EP1328199A1 - Through the scope endoscopic hemostatic clipping device - Google Patents

Through the scope endoscopic hemostatic clipping device

Info

Publication number
EP1328199A1
EP1328199A1 EP02775909A EP02775909A EP1328199A1 EP 1328199 A1 EP1328199 A1 EP 1328199A1 EP 02775909 A EP02775909 A EP 02775909A EP 02775909 A EP02775909 A EP 02775909A EP 1328199 A1 EP1328199 A1 EP 1328199A1
Authority
EP
European Patent Office
Prior art keywords
clip
control wire
medical device
lock
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02775909A
Other languages
German (de)
French (fr)
Other versions
EP1328199B1 (en
Inventor
Mark L. Adams
Russell F. Durgin
Vincent Turturro
Justin Grant
Norman May
Roy H. Sullivan, Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Medical Device Ltd
Original Assignee
Boston Scientific Ltd Barbados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25518453&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1328199(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Boston Scientific Ltd Barbados filed Critical Boston Scientific Ltd Barbados
Priority to EP15199778.0A priority Critical patent/EP3023061B2/en
Priority to EP15158361.4A priority patent/EP2907458B2/en
Priority to EP15158382.0A priority patent/EP2907459B2/en
Priority to EP18171371.0A priority patent/EP3391835A1/en
Publication of EP1328199A1 publication Critical patent/EP1328199A1/en
Application granted granted Critical
Publication of EP1328199B1 publication Critical patent/EP1328199B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/128Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips
    • A61B17/1285Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B17/083Clips, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • A61B17/1227Spring clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B2017/12004Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for haemostasis, for prevention of bleeding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/037Automatic limiting or abutting means, e.g. for safety with a frangible part, e.g. by reduced diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • A61B2090/3916Bone tissue

