EP1326709A1 - Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide - Google Patents

Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide

Info

Publication number
EP1326709A1
EP1326709A1 EP01969806A EP01969806A EP1326709A1 EP 1326709 A1 EP1326709 A1 EP 1326709A1 EP 01969806 A EP01969806 A EP 01969806A EP 01969806 A EP01969806 A EP 01969806A EP 1326709 A1 EP1326709 A1 EP 1326709A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
carrier
platinum metal
metal
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01969806A
Other languages
German (de)
French (fr)
Inventor
Martin Fischer
Thomas Butz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1326709A1 publication Critical patent/EP1326709A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/172Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with the obtention of a fully saturated alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/06Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation
    • C07C37/07Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation with simultaneous reduction of C=O group in that ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the present invention relates to a process for the preparation of catalysts by electroless deposition of at least one platinum metal on a non-porous non-metallic support, the catalysts obtainable by this process, the uses
  • Catalysts which contain platinum metals as catalytically active substances, are used in a variety of forms and are of great technical importance, e.g. B. in the reduction or hydrogenation of organic compounds and in catalytic cleaning
  • catalytically active metals are usually applied to such porous supports by impregnating or impregnating the supports with solutions of salts or organometallic compounds.
  • EP-A-0 875 235 describes a process for producing 35 supported noble metal catalysts on porous oxidic supports by electroless deposition of noble metals from aqueous solutions with reducing agents and in the presence of complexing agents.
  • DE-A-44 12 463 describes the use of a palladium colloid solution containing at least one reducing agent and at least one protective colloid and additionally at least one noble metal or a noble metal compound for pretreating electrically non-conductive substrate surfaces before they are metallized with a metallizing solution.
  • the deposition of at least one platinum metal on a non-porous non-metallic support is not described. This document also contains no teaching on the production of catalysts.
  • No. 5,082,647 describes a process for the direct synthesis of hydrogen peroxide, a catalyst being used which comprises at least one metal of subgroup VIII on a hydrophobic support.
  • Styrene-divinylbenzene copolymers, homo- and copolymers of ethylene and propylene, hydrophobized silicon dioxide, polytetrafluoroethylene, fluorinated carbon and carbon which have been hydrophobized by treatment with a silane or with fluorine are mentioned as hydrophobic carrier materials.
  • the hydrophobic carrier has a surface area of at least 50 m 2 / g.
  • WO-A-99/32398 describes a process for the direct synthesis of hydrogen peroxide, wherein catalysts on supports with small BET surface areas of preferably less than 1 m 2 per ml reactor volume are also to be used.
  • Non-porous non-metals such as glass, quartz and organic polymers are proposed as carrier materials.
  • EP-A-0 878 235 US 5,338,531 and to JR Kosak "A new novel fixed bed catalyst for the direct combination of H 2 and 0 2 to H 2 0 2 ", Chem. Ind. (Dekker), 1995, volume 62, Catalysis of Organic Reactions.
  • the present invention has for its object to provide a method for producing improved non-metal-supported platinum metal catalysts.
  • the aim here is to ensure that the expensive platinum metal is deposited as completely as possible and / or that the noble metal adheres well to the non-metal carrier.
  • the ca Talysators preferably have a high catalytic activity and selectivity in hydrogenations, in particular in the direct synthesis of H 2 0 2 from hydrogen and oxygen.
  • the catalysts should preferably be distinguished by improved service lives.
  • the object was achieved by providing a process for the preparation of catalysts which comprise at least one platinum metal on a non-porous non-metallic support, wherein the support is first activated and then at least one platinum metal is electrolessly deposited on the support thus pretreated.
  • an aqueous medium comprising at least one compound or a complex of a platinum metal and at least one reducing agent is brought into contact with the carrier.
  • the catalysts produced according to the invention have excellent catalyst properties.
  • essentially quantitative deposition of the platinum metal from the solution can be achieved.
  • good adhesion of the platinum metals is also achieved on the non-porous non-metallic supports used.
  • the catalytic coatings produced according to the invention have even with strong mechanical stress, such as z. B. occurs in the hydrogen peroxide synthesis, high abrasion resistance. Even after prolonged operation, there is usually no mechanical detachment.
