the receiver of a periodic signal corresponding to the receipt by the processing unit if a periodic signal at the determined frequency;
    the determination by the processing unit of the power of the received periodic signal at the determined frequency; and
    the determination by the processing unit of the power attenuation of the coaxial cable from the power of the received periodic signal at the determined frequency and the power of the periodic signal transmitted by the receiver.
  8. The method according to claim 7, characterized in that the receiver (10) transmits successively through the coaxial cable (14), upon receipt of requests from the processing unit (12), periodic signals at different fixed frequencies.
  9. The method according to claim 7, wherein the receiver (10) provides through the coaxial cable (14) a periodic signal at a first frequency corresponding to the receipt by the processing unit (12) of a periodic signal at the determined frequency, and a periodic signal at a second frequency different from the first frequency, the difference between the first and the second frequencies being representative of the power of the periodic signal at the first frequency transmitted by the receiver.
  10. The method according to claim 7, characterized in that each frequency synthesizer (57) of the receiver (10) is adapted to transmit directly to the respective filter (BPFA to BPFD) a periodic signal, and wherein the receiver transmits to the processing unit (12), through the coaxial cable (14), a signal corresponding to the sum of periodic signals provided by the frequency synthesizers, each periodic signal being at frequency equal to the average frequency of one of the portions of the transmission band.
EP03354008A 2002-01-29 2003-01-29 Multiple signal transmission on a coaxial cable Expired - Fee Related EP1331749B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0201038 2002-01-29
FR0201038A FR2835368A1 (en) 2002-01-29 2002-01-29 TRANSMISSION OF SIGNALS ON A COAXIAL CABLE

Publications (2)

Publication Number Publication Date
EP1331749A1 EP1331749A1 (en) 2003-07-30
EP1331749B1 true EP1331749B1 (en) 2009-11-04

Family

ID=8871425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03354008A Expired - Fee Related EP1331749B1 (en) 2002-01-29 2003-01-29 Multiple signal transmission on a coaxial cable

Country Status (5)

Country Link
US (1) US7953366B2 (en)
EP (1) EP1331749B1 (en)
JP (1) JP2003298444A (en)
DE (1) DE60329875D1 (en)
FR (1) FR2835368A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005007392D1 (en) * 2004-01-20 2008-07-24 St Microelectronics Sa Transmission system and method in satellite home distribution systems
JP4852529B2 (en) * 2004-03-09 2012-01-11 トムソン ライセンシング Set-top box apparatus and method
US20060174282A1 (en) * 2005-01-31 2006-08-03 Pro Brand International, Inc. Bi-directional signal coupler
JP2007235433A (en) * 2006-02-28 2007-09-13 Alps Electric Co Ltd Low-noise block converter
CN101601213B (en) 2007-01-25 2014-09-10 汤姆森特许公司 Frequency translation module interface
FR2936920B1 (en) * 2008-10-06 2016-01-15 Eutelsat INSTALLATION FOR RECEIVING SATELLITE HYPERFREQUENCY SIGNALS.
FR2947684B1 (en) * 2009-07-01 2012-03-09 Kamal Lotfy SATELLITE SIGNAL RECEIVER
JP5649877B2 (en) * 2010-08-30 2015-01-07 ラピスセミコンダクタ株式会社 Correlator and demodulator including the same
KR20140045992A (en) * 2011-06-24 2014-04-17 트라네 앤드 트라네 아/에스 Virtual n-band lnb
CN102510460B (en) * 2011-11-21 2014-11-26 深圳市同洲电子股份有限公司 Digital television satellite receiver and user band (UB) installation method thereof
TWI733244B (en) * 2019-11-07 2021-07-11 瑞昱半導體股份有限公司 Transceiver device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778716A (en) * 1966-01-28 1973-12-11 Hughes Aircraft Co Coherent catv transmission system
IL74887A (en) * 1985-04-14 1989-06-30 Dan Manor Radar warning receiver
US4792993A (en) * 1985-10-30 1988-12-20 Capetronic (Bsr) Ltd. TVRD receiver system with automatic bandwidth adjustment
FR2649570B1 (en) * 1989-07-04 1991-09-20 Thomson Composants Microondes SYSTEM FOR RECEIVING TRANSFERRED TV SIGNALS BY SATELLITES
JPH07147529A (en) * 1993-06-28 1995-06-06 Hitachi Ltd Automatic frequency controller and control method using split band signal intensity measurement method
US5485630A (en) * 1994-03-31 1996-01-16 Panasonic Technologies, Inc. Audio/video distribution system
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US6009130A (en) * 1995-12-28 1999-12-28 Motorola, Inc. Multiple access digital transmitter and receiver
US5959592A (en) * 1996-03-18 1999-09-28 Echostar Engineering Corporation "IF" bandstacked low noise block converter combined with diplexer
ID27193A (en) * 1998-01-20 2001-03-08 Fracarro Radioindustries S P A UNIVERSAL SIGNAL DISTRIBUTION SYSTEM
JP3653215B2 (en) * 1999-10-01 2005-05-25 シャープ株式会社 Satellite broadcast receiving system, and low noise block down converter and satellite broadcast receiver used in satellite broadcast receiving system
US6731690B2 (en) * 2000-12-01 2004-05-04 Motorola, Inc. Methods and apparatus for transmultiplexing a multi-channel signal
GB0030965D0 (en) * 2000-12-19 2001-01-31 Nokia Oy Ab Improvements relating to satellite reception`
FR2853487A1 (en) * 2003-04-01 2004-10-08 St Microelectronics Sa ELECTRONIC COMPONENT FOR DECODING DIGITAL SATELLITE TELEVISION SIGNALS