Definitions

  • the present invention relates to compression clips, and more specifically, to compression clips used to cause hemostasis of blood vessels located along the gastrointestinal tract delivered to a target site through an endoscope.
  • Gastrointestinal bleeding is often associated with peptic ulcer disease
  • PUD blood pressure
  • Ulcers are classified from clean to active spurting bleeding. The most worrisome are active bleeders and visible vessels. Untreated visible vessels are likely to bleed.
  • Suspected bleeding PUD patients can be diagnosed and treated endoscopically in an emergency room, an ICU or the Gl suite.
  • Surgery generally results in higher cost, morbidity and mortality than endoscopy. Therefore, laparoscopy or open surgery is not preferred unless there is no endoscopic alternative or endoscopy has failed. If the diseased tissue is beyond repair, a surgical gastric resection may be performed.
  • the endoscopist has two commonly used treatments and some lesser used therapies to achieve hemostasis of the ulcer. The most widely used treatments are thermal therapy and injection therapy. Some of the less common options are Olympus Endoclips, lasers and argon plasma cautery.
  • a catheter with a rigid heating element tip is passed through the working channel of an endoscope after the bleed is visualized and diagnosed.
  • the scope is manipulated to press the tip against the bleed site.
  • Thermal power is applied, either through a resistive element in the tip or by applying RF energy through the tissue, thus desiccating and cauterizing the tissue.
  • the combination of the tip compressing the tissue/vessel and the application of heat theoretically welds the vessel closed.
  • thermal treatment is fairly successful in achieving hemostasis, it often takes more than one attempt (irrigation is applied after the initial treatment to see if hemostasis has occurred) and there is frequent re-bleeding. Generally several pulses of energy are applied during each attempt. If early re-treatment is needed, there is a risk of perforation with the heat probe. Another disadvantage is that both types of thermal therapy require a specialized power generator and the equipment can be expensive.
  • injection therapy a catheter with a distally extendable hypo needle is passed through the working channel of the endoscope after the bleeding has been visualized and diagnosed. Once the catheter tip has exited the scope, the scope is manipulated to the bleed site, the needle is extended remotely and inserted into the bleed site.
  • a vasoconstricting (narrowing of blood vessels) or sclerosing (causing a hardening of tissue) drug is then injected through the needle. Multiple injections in and around the bleeding site are often needed, until hemostasis has been achieved. As with thermal therapy, re-bleeding is also a problem.
  • the primary success rate of endoscopic treatment is about 90%.
  • the other cases are usually referred to surgery. All identified ulcers may re-bleed at a later time, but the re-bleed rate for endoscopically treated active bleeds and a visible vessel is 10-30%. Even with the introduction of new treatments and devices, these rates have not improved significantly in decades. Surgery's short and long-term success for permanent hemostasis is virtually 100%.
  • Surgery has a higher success rate because the bleeding site is compressed mechanically, causing better hemostasis.
  • devices such as clamps, clips, staples, sutures (i.e. devices able to apply sufficient constrictive forces to blood vessels so as to limit or interrupt blood flow)
  • the bleeding vessel is ligated or the tissue around the bleed site is compressed, ligating all of the surrounding vessels.
  • An existing device that incorporates the advantages of surgery into a less- invasive endoscopic procedure is the Olympus EndoClip.
  • the goal of the device is to pinch the bleeding vessel to create hemostasis.
  • the problem with this device is that once jaw closure begins, it is not possible to reopen them, and the endoscopist is committed to firing the clip. In other words, jaw closure is not reversible.
  • the Olympus EndoClip is a semi-reusable device, causing the performance of the device to degrade with use.
  • the present invention provides medical devices for causing the hemostasis of blood vessels located along the gastrointestinal tract.
  • the goal of the invention is to give the endoscopist a technique and device which: 1 ) has a success rate in line with the surgical option; 2) is easier to set-up than the Olympus EndoClip; and 3) is easier to deploy than the Olympus EndoClip.
  • the design intent is to eliminate surgery and its associated mortality and morbidity.
  • the medical devices of the present invention include: a compression clip used to cause hemostasis of blood vessels and a mechanism for deploying the clip that includes an arrangement for closing the clip and for reversing the closing process to reopen the clip after closure has begun.
  • Embodiments of the invention may include a lock arrangement for locking the clip closed; a control wire connected to the clip and able to be disconnected from the clip; an axially rigid sheath enclosing the control wire and communicating a compressive force opposing a tensile force of the control wire; a handle connected to the axially rigid sheath; and/or a trigger enclosed within the handle and engaging the control wire to close and lock the clip and to uncouple the control wire from the clip.
  • the device's ability to repeatedly open and close the clip until the desired tissue pinching is accomplished will lead to a quicker procedure, requiring less clips to be deployed, with a higher success rate.
  • this higher success rate will be improved even more due to the device's ability to be easily rotated so that the clip legs can be adjusted relative to the bleeding vessel.
  • the time required to perform the overall procedure will also be further reduced due to the fact that the device is completely set up, with the clip already attached to the delivery device, unlike the competitive device.
  • a more robust delivery device may allow a larger, stronger clip to be delivered.
  • Combinations of these features will provide for a device that is easier to use.
  • the competitive device uses a "semi-reusable" delivery device, capable of firing several clips before it fails. This causes the device's functionality to degrade over the course of its use, until it is no longer able to deploy a clip.
  • the competitive delivery device must be loaded manually, which is cumbersome to the operator and time- consuming, especially in the context of an unplanned emergency procedure.
  • the "single-use" (disposable) embodiments of the invention disclosed here would function the same with each clip, in each procedure.
  • Figure 1 is an enlarged partial view of a first embodiment of the medical device of the present invention.
  • Figure 2 is an enlarged partial view of the distal end of the embodiment of
  • Figure 3 is an enlarged view of the clip of the embodiment of Figure 1.
  • Figure 4 is an enlarged view of the lock sleeve of the embodiment of Figure 1.
  • Figure 5 is an enlarged view of the j-hook of the embodiment of Figure 1.
  • Figure 6 is an enlarged partial view of the control wire, retainer, and clip of the embodiment of Figure 1.
  • Figure 7 is an enlarged partial view of the handle of the embodiment of Figure 1.
  • Figure 8A is an enlarged partial view of the distal end of another embodiment of the medical device of the present invention.
  • Figure 8B is an enlarged partial end view of the embodiment of Figure 8A.
  • Figure 8C is an enlarged partial view of a clip leg of the embodiment of Figure 8A.
  • Figure 8D is an enlarged partial view of a clip locking mechanism of the embodiment of Figure 8A.
  • Figure 8E is an enlarged partial view of a clip locking mechanism and clip legs of the embodiment of Figure 8A.
  • Figure 8F shows enlarged partial side views of various embodiments of clip leg shapes available for use in the medical device of the present invention.
  • Figure 8G shows enlarged partial end views of various embodiments of clip leg shapes available for use in the medical device of the present invention.
  • Figure 9A is an enlarged partial view of the distal end of another embodiment of the medical device of the present invention.
  • Figure 9B is an enlarged partial view of the embodiment of Figure 9A being deployed.
  • Figure 10A is an enlarged partial view of another embodiment of the medical device of the present invention.
  • Figure 10B is an enlarged partial view of the embodiment of Figure 10A being deployed.
  • Figure 11 is an enlarged partial view of another embodiment of the medical device of the present invention.
  • Figure 12A is an enlarged partial view of another embodiment of the medical device of the present invention showing the clip in an open position.
  • Figure 12B is an enlarged partial view of the embodiment of Figure 12A showing the clip in a closed position.
  • Figure 13A is an enlarged partial view of another embodiment of the medical device of the present invention showing the clip in a closed position prior to disconnecting the clip.
  • Figure 13B is an enlarged partial view of the distal end of the embodiment of Figure 13A showing the clip in a closed position after disconnecting the clip.
  • Figure 13C is an enlarged partial view of the embodiment of Figure 13A showing the clip in a closed position after disconnecting the clip.
  • Figure 14A is an enlarged partial view of another embodiment of the medical device of the present invention.
  • Figure 14B is an enlarged partial side view of the embodiment of Figure 14A.
  • Figure 14C is an enlarged partial view of the distal end of the medical device of the embodiment of Figure 14A after the clip has been released.
  • Figure 15A is an enlarged partial view of another embodiment of the medical device of the present invention.
  • Figure 15B is an enlarged partial view of the clip of the embodiment of Figure 15A in a closed position.
  • Figure 15C is an enlarged partial view of the clip of the embodiment of Figure
  • Figure 15D is an enlarged partial view of the distal end of the medical device of the embodiment of Figure 15A after the clip has been released.
  • Figure 16A is an enlarged partial view of another embodiment of the medical device of the present invention.
  • Figure 16B is an enlarged partial close-up side view of the end of a clip leg of the embodiment of Figure 16A.
  • Figure 16C is an enlarged partial close-up edge view of the end of a clip leg of the embodiment of Figure 16A.
  • Figure 16D is an enlarged partial view of the embodiment of Figure 16A with the clip in an open position.
  • Figure 16E is an enlarged partial view of the embodiment of Figure 16A with the clip in a closed position.
  • Figure 17A is an enlarged partial view of another embodiment of the medical device of the present invention.
  • Figure 17B is an enlarged partial view of the embodiment of Figure 17A, showing the clip in an open position.
  • Figure 18A is an enlarged view of clip legs of another embodiment of the medical device of the present invention.
  • Figure 18B is an enlarged partial view of an embodiment of the medical device of the present invention using the clip legs of Figure 18A.
  • Figure 18C is an enlarged partial view of the embodiment of Figure 18B, showing the clip in a closed position.
  • Figure 18D is an enlarged edge view of the clip of the embodiment of Figure 18B.
  • Figure 18E is an enlarged partial end view of the embodiment of Figure 18B.
  • Figure 18F is an enlarged partial side view of the embodiment of Figure 18B.
  • Figure 19A is an enlarged partial edge view of another embodiment of the medical device of the present invention.
  • Figure 19B is an enlarged partial side view of the embodiment of Figure 19A.
  • Figure 19C is an enlarged partial view of a clip leg of the embodiment of
  • Figure 20A is an enlarged partial end view of another embodiment of the medical device of the present invention.
  • Figure 20B is an enlarged partial side view of the embodiment of Figure 20A.
  • Figure 20C is a side-by-side comparison of two parts of the embodiment of
  • Figure 21 is an enlarged partial view of the distal end of another embodiment of the medical device of the present invention.
  • medical device 100 includes a clip 101 having first clip leg 102 and second clip leg 103.
  • Clip leg 102 has at least one lock hole 104 therein of any suitable shape (e.g. circular, rectangular, square, etc.).
  • clip leg 103 has at least one lock hole 105 therein of any suitable shape.
  • Clip 101 is further characterized by a cut-out 106 on the proximal end. J-hook 107 is inserted into cut-out 106. J-hook 107 is formed on the distal terminal end of control wire 108.
  • a retainer release 109 is formed by bends in the control wire 108, the bends formed proximally from the j-hook 107.
  • the control wire 108 is enclosed within sheath 111 proximally from the retainer release 109.
  • Retainer 110 is coupled to control wire 108 and engages lock sleeve 113.
  • Retainer release 109 acts to disengage retainer 110 from lock sleeve 113 when a tensile force applied to control wire 108 is sufficient to cause such disengagement.
  • An outer sleeve 112 is connected on the distal side of sheath 111 , and lock sleeve 113 is connected to a distal side of outer sleeve 112.
  • Lock sleeve 113 incorporates lock pawl 114, which engages lock hole 104 in clip leg 102, and lock pawl 115, which engages lock hole 105 in clip leg 103.
  • the clip 101 is a deformable, multi-legged, grasping device attached to the distal portion of a flexible shaft (the sheath 111 ) via a frangible link (the j-hook 107).
  • the flexible shaft is connected at its proximal end to a handle ( Figure 7), the handle analogous to biopsy forceps.
  • a semi-rigid wire (the control wire 108), which is routed from the handle to the clip 101 , acts as a means of actuating the clip 101 between the open and closed position.
  • the clip 101 can be actuated between the open and closed position multiple times as long as the lock holes 104 and 105 do not become engaged with the lock pawls 114 and 115 in the lock sleeve 113.
  • the handle can be fully actuated, which causes the retainer release 109 to pull the retainer 110 free from the outer sleeve 112 and lock sleeve 113.
  • the retainer 110 is released, increasing force will begin straightening the j-hook 107.
  • the j-hook 107 is then pulled from the cut-out 106 on the proximal side of clip 101.
  • the retainer 110 and control wire 108 are no longer attached to the distal portion of the device (the clip 101 and lock sleeve 113) and the delivery device (e.g. an endoscope, not shown) can be removed while leaving the clip 101 (with lock sleeve 113) in place.
  • the delivery device e.g. an endoscope, not shown
  • the sheath 111 serves three key functions in this embodiment. In its primary function it acts as a housing for the control wire 108. In this function the sheath 111 supplies a resistive, compressive force opposite the tensile force applied to the control wire 108, via the handle, as the lever ( Figure 7) in the handle is moved to close the clip 101. The forces reverse when the lever is moved in the opposite direction, and the control wire 108 is compressed to push the clip 101 forward. In this function, the combination of control wire 108 and sheath 111 act as a simple push-pull, cable actuation mechanism.
  • sheath 111 acts as a means by which the clip 101 can be easily rotated. Ideally this rotation would be of a ratio of 1 :1. In other words, one complete rotation of the sheath 111 at the proximal end would translate to one complete rotation of the clip 101. This rotation however, depends on several factors. The relationship of the outside diameter of sheath 111 to the inside diameter of the working channel (not shown) of the endoscope (not shown), is one factor. Another factor is the amount of friction between the sheath 111 and the working channel caused by the path of the endoscope in the anatomy. Because these factors vary from endoscope to endoscope, and patient to patient, the rotation ratio will not always be the same.
  • This ease of rotation is a key function and benefit of this embodiment in that it allows relatively precise orientation of the clip 101 to the vessel.
  • rotation of the device may be different in one direction of rotation versus the other direction.
  • this embodiment accomplishes rotation without the need for additional handle components. Eliminating the need for such components will: reduce the overall cost of the device; simplify how the device is operated; and make rotation more repeatable. In turn, all of these benefits will make for a faster procedure with a higher success rate.
  • the sheath 111 accomplishes a high rotation ratio by using a spiral wound, multiple-wire, stainless steel, flexible shaft, with an outside diameter of slightly less than the inside diameter of the working channel of the endoscope. Because the sheath 111 is made of a multiple-wire configuration, it is soft and bendable, yet rigid in rotation. In other words, the sheath 111 is flexible enough to be manipulated through a flexible endoscope, but has a very low angle of twist about its central axis.
  • the outer sleeve 112 which is rigidly attached to the sheath 111 by methods known in the prior art (e.g. adhesives, welding, swaging, etc.), is made of a rigid tube, with two retainer cut-outs (not shown), situated 180° apart from each other. These retainer cut-outs house the two tabs 118, 119 ( Figure 6) of the retainer 110. As the control wire 108 is actuated, drawing the clip 101 back into the lock sleeve 113, the retainer release 109 forces the retainer 110 to be disengaged from the outer sleeve 112.
  • Figure 2 shows the clip 101 in the closed position but prior to release of the j- hook 107.
  • lock hole 104 of clip leg 102 is engaged by lock pawl 114
  • lock hole 105 of clip leg 103 is engaged by lock pawl 115.
  • the fit between the lock sleeve 113 and outer sleeve 112 is such that the lock sleeve 113 (and therefore the clip 101 ) will easily release from the outer sleeve 112 once the j-hook 107 has been straightened and the retainer disengaged from the outer sleeve 112.
  • the clip 101 shown in Figure 3, is manufactured of a single piece of stainless steel, or any suitable biocompatible material, and is bent into a two-legged geometry.
  • the clip legs 102 and 103 have a rectangular cross section of approximately .06 inches by .01 inches and are approximately .50 inches in length.
  • the profile of the legs serves three purposes: first, the distal portion grasps the tissue during the procedure; second, the distal portion acts as the compression mechanism to hold the clip in place after deployment; and third, the profile between the distal grasping portion and the proximal end will interface with the lock pawls (not shown), via lock hole 104 in clip leg 102 and lock hole 105 in clip leg 103.
  • the interface between the lock holes and the lock pawls creates the mechanical lock that will keep the clip 101 closed after deployment.
  • the proximal end of the clip 101 is formed with a cut-out 106 into which the j-hook ( Figure 2) is attached.
  • the lock sleeve 113 shown in Figure 4 consists of a tubular proximal section, which fits into the distal end of the outer sleeve 112. Retainer hole 116 and opposite retainer hole (not shown) in the lock sleeve 113 receive the retainer tabs 118, 119 ( Figure 6).
  • the distal end of the lock sleeve 113 has a lock sleeve cut-out 117 slightly larger than the cross section of the clip legs ( Figure 3). As the clip leg are pulled through cut-out 117, the clip legs are compressed toward each other, thus compressing the tissue (not shown) situated between the clip legs.
  • the cut-out 117 has lock pawls 114 and 115, which align with the two lock holes ( Figure 3) in the clip legs. After the desired tissue purchase has been acquired, the clip can be pulled back far enough to engage the lock pawls 114 and 115 into the two lock holes.
  • control wire 108 is bent such that it wraps around the proximal end of the clip ( Figure 3), through a cut-out ( Figure 3). Another bend in the wire, proximal to the j-hook 107, acts as a retainer release 109.
  • the retainer release 109 operates to release the retainer 110 ( Figure 6) from the lock sleeve 113 ( Figure 4). As the control wire 108 is actuated and the clip is locked into the lock sleeve, the retainer release 109 pulls the retainer
  • the control wire 108 shown in Figure 6 is a simple stainless steel wire used to actuate the clip 101 via a handle ( Figure 7), at the proximal end of the sheath ( Figure 1 ).
  • the frangible link (the j-hook 107) is formed in the distal end of the control wire 108 as a one-piece design.
  • the proximal end of the control wire 108 is terminated inside the handle.
  • the control wire 108 also has the retainer release 109 formed in it, behind the j-hook 107.
  • the retainer release 109 causes the outer sleeve ( Figure 1 ) to disengage from the retainer 110. This is done sequentially, after the lock holes ( Figure 3) in the clip 101 have engaged the lock sleeve ( Figure 4).
  • the handle configuration is unlike a handle found on conventional endoscopic forceps known in the prior art.
  • the handle provides a mechanism by which the amount of linear actuation required in the handle body 121 is greater than that which is translated to the tip of the device ( Figure 1 ).
  • actuation of the activator or handle lever 122 of 1.00 inch in turn may only move the clip ( Figure 3) by 0.10 inch.
  • This feature allows for a more tactile feel when placing the clip on the vessel (not shown). In effect, very subtle amounts of movement in the clip can be accomplished by more exaggerated, less precise movements of the operator's hand.
  • FIG. 8A through 8E show a clip with four legs.
  • Figure 8A shows a view from the side, showing clip legs 801. This embodiment could be actuated and released in the same way the previous embodiment is activated and released, through a clip locking mechanism 802.
  • the use of a control wire would actuate the multiple-legged clip in and out of an outer sleeve 803 until such time that the operator desires to release the clip.
  • FIG 8B shows the four-legged clip of Figure 8A from the perspective of the targeted tissue looking proximally.
  • the four clip legs 801 are shown in an open position and are situated at 90° from each other.
  • Figure 8C shows a profile view of a single clip leg 801.
  • Figure 8D shows a view along the axis of clip locking mechanism 802.
  • Figure 8E shows another view of a four-legged clip with clip legs 801 and clip locking mechanism 802.
  • Figure 8F shows alternative side profiles of the clip geometry.
  • FIG. 8G shows alternative end profiles of the clip geometry. As with the varying side profiles, different end profiles would provide a broader range of grasping capabilities.
  • Figures 9A and 9B illustrate an alternative embodiment of the device using a different method to lock the clip in the closed position.
  • This alternative method uses an expanded coil spring 901 released over the outside of the clip legs 904 and 905 to lock the clip legs 904 and 905 closed.
  • Figure 9A shows this embodiment in a predeployment state.
  • Figure 9A shows a stretched coil spring 901 , twisted to a diameter larger than that of the relaxed state of coil spring 901.