  • the present invention relates to a process for producing a catalyst which comprises at least one platinum metal on a non-porous non-metallic support, wherein
  • step b) electrolessly depositing at least one platinum metal on the carrier treated according to step b), an aqueous medium comprising at least one compound or a complex of a platinum metal and at least one reducing agent being brought into contact with the carrier, and
  • a non-porous support is used to produce the catalyst.
  • a non-porous carrier is understood to mean a carrier with a pore volume determined by mercury porosimetry (Hg porosimetry) of at most 1.0 ml / g, preferably at most 0.1 ml / g and particularly preferably at most 0.05 ml / g.
  • the proportion of the pore volume in the total volume of the carrier workpiece is preferably at most 2%, preferably at most 0.5%.
  • the supports used according to the invention preferably have a BET surface area of at most 5 m 2 / g, in particular at most 0.2 m 2 / g.
  • the non-metallic material used as the carrier is preferably selected from mineral materials, plastics and mixtures and combinations thereof.
  • mineral material encompasses very generally non-metallic inorganic materials, such as natural and synthetic minerals, glasses, ceramics etc.
  • a glass is preferably used as the mineral material. Glasses made of molten silicon dioxide or molten quartz and glasses based on alkali metal, alkaline earth metal, borosilicate, aluminosilicate and lead silicate are preferred.
  • Preferred mineral carrier materials are also borate, phosphate, germanate,
  • Chalcogenide and halide glasses such as. B. from beryllium fluoride.
  • the mineral material used as the carrier is preferably also selected from ceramic materials.
  • Suitable ceramic materials can be produced from metal oxides, borides, nitrides and / or carbides.
  • the ceramic materials used according to the invention can be glazed or unglazed, crystalline or partially crystalline.
  • ceramics made from base materials are preferably used, which are selected from aluminum oxide, silicon carbide, silicon nitride, zirconium dioxide and mixtures thereof. Ceramics containing cations, such as the z. B. in chelate, steatite, cordierite, anorthite, mullite or pollucite is the case. Ceramic composite materials are also preferred.
  • a plastic carrier is used for the method according to the invention.
  • the carriers used according to the invention preferably comprise at least one natural or synthetic polymeric material. Examples of such materials are:
  • Polymers of mono- and diolefins for example polypropylene, polyisobutylene, polybutene-1, poly-4-methyl-pentene-1, polyisoprene or polybutadiene, and polymers of cycloolefins, such as, for. B. of cyclopentene or norbornene; also polyethylene (which may optionally be crosslinked), e.g. B. High density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultra high molecular weight polyethylene (HDPE-UHMW), medium density polyethylene
  • HDPE High density polyethylene
  • HDPE-HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultra high molecular weight polyethylene
  • MDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE branched low density polyethylene
  • Copolymers of mono- and diolefins with one another or with other vinyl monomers such as. B. ethylene-propylene copolymers, and their mixtures with other polymers, such as. B. polyamides.
  • Polyvinyl aromatics such as polystyrene, poly- (p-methylstyrene), poly- ( ⁇ -methylstyrene).
  • styrene-butadiene-styrene styrene-butadiene-styrene
  • styrene-isoprene-styrene styrene-ethylene / butylene-styrene or styrene-ethylene / propylene-styrene.
  • graft copolymers of polyvinylaromatics such as styrene or ⁇ -methylstyrene, such as.
  • Halogen-containing polymers such as. B. polychloroprene, chlorinated rubber, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or chlorosulfonated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, in particular polymers of halogen-containing vinyl compounds, such as , B.
  • polyvinyl chloride polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride; and their copolymers, such as vinyl chloride-vinylidene chloride, vinyl chloride-vinyl acetate or vinylidene chloride-vinyl acetate.
  • Polymers which are derived from ⁇ , ⁇ -unsaturated acids and their derivatives such as polyacrylates and polymethacrylates, impact-modified polymethyl methacrylates, polyacrylamides and polyacrylonitriles with butyl acrylate.
  • copolymers of the monomers mentioned under 8 with each other or with other unsaturated monomers such as.