Also Published As

Publication number Publication date
FR2835368A1 (en) 2003-08-01
JP2003298444A (en) 2003-10-17
US20030141949A1 (en) 2003-07-31
US7953366B2 (en) 2011-05-31
EP1331749A1 (en) 2003-07-30
DE60329875D1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
EP0941588B1 (en) Method and device for mixed analog and digital broadcast of a radio programme broadcast by the same transmitter
EP1331749B1 (en) Multiple signal transmission on a coaxial cable
EP0033256A1 (en) Radioelectric diversity transmission system of simple and economic structure
FR2662895A1 (en) Radio broadcast programme distribution installation with cabled network
FR2791494A1 (en) BI-MODE RADIO FREQUENCY RECEIVING DEVICE AND CORRESPONDING MULTIMEDIA RECEIVER
EP2074700B1 (en) Radioelectric transmission and reception module mainly intended for broad-band radiocommunications
FR2810173A1 (en) RADIO FREQUENCY TRANSMISSION AND / OR RECEPTION DEVICE
EP0800314A1 (en) Receiver for programmes broadcast by a satellite or an MMDS-station
EP1295391B1 (en) Self-adaptive frequency band-pass filtering device in microwave signal transceiver
FR2936920A1 (en) INSTALLATION FOR RECEIVING SATELLITE HYPERFREQUENCY SIGNALS.
EP1554824A1 (en) Radio signal distribution device and reception system comprising said device
EP1558035B1 (en) Method and system for distributing signals in a satellite reception installation
EP1315295B1 (en) Tuner comprising a selective filter
EP1271937A1 (en) Device for the isofrequency retransmission of a terrestrial digital television signal
EP0991215B1 (en) Non-periodic modular system for retransmission with digital multi-channel
FR2764760A1 (en) CONTROL PROTOCOL FOR CIRCUITS USED FOR THE RECEPTION OF HYPERFREQUENCY SIGNALS AND DEVICE IMPLEMENTING THE PROTOCOL
EP0681364A1 (en) Method and device for receiving at least one input signal containing at least one piece of coded information
EP1193887B1 (en) Multiband receiver circuit in a mobile telephone , and a method therefor
WO2004107603A2 (en) Method and simultaneous radio broadcast transmitter using a pre-filtering of the multi-carrier digital signal
EP0438934B1 (en) Distribution system for very high frequency signals
EP4082121A1 (en) Radiofrequency device
FR3123772A1 (en) MULTI-CHANNEL POINT-TO-POINT RADIO TRANSMISSION METHOD AND SYSTEM WITH LIMITATION OF COUPLING LOSSES
FR2990321A1 (en) Device for transmitting and/or receiving radio frequency for cognitive radio system, has set of mixing stages mixing filtered signal from band pass filter with local oscillator frequency signal and delivering output frequency signal
FR2816472A1 (en) Multiband mobile telephone having transmitter with power amplifier chain with individual amplifiers settable saturated/non saturated regime providing separate frequency bands.
FR2864877A1 (en) Low noise block for use with parabolic reflector, has transposition unit for transposing sub-bands of satellite reception band in intermediate frequency band of infra-dyne type and supra-dyne type

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040112

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60329875

Country of ref document: DE

Date of ref document: 20091217

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100805

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101230

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131219

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60329875

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801