  • Stretched coil spring 901 is placed over a rigid tube 903 at the distal end of the clip device. Within this rigid tube 903, the clip legs 904 and 905 are free to move in and out (in a manner similar to the manner described for the previous embodiments), between the opened and closed position via a control wire (not shown).
  • the sheath 902 is used to push the coil spring 901 off of the rigid tube 903, onto the clip legs 904 and 905, as shown in Figure 9B.
  • the inward radial forces present in the recovered coil spring 901 act to keep the clip legs 904 and 905 compressed.
  • FIGs 10A and 10B illustrate another alternative embodiment.
  • a flexible linkage 1002 and pill 1003 are used to lock the clip legs 1001.
  • the clip legs 1001 are actuated via a control wire 1006, as described in previous embodiments.
  • the clip legs are not closed by pulling the clip legs 1001 through some feature smaller than the open clip. Instead the clip legs 1001 are closed by drawing the two flexible links 1002 proximally, in the direction of the control wire 1006, while a compressive force is applied to the base of the clip legs 1001 by a rigid sheath (not shown). This in turn pulls the legs of the clip toward each other.
  • Figure 10A shows the clip legs 1001 in an open position.
  • Figure 10B shows the clip legs in a closed position.
  • the clip legs 1001 are locked in a closed position when the pill 1003, located at the center of the flexible linkage 1002, is drawn through a one way hole 1004 in the center of the clip legs 1001.
  • the one way hole 1004 is tapered, with a diameter slightly larger than the diameter of the pill 1003 on its distal side and a diameter smaller than the diameter of the pill 1003 on its proximal side.
  • the pill stretches the material around the hole 1004 as it passes through moving proximally.
  • the pill 1003 itself can be made of an elastic material and would deform slightly while passing proximally through hole 1004. This funneling effect of the pill 1003 through the hole
  • the frangible link 1005 in a proximal direction on control wire 1006 from the pill 1003, thus maintaining tissue compression.
  • the frangible link 1005 is a taper in control wire 1006, enabling the link to be broken at a specific position (proximal from the pill 1003) with a predetermined tensile load.
  • FIG 11. One alternative to the j-hook type frangible link previously described is shown in Figure 11. This embodiment uses a threaded fitting that is a combination of a male thread 1103 and a female hub 1102 to attach the control wire (not shown) to the clip 1001. The clip 1001 can be actuated from the opened position (not shown) to the closed position (shown) as described in previous embodiments.
  • the lock sleeve 1105 is shorter and engages dimples 1106.
  • the clip 1101 can be released.
  • the clip 1101 is released when a predetermined tensile load is applied to the male thread 1103, in a similar fashion to the predetermined tensile load applied to straighten the j-hook.
  • This force causes the male thread 1103 to detach from the female hub 1102.
  • the female hub 1102 may be constructed of a spiral wound wire component with a pitch equal to the thread pitch formed to make the male thread 1103. The fit of the threaded components is such that the predetermined force will overcome the engaged threads of the male thread 1103 and the female hub 1102, causing them to separate, or "strip" away from one another.
  • FIG. 12A and 12B Another alternative to the j-hook type frangible link is shown in Figures 12A and 12B.
  • This embodiment uses a ball 1202 fitting into a socket, where the socket is defined by socket tabs 1203, to attach the control wire 1207 to the clip 1201.
  • An outer sleeve 1204 is attached by way of a breakaway connection (not shown) to the sheath 1206.
  • This breakaway connection may be a light interference fit, or a light adhesive joint.
  • the breakaway connection must be weak enough that when the sheath 1206 is pulled back through the working channel (not shown) of the endoscope (not shown), the outer sleeve 1204 will release with the clip 1201.
  • the clip 1201 is released when the socket tabs 1203 at the proximal end of the clip 1201 are aligned with cut-outs 1205 in the outer sleeve 1204. These cut-outs 1205 act as a relief area into which the socket tabs 1203 can be deformed when a predetermined tensile load is applied to them via the ball 1202 formed on the end of the control wire 1207.
  • the outer sleeve 1204 is released with clip 1201 so that the clip 1201 remains locked after deployment.
  • FIG. 13A Another alternative to the j-hook type frangible link is shown in Figures 13A,
  • FIG. 13B and 13C All the figures show the clip 1301 in a closed and locked state.
  • Figure 13A shows the clip 1301 in a closed position but before it is released and shows a portion of outer sleeve 1303 cut away to show the internal workings of the clip mechanism.
  • Figures 13B and 13C show the clip 1301 after being released.
  • the actuation is still performed via a control wire 1304, however the direction of action is reversed.
  • the clip 1301 is closed by the advancement of outer sleeve 1303 and lock ring 1302 over the clip legs.
  • the locking sleeve 1302 and clip geometry, including dimples 1306, is the same as that explained in the embodiment of Figure 11.
  • a difference between the embodiment shown in Figures 13A, 13B and 13C and the prior embodiments is the mechanism by which the clip 1301 is released from the rest of the device.
  • An interference fit between the outer sleeve 1303, sheath 1305, and male threaded hub 1308 is created when the device is assembled.
  • the distal end of the sheath 1305, in its manufactured (but unassembled) state has an outside diameter greater than the inside diameter of the outer sleeve 1303.
  • the distal end of the sheath 1305, again in its manufactured (unassembled) state has an inside diameter greater than the diameter of the male threaded hub 1308.
  • the distal end of the sheath 1305 is compressed to fit inside the outer sleeve 1303, it is compressed down onto the male threaded hub 1308 to create a sandwich of the sheath 1305 between the male threaded hub 1308 on the inside and the outer sleeve 1303 on the outside.
  • this interference fit is overcome. The interference fit is overcome by advancing the outer sleeve 1303 so far forward, by creating a compressive force in the control wire 1304 in opposition to a tensile force on the sheath 1305, that the outer sleeve 1303 is no longer in contact with the distal end of the sheath 1305.
  • the outer sleeve 1303 and the control wire 1304 serve two purposes in this embodiment.
  • the outer sleeve 1303 and the control wire 1304 supply the closing force to the clip 1301.
  • a lock ring 1302 is used to maintain the closing force on the clip legs 1307.
  • the outer sleeve 1303 and the control wire 1304 also act as key components of the release mechanism. As previously described, once the outer sleeve 1303 is moved to its forward-most position, the end of the sheath 1305 is no longer contained within the outer sleeve 1303, and is free to separate from the male threaded hub 1308.
  • the sheath 1305 is free to release because of the manner in which the distal end of the sheath 1305 is manufactured/assembled.
  • the outer sleeve 1303 is advanced forward, allowing the distal end of the sheath 1305 to be free, the distal end of the sheath 1305 expands to its original, manufactured state. This allows the inside of the sheath 1305 to release from the male threaded hub 1308.
  • the male threaded hub 1308, and thus the clip 1301 are now free from the sheath 1305 and the rest of the delivery device.
  • the outer sleeve 1303 remains connected to the control wire 1304 at connection point 1310, and both can be removed with the sheath 1305.
  • control wire 1304 is bent towards, and connects with, outer sleeve 1303 at connection point 1310.
  • the distal portion of control wire 1304 passes male threaded hub 1308 during deployment through slot 1309 in male threaded hub 1308.
  • Figures 14A, 14B, and 14C show an alternative embodiment of the present invention.
  • the relaxed state of the clip is closed, and it is forced open and allowed to close naturally.
  • Figure 14A shows a side view of the clip 1401 in a closed, pre-released state
  • Figure 14B shows an edge view of the clip 1401 in a closed, pre-released state.
  • the clip 1401 is manufactured such that the clip legs 1407 are naturally closed, the primary function of the control wire 1406 is changed from having to close the clip 1401 , to having to open the clip 1401.
  • the clip 1401 is manufactured in a generally x-shaped geometry, where each tab 1403 at the proximal end of the clip 1401 controls a clip leg 1407 opposite at the distal end of the clip 1401.
  • the action/reaction of the clip 1401 is similar to that of a common clothes pin. As the tabs 1403 are brought together, the clip legs 1407 are spread apart. As the tabs 1403 are released, the clip legs 1407 come together.
  • a u-ring 1402 attached to the end of the control wire 1406 is used to bring the tabs 1403 together, thus opening the clip 1401. Pulling on the control wire 1406 pulls the u-ring 1402 into contact with tabs 1403 creating a compressive force to open clip legs 1407 because clip 1401 is positioned against fulcrum point 1408. Advancing control wire 1406 advances u-ring 1402, thereby removing the compressive force on tabs 1403 and allowing clip legs 1407 to close. Advancing control wire 1406 further to a deployment position pushes u-ring 1402 against clip legs 1407, causing clip 1401 to move out of outer sleeve 1404 into a deployed state.
  • the control wire 1406 is constructed of material having a shape memory, and the distal end of the control wire 1406, where the u-ring 1402 is attached, is pre-bent to one side. While a minimum tension exists in control wire 1406, the u-ring remains around the constriction. However, when the desired location for the clip 1401 has been achieved, and the clip tabs 1403 have been advanced beyond outer sleeve 1404, the control wire 1406 can be advanced to its most distal position. Because the control wire 1406 is pre-bent, as it is advanced the u-ring 1402 becomes disengaged from the clip 1401 when the tension in control wire 1406 falls below a predetermined amount, as shown in Figure 14C. This allows the clip 1401 to be released.
  • Figures 15A, 15B, 15C, and 15D show another embodiment in which the clip is manufactured in a naturally closed position.
  • Figure 15A shows the distal end of medical device 1509 with the clip 1501 in a closed position before deployment.
  • Figure 15B shows only the clip 1501 in a closed position.
  • Figure 15C shows the clip 1501 in an open position.
  • Figure 15D shows the device after the clip is released.
  • the clip 1501 is shaped such that, as the control wire 1503 is pulled in a proximal direction, the clip legs 1508 are forced apart from one another. This is accomplished using a pill 1502 attached to the end of the control wire 1503 as explained in previous embodiments.
  • the control wire 1503 can be advanced to its most distal position.
  • FIGS. 16A, 16B, 16C, 16D, and 16E show another embodiment in which the clip is manufactured in a naturally closed position.
  • Figure 16A shows the clip 1607 in a closed, predeployed, state.
  • Figure 16B shows a side view of one clip leg 1601 with the pill 1603 still resting in pill well 1604.
  • Figure 16C shows an edge view of one clip leg 1601 with the pill 1603 still resting in pill well 1604.
  • Figure 16D shows a clip 1607 in an open position.
  • Figure 16E shows a clip 1607 in a closed position.
  • This embodiment uses two control wires 1605.
  • a branched control wire may be used. By using a branched control wire or two control wires 1605, the force can be transmitted to a point further away from the fulcrum (bending point) 1606 of the clip 1607. The greater this distance, the lesser the force required to open the clip legs 1601. As in the previous embodiments, the control wires 1605 are disengaged from the clip 1607 by pushing them forward.
  • the control wires 1605 are made from a material with a shape memory, so that when freed from pill wells 1604, the pills 1603 move away from the pill wells 1604, and the clip 1607 is deployed.
  • control wire or wires 1701 are routed to gain mechanical advantage.
  • the clip 1702 is naturally closed, with the control wire(s) 1701 routed to leverage points 1704 further away from the fulcrum (bending point) 1705 of the clip 1702.
  • the control wire(s) 1701 are looped around pins positioned at leverage points 1704 at the ends of the clip legs 1706.
  • the control wire(s) 1701 are then routed to a point at the proximal end of the clip.
  • the control wire(s) 1701 are then terminated at this point.
  • the control wire(s) 1701 could essentially be one, continuous wire, with both ends terminated in the handle (not shown).
  • control wire 1701 could be detached from the handle and pulled free from the clip 1702. Because the control wire 1701 is only wrapped around pins positioned at leverage points 1704 on the clip 1702, by pulling on one end of control wire 1701 , control wire 1701 could be easily detached when the desired location for clip 1702 has been achieved by continuing to pull on one end of control wire 1701 until all of control wire 1701 has been detached from the clip 1702.
  • Figures 18A, 18B, 18C, 18D, 18E, and 18F show an embodiment of a clip which incorporates the natural compressive forces present in a simple elastic band (or o-ring) 1802 to hold the clip legs 1801 in the closed position.
  • Figure 18A shows two clip legs 1801 in a disassembled state.
  • Figure 18B shows a clip with the control wire 1803 engaging a second elastic band 1804 to open clip legs 1801.
  • the control wire 1803 is attached to the proximal end of the clip legs 1801 via a frangible link.
  • the frangible link is a second elastic band (or o-ring) 1804 that will deform as the control wire 1803 is pulled back.
  • the clip is housed in the end of a sheath 1806 such that, as the control wire 1803 is pulled back, the second elastic band 1804 delivers an increasing compressive force to the clip legs 1801 proximal to a pin joint 1805, thereby causing the clip legs 1801 distal from the pin joint to open against the compressive force of elastic band 1802.
  • FIG. 18B shows the clip in a closed, predeployed state.
  • Figure 18D shows a profile view of clip legs 1801
  • Figure 18E shows an end-on view of clip legs 1801 within sheath 1806.
  • Figure 18F shows a close-up view of clip legs 1801 without first elastic band 1802 but showing band slots 1809.
  • Figure 18F shows second elastic band 1804 resting over nubs 1807 and coupled to control wire 1803.
  • the second elastic band 1804 which makes up the frangible link, is overcome by pulling the control wire 1803 to its most proximal position. This has the effect of breaking second elastic band 1804.
  • control wire 1803 can be released so that elastic band 1802 again closes clip legs 1801.
  • control wire 1803 is made of a suitable material, such as a shape memory material, and has a bend in the distal region such that moving control wire 1803 to a maximum distal position acts to unhook hook 1808 from second elastic band 1804.
  • FIGS 19A, 19B, and 19C show another embodiment of the invention utilizing a naturally closed clip.
  • Clip 1901 is held in the naturally closed position by a torsion spring 1903.
  • the clip 1901 is actuated from the closed to the opened position in a different way than prior embodiments.
  • a plunger 1904 located within the outer sleeve 1905 at the end of the sheath (not shown), is used to push on the tabs 1906 on the proximal end of the clip 1901.
  • the tabs 1906 are pushed through an opening 1907 in the end of the outer sleeve 1905. This moves tabs 1906 close together, in turn moving the clip legs 1902 to the open position.
  • Figure 19B shows the clip 1901 from a profile view.
  • Figure 19C shows a single clip leg 1902 and connection point 1908 for pivotally connecting clip legs 1902 to each other.
  • FIGS 20A, 20B, and 20C describe the embodiment of a three-legged clip and delivery device.
  • the clip 2001 is manufactured to be in the naturally open position.
  • the clip 2001 is characterized by male threads 2002 on its outer surface.
  • the delivery device consists of a sheath 2003 similar to those described in previous embodiments.
  • An inner sleeve 2004 located within the distal end of the sheath 2003 is used to actuate the clip 2001 from its naturally open position to the closed position.
  • the inner sleeve 2004 has female threads (not shown) on its inside diameter.
  • a control wire (not shown) is used in this device to transmit rotational force rather than tensile/compressive force. Rotating the sheath 2003 with respect to the control wire, with the handle (not shown) actuates the clip 2001.
  • FIG. 20A shows the clip legs 2005 and inner sleeve 2004 from the perspective of the target area.
  • Figure 20C shows the size relationship between the female threads on the inner sleeve 2004 and the male threads 2002 on the clip 2001.
  • Figure 21 shows another embodiment of a naturally open clip and delivery device.
  • Figure 21 shows the distal portion of the medical device with a portion of the outer sleeve 2102 cut away to show the inner mechanics of the clipping device.
  • the delivery device consists of a sheath 2103 similar to those described in previous embodiments.
  • the clip 2101 is actuated from the open to the closed position via a control wire 2104, as described in the primary embodiment.
  • a frangible link is implemented in this embodiment by a breakable link 2105.
  • the lock sleeve is eliminated. Eliminating the lock sleeve reduces the number of components and the overall size of the device.
  • the outer sleeve 2102 is used to hold the clip 2101 in the closed position.
  • the outer sleeve 2102 must be deployed from the sheath 2103 when the clip 2101 is released.
  • the clip 2101 has two deformable tabs 2106 formed in its proximal end.
  • the control wire 2104 is further actuated by the handle (not shown) so that the tabs 2106 reach a position where they are in the same plane as the cut-outs 2107 in the outer sleeve 2102. Once the tabs 2106 have reached this point, further actuation of the control wire 2104 forces the tabs 2106 to deform through the cut-outs 2107 in the outer sleeve 2102.
  • a retainer 2108 is used to create a mechanical lock between the sheath 2103 and outer sleeve 2102.
  • the retainer 2108 passes through slots 2109 in the outer sleeve 2102 and a sheath connector 2110.
  • the sheath connector 2110 is simply a rigid connector, applied to the end of the sheath 2103 by some means known in the art (e.g. welding, adhesive, swaging, etc.).
  • a tensile load in the control wire 2104 is translated to the breakable link 2105.
  • the breakable link 2105 breaks.
  • control wire 2104 As the control wire 2104 is further actuated, a distal portion of control wire 2104, which is preformed into a shape that will function as a retainer release, engages the retainer 2108.
  • the retainer 2108 is pulled from the outer sleeve 2102 by the control wire 2104, in a similar manner to that described in the primary embodiment. Once this is done, the sheath connector 2110 (and therefore the sheath 2103) is released from the outer sleeve 2102.
  • the materials utilized in construction of the clip of the present invention include many bio-compatible materials (metals, polymers, composites, etc.).
  • a stainless steel grade material which offers good spring properties, may be used.
  • the clip can also be coated, or plated, with a material like gold to improve radiopacity.
  • the lock sleeve, lock pawls, retainer and outer sleeve may be comprised of any of the same materials as the clip component. For example, stainless steel may be used.
  • the control wire in the first embodiment may be a stainless steel wire. Because the wire must offer sufficient strength in both tension and compression, the material properties of the wire are important to the functionality of the device. Also, the end of the wire, where the j-hook is formed, must deform when a predetermined tensile load is applied. The device's ability to release the clip is dependent on this property. Other embodiments of the device may incorporate a two (or more) piece wire so that certain sections of the wire have different material properties or geometries. Different material properties or geometries could allow for more control over how and when the wire detaches from the distal tip of the device. This could also be accomplished by several other methods, as well. For example, localized heat treating and/or coatings could be used along portions of the wire to alter the material characteristics. Additionally, some embodiments of the present invention require a control wire constructed of a material with a shape memory.
  • the sheath in the first embodiment, is made up of several round, stainless steel wires, wound in a helical pattern to create a hollow, semi-rigid shaft. Sheaths made in this fashion are well known in the prior art. In other embodiments, the sheath could be made up of non-round wires. Other embodiments may be made up of one or more wires formed in a pattern other than a single helix, as in the first embodiment. A multiple helix or braided pattern may be used. The sheath may also be coated with a protective coating of Polytetrafluoroethylene (PTFE), or similar materials. The use of such coatings could be used to alter the flexibility of the shaft.
  • PTFE Polytetrafluoroethylene
  • Such coatings could also be used to increase the lubricity (decrease the coefficient of friction) between the endoscope working channel and the device. Similar materials could also be used to encapsulate the sheath's base material. This would create a matrix material, providing a combination of material properties not feasible with one single material. Other embodiments may use materials other than stainless steel as the base material. Materials such as titanium, nitinol, and/or nylon fibers may be incorporated.
  • a method of using the endoscopic hemostatic clipping device is provided. The method involves placing an endoscope in a body cavity as is known in the art. The device provided herein is then inserted through the endoscope. At the distal end, the endoscope is positioned near the target area.
  • the target area may be a lesion, a bleeding ulcer, a tumor, other abnormality, or any number of other tissues to be pinched, marked, tagged, or to which the operator wishes to apply a pinching pressure for whatever reason.
  • the device provided is then positioned so that the clip legs embrace the target area, then the actuator is activated to close the clip legs.
  • the success or failure of the application of pressure can be reviewed through the optical components provided separately in the endoscope. If the pinching is unsuccessful or only marginally successful, the clip legs of the device may be opened by reversing the actuation of the activator. Alternatively, if the pinching is successful, and the operator wishes to deploy the device, the actuator is fully activated, or the alternative deployment activator is activated. Finally, the remaining portion of the medical device and the endoscope are removed from the body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Reproductive Health (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