  • Polyamides and copolyamides from diamines and dicarboxylic acids to and / or from aminocarboxylic acids or the corresponding LAECs Amen “derive”, “such as” polyamide “4", “polyamide '6, ⁇ amide PöTy- 6/6, 6 / 10, 6/9, 6/12, 4/6, 12/12, polyamide 11, polyamide 12, aromatic polyamides, for example starting from p-phenylenediamine and adipic acid, polyamides made from hexamethylene diamine in and Iso- and / or terephthalic acid and optionally an elastomer as modifier, for example poly-2,4,4-trimethyl-hexamethylene terephthalamide or poly-m-phenylene-isophthalamide.
  • Block copolymers of the above-mentioned polyamides are also suitable Polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers, or with polyethers, such as, for example, with polyethylene glycol, polypropylene glycol or polytetramethylene glycol, are suitable also polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (“RIM polyamide systems”).
  • Polyureas Polyureas, polyimides, polyamideimides, polyetherimides, polyesterimides, polyhydantoins and polybenzimidazoles.
  • Polyesters which are derived from dicarboxylic acids and dialcohols and / or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-l, 4-dimethylolcyclohexane terephthalate, polyhydroxybenzoates, and block polyether esters which differ from polyethers Derive hydroxyl end groups; furthermore polyesters modified with polycarbonates or MBS.
  • Crosslinked polymers which, for. B. from aldehydes on the one hand and phenols, urea or melamine on the other hand, such as phenol-formaldehyde, urea-formaldehyde and melamine-formaldehyde resins.
  • Crosslinkable acrylic resins derived from substituted acrylic acid esters, such as. B. of epoxy acrylates, urethane acrylates or polyester acrylates.
  • Alkyd resins, polyester resins and acrylate resins which are crosslinked with melamine resins, urea resins, isocyanates, isocyanurates, polyisocyanates or epoxy resins.
  • Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, eg. B. products of bisphenol A diglycidyl ether, bisphenol F diglycid lethern, using conventional hardeners, such as. B. anhydrides or amines with or without accelerators.
  • the carrier is preferably used in the form of a particulate, line-shaped, sheet-like or three-dimensional structure.
  • particulate structures encompasses everything from fine pigments to macroscopic particles. These include in particular those with a particle size of 0.25 nm to 10 mm.
  • Line-shaped structures are understood to mean in particular fibers, filaments and the like.
  • the non-metallic supports are preferably used in the form of glass or plastic fibers.
  • Sheet-like structures are in particular woven fabrics, knitted fabrics, felts, nonwovens, nets, knitted fabrics, mats, etc.
  • Three-dimensional structures are generally shaped bodies of various dimensions.
  • the non-metallic supports are preferably used in the form of shaped bodies.
  • the shaped bodies can have the shape of spheres, pellets, short strands, Raschig rings, Pall® rings, saddle bodies, cylindrical lattice fillers,hackettes, spirals or helices.
  • the non-metallic supports are also preferably used in the form of fabrics.
  • the tissues in turn can be in the form of monoliths, i.e. H. ordered packs.
  • Particularly suitable monoliths are made up of several layers of corrugated, kinked and / or smooth fabric, which are preferably arranged in such a way that adjacent layers form more or less closed channels.
  • the hydraulic diameter of the channels is preferably in the range from 1 to 10 mm, in particular from 1.5 to 3 mm (as defined in VDI Heat Atlas, section LE 1).
  • the channels can be straight or curved.
  • Multi-layer fabrics are preferably used, in which smooth and wavy or kinked channels are formed.
  • packings are generally added to the reactor as a loose bed, monoliths are preferably installed in the reactor, in particular in such a way that the channels are inclined against the flow direction of the reaction medium.
  • the fabric layers themselves are preferably installed parallel to the flow direction in the reactor.
  • the installation is preferably carried out in such a way that the throughflow channels are inclined alternately in opposite directions to the direction of flow.
  • the structural units are preferably installed in such a way that the fabric layers of two successive structural units form an angle of preferably approximately 90 ° to one another. Winding modules made of corrugated or kinked and, if necessary, also of flat fabric layers are also suitable.
  • non-porous non-metallic supports used according to the invention can be used for catalyst production in the way that they occur in their respective production process. If desired, however, the surface of the carrier can be roughened before the subsequent process steps.
  • a roughening of carriers made of mineral materials, such as. B. of glass or ceramic carriers is preferably carried out by known mechanical methods, such as. B. by grinding with a material that has a higher hardness than that of the carrier.
  • Suitable abrasive materials are e.g. B. quartz, corundum, garnet, emery and diamond.