Medical device used to cause hemostasis of blood vessels using a clip arrangement delivered to a target region through an endoscope. Method for using the device to cause hemostasis of a blood vessel through an endoscope. Medical device including a reversibly closeable clip, a locking arrangement, a control wire, a sheath, and a handle with an actuating trigger. Through the endoscope, hemostatic clipping device that is fully reversible and lockable. Hemostatic clip that reversibly targets and clips bleeding ulcers.

Description

THROUGH THE SCOPE ENDOSCOPIC HEMOSTATIC CLIPPING DEVICE
FIELD OF THE INVENTION The present invention relates to compression clips, and more specifically, to compression clips used to cause hemostasis of blood vessels located along the gastrointestinal tract delivered to a target site through an endoscope.
BACKGROUND Gastrointestinal ("Gl") bleeding is often associated with peptic ulcer disease
(PUD) and can be fatal if not treated immediately. Hemorrhaging is the most dangerous procedure with which a Gastro-lntestinal Endoscopist has to deal. It is his/her only unplanned, emergency procedure where time is critical in determining the outcome. It is also the one problem the Endoscopist faces that is generally not an outpatient procedure. A bleeding PUD can be a critical clinical event as there is internal hemorrhaging. Ulcers are classified from clean to active spurting bleeding. The most worrisome are active bleeders and visible vessels. Untreated visible vessels are likely to bleed.
Suspected bleeding PUD patients can be diagnosed and treated endoscopically in an emergency room, an ICU or the Gl suite. Surgery generally results in higher cost, morbidity and mortality than endoscopy. Therefore, laparoscopy or open surgery is not preferred unless there is no endoscopic alternative or endoscopy has failed. If the diseased tissue is beyond repair, a surgical gastric resection may be performed. Currently, the endoscopist has two commonly used treatments and some lesser used therapies to achieve hemostasis of the ulcer. The most widely used treatments are thermal therapy and injection therapy. Some of the less common options are Olympus Endoclips, lasers and argon plasma cautery.
With thermal therapy, a catheter with a rigid heating element tip is passed through the working channel of an endoscope after the bleed is visualized and diagnosed. After the rigid catheter tip has exited the scope, the scope is manipulated to press the tip against the bleed site. Thermal power is applied, either through a resistive element in the tip or by applying RF energy through the tissue, thus desiccating and cauterizing the tissue. The combination of the tip compressing the tissue/vessel and the application of heat theoretically welds the vessel closed.
Although thermal treatment is fairly successful in achieving hemostasis, it often takes more than one attempt (irrigation is applied after the initial treatment to see if hemostasis has occurred) and there is frequent re-bleeding. Generally several pulses of energy are applied during each attempt. If early re-treatment is needed, there is a risk of perforation with the heat probe. Another disadvantage is that both types of thermal therapy require a specialized power generator and the equipment can be expensive. With injection therapy, a catheter with a distally extendable hypo needle is passed through the working channel of the endoscope after the bleeding has been visualized and diagnosed. Once the catheter tip has exited the scope, the scope is manipulated to the bleed site, the needle is extended remotely and inserted into the bleed site. A vasoconstricting (narrowing of blood vessels) or sclerosing (causing a hardening of tissue) drug is then injected through the needle. Multiple injections in and around the bleeding site are often needed, until hemostasis has been achieved. As with thermal therapy, re-bleeding is also a problem.
The treatment used in any specific instance is highly dependent on geographic region. In some regions, especially in the United States, injection therapy is often combined with thermal treatment since neither therapy is completely effective alone.
The primary success rate of endoscopic treatment is about 90%. The other cases are usually referred to surgery. All identified ulcers may re-bleed at a later time, but the re-bleed rate for endoscopically treated active bleeds and a visible vessel is 10-30%. Even with the introduction of new treatments and devices, these rates have not improved significantly in decades. Surgery's short and long-term success for permanent hemostasis is virtually 100%.
Surgery has a higher success rate because the bleeding site is compressed mechanically, causing better hemostasis. Using devices such as clamps, clips, staples, sutures (i.e. devices able to apply sufficient constrictive forces to blood vessels so as to limit or interrupt blood flow), the bleeding vessel is ligated or the tissue around the bleed site is compressed, ligating all of the surrounding vessels. An existing device that incorporates the advantages of surgery into a less- invasive endoscopic procedure is the Olympus EndoClip. The goal of the device is to pinch the bleeding vessel to create hemostasis. The problem with this device is that once jaw closure begins, it is not possible to reopen them, and the endoscopist is committed to firing the clip. In other words, jaw closure is not reversible. Because the vessel is frequently difficult to see, often several clips must be deployed in order to successfully pinch the vessel and achieve hemostasis. Additionally, the Olympus EndoClip is a semi-reusable device, causing the performance of the device to degrade with use.
SUMMARY OF THE INVENTION
The present invention provides medical devices for causing the hemostasis of blood vessels located along the gastrointestinal tract. The goal of the invention is to give the endoscopist a technique and device which: 1 ) has a success rate in line with the surgical option; 2) is easier to set-up than the Olympus EndoClip; and 3) is easier to deploy than the Olympus EndoClip. The design intent is to eliminate surgery and its associated mortality and morbidity.
The medical devices of the present invention include: a compression clip used to cause hemostasis of blood vessels and a mechanism for deploying the clip that includes an arrangement for closing the clip and for reversing the closing process to reopen the clip after closure has begun. Embodiments of the invention may include a lock arrangement for locking the clip closed; a control wire connected to the clip and able to be disconnected from the clip; an axially rigid sheath enclosing the control wire and communicating a compressive force opposing a tensile force of the control wire; a handle connected to the axially rigid sheath; and/or a trigger enclosed within the handle and engaging the control wire to close and lock the clip and to uncouple the control wire from the clip.
There are several key advantages of the invention disclosed here over existing devices. The device's ability to repeatedly open and close the clip until the desired tissue pinching is accomplished will lead to a quicker procedure, requiring less clips to be deployed, with a higher success rate. In particular embodiments, this higher success rate will be improved even more due to the device's ability to be easily rotated so that the clip legs can be adjusted relative to the bleeding vessel. In particular embodiments, the time required to perform the overall procedure will also be further reduced due to the fact that the device is completely set up, with the clip already attached to the delivery device, unlike the competitive device. A more robust delivery device may allow a larger, stronger clip to be delivered.
Combinations of these features will provide for a device that is easier to use.
Another advantage inherent to particular embodiments of this design is the feature of being completely disposable. The competitive device, the Olympus Endoclip, uses a "semi-reusable" delivery device, capable of firing several clips before it fails. This causes the device's functionality to degrade over the course of its use, until it is no longer able to deploy a clip. The competitive delivery device must be loaded manually, which is cumbersome to the operator and time- consuming, especially in the context of an unplanned emergency procedure. The "single-use" (disposable) embodiments of the invention disclosed here would function the same with each clip, in each procedure.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is an enlarged partial view of a first embodiment of the medical device of the present invention. Figure 2 is an enlarged partial view of the distal end of the embodiment of
Figure 1.
Figure 3 is an enlarged view of the clip of the embodiment of Figure 1.
Figure 4 is an enlarged view of the lock sleeve of the embodiment of Figure 1.
Figure 5 is an enlarged view of the j-hook of the embodiment of Figure 1. Figure 6 is an enlarged partial view of the control wire, retainer, and clip of the embodiment of Figure 1.
Figure 7 is an enlarged partial view of the handle of the embodiment of Figure 1.
Figure 8A is an enlarged partial view of the distal end of another embodiment of the medical device of the present invention.
Figure 8B is an enlarged partial end view of the embodiment of Figure 8A. Figure 8C is an enlarged partial view of a clip leg of the embodiment of Figure 8A.
Figure 8D is an enlarged partial view of a clip locking mechanism of the embodiment of Figure 8A. Figure 8E is an enlarged partial view of a clip locking mechanism and clip legs of the embodiment of Figure 8A.
Figure 8F shows enlarged partial side views of various embodiments of clip leg shapes available for use in the medical device of the present invention.
Figure 8G shows enlarged partial end views of various embodiments of clip leg shapes available for use in the medical device of the present invention.
Figure 9A is an enlarged partial view of the distal end of another embodiment of the medical device of the present invention.
Figure 9B is an enlarged partial view of the embodiment of Figure 9A being deployed. Figure 10A is an enlarged partial view of another embodiment of the medical device of the present invention.
Figure 10B is an enlarged partial view of the embodiment of Figure 10A being deployed.
Figure 11 is an enlarged partial view of another embodiment of the medical device of the present invention.
Figure 12A is an enlarged partial view of another embodiment of the medical device of the present invention showing the clip in an open position.
Figure 12B is an enlarged partial view of the embodiment of Figure 12A showing the clip in a closed position. Figure 13A is an enlarged partial view of another embodiment of the medical device of the present invention showing the clip in a closed position prior to disconnecting the clip.
Figure 13B is an enlarged partial view of the distal end of the embodiment of Figure 13A showing the clip in a closed position after disconnecting the clip. Figure 13C is an enlarged partial view of the embodiment of Figure 13A showing the clip in a closed position after disconnecting the clip. Figure 14A is an enlarged partial view of another embodiment of the medical device of the present invention.
Figure 14B is an enlarged partial side view of the embodiment of Figure 14A.
Figure 14C is an enlarged partial view of the distal end of the medical device of the embodiment of Figure 14A after the clip has been released.
Figure 15A is an enlarged partial view of another embodiment of the medical device of the present invention.
Figure 15B is an enlarged partial view of the clip of the embodiment of Figure 15A in a closed position. Figure 15C is an enlarged partial view of the clip of the embodiment of Figure
15A in an open position.
Figure 15D is an enlarged partial view of the distal end of the medical device of the embodiment of Figure 15A after the clip has been released.
Figure 16A is an enlarged partial view of another embodiment of the medical device of the present invention.
Figure 16B is an enlarged partial close-up side view of the end of a clip leg of the embodiment of Figure 16A.
Figure 16C is an enlarged partial close-up edge view of the end of a clip leg of the embodiment of Figure 16A. Figure 16D is an enlarged partial view of the embodiment of Figure 16A with the clip in an open position.
Figure 16E is an enlarged partial view of the embodiment of Figure 16A with the clip in a closed position.
Figure 17A is an enlarged partial view of another embodiment of the medical device of the present invention.
Figure 17B is an enlarged partial view of the embodiment of Figure 17A, showing the clip in an open position.
Figure 18A is an enlarged view of clip legs of another embodiment of the medical device of the present invention. Figure 18B is an enlarged partial view of an embodiment of the medical device of the present invention using the clip legs of Figure 18A. Figure 18C is an enlarged partial view of the embodiment of Figure 18B, showing the clip in a closed position.
Figure 18D is an enlarged edge view of the clip of the embodiment of Figure 18B. Figure 18E is an enlarged partial end view of the embodiment of Figure 18B.
Figure 18F is an enlarged partial side view of the embodiment of Figure 18B.
Figure 19A is an enlarged partial edge view of another embodiment of the medical device of the present invention.
Figure 19B is an enlarged partial side view of the embodiment of Figure 19A. Figure 19C is an enlarged partial view of a clip leg of the embodiment of
Figure 19A.
Figure 20A is an enlarged partial end view of another embodiment of the medical device of the present invention.
Figure 20B is an enlarged partial side view of the embodiment of Figure 20A. Figure 20C is a side-by-side comparison of two parts of the embodiment of
Figure 20A.
Figure 21 is an enlarged partial view of the distal end of another embodiment of the medical device of the present invention.
DETAILED DESCRIPTION
In a first embodiment of the invention as shown in Figure 1 , medical device 100 includes a clip 101 having first clip leg 102 and second clip leg 103. Clip leg 102 has at least one lock hole 104 therein of any suitable shape (e.g. circular, rectangular, square, etc.). Likewise, clip leg 103 has at least one lock hole 105 therein of any suitable shape. Clip 101 is further characterized by a cut-out 106 on the proximal end. J-hook 107 is inserted into cut-out 106. J-hook 107 is formed on the distal terminal end of control wire 108. A retainer release 109 is formed by bends in the control wire 108, the bends formed proximally from the j-hook 107. The control wire 108 is enclosed within sheath 111 proximally from the retainer release 109. Retainer 110 is coupled to control wire 108 and engages lock sleeve 113. Retainer release 109 acts to disengage retainer 110 from lock sleeve 113 when a tensile force applied to control wire 108 is sufficient to cause such disengagement. An outer sleeve 112 is connected on the distal side of sheath 111 , and lock sleeve 113 is connected to a distal side of outer sleeve 112. Lock sleeve 113 incorporates lock pawl 114, which engages lock hole 104 in clip leg 102, and lock pawl 115, which engages lock hole 105 in clip leg 103. The clip 101 is a deformable, multi-legged, grasping device attached to the distal portion of a flexible shaft (the sheath 111 ) via a frangible link (the j-hook 107). The flexible shaft is connected at its proximal end to a handle (Figure 7), the handle analogous to biopsy forceps. A semi-rigid wire (the control wire 108), which is routed from the handle to the clip 101 , acts as a means of actuating the clip 101 between the open and closed position. The clip 101 can be actuated between the open and closed position multiple times as long as the lock holes 104 and 105 do not become engaged with the lock pawls 114 and 115 in the lock sleeve 113. Once the operator decides the clip 101 should be permanently deployed, the handle can be fully actuated, which causes the retainer release 109 to pull the retainer 110 free from the outer sleeve 112 and lock sleeve 113. After the retainer 110 is released, increasing force will begin straightening the j-hook 107. The j-hook 107 is then pulled from the cut-out 106 on the proximal side of clip 101. At this point, the retainer 110 and control wire 108 are no longer attached to the distal portion of the device (the clip 101 and lock sleeve 113) and the delivery device (e.g. an endoscope, not shown) can be removed while leaving the clip 101 (with lock sleeve 113) in place.
The sheath 111 serves three key functions in this embodiment. In its primary function it acts as a housing for the control wire 108. In this function the sheath 111 supplies a resistive, compressive force opposite the tensile force applied to the control wire 108, via the handle, as the lever (Figure 7) in the handle is moved to close the clip 101. The forces reverse when the lever is moved in the opposite direction, and the control wire 108 is compressed to push the clip 101 forward. In this function, the combination of control wire 108 and sheath 111 act as a simple push-pull, cable actuation mechanism.
In the secondary function of sheath 111 , it acts as a means by which the clip 101 can be easily rotated. Ideally this rotation would be of a ratio of 1 :1. In other words, one complete rotation of the sheath 111 at the proximal end would translate to one complete rotation of the clip 101. This rotation however, depends on several factors. The relationship of the outside diameter of sheath 111 to the inside diameter of the working channel (not shown) of the endoscope (not shown), is one factor. Another factor is the amount of friction between the sheath 111 and the working channel caused by the path of the endoscope in the anatomy. Because these factors vary from endoscope to endoscope, and patient to patient, the rotation ratio will not always be the same. This ease of rotation is a key function and benefit of this embodiment in that it allows relatively precise orientation of the clip 101 to the vessel. Depending on the exact construction of the sheath 111 , and the other factors just listed, rotation of the device may be different in one direction of rotation versus the other direction. By taking advantage of the mechanical properties of the sheath 111 , this embodiment accomplishes rotation without the need for additional handle components. Eliminating the need for such components will: reduce the overall cost of the device; simplify how the device is operated; and make rotation more repeatable. In turn, all of these benefits will make for a faster procedure with a higher success rate.
The sheath 111 accomplishes a high rotation ratio by using a spiral wound, multiple-wire, stainless steel, flexible shaft, with an outside diameter of slightly less than the inside diameter of the working channel of the endoscope. Because the sheath 111 is made of a multiple-wire configuration, it is soft and bendable, yet rigid in rotation. In other words, the sheath 111 is flexible enough to be manipulated through a flexible endoscope, but has a very low angle of twist about its central axis.
In the third function of the sheath 111 , it acts as a component of the mechanism by which the clip 101 is released. The outer sleeve 112, which is rigidly attached to the sheath 111 by methods known in the prior art (e.g. adhesives, welding, swaging, etc.), is made of a rigid tube, with two retainer cut-outs (not shown), situated 180° apart from each other. These retainer cut-outs house the two tabs 118, 119 (Figure 6) of the retainer 110. As the control wire 108 is actuated, drawing the clip 101 back into the lock sleeve 113, the retainer release 109 forces the retainer 110 to be disengaged from the outer sleeve 112. Figure 2 shows the clip 101 in the closed position but prior to release of the j- hook 107. In the closed, locked position shown in Figure 2, lock hole 104 of clip leg 102 is engaged by lock pawl 114, and lock hole 105 of clip leg 103 is engaged by lock pawl 115. The fit between the lock sleeve 113 and outer sleeve 112 is such that the lock sleeve 113 (and therefore the clip 101 ) will easily release from the outer sleeve 112 once the j-hook 107 has been straightened and the retainer disengaged from the outer sleeve 112. The clip 101 , shown in Figure 3, is manufactured of a single piece of stainless steel, or any suitable biocompatible material, and is bent into a two-legged geometry. The clip legs 102 and 103 have a rectangular cross section of approximately .06 inches by .01 inches and are approximately .50 inches in length. The profile of the legs serves three purposes: first, the distal portion grasps the tissue during the procedure; second, the distal portion acts as the compression mechanism to hold the clip in place after deployment; and third, the profile between the distal grasping portion and the proximal end will interface with the lock pawls (not shown), via lock hole 104 in clip leg 102 and lock hole 105 in clip leg 103. The interface between the lock holes and the lock pawls creates the mechanical lock that will keep the clip 101 closed after deployment. The proximal end of the clip 101 is formed with a cut-out 106 into which the j-hook (Figure 2) is attached.
The lock sleeve 113 shown in Figure 4 consists of a tubular proximal section, which fits into the distal end of the outer sleeve 112. Retainer hole 116 and opposite retainer hole (not shown) in the lock sleeve 113 receive the retainer tabs 118, 119 (Figure 6). The distal end of the lock sleeve 113 has a lock sleeve cut-out 117 slightly larger than the cross section of the clip legs (Figure 3). As the clip leg are pulled through cut-out 117, the clip legs are compressed toward each other, thus compressing the tissue (not shown) situated between the clip legs. The cut-out 117 has lock pawls 114 and 115, which align with the two lock holes (Figure 3) in the clip legs. After the desired tissue purchase has been acquired, the clip can be pulled back far enough to engage the lock pawls 114 and 115 into the two lock holes.
Forming the end of the control wire 108 into a j-hook 107 makes a frangible link shown in Figure 5. This relatively simple configuration eliminates extraneous components that take up space and complicate the assembly. The control wire 108 is bent such that it wraps around the proximal end of the clip (Figure 3), through a cut-out (Figure 3). Another bend in the wire, proximal to the j-hook 107, acts as a retainer release 109. The retainer release 109 operates to release the retainer 110 (Figure 6) from the lock sleeve 113 (Figure 4). As the control wire 108 is actuated and the clip is locked into the lock sleeve, the retainer release 109 pulls the retainer
110 back, disengaging the retainer tabs 118, 119 from the two retainer holes 116 (Figure 4) in which the retainer normally resides. After this disengagement is complete, the j-hook 107 is then straightened by force, in turn releasing the clip. The j-hook 107 is able to deform to a straightened position (i.e. release) at a predetermined tensile load, which is slightly greater than the load required to grasp the tissue (not shown), compress the tissue, and engage the lock pawls (Figure 4) in the lock holes (Figure 3). The control wire 108 shown in Figure 6 is a simple stainless steel wire used to actuate the clip 101 via a handle (Figure 7), at the proximal end of the sheath (Figure 1 ). In this embodiment of the invention, the frangible link (the j-hook 107) is formed in the distal end of the control wire 108 as a one-piece design. The proximal end of the control wire 108 is terminated inside the handle. The control wire 108 also has the retainer release 109 formed in it, behind the j-hook 107. The retainer release 109 causes the outer sleeve (Figure 1 ) to disengage from the retainer 110. This is done sequentially, after the lock holes (Figure 3) in the clip 101 have engaged the lock sleeve (Figure 4). After the lock holes engage the lock sleeve, tensile force applied to control wire 108 first straightens j-hook 107 so that j-hook 107 releases from cut-out 106, then retainer release 109 engages and deforms retainer 110 so that retainer tabs 118 and 119 disengage from the outer sleeve (Figure 1 ) and the lock sleeve (Figure 4). Alternatively, retainer release 109 could engage and deform retainer 110 before j-hook 106 straightens and disengages from cut-out 106. The handle shown in Figure 7 is attached to the proximal end of the sheath
111 at a sheath-handle attachment point 120. The handle configuration is unlike a handle found on conventional endoscopic forceps known in the prior art. The handle provides a mechanism by which the amount of linear actuation required in the handle body 121 is greater than that which is translated to the tip of the device (Figure 1 ). In other words, actuation of the activator or handle lever 122 of 1.00 inch in turn may only move the clip (Figure 3) by 0.10 inch. This feature allows for a more tactile feel when placing the clip on the vessel (not shown). In effect, very subtle amounts of movement in the clip can be accomplished by more exaggerated, less precise movements of the operator's hand. This is accomplished because the activator or lever 122 pivots about a pivot point 123 that is close to the attachment point 124 of the control wire 125. An alternative embodiment of the device may be made up of clips with more than two legs. Figures 8A through 8E show a clip with four legs. Figure 8A shows a view from the side, showing clip legs 801. This embodiment could be actuated and released in the same way the previous embodiment is activated and released, through a clip locking mechanism 802. The use of a control wire (not shown) would actuate the multiple-legged clip in and out of an outer sleeve 803 until such time that the operator desires to release the clip. Alternatively, actuation of the control wire might move the outer sleeve 803 in and out over the multiple-legged clip to open and close the clip legs 801 , until such time that the operator desires to release the clip. Figure 8B shows the four-legged clip of Figure 8A from the perspective of the targeted tissue looking proximally. The four clip legs 801 are shown in an open position and are situated at 90° from each other. Figure 8C shows a profile view of a single clip leg 801. Figure 8D shows a view along the axis of clip locking mechanism 802. Figure 8E shows another view of a four-legged clip with clip legs 801 and clip locking mechanism 802. Figure 8F shows alternative side profiles of the clip geometry. Use of such geometries in a clip with two or more legs allows for improved grasping ability in different situations. Given the large variation in tissue thickness and tissue strength, it is likely that different clip profiles would excel in different procedures. Figure 8G shows alternative end profiles of the clip geometry. As with the varying side profiles, different end profiles would provide a broader range of grasping capabilities.
Figures 9A and 9B illustrate an alternative embodiment of the device using a different method to lock the clip in the closed position. This alternative method uses an expanded coil spring 901 released over the outside of the clip legs 904 and 905 to lock the clip legs 904 and 905 closed. Figure 9A shows this embodiment in a predeployment state. Figure 9A shows a stretched coil spring 901 , twisted to a diameter larger than that of the relaxed state of coil spring 901. Stretched coil spring 901 is placed over a rigid tube 903 at the distal end of the clip device. Within this rigid tube 903, the clip legs 904 and 905 are free to move in and out (in a manner similar to the manner described for the previous embodiments), between the opened and closed position via a control wire (not shown). When the desired clip location has been achieved, the sheath 902 is used to push the coil spring 901 off of the rigid tube 903, onto the clip legs 904 and 905, as shown in Figure 9B. The inward radial forces present in the recovered coil spring 901 act to keep the clip legs 904 and 905 compressed.
Figures 10A and 10B illustrate another alternative embodiment. In this embodiment, a flexible linkage 1002 and pill 1003 are used to lock the clip legs 1001. In this embodiment the clip legs 1001 are actuated via a control wire 1006, as described in previous embodiments. However, in this embodiment, the clip legs are not closed by pulling the clip legs 1001 through some feature smaller than the open clip. Instead the clip legs 1001 are closed by drawing the two flexible links 1002 proximally, in the direction of the control wire 1006, while a compressive force is applied to the base of the clip legs 1001 by a rigid sheath (not shown). This in turn pulls the legs of the clip toward each other. Figure 10A shows the clip legs 1001 in an open position. Figure 10B shows the clip legs in a closed position. The clip legs 1001 are locked in a closed position when the pill 1003, located at the center of the flexible linkage 1002, is drawn through a one way hole 1004 in the center of the clip legs 1001. The one way hole 1004 is tapered, with a diameter slightly larger than the diameter of the pill 1003 on its distal side and a diameter smaller than the diameter of the pill 1003 on its proximal side. The pill stretches the material around the hole 1004 as it passes through moving proximally. Alternatively, the pill 1003 itself can be made of an elastic material and would deform slightly while passing proximally through hole 1004. This funneling effect of the pill 1003 through the hole
1004 only allows the pill 1003 to easily pass through in the locking direction. This locking action is maintained after the clip is released by positioning the frangible link
1005 in a proximal direction on control wire 1006 from the pill 1003, thus maintaining tissue compression. In this embodiment the frangible link 1005 is a taper in control wire 1006, enabling the link to be broken at a specific position (proximal from the pill 1003) with a predetermined tensile load. One alternative to the j-hook type frangible link previously described is shown in Figure 11. This embodiment uses a threaded fitting that is a combination of a male thread 1103 and a female hub 1102 to attach the control wire (not shown) to the clip 1001. The clip 1001 can be actuated from the opened position (not shown) to the closed position (shown) as described in previous embodiments. In this embodiment, the lock sleeve 1105 is shorter and engages dimples 1106. After the lesion (not shown) is properly targeted, the clip 1101 can be released. The clip 1101 is released when a predetermined tensile load is applied to the male thread 1103, in a similar fashion to the predetermined tensile load applied to straighten the j-hook. This force causes the male thread 1103 to detach from the female hub 1102. The female hub 1102 may be constructed of a spiral wound wire component with a pitch equal to the thread pitch formed to make the male thread 1103. The fit of the threaded components is such that the predetermined force will overcome the engaged threads of the male thread 1103 and the female hub 1102, causing them to separate, or "strip" away from one another.
Another alternative to the j-hook type frangible link is shown in Figures 12A and 12B. This embodiment uses a ball 1202 fitting into a socket, where the socket is defined by socket tabs 1203, to attach the control wire 1207 to the clip 1201. An outer sleeve 1204 is attached by way of a breakaway connection (not shown) to the sheath 1206. This breakaway connection may be a light interference fit, or a light adhesive joint. The breakaway connection must be weak enough that when the sheath 1206 is pulled back through the working channel (not shown) of the endoscope (not shown), the outer sleeve 1204 will release with the clip 1201. The clip 1201 is released when the socket tabs 1203 at the proximal end of the clip 1201 are aligned with cut-outs 1205 in the outer sleeve 1204. These cut-outs 1205 act as a relief area into which the socket tabs 1203 can be deformed when a predetermined tensile load is applied to them via the ball 1202 formed on the end of the control wire 1207. The outer sleeve 1204 is released with clip 1201 so that the clip 1201 remains locked after deployment. Another alternative to the j-hook type frangible link is shown in Figures 13A,
13B and 13C. All the figures show the clip 1301 in a closed and locked state. Figure 13A shows the clip 1301 in a closed position but before it is released and shows a portion of outer sleeve 1303 cut away to show the internal workings of the clip mechanism. Figures 13B and 13C show the clip 1301 after being released. In this embodiment, the actuation is still performed via a control wire 1304, however the direction of action is reversed. As the control wire 1304 is pushed forward, the clip 1301 is closed by the advancement of outer sleeve 1303 and lock ring 1302 over the clip legs. The locking sleeve 1302 and clip geometry, including dimples 1306, is the same as that explained in the embodiment of Figure 11.
A difference between the embodiment shown in Figures 13A, 13B and 13C and the prior embodiments is the mechanism by which the clip 1301 is released from the rest of the device. An interference fit between the outer sleeve 1303, sheath 1305, and male threaded hub 1308 is created when the device is assembled. The distal end of the sheath 1305, in its manufactured (but unassembled) state, has an outside diameter greater than the inside diameter of the outer sleeve 1303. When the outer sleeve 1303 and sheath 1305 are assembled together part of the interference fit is created. The distal end of the sheath 1305, again in its manufactured (unassembled) state, has an inside diameter greater than the diameter of the male threaded hub 1308. During assembly, as the distal end of the sheath 1305 is compressed to fit inside the outer sleeve 1303, it is compressed down onto the male threaded hub 1308 to create a sandwich of the sheath 1305 between the male threaded hub 1308 on the inside and the outer sleeve 1303 on the outside. During the medical procedure, at the time the operator wishes to release the clip 1301 , this interference fit is overcome. The interference fit is overcome by advancing the outer sleeve 1303 so far forward, by creating a compressive force in the control wire 1304 in opposition to a tensile force on the sheath 1305, that the outer sleeve 1303 is no longer in contact with the distal end of the sheath 1305.