  • a suitable method for roughening glass or ceramic balls involves treatment in a rotating rotary tube with a finely powdered abrasive. The abrasive can then be separated from the backing material by conventional methods such as sieving or rinsing out with water. Glass surfaces can also be roughened by sandblasting.
  • Mineral materials can preferably be etched, e.g. B. with hydrofluoric acid, aqueous alkali or aqueous mineral acid, such as.
  • hydrochloric acid, nitric acid, phosphoric acid are roughened on the surface.
  • Carriers made of plastic can preferably be roughened by treatment with chemicals attacking the surface, preferably with oxidizing agents.
  • Suitable chemicals for roughening plastic surfaces are e.g. B. nitric acid, hydrogen peroxide, ammonia etc.
  • the carrier is understood to mean a process in which germs for electroless deposition are formed on the surface of the carrier.
  • the nuclei for electroless deposition generally consist of a metal, preferably a platinum metal, particularly preferably palladium.
  • the carrier is expediently activated by treating it with a reducing agent and a salt of a platinum metal.
  • the treatment of the carrier with the reducing agent and the platinum metal salt can be carried out simultaneously or in succession, in both cases the treatment can be carried out in one or more steps.
  • the carrier can be cleaned prior to treatment.
  • a cleaning step can follow the treatment or, in the case of a treatment in several steps, each treatment step.
  • the treatment of the carrier in step b) is carried out with an aqueous medium which comprises at least one reducing agent and at least one salt of a platinum metal. The treatment can take place in one or more steps.
  • the carrier is treated in step b) separately with at least one reducing agent and at least one platinum metal salt.
  • a preferred method for treating the carrier in step b) comprises the following substeps:
  • Steps b2) to b3) can be carried out once or several times.
  • the treatment can be started and completed both with step b2) and with step b3).
  • Steps b2) and b3) are preferably repeated one to ten times.
  • a cleaning step can follow treatment steps b2) and / or b3), e.g. B. by bringing the carrier into contact with a rinsing solution.
  • the carrier can be cleaned before the treatment steps by customary methods known to those skilled in the art. This includes e.g. B. see the treatment with aqueous surfactant solutions and / or the treatment with organic solvents and solvent mixtures, such as. As ethanol, ethanol-water mixtures, ethyl acetate, acetone, etc. If desired, cleaning can be carried out using ultrasound.
  • aqueous surfactant solutions such as ethanol, ethanol-water mixtures, ethyl acetate, acetone, etc.
  • cleaning can be carried out using ultrasound.
  • As rinsing solutions for cleaning the carrier after a treatment step are, for. B. the pure aqueous media used for the treatment steps and in particular water.
  • step b) an aqueous medium which is essentially free of organic solvents is preferably used.
  • This medium preferably additionally contains at least one inorganic acid, in particular hydrochloric acid.
  • the aqueous media used in step b) have an acidic pH.
  • a pH ⁇ 6, in particular ⁇ 5, is particularly preferred.
  • an aqueous medium which contains at least one reducing agent in completely or partially dissolved form.
  • Suitable reducing agents are mentioned below in step c), to which reference is made here.
  • Reducing agents preferably used in step b) are tin (II) chloride and titanium (III) chloride.
  • Platinum metal salts suitable for treating the carrier in step b) are mentioned in the following step c), to which reference is made here. At least one is preferred as the platinum metal salt
  • Step b) the aqueous medium used can contain, in addition to at least one platinum metal salt, at least one further salt of a metal of the iron group and / or the 1st subgroup.
  • Nickel and silver salts are preferred.
  • the treatment of the carrier in step b) comprises contacting with an aqueous medium with a tin (II) chloride content in the range from about 1 to 20 g / 1 and a content of concentrated hydrochloric acid of about 1
  • the treatment is preferably carried out at a temperature in the range from about 10 to 40 ° C., in particular at ambient temperature.
  • the treatment time with the reducing agent is in particular in a range from about 0.1 to 30 minutes, in particular 0.5 to 10 minutes.
  • the carrier is preferably after
  • aqueous medium with a palladium chloride content in the range from about 0.02 to 2 g / 1 and a content of concentrated hydrochloric acid in the range from about 0.1 to 10 ml / 1.