The outer sleeve 1303 and the control wire 1304 serve two purposes in this embodiment. The outer sleeve 1303 and the control wire 1304 supply the closing force to the clip 1301. In Figures 13A, 13B, and 13C, a lock ring 1302 is used to maintain the closing force on the clip legs 1307. The outer sleeve 1303 and the control wire 1304 also act as key components of the release mechanism. As previously described, once the outer sleeve 1303 is moved to its forward-most position, the end of the sheath 1305 is no longer contained within the outer sleeve 1303, and is free to separate from the male threaded hub 1308. The sheath 1305 is free to release because of the manner in which the distal end of the sheath 1305 is manufactured/assembled. When the outer sleeve 1303 is advanced forward, allowing the distal end of the sheath 1305 to be free, the distal end of the sheath 1305 expands to its original, manufactured state. This allows the inside of the sheath 1305 to release from the male threaded hub 1308. The male threaded hub 1308, and thus the clip 1301 , are now free from the sheath 1305 and the rest of the delivery device. As shown in Figure 13C, the outer sleeve 1303 remains connected to the control wire 1304 at connection point 1310, and both can be removed with the sheath 1305. The distal portion of control wire 1304 is bent towards, and connects with, outer sleeve 1303 at connection point 1310. The distal portion of control wire 1304 passes male threaded hub 1308 during deployment through slot 1309 in male threaded hub 1308. Figures 14A, 14B, and 14C show an alternative embodiment of the present invention. In the embodiment of Figures 14A, 14B, and 14C, the relaxed state of the clip is closed, and it is forced open and allowed to close naturally. Figure 14A shows a side view of the clip 1401 in a closed, pre-released state, and Figure 14B shows an edge view of the clip 1401 in a closed, pre-released state. In this embodiment, because the clip 1401 is manufactured such that the clip legs 1407 are naturally closed, the primary function of the control wire 1406 is changed from having to close the clip 1401 , to having to open the clip 1401. The clip 1401 is manufactured in a generally x-shaped geometry, where each tab 1403 at the proximal end of the clip 1401 controls a clip leg 1407 opposite at the distal end of the clip 1401. The action/reaction of the clip 1401 is similar to that of a common clothes pin. As the tabs 1403 are brought together, the clip legs 1407 are spread apart. As the tabs 1403 are released, the clip legs 1407 come together. A u-ring 1402 attached to the end of the control wire 1406 is used to bring the tabs 1403 together, thus opening the clip 1401. Pulling on the control wire 1406 pulls the u-ring 1402 into contact with tabs 1403 creating a compressive force to open clip legs 1407 because clip 1401 is positioned against fulcrum point 1408. Advancing control wire 1406 advances u-ring 1402, thereby removing the compressive force on tabs 1403 and allowing clip legs 1407 to close. Advancing control wire 1406 further to a deployment position pushes u-ring 1402 against clip legs 1407, causing clip 1401 to move out of outer sleeve 1404 into a deployed state.
The control wire 1406 is constructed of material having a shape memory, and the distal end of the control wire 1406, where the u-ring 1402 is attached, is pre-bent to one side. While a minimum tension exists in control wire 1406, the u-ring remains around the constriction. However, when the desired location for the clip 1401 has been achieved, and the clip tabs 1403 have been advanced beyond outer sleeve 1404, the control wire 1406 can be advanced to its most distal position. Because the control wire 1406 is pre-bent, as it is advanced the u-ring 1402 becomes disengaged from the clip 1401 when the tension in control wire 1406 falls below a predetermined amount, as shown in Figure 14C. This allows the clip 1401 to be released.
Figures 15A, 15B, 15C, and 15D show another embodiment in which the clip is manufactured in a naturally closed position. Figure 15A shows the distal end of medical device 1509 with the clip 1501 in a closed position before deployment. Figure 15B shows only the clip 1501 in a closed position. Figure 15C shows the clip 1501 in an open position. Figure 15D shows the device after the clip is released. The clip 1501 is shaped such that, as the control wire 1503 is pulled in a proximal direction, the clip legs 1508 are forced apart from one another. This is accomplished using a pill 1502 attached to the end of the control wire 1503 as explained in previous embodiments. Two rigid arms 1504, located between the clip legs 1508, translate the tensile force on the control wire 1503 to an outward radial force on the clip legs 1508. When the desired location for the clip 1501 has been achieved, the control wire 1503 can be advanced to its most distal position.
Because the control wire 1503 is constructed of material that has a shape memory, and because the control wire 1503 is pre-bent close to the pill 1502, as the control wire 1503 is advanced, the pill 1502 becomes disengaged from the pill well 1507. When the pill 1502 moves out and away from the pill well 1507, the clip 1501 is released and disengages from the control wire 1502, the sheath 1506, and the outer sleeve 1505. Figures 16A, 16B, 16C, 16D, and 16E show another embodiment in which the clip is manufactured in a naturally closed position. Figure 16A shows the clip 1607 in a closed, predeployed, state. Figure 16B shows a side view of one clip leg 1601 with the pill 1603 still resting in pill well 1604. Figure 16C shows an edge view of one clip leg 1601 with the pill 1603 still resting in pill well 1604. Figure 16D shows a clip 1607 in an open position. Figure 16E shows a clip 1607 in a closed position. This embodiment uses two control wires 1605. Alternatively, a branched control wire may be used. By using a branched control wire or two control wires 1605, the force can be transmitted to a point further away from the fulcrum (bending point) 1606 of the clip 1607. The greater this distance, the lesser the force required to open the clip legs 1601. As in the previous embodiments, the control wires 1605 are disengaged from the clip 1607 by pushing them forward. This action disengages the pills 1603 from the clip 1607 by moving the pills 1603 out of pill wells 1604. The control wires 1605 are made from a material with a shape memory, so that when freed from pill wells 1604, the pills 1603 move away from the pill wells 1604, and the clip 1607 is deployed.
Another embodiment is shown in Figures 17A and 17B. In this embodiment, the control wire or wires 1701 are routed to gain mechanical advantage. In this embodiment, the clip 1702 is naturally closed, with the control wire(s) 1701 routed to leverage points 1704 further away from the fulcrum (bending point) 1705 of the clip 1702. In this embodiment, the control wire(s) 1701 are looped around pins positioned at leverage points 1704 at the ends of the clip legs 1706. The control wire(s) 1701 are then routed to a point at the proximal end of the clip. The control wire(s) 1701 are then terminated at this point. For ease of manufacture, the control wire(s) 1701 could essentially be one, continuous wire, with both ends terminated in the handle (not shown). To release the clip 1702, one end of control wire 1701 could be detached from the handle and pulled free from the clip 1702. Because the control wire 1701 is only wrapped around pins positioned at leverage points 1704 on the clip 1702, by pulling on one end of control wire 1701 , control wire 1701 could be easily detached when the desired location for clip 1702 has been achieved by continuing to pull on one end of control wire 1701 until all of control wire 1701 has been detached from the clip 1702. Figures 18A, 18B, 18C, 18D, 18E, and 18F show an embodiment of a clip which incorporates the natural compressive forces present in a simple elastic band (or o-ring) 1802 to hold the clip legs 1801 in the closed position. Figure 18A shows two clip legs 1801 in a disassembled state. Figure 18B shows a clip with the control wire 1803 engaging a second elastic band 1804 to open clip legs 1801. In this embodiment, the control wire 1803 is attached to the proximal end of the clip legs 1801 via a frangible link. In this embodiment, the frangible link is a second elastic band (or o-ring) 1804 that will deform as the control wire 1803 is pulled back. In this embodiment, the clip is housed in the end of a sheath 1806 such that, as the control wire 1803 is pulled back, the second elastic band 1804 delivers an increasing compressive force to the clip legs 1801 proximal to a pin joint 1805, thereby causing the clip legs 1801 distal from the pin joint to open against the compressive force of elastic band 1802. In this manner, the clip legs 1801 move to an open position, as shown in Figure 18B. Figure 18C shows the clip in a closed, predeployed state. Figure 18D shows a profile view of clip legs 1801 , and Figure 18E shows an end-on view of clip legs 1801 within sheath 1806. Figure 18F shows a close-up view of clip legs 1801 without first elastic band 1802 but showing band slots 1809. Figure 18F shows second elastic band 1804 resting over nubs 1807 and coupled to control wire 1803. When the desired clip location has been achieved, the second elastic band 1804, which makes up the frangible link, is overcome by pulling the control wire 1803 to its most proximal position. This has the effect of breaking second elastic band 1804. Alternatively, second elastic band 1804 could be designed to release over nubs 1807. In a third alternative, after placing clip legs 1801 in the desired location, control wire 1803 can be released so that elastic band 1802 again closes clip legs 1801. In this third embodiment, control wire 1803 is made of a suitable material, such as a shape memory material, and has a bend in the distal region such that moving control wire 1803 to a maximum distal position acts to unhook hook 1808 from second elastic band 1804.
Figures 19A, 19B, and 19C show another embodiment of the invention utilizing a naturally closed clip. Clip 1901 is held in the naturally closed position by a torsion spring 1903. The clip 1901 is actuated from the closed to the opened position in a different way than prior embodiments. A plunger 1904, located within the outer sleeve 1905 at the end of the sheath (not shown), is used to push on the tabs 1906 on the proximal end of the clip 1901. The tabs 1906 are pushed through an opening 1907 in the end of the outer sleeve 1905. This moves tabs 1906 close together, in turn moving the clip legs 1902 to the open position. When the desired clip location has been achieved, the clip 1901 can be released by advancing the plunger 1904 to its most distal position. Figure 19B shows the clip 1901 from a profile view. Figure 19C shows a single clip leg 1902 and connection point 1908 for pivotally connecting clip legs 1902 to each other.
Figures 20A, 20B, and 20C describe the embodiment of a three-legged clip and delivery device. The clip 2001 is manufactured to be in the naturally open position. The clip 2001 is characterized by male threads 2002 on its outer surface. The delivery device consists of a sheath 2003 similar to those described in previous embodiments. An inner sleeve 2004 located within the distal end of the sheath 2003 is used to actuate the clip 2001 from its naturally open position to the closed position. The inner sleeve 2004 has female threads (not shown) on its inside diameter. A control wire (not shown) is used in this device to transmit rotational force rather than tensile/compressive force. Rotating the sheath 2003 with respect to the control wire, with the handle (not shown) actuates the clip 2001. This rotation force is translated to the female threads, causing them to be threaded onto the clip 2001. As the naturally open clip legs 2005 move toward the inner sleeve 2004, the clip legs 2005 are closed. The clip 2001 and inner sleeve 2004 are released from the sheath 2003 via some form of frangible link (not shown) as described in the previous embodiments. Figure 20A shows the clip legs 2005 and inner sleeve 2004 from the perspective of the target area. Figure 20C shows the size relationship between the female threads on the inner sleeve 2004 and the male threads 2002 on the clip 2001.
Figure 21 shows another embodiment of a naturally open clip and delivery device. Figure 21 shows the distal portion of the medical device with a portion of the outer sleeve 2102 cut away to show the inner mechanics of the clipping device. The delivery device consists of a sheath 2103 similar to those described in previous embodiments. The clip 2101 is actuated from the open to the closed position via a control wire 2104, as described in the primary embodiment. A frangible link is implemented in this embodiment by a breakable link 2105. In this embodiment the lock sleeve is eliminated. Eliminating the lock sleeve reduces the number of components and the overall size of the device. In this embodiment the outer sleeve 2102 is used to hold the clip 2101 in the closed position. Therefore, the outer sleeve 2102 must be deployed from the sheath 2103 when the clip 2101 is released. To create a positive mechanical lock between the clip 2101 and outer sleeve 2102, the clip 2101 has two deformable tabs 2106 formed in its proximal end. When the desired tissue purchase has been accomplished, the control wire 2104 is further actuated by the handle (not shown) so that the tabs 2106 reach a position where they are in the same plane as the cut-outs 2107 in the outer sleeve 2102. Once the tabs 2106 have reached this point, further actuation of the control wire 2104 forces the tabs 2106 to deform through the cut-outs 2107 in the outer sleeve 2102. As in the first embodiment, a retainer 2108 is used to create a mechanical lock between the sheath 2103 and outer sleeve 2102. In this embodiment the retainer 2108 passes through slots 2109 in the outer sleeve 2102 and a sheath connector 2110. The sheath connector 2110 is simply a rigid connector, applied to the end of the sheath 2103 by some means known in the art (e.g. welding, adhesive, swaging, etc.). As the tabs 2106 become engaged, a tensile load in the control wire 2104 is translated to the breakable link 2105. At a predetermined tensile load, the breakable link 2105 breaks. As the control wire 2104 is further actuated, a distal portion of control wire 2104, which is preformed into a shape that will function as a retainer release, engages the retainer 2108. The retainer 2108 is pulled from the outer sleeve 2102 by the control wire 2104, in a similar manner to that described in the primary embodiment. Once this is done, the sheath connector 2110 (and therefore the sheath 2103) is released from the outer sleeve 2102.
The materials utilized in construction of the clip of the present invention include many bio-compatible materials (metals, polymers, composites, etc.). A stainless steel grade material, which offers good spring properties, may be used. The clip can also be coated, or plated, with a material like gold to improve radiopacity. The lock sleeve, lock pawls, retainer and outer sleeve may be comprised of any of the same materials as the clip component. For example, stainless steel may be used.
The control wire in the first embodiment may be a stainless steel wire. Because the wire must offer sufficient strength in both tension and compression, the material properties of the wire are important to the functionality of the device. Also, the end of the wire, where the j-hook is formed, must deform when a predetermined tensile load is applied. The device's ability to release the clip is dependent on this property. Other embodiments of the device may incorporate a two (or more) piece wire so that certain sections of the wire have different material properties or geometries. Different material properties or geometries could allow for more control over how and when the wire detaches from the distal tip of the device. This could also be accomplished by several other methods, as well. For example, localized heat treating and/or coatings could be used along portions of the wire to alter the material characteristics. Additionally, some embodiments of the present invention require a control wire constructed of a material with a shape memory.
The sheath, in the first embodiment, is made up of several round, stainless steel wires, wound in a helical pattern to create a hollow, semi-rigid shaft. Sheaths made in this fashion are well known in the prior art. In other embodiments, the sheath could be made up of non-round wires. Other embodiments may be made up of one or more wires formed in a pattern other than a single helix, as in the first embodiment. A multiple helix or braided pattern may be used. The sheath may also be coated with a protective coating of Polytetrafluoroethylene (PTFE), or similar materials. The use of such coatings could be used to alter the flexibility of the shaft. Such coatings could also be used to increase the lubricity (decrease the coefficient of friction) between the endoscope working channel and the device. Similar materials could also be used to encapsulate the sheath's base material. This would create a matrix material, providing a combination of material properties not feasible with one single material. Other embodiments may use materials other than stainless steel as the base material. Materials such as titanium, nitinol, and/or nylon fibers may be incorporated. A method of using the endoscopic hemostatic clipping device is provided. The method involves placing an endoscope in a body cavity as is known in the art. The device provided herein is then inserted through the endoscope. At the distal end, the endoscope is positioned near the target area. As noted above, the target area may be a lesion, a bleeding ulcer, a tumor, other abnormality, or any number of other tissues to be pinched, marked, tagged, or to which the operator wishes to apply a pinching pressure for whatever reason. The device provided is then positioned so that the clip legs embrace the target area, then the actuator is activated to close the clip legs. The success or failure of the application of pressure can be reviewed through the optical components provided separately in the endoscope. If the pinching is unsuccessful or only marginally successful, the clip legs of the device may be opened by reversing the actuation of the activator. Alternatively, if the pinching is successful, and the operator wishes to deploy the device, the actuator is fully activated, or the alternative deployment activator is activated. Finally, the remaining portion of the medical device and the endoscope are removed from the body.
It will be obvious to those skilled in the art, having regard to this disclosure, that other variations on this invention beyond those specifically exemplified here may be made. These variations include, but are not limited to, different combinations of clips, closing mechanisms, locking mechanisms, frangible links, and clip leg formations. Such variations are, however, to be considered as coming within the scope of this invention as limited solely by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A medical device for causing the hemostasis of a blood vessel for use through an endoscope, said medical device comprising: a clip, the clip having at least two clip legs; a control wire able to be coupled to the clip, the control wire reversibly operable both to open the at least two clip legs and to close the at least two clip legs, the control wire uncouplable from the clip; an axially rigid sheath enclosing the control wire, the sheath able to communicate a first force opposing a second force of the control wire; a handle coupled to the axially rigid sheath; and an actuator coupled to the control wire, the control wire engageable by the actuator to open the at least two clip legs, to close the at least two clip legs, and to uncouple the control wire from the clip.
2. The medical device of claim 1 , wherein: the actuator comprises a lever; and the lever able to transmit a fraction of an amount of an operator's movement of the lever into linear movement of the control wire, the fraction being less than one.
3. The medical device of claim 1 , wherein: the control wire is able to be coupled to the clip by a j-hook; the j-hook is able to be straightened by a first predetermined tensile force; and when the j-hook is straightened, the control wire uncouples from the clip.
4. The medical device of claim 1 , wherein: the control wire is able to be coupled to the clip by a breakable link; the breakable link is able to be broken by a first predetermined tensile force; and when the breakable link is broken, the control wire uncouples from the clip.
5. The medical device of claim 1 , wherein: the control wire is able to be coupled to the clip by a male thread coupled to a female hub; the male thread and the female hub are able to be stripped apart by a first predetermined tensile force; and when the male thread and the female hub are stripped apart, the control wire uncouples from the clip.
6. The medical device of claim 1 , wherein: the control wire is able to be coupled to the clip by at least one ball on the control wire being situated within at least one socket on the clip; the at least one ball on the control wire removable from the at least one socket; and when the ball is removed from the socket, the control wire uncouples from the clip.
7. The medical device of claim 6, wherein: the socket is formed by at least two tabs; each of the at least two tabs deformable by the ball into a corresponding cut-out in an outer sleeve at a predetermined tensile force; and when the at least two tabs are deformed, the control wire uncouples from the clip.
8. The medical device of claim 1 , wherein: the control wire is able to be coupled to the clip by at least one u-ring attached to the control wire situated around a constriction in the clip; the at least one u-ring removable from around the constriction; and when the u-ring is removed from around the constriction, the control wire uncouples from the clip.
9. The medical device of claim 8, wherein: the control wire comprises a shape memory material at least on a distal portion of the control wire; and when the control wire relaxes, the at least one u-ring moves away from around the constriction, and the control wire uncouples from the clip.
10. The medical device of claim 1 , wherein: the control wire is able to be coupled to the clip by at least one pill on the control wire being situated within at least one pill well on the clip; the at least one pill removable from the at least one pill well; and when the pill is removed from the pill well, the control wire uncouples from the clip.
11. The medical device of claim 10, wherein: the control wire comprises a shape memory material at least on a distal portion of the control wire; and when the control wire relaxes, the at least one pill moves out of the at least one well, and the control wire uncouples from the clip.
12. The medical device of claim 1 , wherein: the clip comprises at least one pin; the control wire is able to be coupled to the clip by being threaded around the at least one pin; and when the control wire unthreads from around the at least one pin, the control wire uncouples from the clip.
13. The medical device of claim 1 , wherein the control wire is able to couple to the clip by an elastic band.
14. The medical device of claim 13, wherein breaking the elastic band is able to uncouple the control wire from the clip.
15. The medical device of claim 13, wherein: the control wire comprises a hook; the hook is able to engage the elastic band; and the control wire is movable distally to unhook and disengage the control wire from the elastic band, thereby uncoupling the control wire from the clip.
16. The medical device of claim 1 , further comprising a lock sleeve, wherein the control wire is able to be pulled in a proximal direction to pull the clip through the lock sleeve, thereby closing the clip legs.
17. The medical device of claim 16, wherein the control wire is able to be pushed in a distal direction to push the clip out of the lock sleeve, thereby opening the clip legs.
18. The medical device of claim 1 , further comprising a lock sleeve, wherein the outer sleeve is able to be pushed in a distal direction to push the lock sleeve over the clip, thereby closing the clip legs.
19. The medical device of claim 18, wherein the outer sleeve is able to be pulled in a proximal direction to pull the lock sleeve away from around the chip, thereby opening the clip legs.
20. The medical device of claim 16 further comprising: a retainer, the retainer releasably coupled to the lock sleeve; and a retainer release arrangement, the retainer release arrangement able to engage the retainer to uncouple the retainer from the lock sleeve.
21. The medical device of claim 1 , further comprising a lock arrangement for locking the at least two clip legs in a closed position.
22. The medical device of claim 21 , wherein the lock arrangement comprises: at least two lock holes, the number of lock holes corresponding to the number of clip legs, each of the at least two lock holes situated on a corresponding clip leg; a lock sleeve; and at least two lock pawls, the number of lock pawls corresponding to the number of clip legs, each of the at least two lock pawls situated on the lock sleeve; wherein the at least two lock holes are engageable by the at least two lock pawls.
23. The medical device of claim 21 , wherein the lock arrangement locking the at least two clip legs in a closed position comprises: a rigid tube; a coiled spring, the coiled spring arranged on the rigid tube, the rigid tube supporting the coiled spring in an expanded position, the coiled spring encircling the rigid tube on a distal end; and a coil engaging arrangement arranged on the clip legs; wherein the rigid tube is engageable by the control wire, the rigid tube movable proximally with respect to the sheath, the coiled spring engageable by the sheath to cause the coiled spring to slide off the rigid tube onto the clip legs, thereby causing the coiled spring to engage the coil engaging arrangement on the clip legs to lock the clip legs in a closed position.
24. The medical device of claim 21 , wherein the lock arrangement locking the at least two clip legs in a closed position comprises: at least one pill situated on a distal end of the control wire; and at least one lock hole, wherein the control wire passes through at least one lock hole; wherein the at least one pill is movable by the control wire proximally through the at least one lock hole; and wherein once the at least one pill moves proximally through the at least one lock hole, the at least one pill is not movable distally through the at least one lock hole.
25. The medical device of claim 21 , wherein the lock arrangement locking the at least two clip legs in a closed position comprises: a lock sleeve, the lock sleeve situated radially outward from the at least two clip legs; and at least two dimples, the number of dimples corresponding to the number of clip legs, each of the dimples situated on a corresponding clip leg; wherein the at least two dimples are engageable by the lock sleeve.
26. The medical device of claim 21 , wherein the lock arrangement locking the at least two clip legs in a closed position comprises: at least two deformable lock tabs, the number of deformable lock tabs corresponding to the number of clip legs, each of the at least two deformable lock tabs situated on a proximal end of a corresponding clip leg; and at least two lock holes, the number of lock holes corresponding to the number of clip legs, each of the lock holes situated on a lock sleeve; wherein each of the at least two lock holes is engageable by each of the at least two deformable lock tabs.
27. The medical device of claim 1 , wherein the axially rigid sheath is torsionally rigid, the sheath transmitting a rotational force from the handle to the clip at a ratio of approximately 1 to 1.
28. The medical device of claim 1 , further comprising: at least two flexible links, the number of flexible links corresponding to the number of clip legs, each of the at least two flexible links extending inward radially from each corresponding clip leg to an axial position to connect to the control wire; wherein a proximal tensile force applied to the control wire translates to a radially inward tensile force to each of the at least two flexible links, causing the clip to close.
29. The medical device of claim 1 , further comprising: a lock sleeve, the lock sleeve radially surrounding the clip legs; wherein a distal compressive force applied to the lock sleeve moves the lock sleeve relative to the at least two clip legs, causing the at least two clip legs to close.
30. The medical device of claim 1 , further comprising: an expanded spring arrangement, the expanded spring arrangement situated distally from a pivot point on the at least two clip legs; wherein the spring arrangement is able to apply a radially inward tensile force on the at least two clip legs to cause the at least two clip legs to close.
31. The medical device of claim 1 , further comprising: a compressed spring arrangement, the compressed spring arrangement situated proximally from a pivot point on the clip legs; and at least two tabs, the number of tabs corresponding to the number of clip legs; wherein the compressed spring arrangement pushes radially outward on at least two tabs, the tabs translating the radially outward force via the pivot point to a radially inward force at the at least two clip legs, causing the at least two clip legs to close.
32. The medical device of claim 1 , further comprising an elastic band arrangement, the elastic band arrangement including: a first elastic band, the first elastic band situated distally from a pivot point and situated radially outward from the at least two clip legs, wherein the first elastic band applies a radially inward force to the at least two clip legs; and a second elastic band, the second elastic band situated proximally from a pivot point and situated radially outward from at least two tabs; wherein the second elastic band applies a radially inward force to the at least two tabs which translates via the pivot point to a radially outward force on the at least two clip legs; and wherein the control wire is uncouplably connected to the second elastic band and is able to increase the radially inward force applied by the second elastic band to the at least two tabs.
33. The medical device of claim 1 , further comprising: at least two rigid arms, the number of rigid arms corresponding to the number of clip legs, each of the at least two rigid arms extending outward radially from a central axial position to a corresponding clip leg, the at least two rigid arms uncouplably connected to the control wire, the at least two rigid arms activatable by the control wire to to apply an outward radial force to the at least two clip legs; wherein the at least two clip legs are constructed of a material that retains an original shape after deformation, the original shape of the at least two clip legs being a closed position, the at least two clip legs elastically deformable to an open position by the at least two rigid arms.
34. The medical device of claim 1 , wherein the at least two clip legs are constructed of a material that retains an original shape after deformation, the original shape of the at least two clip legs being a closed position, the at least two clip legs elastically deformable to an open position by the control wire.
35. The medical device of claim 1 , wherein a proximal tensile force on the control wire is opposable by a distal compressive force on the outer sheath, the distal compressive force on the outer sheath able to close and lock the at least two clip legs.
36. The medical device of claim 1 , wherein a proximal tensile force on the outer sheath is opposable by a distal compressive force on the control wire, the distal compressive force on the control wire able to close and lock the at least two clip legs.
37. The medical device of claim 1 , wherein a distal termination of the control wire comprises a loop, wherein a first end and a second end of the control wire terminate at the handle.
38. The medical device of claim 1 , wherein a distal termination of the control wire comprises: at least one pill; and at least one pill well, the number of pill wells corresponding to the number of pills; wherein each of the at least one pill is situated in the at least one pill well; and wherein the at least one pill is moveable out and away from the at least one pill well.
39. The medical device of claim 1 , wherein a distal termination of the control wire comprises: a u-ring; and a constriction of the clip; wherein the u-ring is situated on the constriction of the clip and the u- ring is moveable out and away from the constriction.
40. The medical device of claim 1 , wherein a distal termination of the control wire comprises: a frangible link, wherein the frangible link is at least one of a wire reversibly deformed into a j-hook and a breakable link, wherein the j-hook is able to be straightened by a first predetermined tensile force; and wherein the breakable link is able to be broken by the first predetermined tensile force.
41. The medical device of claim 1 , wherein a distal termination of the control wire comprises a plunger, wherein the plunger ejects the clip from an outer sleeve when a distal force is applied to the control wire.
42. The medical device of claim 1 , wherein a distal termination of the control wire comprises: a screw arrangement, wherein the handle is able to be rotated to thread a base of the clip into a female thread situated on a radially inner side of an outer sleeve, the clip able to move proximally and the at least two clip legs able to close when the base is threaded into the outer sleeve.
43. The medical device of claim 1 , wherein the device is disposable.
44. A medical device for causing the hemostasis of a blood vessel for use through an endoscope, said medical device comprising: a clip, the clip having at least two clip legs; an outer sleeve, the outer sleeve reversibly movable with respect to the clip both to open the at least two clip legs and to close the at least two clip legs; a control wire coupled to the outer sleeve for moving the outer sleeve relative to the clip: an axially rigid sheath enclosing the control wire, the sheath couplable with, and uncouplable from, the clip; a handle coupled to the axially rigid sheath; and an actuator coupled to the control wire, the control wire engageable by the actuator to move the outer sleeve to open the at least two clip legs, to close the at least two clip legs, and to uncouple the clip from the sheath.
45. A method of providing and using a medical device to deploy a clip for causing the hemostasis of a blood vessel, said method comprising: (i) providing a medical device comprising: a clip, wherein the clip has at least two clip legs; a control wire coupled to the clip, the control wire reversibly operable both to open the at least two clip legs and to close the at least two clip legs, the control wire being uncouplable from the clip; an axially rigid sheath enclosing the control wire, the sheath able to communicate a force opposing a force of the control wire; a handle coupled to the axially rigid sheath; and an actuator coupled to the control wire, the control wire engageable by the actuator to open the at least two clip legs and to close the at least two clip legs and to uncouple the control wire from the clip; (ii) advancing the medical device so that the clip is located at the desired deployment location; and
(iii) moving the actuator to close the clip legs, and optionally to reopen and reclose the clip legs, and to uncouple the clip from the control wire.
EP02775909.1A 2001-10-05 2002-09-20 Through the scope endoscopic hemostatic clipping device Expired - Lifetime EP1328199B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15199778.0A EP3023061B2 (en) 2001-10-05 2002-09-20 Endoscopic device for causing hemostasis
EP15158361.4A EP2907458B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158382.0A EP2907459B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP18171371.0A EP3391835A1 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US971488 2001-10-05
US09/971,488 US7094245B2 (en) 2001-10-05 2001-10-05 Device and method for through the scope endoscopic hemostatic clipping
PCT/US2002/029952 WO2003030746A1 (en) 2001-10-05 2002-09-20 Through the scope endoscopic hemostatic clipping device

Related Child Applications (7)

Application Number Title Priority Date Filing Date
EP18171371.0A Division EP3391835A1 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158361.4A Division-Into EP2907458B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158361.4A Division EP2907458B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158382.0A Division EP2907459B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158382.0A Division-Into EP2907459B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15199778.0A Division-Into EP3023061B2 (en) 2001-10-05 2002-09-20 Endoscopic device for causing hemostasis
EP15199778.0A Division EP3023061B2 (en) 2001-10-05 2002-09-20 Endoscopic device for causing hemostasis

Publications (2)

Publication Number Publication Date
EP1328199A1 true EP1328199A1 (en) 2003-07-23
EP1328199B1 EP1328199B1 (en) 2018-06-06

Family

ID=25518453

Family Applications (5)

Application Number Title Priority Date Filing Date
EP15158382.0A Expired - Lifetime EP2907459B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP02775909.1A Expired - Lifetime EP1328199B1 (en) 2001-10-05 2002-09-20 Through the scope endoscopic hemostatic clipping device
EP18171371.0A Withdrawn EP3391835A1 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158361.4A Expired - Lifetime EP2907458B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15199778.0A Expired - Lifetime EP3023061B2 (en) 2001-10-05 2002-09-20 Endoscopic device for causing hemostasis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15158382.0A Expired - Lifetime EP2907459B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP18171371.0A Withdrawn EP3391835A1 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15158361.4A Expired - Lifetime EP2907458B2 (en) 2001-10-05 2002-09-20 Medical device for causing hemostasis
EP15199778.0A Expired - Lifetime EP3023061B2 (en) 2001-10-05 2002-09-20 Endoscopic device for causing hemostasis

Country Status (6)

Country Link
US (14) US7094245B2 (en)
EP (5) EP2907459B2 (en)
JP (1) JP4428627B2 (en)
AU (1) AU2002341757B2 (en)
CA (1) CA2435870C (en)
WO (1) WO2003030746A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907458B1 (en) 2001-10-05 2016-07-13 Boston Scientific Limited Medical device for causing hemostasis
EP3725244A1 (en) 2019-04-17 2020-10-21 Micro-Tech (Nanjing) Co., Ltd. Medical device for causing the hemostasis of a blood vessel
EP3725242A1 (en) 2019-04-17 2020-10-21 Micro-Tech (Nanjing) Co., Ltd. Medical device for causing the hemostasis of a blood vessel
EP3763298A1 (en) 2019-07-10 2021-01-13 Micro-Tech (Nanjing) Co., Ltd. Medical device for causing the hemostasis of a blood vessel