  • This aqueous medium can be any aqueous medium with a palladium chloride content in the range from about 0.02 to 2 g / 1 and a content of concentrated hydrochloric acid in the range from about 0.1 to 10 ml / 1.
  • the treatment with the platinum metal is preferably also carried out at a temperature in the range from about 10 to 40 ° C., in particular at ambient temperature.
  • the treatment time is preferably in a range from about 0.1 to 30 minutes, particularly preferably 0.5 to
  • the treated carrier is preferably rinsed again with water.
  • an aqueous medium which contains at least one reducing agent, at least one platinum metal salt and, if appropriate, at least one further salt of a metal of the iron group or the first subgroup, is first provided in step b) and the carrier then brought into contact with it.
  • the treatment of the carrier with the solution provided is preferably carried out within about 24 hours.
  • the treated carrier is preferably rinsed with water.
  • step b) a quantity of platinum metal is deposited on the carrier which is small compared to the total quantity deposited on the carrier.
  • the amount of platinum metal deposited in step b) is preferably at most 10% by weight, particularly preferably at most 1% by weight, based on the total amount deposited on the support.
  • the pretreatment of the support in step b) contributes to the fact that the process according to the invention gives catalysts in which the platinum metal adheres well to the non-porous support material.
  • the catalytic coatings produced in this way have a high abrasion resistance even under heavy mechanical stress.
  • the support which has been pretreated in this way can finally be dried by customary processes known to those skilled in the art. However, it can also be used moist for the subsequent treatment in step c).
  • Platinum metals in the sense of the invention are the noble metals of the 8th subgroup of the periodic table which do not belong to the iron group, namely ruthenium, rhodium, iridium, palladium, osmium and platinum. Ruthenium, rhodium, palladium and platinum are preferred, palladium and platinum are particularly preferred.
  • the catalysts according to the invention can comprise several platinum metals. All combinations of the platinum metals mentioned are suitable, combinations of palladium and platinum, of palladium and rhodium, of palladium and iridium, of palladium, platinum and rhodium and of palladium, platinum and iridium are preferred. Palladium and platinum are particularly preferred as a combination. In the combinations with palladium, palladium is preferably the main platinum metal component. The palladium content is then preferably above 40% by weight, preferably above
  • the further platinum metals optionally contained as secondary constituents can each account for up to 30% by weight, preferably up to 20% by weight and particularly preferably up to 15% by weight, of the total platinum metal content.
  • the platinum metals preferably comprise 80 to 100% by weight of palladium and 0 to 20% by weight of platinum or iridium. In most cases make up 1 to 3 of the platinum metals mentioned more than 95 wt .-% of the amount of platinum metal used. If, in addition to a main platinum metal, other platinum metals are also present, these are generally present in amounts of greater than 0.001% by weight, preferably greater than 0.01% by weight, e.g. B. about 0.1% by weight, about 1% by weight or about 5% by weight.
  • the catalytically active component of the catalysts according to the invention can contain further elements as additional components or, if appropriate, in the form of impurities.
  • Preferred additional components, the z. B. can affect the activity and / or selectivity of the catalyst are selected from metals, non-metals and their compounds. These preferably include metals such as cobalt, nickel, copper, silver, gold, chromium, molybdenum, tungsten, manganese, rhenium, aluminum, tin, lead, arsenic, antimony and bismuth, and non-metals such as boron, carbon, silicon, Nitrogen and phosphorus.
  • the metals and non-metals mentioned can be present in the catalytically active coating both in ionic and in nonionic form.
  • the catalytically active component may contain other elements (metals and non-metals) as impurities, e.g. B. by the fact that the catalytically active components used contain impurities, or that components of the components used in the process according to the invention are incorporated into the platinum metal coatings during the process for the preparation of the catalysts according to the invention, such as. B. alkali and alkaline earth metals, phosphorus, boron and halogens.
  • an aqueous medium which additionally comprises at least one compound of a metal from the 6th, 7th or 1st subgroup, the iron group or bismuth.
  • the additional components can be present at 0.001 to 25% by weight, based on the platinum metal content.
  • Additional components used as promoters or dopants generally make up 0.01 to 20% by weight, preferably 0.1 to 15% by weight and in particular 0.5 to 10% by weight, based on the platinum metal content ,
  • the platinum metals are preferential, as a 'platinum metal complexes used.