Families Citing this family (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
JP2002224124A (en) * 2001-02-06 2002-08-13 Olympus Optical Co Ltd Ligating device
US7338503B2 (en) * 2002-08-08 2008-03-04 Interrad Medical, Inc. Non-invasive surgical ligation clip system and method of using
US7331968B2 (en) * 2004-06-14 2008-02-19 Ethicon Endo-Surgery, Inc. Endoscopic clip applier with threaded clip
AU2003217285A1 (en) * 2002-02-25 2003-09-09 Graphion Technologies Usa, Llc Expandable fastener with compressive grips
EP1494598B1 (en) 2002-04-15 2009-01-07 Wilson-Cook Medical Inc. Haemostatic clip device
JP4109030B2 (en) * 2002-07-19 2008-06-25 オリンパス株式会社 Biological tissue clip device
AU2003275003A1 (en) * 2002-09-20 2004-04-08 Warsaw Orthopedic, Inc. Instrument and method for extraction of an implant
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
EP1651116B1 (en) 2003-07-14 2013-06-26 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (pfo) closure device with catch system
JP4412943B2 (en) * 2003-08-20 2010-02-10 Hoya株式会社 Endoscopic clip device
JP4261294B2 (en) * 2003-09-04 2009-04-30 Hoya株式会社 Endoscopic clip device
WO2005032381A2 (en) * 2003-09-30 2005-04-14 Scimed Life Systems, Inc. Through the scope tension member release clip
US7494461B2 (en) * 2003-09-30 2009-02-24 Boston Scientific Scimed, Inc. Through the scope tension member release clip
ATE545373T1 (en) * 2003-11-07 2012-03-15 Scimed Life Systems Inc ENDOSCOPIC HEMOSCOPIC CLIP DEVICE
JP4614263B2 (en) * 2004-01-06 2011-01-19 Hoya株式会社 Gripping device
DE102004026617B4 (en) * 2004-06-01 2006-06-14 Siemens Ag Device for clamping tissue
EP2875786B1 (en) 2004-10-08 2017-02-01 Covidien LP Apparatus for applying surgical clips
ES2547214T3 (en) 2004-10-08 2015-10-02 Covidien Lp An endoscopic clip or surgical clip applicator
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
JP4575749B2 (en) * 2004-11-08 2010-11-04 Hoya株式会社 Endoscopic clip device
US7452325B2 (en) * 2004-11-15 2008-11-18 Benvenue Medical Inc. Catheter-based tissue remodeling devices and methods
JP4575763B2 (en) * 2004-12-15 2010-11-04 Hoya株式会社 Endoscopic clip device
JP4758173B2 (en) * 2004-12-24 2011-08-24 オリンパス株式会社 Ligation device
US8080021B2 (en) * 2005-01-11 2011-12-20 Boston Scientific Scimed, Inc. Multiple clip deployment magazine
JP4982699B2 (en) * 2005-01-20 2012-07-25 クック メディカル テクノロジーズ エルエルシー Biopsy forceps
US20060184198A1 (en) * 2005-01-31 2006-08-17 Kms Biopsy, Llc End effector for surgical instrument, surgical instrument, and method for forming the end effector
WO2006105444A2 (en) * 2005-03-31 2006-10-05 Medtrain Technologies, Llc Bioreactor for development of blood vessels
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
EP1946693B1 (en) * 2005-10-19 2011-04-13 Olympus Corporation Endoscope system
US20070293875A1 (en) * 2006-03-10 2007-12-20 Wilson-Cook Medical, Inc. Clip device and protective cap, and methods of using the protective cap and clip device with an endoscope for grasping tissue endoscopically
JP4512725B2 (en) * 2006-03-22 2010-07-28 有限会社リバー精工 Endoscopic clip device
US8551135B2 (en) * 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
WO2007142977A2 (en) * 2006-06-01 2007-12-13 Wilson-Cook Medical Inc. Release mechanisms for a clip device
US8945153B2 (en) * 2006-06-05 2015-02-03 Cook Medical Technologies Llc Endoscopic apparatus having a clip device
US8425412B2 (en) 2006-07-14 2013-04-23 Cook Medical Technologies Llc Papilla spreader
US8414616B2 (en) * 2006-09-12 2013-04-09 Pioneer Surgical Technology, Inc. Mounting devices for fixation devices and insertion instruments used therewith
EP1913881B1 (en) 2006-10-17 2014-06-11 Covidien LP Apparatus for applying surgical clips
US20080125796A1 (en) * 2006-11-28 2008-05-29 Stryker Development Llc Gastrotomy closure device
EP2101653B1 (en) * 2006-12-05 2016-02-17 Cook Medical Technologies LLC Combination therapy hemostatic clip
US20080167680A1 (en) * 2007-01-10 2008-07-10 Voegele James W Fingertip Surgical Instrument
AU2008230841B2 (en) 2007-03-26 2013-09-12 Covidien Lp Endoscopic surgical clip applier
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
WO2008127968A2 (en) 2007-04-11 2008-10-23 Tyco Healthcare Group Lp Surgical clip applier
US8133242B1 (en) 2007-04-27 2012-03-13 Q-Tech Medical Incorporated Image-guided extraluminal occlusion
US8162959B2 (en) * 2007-05-03 2012-04-24 Boston Scientific Scimed, Inc. Single stage hemostasis clipping device
JP4981536B2 (en) * 2007-06-21 2012-07-25 Hoya株式会社 Endoscopic clip device
US8812333B2 (en) * 2007-09-17 2014-08-19 Amadeus S.A.S. Automated split ticketing
AU2008329676B2 (en) 2007-11-26 2015-03-05 Attractive Surgical, Llc Magnaretractor system and method
US20090187198A1 (en) * 2008-01-22 2009-07-23 Barry Weitzner Resolution Clip
US20130165967A1 (en) 2008-03-07 2013-06-27 W.L. Gore & Associates, Inc. Heart occlusion devices
EP2271270B1 (en) * 2008-04-14 2018-10-10 Boston Scientific Scimed, Inc. Endoscopic stapling device
US20090275957A1 (en) * 2008-05-01 2009-11-05 Harris Jason L Clip and delivery assembly used in forming a tissue fold
US20110054498A1 (en) * 2008-05-05 2011-03-03 Niti Surgical Solutions Ltd. Endoscopic compression clip and system and method for use thereof
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
JP5519656B2 (en) * 2008-06-19 2014-06-11 ボストン サイエンティフィック サイムド, インコーポレイテッド Hemostasis clipping device and method
DE102008031387A1 (en) 2008-07-02 2010-01-07 Medi-Globe Gmbh Medical clip
US20110082471A1 (en) * 2009-10-06 2011-04-07 Holcomb Matthew D Reloadable Laparoscopic Fastener Deploying Device
US8465502B2 (en) 2008-08-25 2013-06-18 Covidien Lp Surgical clip applier and method of assembly
US20110208212A1 (en) 2010-02-19 2011-08-25 Zergiebel Earl M Surgical clip applier
US8267944B2 (en) 2008-08-29 2012-09-18 Tyco Healthcare Group Lp Endoscopic surgical clip applier with lock out
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US9095328B2 (en) 2008-12-12 2015-08-04 Boston Scientific Scimed, Inc. Endoscopes having multiple lumens for tissue acquisition and removal and related methods of use
AU2009335901B2 (en) * 2008-12-19 2013-09-19 Cook Medical Technologies Llc Clip devices and methods of delivery and deployment
US9101362B1 (en) * 2008-12-31 2015-08-11 Christine L. Zolli Fasteners that bring into apposition sides of wound
US8267869B2 (en) * 2008-12-31 2012-09-18 Manua Kea Technologies Multi-purpose biopsy forceps
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
CL2009000279A1 (en) 2009-02-06 2009-08-14 Biotech Innovations Ltda Remote guidance and traction system for mini-invasive surgery, comprising: at least one surgical and removable endopinza with hooking means and a portion of ferro-magnaetic material, a cylindrical introduction guide, a detachment mechanism, and at least a means of remote traction with magnet.
EP2398548B1 (en) * 2009-02-17 2017-04-19 The Board Of Trustees Of The Leland Closure device
DE102009022271A1 (en) 2009-05-22 2010-11-25 Medi-Globe Gmbh Application device for applying, in particular for the endoscopic application of a medical clip in or on the body of an individual
US8956389B2 (en) 2009-06-22 2015-02-17 W. L. Gore & Associates, Inc. Sealing device and delivery system
US20120029556A1 (en) 2009-06-22 2012-02-02 Masters Steven J Sealing device and delivery system
DE102009036365A1 (en) 2009-08-06 2011-02-10 Norbert Lemke Surgical clip for sealing intracorporal vessel or tissue opening, has jaw supported in longitudinal movable manner relative to connection element and lockable using clamping force along connection element in self-locking manner
US8403837B2 (en) * 2009-08-13 2013-03-26 Covidien Lp Deployable jaws retraction device
US8459524B2 (en) 2009-08-14 2013-06-11 Covidien Lp Tissue fastening system for a medical device
WO2011022246A1 (en) * 2009-08-19 2011-02-24 Boston Scientific Scimed, Inc. Multifunctional core for two-piece hemostasis clip
JP5814243B2 (en) * 2009-09-25 2015-11-17 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Device that brings tissue closer
US8734469B2 (en) * 2009-10-13 2014-05-27 Covidien Lp Suture clip applier
US9186136B2 (en) 2009-12-09 2015-11-17 Covidien Lp Surgical clip applier
US8545486B2 (en) 2009-12-15 2013-10-01 Covidien Lp Surgical clip applier
US8545519B2 (en) 2009-12-22 2013-10-01 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
US10010336B2 (en) 2009-12-22 2018-07-03 Cook Medical Technologies, Inc. Medical devices with detachable pivotable jaws
BR112012018338B8 (en) 2009-12-22 2021-06-22 Cook Medical Technologies Llc medical devices with swivel and detachable claws
US12070224B2 (en) 2009-12-22 2024-08-27 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US8211121B1 (en) 2010-03-06 2012-07-03 Q-Tech Medical Incorporated Methods and apparatus for image-guided extraluminal occlusion using clamping jaws
US9044240B2 (en) * 2010-03-10 2015-06-02 Boston Scientific Scimed, Inc. Hemostasis clip
JP5486983B2 (en) * 2010-03-29 2014-05-07 富士フイルム株式会社 Ligation device
JP5588711B2 (en) 2010-03-30 2014-09-10 富士フイルム株式会社 Ligation device
US8394120B2 (en) * 2010-05-04 2013-03-12 Jacek Krzyzanowski End effector assembly with increased clamping force for a surgical instrument
US20110319710A1 (en) * 2010-06-28 2011-12-29 Molly Phillips-Hungerford Scope protection for endoscopic devices
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
JP5676772B2 (en) 2010-10-11 2015-02-25 クック メディカル テクノロジーズ エルエルシーCook Medical Technologies Llc Medical device with removable and pivotable jaws
AU2011316696B2 (en) 2010-10-11 2015-07-02 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
EP2627263B1 (en) 2010-10-11 2016-12-07 Cook Medical Technologies LLC Medical devices with pivotable jaws
US9011464B2 (en) 2010-11-02 2015-04-21 Covidien Lp Self-centering clip and jaw
US8764774B2 (en) * 2010-11-09 2014-07-01 Cook Medical Technologies Llc Clip system having tether segments for closure
US9072517B2 (en) * 2010-11-15 2015-07-07 Wake Forest University Health Sciences Natural orifice transluminal endoscopic devices for closure of luminal perforations and associated methods
RU2485908C2 (en) * 2010-12-07 2013-06-27 Компания с ограниченной ответственностью Глобитек 2000 Method of creating hemostasis with possibility of blood flow recovery in tubular elastic structures of organism and devices for its realisation
WO2012083041A2 (en) 2010-12-15 2012-06-21 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
DE102012100086A1 (en) * 2011-01-07 2012-08-02 Z-Medical Gmbh & Co. Kg Surgical instrument
CN102579116B (en) * 2011-01-07 2015-12-16 Z-医药有限公司及两合公司 Surgical operating instrument
US9186153B2 (en) 2011-01-31 2015-11-17 Covidien Lp Locking cam driver and jaw assembly for clip applier
WO2012126477A1 (en) * 2011-03-22 2012-09-27 Herlev Hospital Fastening device, related tools and methods
US9775623B2 (en) 2011-04-29 2017-10-03 Covidien Lp Surgical clip applier including clip relief feature
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
JP5427857B2 (en) * 2011-09-15 2014-02-26 富士フイルム株式会社 Clip unit, ligating apparatus using the same, and manufacturing method of clip unit
WO2013067662A1 (en) * 2011-11-11 2013-05-16 Zhu Jian Clamping or ligating device
US9138234B2 (en) * 2011-11-14 2015-09-22 Anrei Medical (Hz) Co., Ltd. Clip apparatus for ligature of living tissue
US20130131697A1 (en) 2011-11-21 2013-05-23 Covidien Lp Surgical clip applier
US9364239B2 (en) 2011-12-19 2016-06-14 Covidien Lp Jaw closure mechanism for a surgical clip applier
US9078645B2 (en) * 2011-12-19 2015-07-14 Edwards Lifesciences Corporation Knotless suture anchoring devices and tools for implants
US9364216B2 (en) 2011-12-29 2016-06-14 Covidien Lp Surgical clip applier with integrated clip counter
JP2013153810A (en) * 2012-01-27 2013-08-15 Terumo Corp Knob treatment device and knob treatment method
US9408610B2 (en) 2012-05-04 2016-08-09 Covidien Lp Surgical clip applier with dissector
US9532787B2 (en) 2012-05-31 2017-01-03 Covidien Lp Endoscopic clip applier
CN102727276B (en) * 2012-07-05 2014-04-23 安瑞医疗器械(杭州)有限公司 Tissue hemostasis clamping device
US9332998B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9332999B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
DE102012110660A1 (en) 2012-11-07 2014-05-22 Aesculap Ag Electrosurgical instrument with clamping pressure control for electrode industries
RU2511265C1 (en) * 2012-11-27 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Орловский государственный аграрный университет" (ФГБОУ ВПО Орел ГАУ) Clamp forceps
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9113892B2 (en) 2013-01-08 2015-08-25 Covidien Lp Surgical clip applier
US9968362B2 (en) 2013-01-08 2018-05-15 Covidien Lp Surgical clip applier
US9750500B2 (en) 2013-01-18 2017-09-05 Covidien Lp Surgical clip applier
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
US9339285B2 (en) 2013-03-12 2016-05-17 Levita Magnetics International Corp. Grasper with magnetically-controlled positioning
WO2014159023A1 (en) 2013-03-14 2014-10-02 Levita Magnetics International Corp. Magnetic control assemblies and systems therefor
US11426176B2 (en) 2013-05-14 2022-08-30 Mubashir H. Khan Cartridge with multi-clip dispensing provisions
US10524786B2 (en) 2013-05-14 2020-01-07 Mubashir H. Khan Spring-closing endoscopic clip where the spring action can also reverse the clip prior anytime before full ejection
US20150374392A1 (en) 2013-05-14 2015-12-31 Mubashir H. Khan Endoscopic snare combined with a clip applier
CA2915510C (en) * 2013-07-10 2017-09-26 Boston Scientific Scimed, Inc. Tissue grasping and wound closing clipping device
CN111991047A (en) * 2013-08-20 2020-11-27 波士顿科学国际有限公司 Braided hemostatic shaft for improving torsional response
US9775624B2 (en) 2013-08-27 2017-10-03 Covidien Lp Surgical clip applier
US11051814B2 (en) * 2013-09-16 2021-07-06 Oregon Health & Science University Bioabsorbable clips and applicator for tissue closure
DE102013110796A1 (en) 2013-09-30 2015-04-02 Z-Medical Gmbh & Co. Kg Surgical instrument
US9987071B2 (en) 2013-12-02 2018-06-05 Covidien Lp Surgical instrument with end-effector assembly including three jaw members
US9987075B2 (en) 2013-12-02 2018-06-05 Covidien Lp Surgical instrument with end-effector assembly including three jaw members
US9987035B2 (en) 2013-12-02 2018-06-05 Covidien Lp Surgical instrument with end-effector assembly including three jaw members and methods of cutting tissue using same
US20150157344A1 (en) * 2013-12-06 2015-06-11 Boston Scientific Scimed, Inc. Medical retrieval devices and related methods of use
WO2015112645A1 (en) 2014-01-21 2015-07-30 Levita Magnetics International Corp. Laparoscopic graspers and systems therefor
EP3116414B9 (en) * 2014-03-13 2023-01-25 LSI Solutions, Inc. Surgical clamp jaw
US20150257757A1 (en) * 2014-03-14 2015-09-17 Boston Scientific Scimed, Inc. Methods and apparatus for clipping tissue
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
JP6572229B2 (en) * 2014-10-24 2019-09-04 株式会社カネカ Endoscopic clip device
BR112017009196B1 (en) 2014-11-03 2021-12-14 Oregon Health & Science University SURGICAL CLIP, SET OF SURGICAL CLIPS FOR ONE SURGICAL CLIP APPLICATOR, AND SURGICAL CLIP APPLICATOR
US10702278B2 (en) 2014-12-02 2020-07-07 Covidien Lp Laparoscopic surgical ligation clip applier
US9931124B2 (en) 2015-01-07 2018-04-03 Covidien Lp Reposable clip applier
US10368876B2 (en) 2015-01-15 2019-08-06 Covidien Lp Endoscopic reposable surgical clip applier
US10292712B2 (en) 2015-01-28 2019-05-21 Covidien Lp Surgical clip applier with integrated cutter
US11123204B2 (en) 2015-02-06 2021-09-21 Boston Scientific Scimed, Inc. Anti-migration stent
US10159491B2 (en) 2015-03-10 2018-12-25 Covidien Lp Endoscopic reposable surgical clip applier
FR3034304A1 (en) * 2015-04-01 2016-10-07 Fresenius Medical Care Deutschland Gmbh HEMOSTATIC BRACELET
EP3967244A1 (en) 2015-04-13 2022-03-16 Levita Magnetics International Corp. Retractor devices
ES2895900T3 (en) 2015-04-13 2022-02-23 Levita Magnetics Int Corp Magnetically controlled location handle
US10362965B2 (en) * 2015-04-22 2019-07-30 Acclarent, Inc. System and method to map structures of nasal cavity
CN107371362B (en) * 2015-05-19 2020-05-05 奥林巴斯株式会社 Clamp device
WO2016190190A1 (en) * 2015-05-27 2016-12-01 オリンパス株式会社 Device for endoscope
WO2017017587A2 (en) 2015-07-24 2017-02-02 Cliptip Medical Ltd Thickness-adjustable hemostatic clips, clip appliers, and applications thereof
AU2015413639A1 (en) 2015-11-03 2018-04-05 Covidien Lp Endoscopic surgical clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10390831B2 (en) 2015-11-10 2019-08-27 Covidien Lp Endoscopic reposable surgical clip applier
JP6678741B2 (en) 2015-11-10 2020-04-08 コヴィディエン リミテッド パートナーシップ Endoscope disposable surgical clip applier
EP3389534B1 (en) 2016-01-11 2021-03-10 Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) Forceps jaw mechanism
EP3402417A4 (en) 2016-01-11 2019-12-04 Covidien LP Endoscopic reposable surgical clip applier
AU2016388454A1 (en) 2016-01-18 2018-07-19 Covidien Lp Endoscopic surgical clip applier
CA2958160A1 (en) 2016-02-24 2017-08-24 Covidien Lp Endoscopic reposable surgical clip applier
US10537328B2 (en) * 2016-05-09 2020-01-21 Boston Scientific Scimed, Inc. Closure device with fixed jaw hook
US10863998B2 (en) 2016-06-02 2020-12-15 Merit Medical Systems, Inc. Medical grasping device
CN107625566A (en) * 2016-07-14 2018-01-26 科瑞蒂有限公司 The method and apparatus for treating PUD D
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
CN106236182B (en) * 2016-08-15 2018-11-02 金梦 A kind of hemostatic clamp clamping device
CN109640841B (en) * 2016-08-22 2022-05-31 波士顿科学有限公司 Hemostatic reloadable gripping device with cannula engagement
AU2016420481A1 (en) 2016-08-25 2019-01-17 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10610236B2 (en) 2016-11-01 2020-04-07 Covidien Lp Endoscopic reposable surgical clip applier
US10492795B2 (en) 2016-11-01 2019-12-03 Covidien Lp Endoscopic surgical clip applier
US10426489B2 (en) 2016-11-01 2019-10-01 Covidien Lp Endoscopic reposable surgical clip applier
US10610237B2 (en) * 2016-11-03 2020-04-07 Boston Scientific Scimed, Inc. User actuated reloadable clip cartridge
US10624642B2 (en) 2016-11-22 2020-04-21 Boston Scientific Limited Hemostasis reloadable clip release mechanism
US10709455B2 (en) 2017-02-02 2020-07-14 Covidien Lp Endoscopic surgical clip applier
EP3576643B1 (en) 2017-02-06 2022-04-06 Covidien LP Surgical clip applier with user feedback feature
US10758244B2 (en) 2017-02-06 2020-09-01 Covidien Lp Endoscopic surgical clip applier
US10660725B2 (en) 2017-02-14 2020-05-26 Covidien Lp Endoscopic surgical clip applier including counter assembly
US11497507B2 (en) 2017-02-19 2022-11-15 Orpheus Ventures, Llc Systems and methods for closing portions of body tissue
US10603038B2 (en) 2017-02-22 2020-03-31 Covidien Lp Surgical clip applier including inserts for jaw assembly
US10548602B2 (en) 2017-02-23 2020-02-04 Covidien Lp Endoscopic surgical clip applier
US11583291B2 (en) 2017-02-23 2023-02-21 Covidien Lp Endoscopic surgical clip applier
KR20180105783A (en) * 2017-03-16 2018-10-01 한준모 A Clip Jaw Unit Having a Structure of Preventing a Clip From Slipping and Deforming and An Applier Having the Same
US11020137B2 (en) 2017-03-20 2021-06-01 Levita Magnetics International Corp. Directable traction systems and methods
JP7026127B2 (en) 2017-03-21 2022-02-25 テレフレックス メディカル インコーポレイテッド Clip applier with stabilizer
WO2018175610A1 (en) 2017-03-21 2018-09-27 Teleflex Medical Incorporated Surgical clip and clip applier
WO2018175650A1 (en) 2017-03-21 2018-09-27 Teleflex Medical Incorporated Flexible stabilizing member for a clip applier
EP3600084B1 (en) 2017-03-21 2024-10-23 Teleflex Medical Incorporated Clip applier with stabilizing member
JP6876821B2 (en) 2017-03-21 2021-05-26 テレフレックス メディカル インコーポレイテッド Clip applier with replaceable tip
US12023041B2 (en) 2017-03-21 2024-07-02 Teleflex Medical Incorporated Clip applier
EP3603536A4 (en) * 2017-05-04 2020-07-29 Hangzhou AGS MedTech Co., Ltd. End portion execution instrument, end portion execution device, delivery device, and assembly box
US10675043B2 (en) 2017-05-04 2020-06-09 Covidien Lp Reposable multi-fire surgical clip applier
US10722235B2 (en) 2017-05-11 2020-07-28 Covidien Lp Spring-release surgical clip
WO2018227592A1 (en) * 2017-06-16 2018-12-20 杭州安杰思医学科技有限公司 Ligation device, unlocking method and ligation instrument
US10639032B2 (en) 2017-06-30 2020-05-05 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10660723B2 (en) 2017-06-30 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10675112B2 (en) 2017-08-07 2020-06-09 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10653429B2 (en) 2017-09-13 2020-05-19 Covidien Lp Endoscopic surgical clip applier
US10835260B2 (en) 2017-09-13 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10758245B2 (en) 2017-09-13 2020-09-01 Covidien Lp Clip counting mechanism for surgical clip applier
US10905434B2 (en) * 2017-09-28 2021-02-02 Boston Scientific Scimed, Inc. Reloadable and rotatable clip
CA3072102C (en) * 2017-10-02 2022-01-11 Boston Scientific Scimed, Inc. Devices and methods for tissue retraction
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US10828036B2 (en) 2017-11-03 2020-11-10 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10932791B2 (en) 2017-11-03 2021-03-02 Covidien Lp Reposable multi-fire surgical clip applier
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
WO2019108387A1 (en) * 2017-11-28 2019-06-06 Boston Scientificscimed, Inc. Self-aligning pullwire for reloadable hemostasis clipping device
US10722236B2 (en) 2017-12-12 2020-07-28 Covidien Lp Endoscopic reposable surgical clip applier
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US10959737B2 (en) 2017-12-13 2021-03-30 Covidien Lp Reposable multi-fire surgical clip applier
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
WO2019135958A2 (en) 2018-01-05 2019-07-11 Oleg Shikhman Surgical clip and deployment system
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
CN109044473B (en) * 2018-06-14 2020-06-02 宁波胜杰康生物科技有限公司 Detachable endoscopic anastomosis clamp
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11246601B2 (en) 2018-08-13 2022-02-15 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11344316B2 (en) 2018-08-13 2022-05-31 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11219463B2 (en) 2018-08-13 2022-01-11 Covidien Lp Bilateral spring for surgical instruments and surgical instruments including the same
CN108969050B (en) * 2018-09-06 2023-12-08 诸暨市鹏天医疗器械有限公司 Big wound face anastomosis clamp
AU2019347922B2 (en) 2018-09-24 2021-07-15 Boston Scientific Scimed, Inc. Aggressive featured clips with improved tissue retention
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
JP7209812B2 (en) * 2018-10-31 2023-01-20 ボストン サイエンティフィック サイムド,インコーポレイテッド CLIP DEVICE, SYSTEM, AND METHOD FOR ENGAGING TISSUE
CN109077774A (en) * 2018-10-31 2018-12-25 江苏安特尔医疗科技有限公司 Multifunctional hemostatic folder
CN112955082B (en) * 2018-11-09 2024-04-23 奥林巴斯株式会社 Endoscope clamp
US11497526B2 (en) * 2018-11-13 2022-11-15 T & J Enterprises, Llc Cervical tenaculum device
WO2020121394A1 (en) * 2018-12-11 2020-06-18 オリンパス株式会社 Medical device
WO2020136906A1 (en) * 2018-12-28 2020-07-02 オリンパス株式会社 Ligation device and engaging method
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
CN109805977B (en) * 2019-03-21 2024-03-05 南微医学科技股份有限公司 Medical hemostatic clamp
JP3237358U (en) 2019-04-17 2022-05-11 マイクロ-テック (ナンジン) カンパニー リミテッド Clamping devices and medical devices to stop or close tissue
AU2020284207B2 (en) * 2019-05-28 2022-12-22 Boston Scientific Scimed, Inc. Hemostasis clip deployment
CN113924051A (en) * 2019-06-18 2022-01-11 波士顿科学国际有限公司 Hemostatic clamp system
CN112137672A (en) * 2019-06-28 2020-12-29 南微医学科技股份有限公司 Tissue clamping device for endoscopic use
AU2020316063B2 (en) * 2019-07-24 2022-12-15 Boston Scientific Scimed, Inc. Hemostasis clip two stage deployment mechanism to eliminate shed parts
CA3134682A1 (en) * 2019-07-29 2021-02-04 Boston Scientific Scimed, Inc. Tissue clipping device
CN110811739A (en) * 2019-12-04 2020-02-21 王建东 On-site emergency rapid hemostasis device and use method thereof
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface
US12114866B2 (en) 2020-03-26 2024-10-15 Covidien Lp Interoperative clip loading device
US20210330327A1 (en) * 2020-04-23 2021-10-28 Boston Scientific Scimed, Inc. System, device and method for treating tissue
US11812966B2 (en) 2020-04-24 2023-11-14 NeuraMedica Inc. Clips, appliers, and cartridges
EP4146092A4 (en) * 2020-05-08 2024-08-21 Cedars Sinai Medical Center Systems and methods for hemoclip deployment
EP3984471A1 (en) 2020-10-16 2022-04-20 Olympus Medical Systems Corp. Bendable clip device
CN112258955B (en) * 2020-10-28 2023-06-27 南京迪安麒智科技有限公司 Teaching method of foot inflammation treatment auxiliary device
FR3117327B1 (en) * 2020-12-13 2022-10-28 Abdelkrim Kada Device for hemostasis or tissue closure.
US11937828B2 (en) * 2021-01-26 2024-03-26 Olympus Medical Systems Corp. Endoscope treatment device
US11944321B2 (en) * 2021-01-26 2024-04-02 Olympus Medical Systems Corp. Endoscopic treatment device
US12070227B2 (en) * 2021-04-07 2024-08-27 Boston Scientific Scimed, Inc. Medical device including a hemostatis clip
KR20240004852A (en) * 2021-05-04 2024-01-11 보스톤 싸이엔티픽 싸이메드 인코포레이티드 Relocatable tissue-interlocking members and associated systems and methods
CN113456147A (en) * 2021-05-24 2021-10-01 邵志鹏 Hemostasis integrated tool structure capable of adjusting clamping force for operation
WO2023028250A1 (en) * 2021-08-25 2023-03-02 GastroLogic LLC Endoscopic clip apparatus and methods
DE212022000341U1 (en) 2022-02-25 2024-08-07 Micro-Tech (Nanjing) Co., Ltd. Medical device for stopping bleeding in a blood vessel
DE212022000343U1 (en) 2022-02-25 2024-08-07 Micro-Tech (Nanjing) Co., Ltd. Medical device for stopping bleeding in a blood vessel
CN114376770B (en) * 2022-03-24 2022-08-02 上海纽脉医疗科技股份有限公司 Delivery system for implanting an artificial prosthesis in a patient
US11883933B1 (en) 2022-08-24 2024-01-30 Ifixit Screw-driven spreading tool with a disengage
CN219271028U (en) * 2022-12-13 2023-06-30 湖南唯德康医疗科技有限公司 Soft tissue closing clamp
CN116269603A (en) * 2023-01-10 2023-06-23 湖南唯德康医疗科技有限公司 Closing clip for endoscope
WO2024162800A1 (en) * 2023-02-02 2024-08-08 고려대학교 산학협력단 Endoscope clip using shape memory alloy

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1682994A (en) * 1927-12-16 1928-09-04 Charles L Simon Rope holder
US3326217A (en) * 1964-04-27 1967-06-20 Kerr Harry Sydney Hemostatic clamp
US3518993A (en) * 1967-05-01 1970-07-07 American Hospital Supply Corp Surgical clip applicator
US3882854A (en) * 1973-08-23 1975-05-13 Research Corp Surgical clip and applicator
JPS5320957Y2 (en) 1973-11-14 1978-06-01
JPS552966Y2 (en) 1974-02-08 1980-01-24
JPS5551444Y2 (en) 1977-02-02 1980-12-01
US5133727A (en) 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
AR218795A1 (en) * 1979-12-11 1980-06-30 Derechinsky V CLIP-HOLDING INSTRUMENT FOR THE "CLIPPING" OF BLOOD GLASSES
US4383350A (en) * 1981-08-19 1983-05-17 Coty Raymond J A Releasable theft protection device
JPS60103946A (en) 1983-11-10 1985-06-08 オリンパス光学工業株式会社 Clip apparatus of body tissue
US4733664A (en) * 1983-12-01 1988-03-29 University Of New Mexico Surgical clip, applier, and method
US4706668A (en) * 1985-09-16 1987-11-17 B & B Tools Aneurysm clip pliers
US4681107A (en) * 1985-12-31 1987-07-21 Kees Surgical Specialty Co. Device for holding an aneurysm clip
JPS62170010U (en) 1986-04-18 1987-10-28
US4791707A (en) * 1986-08-26 1988-12-20 Tucker Wilson H Clip applicator, spreadable clips and method for applying the clips
JPS63267345A (en) 1987-04-24 1988-11-04 Olympus Optical Co Ltd Clip device of living tissue
US4869268A (en) * 1987-05-14 1989-09-26 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
JPS63288147A (en) 1987-05-21 1988-11-25 Olympus Optical Co Ltd Clip device
JPH026011A (en) 1988-06-24 1990-01-10 Kobe Steel Ltd Die for drawing
JPH0426091Y2 (en) * 1988-06-24 1992-06-23
GB2226245A (en) 1988-11-18 1990-06-27 Alan Crockard Endoscope, remote actuator and aneurysm clip applicator.
US5797939A (en) * 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic scissors with longitudinal operating channel
US5026379A (en) * 1989-12-05 1991-06-25 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
DE3941108C1 (en) 1989-12-13 1991-06-27 Richard Wolf Gmbh, 7134 Knittlingen, De
US5049153A (en) 1989-12-26 1991-09-17 Nakao Naomi L Endoscopic stapling device and method
US5015249A (en) 1989-12-26 1991-05-14 Nakao Naomi L Endoscopic stapling device and method
US5222961A (en) 1989-12-26 1993-06-29 Naomi Nakao Endoscopic stapling device and related staple
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5147357A (en) * 1991-03-18 1992-09-15 Rose Anthony T Medical instrument
US5282812A (en) * 1991-07-10 1994-02-01 Suarez Jr Luis Clamp for use in vascular surgery
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5242456A (en) 1991-11-21 1993-09-07 Kensey Nash Corporation Apparatus and methods for clamping tissue and reflecting the same
JPH05208020A (en) 1992-01-31 1993-08-20 Olympus Optical Co Ltd Clip device
US5542432A (en) 1992-02-18 1996-08-06 Symbiosis Corporation Endoscopic multiple sample bioptome
US5645075A (en) 1992-02-18 1997-07-08 Symbiosis Corporation Jaw assembly for an endoscopic instrument
CA2090980C (en) * 1992-03-06 2004-11-30 David Stefanchik Ligating clip applier
US5304183A (en) * 1992-03-23 1994-04-19 Laparomed Corporation Tethered clamp retractor
US5318589A (en) * 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5275615A (en) * 1992-09-11 1994-01-04 Anthony Rose Medical instrument having gripping jaws
US5350397A (en) * 1992-11-13 1994-09-27 Target Therapeutics, Inc. Axially detachable embolic coil assembly
US5868761A (en) * 1992-10-09 1999-02-09 United States Surgical Corporation Surgical clip applier
US5569274A (en) * 1993-02-22 1996-10-29 Heartport, Inc. Endoscopic vascular clamping system and method
US5624453A (en) 1993-02-23 1997-04-29 Wilson-Cook Medical, Inc. Endoscopic ligating instrument
US5320630A (en) 1993-02-23 1994-06-14 Munir Ahmed Endoscopic ligating instrument for applying elastic bands
CA2120828C (en) 1993-04-16 1999-11-02 Paul J. Phillips Surgical hemostatic clip
DE4319829C1 (en) * 1993-06-16 1994-08-25 Lerch Karl Dieter Set for treating vascular deformities
US5373854A (en) 1993-07-15 1994-12-20 Kolozsi; William Z. Biopsy apparatus for use in endoscopy
US5496333A (en) 1993-10-20 1996-03-05 Applied Medical Resources Corporation Laparoscopic surgical clamp
US5423857A (en) 1993-11-02 1995-06-13 Ethicon, Inc. Three piece surgical staple
TW288967B (en) 1994-04-26 1996-10-21 Top Kk
US5725546A (en) 1994-06-24 1998-03-10 Target Therapeutics, Inc. Detachable microcoil delivery catheter
EP0781114B1 (en) 1994-09-16 2005-05-25 Ethicon Endo-Surgery, Inc. Devices for defining and marking tissue
WO1996014020A1 (en) 1994-11-02 1996-05-17 Olympus Optical Co. Ltd. Endoscope operative instrument
US5897565A (en) * 1995-03-06 1999-04-27 Vance Products Incorporated Releasable, surgical clamp
DE29505619U1 (en) 1995-03-31 1995-06-01 Maslanka, Harald, 78532 Tuttlingen Surgical instrument, in particular for an endoscope
US5618307A (en) * 1995-04-03 1997-04-08 Heartport, Inc. Clamp assembly and method of use
US5626607A (en) 1995-04-03 1997-05-06 Heartport, Inc. Clamp assembly and method of use
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
US5662683A (en) 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
US5634932A (en) * 1995-10-10 1997-06-03 Industrial & Scientific Designs, Ltd. Cantilever aneurysm clip system
US5700270A (en) * 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
US5582615A (en) 1995-10-30 1996-12-10 Pilling Weck, Incorporated Handle for surgical clip applicator systems
US5656892A (en) * 1995-11-17 1997-08-12 Micron Display Technology, Inc. Field emission display having emitter control with current sensing feedback
JPH09192137A (en) 1996-01-16 1997-07-29 Takahiro Eguchi Attachable and detachable cerebroaneurysm clip insertable into neuroendoscope
JP3776529B2 (en) * 1996-02-29 2006-05-17 オリンパス株式会社 Clip device
EP0893970B1 (en) * 1996-04-19 2006-06-21 Applied Medical Resources Corporation Grasping clip applier
US5782747A (en) 1996-04-22 1998-07-21 Zimmon Science Corporation Spring based multi-purpose medical instrument
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
US5776075A (en) 1996-08-09 1998-07-07 Symbiosis Corporation Endoscopic bioptome jaw assembly having three or more jaws and an endoscopic instrument incorporating same
US5902310A (en) * 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
US5792149A (en) * 1996-10-03 1998-08-11 United States Surgical Corporation Clamp applicator
US5947999A (en) * 1996-12-03 1999-09-07 Groiso; Jorge A. Surgical clip and method
US5776189A (en) * 1997-03-05 1998-07-07 Khalid; Naqeeb Cardiac valvular support prosthesis
DE29710334U1 (en) * 1997-06-13 1997-08-14 Geister Medizintechnik GmbH, 78532 Tuttlingen Bulldog clamp
US6001110A (en) 1997-06-20 1999-12-14 Boston Scientific Corporation Hemostatic clips
DE19728114C1 (en) * 1997-07-02 1999-02-04 Aesculap Ag & Co Kg Surgical tubular shaft instrument
US5867877A (en) * 1997-08-15 1999-02-09 Turtle Snaps, Inc. Self-releasing coupler
US5928251A (en) * 1997-09-18 1999-07-27 United States Surgical Corporation Occlusion clamp and occlusion clamp applicator
US6139563A (en) 1997-09-25 2000-10-31 Allegiance Corporation Surgical device with malleable shaft
GB9722203D0 (en) 1997-10-21 1997-12-17 Univ London Surgical clip
US5989268A (en) 1997-10-28 1999-11-23 Boston Scientific Corporation Endoscopic hemostatic clipping device
US5967997A (en) 1998-04-30 1999-10-19 Symbiosis Corporation Endoscopic surgical instrument with deflectable and rotatable distal end
DE29811510U1 (en) 1998-06-27 1998-10-08 Tenckhoff, Dirk, 36100 Petersberg Device for handling clips, in particular for microsurgery
US6193732B1 (en) * 1999-01-08 2001-02-27 Cardiothoracic System Surgical clips and apparatus and method for clip placement
JP2000287971A (en) 1999-04-08 2000-10-17 Sekisui Chem Co Ltd Device and method for diagnosing osteoporosis
JP2000287981A (en) * 1999-04-12 2000-10-17 Masahide Omae Indwelling clip in cavity in living body
US6911032B2 (en) * 1999-11-18 2005-06-28 Scimed Life Systems, Inc. Apparatus and method for compressing body tissue
US6197042B1 (en) * 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6461364B1 (en) * 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
CN1302754C (en) * 2000-02-04 2007-03-07 康曼德公司 Surgical clip applier
TW428439U (en) * 2000-03-15 2001-04-01 Taiwan Ind Fastener Corp Press buckle
US6767356B2 (en) * 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
JP2004511275A (en) * 2000-09-01 2004-04-15 アンジオリンク・コーポレイション Wound site management and wound closure devices
JP4472217B2 (en) 2000-10-16 2010-06-02 オリンパス株式会社 Biological tissue clip device
US6569085B2 (en) * 2001-08-16 2003-05-27 Syntheon, Llc Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
JP4097924B2 (en) 2001-02-05 2008-06-11 オリンパス株式会社 Biological tissue clip device
JP4059656B2 (en) 2001-03-07 2008-03-12 オリンパス株式会社 Biological tissue clip device
JP4827304B2 (en) 2001-03-14 2011-11-30 オリンパス株式会社 Biological tissue clip device
US6808491B2 (en) * 2001-05-21 2004-10-26 Syntheon, Llc Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments
US6991634B2 (en) * 2001-05-23 2006-01-31 Pentax Corporation Clip device of endoscope
WO2003020179A1 (en) * 2001-08-31 2003-03-13 Mitral Interventions Apparatus for valve repair
US7094245B2 (en) * 2001-10-05 2006-08-22 Scimed Life Systems, Inc. Device and method for through the scope endoscopic hemostatic clipping
US8231639B2 (en) * 2001-11-28 2012-07-31 Aptus Endosystems, Inc. Systems and methods for attaching a prosthesis within a body lumen or hollow organ
US20030120341A1 (en) * 2001-12-21 2003-06-26 Hani Shennib Devices and methods of repairing cardiac valves
WO2005032381A2 (en) * 2003-09-30 2005-04-14 Scimed Life Systems, Inc. Through the scope tension member release clip
JP4758173B2 (en) * 2004-12-24 2011-08-24 オリンパス株式会社 Ligation device
US7713284B2 (en) * 2006-09-13 2010-05-11 Crofford Theodore W Self-opening skin staple
EP2101653B1 (en) 2006-12-05 2016-02-17 Cook Medical Technologies LLC Combination therapy hemostatic clip
JP5006753B2 (en) * 2007-10-17 2012-08-22 Hoya株式会社 Endoscopic clip device
JP5519656B2 (en) * 2008-06-19 2014-06-11 ボストン サイエンティフィック サイムド, インコーポレイテッド Hemostasis clipping device and method
EP2555691A1 (en) * 2010-04-08 2013-02-13 Cook Medical Technologies LLC Marker clip device
US8764774B2 (en) * 2010-11-09 2014-07-01 Cook Medical Technologies Llc Clip system having tether segments for closure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03030746A1 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907458B1 (en) 2001-10-05 2016-07-13 Boston Scientific Limited Medical device for causing hemostasis
EP3023061B1 (en) 2001-10-05 2017-11-01 Boston Scientific Limited Endoscopic device for causing hemostasis
EP3725244A1 (en) 2019-04-17 2020-10-21 Micro-Tech (Nanjing) Co., Ltd. Medical device for causing the hemostasis of a blood vessel
EP3725242A1 (en) 2019-04-17 2020-10-21 Micro-Tech (Nanjing) Co., Ltd. Medical device for causing the hemostasis of a blood vessel
DE212020000593U1 (en) 2019-04-17 2021-12-14 Micro-Tech (Nanjing) Co., Ltd. Medical device for tissue hemostasis or tissue closure
US12070226B2 (en) 2019-04-17 2024-08-27 Micro-Tech (Nanjing) Co., Ltd. Medical device for tissue hemostasis or closure
EP3763298A1 (en) 2019-07-10 2021-01-13 Micro-Tech (Nanjing) Co., Ltd. Medical device for causing the hemostasis of a blood vessel
CN113784671A (en) * 2019-07-10 2021-12-10 南微医学科技股份有限公司 Medical device for tissue hemostasis or closure
CN113784671B (en) * 2019-07-10 2024-01-26 南微医学科技股份有限公司 Medical device for hemostasis or closure of tissue
US12070225B2 (en) 2019-07-10 2024-08-27 Micro-Tech (Nanjing) Co., Ltd. Medical instrument for tissue hemostasis or closure

Also Published As

Publication number Publication date
US20130231686A1 (en) 2013-09-05
US10952743B2 (en) 2021-03-23
US20050182426A1 (en) 2005-08-18
EP3391835A1 (en) 2018-10-24
EP2907459B1 (en) 2016-09-14
EP1328199B1 (en) 2018-06-06
US9271731B2 (en) 2016-03-01
JP4428627B2 (en) 2010-03-10
US10172623B2 (en) 2019-01-08
US20190090883A1 (en) 2019-03-28
US20130231685A1 (en) 2013-09-05
US8444660B2 (en) 2013-05-21
EP2907458B2 (en) 2021-01-27
US7879052B2 (en) 2011-02-01
US20110112551A1 (en) 2011-05-12
US20130006273A1 (en) 2013-01-03
EP3023061A1 (en) 2016-05-25
EP3023061B2 (en) 2024-02-07
US8685048B2 (en) 2014-04-01
CA2435870C (en) 2010-02-23
US7094245B2 (en) 2006-08-22
US8709027B2 (en) 2014-04-29
US20160128698A1 (en) 2016-05-12
US20140249551A1 (en) 2014-09-04
US9332988B2 (en) 2016-05-10
CA2435870A1 (en) 2003-04-17
EP2907459B2 (en) 2021-12-22
US10143479B2 (en) 2018-12-04
US10172624B2 (en) 2019-01-08
US20030069592A1 (en) 2003-04-10
EP3023061B1 (en) 2017-11-01
US20140257342A1 (en) 2014-09-11
WO2003030746A1 (en) 2003-04-17
US20160213378A1 (en) 2016-07-28
AU2002341757A1 (en) 2003-04-22
US20160143644A1 (en) 2016-05-26
US20190059905A1 (en) 2019-02-28
AU2002341757B2 (en) 2008-11-06
US20190083099A1 (en) 2019-03-21
EP2907458B1 (en) 2016-07-13
JP2005505337A (en) 2005-02-24
EP2907458A1 (en) 2015-08-19
EP2907459A1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US10952743B2 (en) Device and method for through the scope endoscopic hemostatic clipping
US10433850B2 (en) Endoscopic ligation
EP2291127A2 (en) Endoscopic compression clip and system and method for use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030507

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20080820

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOSTON SCIENTIFIC LIMITED

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20180412

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ADAMS, MARK L.

Inventor name: SULLIVAN, ROY H., III

Inventor name: GRANT, JUSTIN

Inventor name: TURTURRO, VINCENT

Inventor name: DURGIN, RUSSELL F.

Inventor name: MAY, NORMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60249465

Country of ref document: DE

Owner name: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED, IE

Free format text: FORMER OWNER: BOSTON SCIENTIFIC LTD. THE CORPORATE CENTER, ST. MICHAEL, BB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IE NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60249465

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 60249465

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: M T W-ENDOSKOPIE W. HAAG KG

Effective date: 20190306

Opponent name: MICRO-TECH EUROPE GMBH

Effective date: 20190306

Opponent name: COOK MEDICAL TECHNOLOGIES LLC

Effective date: 20190306

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60249465

Country of ref document: DE

Owner name: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED, IE

Free format text: FORMER OWNER: BOSTON SCIENTIFIC LIMITED, HAMILTON, BM

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210915

Year of fee payment: 20

Ref country code: IE

Payment date: 20210909

Year of fee payment: 20

Ref country code: FR

Payment date: 20210812

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210811

Year of fee payment: 20

Ref country code: DE

Payment date: 20210810

Year of fee payment: 20

Ref country code: BE

Payment date: 20210817

Year of fee payment: 20

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60249465

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20220919

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20220920

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220919

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220919

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 60249465

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220920

27O Opposition rejected

Effective date: 20230102

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529