  • Platinum metal complexes in which the platinum metal is present in the oxidation states +1 to +4 are preferably used.
  • Four-coordinate complexes are preferred.
  • the process according to the invention is preferably suitable for the production of platinum metal catalysts in which palladium is the main platinum metal component.
  • Palladium (II) complexes are preferably suitable for the preparation of catalysts which contain palladium, and in particular of catalysts which contain palladium as the main platinum metal component. Palladium (II) complexes in which palladium has the coordination number 4 are particularly suitable.
  • Such combinations of platinum metal ions and ligand are preferably selected whose complex formation constant is> 1000 and in particular> 10000.
  • Suitable combinations of ligands and counterions for palladium complexes and for platinum metal complexes other than palladium can be selected according to the principle of charge neutrality.
  • Suitable negatively charged ligands are e.g. B. selected from halides and pseudohalides, such as chloride, bromide, yodide, CN, OCN and SCN, -C-C 6 carboxylic acids, such as formic acid, acetic acid and propionic acid and their salts, chelate ligands, such as ethylenediaminetetraacetic acid (EDTA), Nitrilotriacetic acid, 1,2-diaminocyclohexanetetraacetic acid and its salts, aminophosphonic acids such as nitrilomethylenephosphonic acid, diketonates such as acetylacetonate, hydroxycarboxylic acids such as glycolic acid, lactic acid, tartaric acid and gluconic acid, and their salts.
  • Suitable as electroneutral ligands are e.g. B. alkyl nitriles such as acetonitrile, amines such as ammonia, primary, secondary and tertiary C 1 -C 6 alkyl amines such as ethylamine, n-propylamine, isopropylamine, n-butylamine, tert-butylamine, hexylamine, dimethylamine, di - ethylamine, diisopropylamine, di-n-butylamine, trimethylamine, triethylamine, tripropylamine, N, N-dimethylethylamine, N, N-dimethylisopropylamine and N, N-dimethylbutylamine, di-, tri-, tetra- and poly- amines, such as ethylenediamine, diethylenetriamine and triethylenetetraamine, non-aromatic and aromatic cyclic amines, such as
  • halides chloride and bromide are particularly preferred as complex ligands;
  • Amines especially ammonia and triethylamine, cyanide and ethylenediaminetetraacetic acid, and the di-, tri- or tetra-alkali metal (such as sodium) or ammonium salts thereof.
  • Alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, nitrite, nitrate and ammonium are preferably suitable as counterions.
  • Suitable platinum metal complexes are preferably at least 0.01% by weight soluble in water at room temperature (25 ° C.).
  • the platinum metal complex (s) are used in an aqueous medium, in such a concentration that the platinum metal content of the solution is in the range from 0.001 to 2 g / 1, preferably in the range from 0.1 to 0.5 g /1.
  • Preferred palladium complexes are H 2 PdHal 4 , M 2 PdHal, M 2 Pd (CN) 4 , (NH 4 ) 2 PdHal 4 , Pd (NH 3 ) 4 Hal 2 , Pd (NH 3 ) 4 (N0 3 ) 2 and Pd (NH 3 ) 4 (CN) 2 , where M represents alkali metals, especially sodium and potassium, and shark represents halogen atoms, especially chlorine, bromine or iodine.
  • Preferred further platinum metal complexes are (NH 4 ) 2 IrCl 6 , HPtCl, (NH) 2 PtCl, Na 2 PtCl 4 and K 2 PtCl 4 .
  • the aqueous medium contains at least one reducing agent in completely or partially dissolved form.
  • Suitable as reducing agents for steps b) and c) are all substances or mixtures of substances whose redox potential lies below the redox potential of the platinum metal complex used.
  • Substances with a standard potential in aqueous medium of less than +0.5 volts are preferred, but preferably with a standard potential less than 0 volts.
  • At least 1% by weight, preferably at least 10% by weight, of the reducing agent or mixture of reducing agents is lent in the aqueous medium at room temperature (25.degree. C.).
  • the reducing agent or the reducing agent mixture is practically completely soluble in the aqueous medium.
  • suitable reducing agents are carboxylic acids, such as formic acid, citric acid, lactic acid, tartaric acid and in particular the salts of the carboxylic acids, preferably the alkali metal, alkaline earth metal, ammonium and Ci-Cio-alkylammonium salts, phosphorous or hypophosphorous acid, the salts of phosphorous or hypo - Phosphorous acid, especially the alkali metal or alkaline earth metal salts, Ci-Cio-alkanols, such as methanol, ethanol and isopropanol, sugar, such as aldoses and ketoses in the form of mono-, di- and oligosaccharides, especially glucose, fructose and Lactose, aldehydes, such as formaldehyde, hydrogen boron compounds, such as.
  • carboxylic acids such as formic acid, citric acid, lactic acid, tartaric acid and in particular the salts of the carboxylic acids, preferably the alkali metal, alka
  • B. borohydrides, boranes, metal boranates and borane complexes for.
  • Preferred reducing agents for step c) are sodium and potassium hypophosphite, ammonium formate, trimethylamine borane, sodium borohydride, sodium dithionite and sodium hydrogen dithionite, and mixtures of ammonium formate and sodium hypophosphite.
  • At least one redox equivalent, based on the sum of the platinum metals and additional components (e.g. promoters / doping components), of reducing agent is used.
  • the reducing agent is preferably used in excess.
  • a molar ratio of reducing agent to platinum metal 10: 1 to 100: 1 and particularly preferably 20: 1 to 60: 1, such as for example about 30: 1, about 40: 1 or about 50: 1, is particularly suitable.
  • an aqueous medium with a pH of greater than 6 is preferably used for the electroless deposition of the platinum metal.
  • This is preferably in a range from 7 to 14, in particular 8 to 12.
  • bases are all substances or compounds which are suitable for adjusting the pH of the aqueous medium to the desired value.
  • those bases are used which have complex stabilizing properties, i. H. at least partially have a Lewis base character.
  • the base is preferably selected from metal oxides, metal hydroxides, in particular alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide, metal carbonates, in particular alkali metal and alkaline earth metal carbonates, such as lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate, nitrogen bases, in particular ammonia, primary, secondary and tertiary amines, such as those previously described for the nitrogen-containing complex ligands.
  • Buffer systems are also suitable, in particular those from the aforementioned bases, the salts of the aforementioned bases and / or suitable acids. Particularly preferred bases are ammonia and sodium hydroxide solution.
  • aqueous media are substances or mixtures of substances which are liquid under the process conditions and contain at least 10% by weight, preferably at least 30% by weight and in particular at least 50% by weight of water.
  • the part other than water is preferably selected from water- at least partially soluble or at least partially miscible with water inorganic or organic substances.
  • the substances other than water are selected from organic solvents, -C 22 alkanols, in particular methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, pentanols and hexanols, C 4 -C 8- cycloalkyl ethers, such as tetrahydrofuran, pyrans, dioxanes and trioxanes, C 1 -C 4 -dialkyl ethers, such as dimethyl ether, dibutyl ether and methyl butyl ether, and customary auxiliaries, such as are used in processes for electroless deposition.
  • organic solvents -C 22 alkanols, in particular methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, pentanols and
  • the aqueous medium preferably contains less than 40%, in particular less than 30% and particularly preferably less than 20% organic solvent.
  • the aqueous medium is essentially free of organic solvents.
  • the aqueous solution preferably additionally comprises at least one ligand (complexing agent).
  • the ligand preferably has at least one halogen, nitrogen, oxygen and / or phosphorus atom.
  • Complexing agents in the sense of the present invention are ions or compounds which are able to stabilize metal ions in aqueous media. As a rule, such complexing agents are donors or salts of donors. Suitable donors usually have a lone pair of electrons that can interact with the metal ions. Complexing agents which have the above-mentioned hetero atoms as donors are particularly suitable for the process according to the invention. Examples of suitable complexing agents are the metal salts, in particular the alkali metal and alkaline earth metal salts, of the compounds previously mentioned as complex ligands of the platinum metals.
  • hydrohalic acids such as hydrogen bromide, hydrogen chloride and hydrogen iodide
  • B sodium and / or potassium tartrate.
  • platinum metal complex, reducing agent, optionally base and optionally complexing agent can be added to the aqueous medium in any order. Preferably at least a portion of the base is added to the aqueous medium before the reducing agent is added.
  • the platinum metal complex if appropriate the complexing agent and / or the base, are initially introduced into the aqueous medium in step c) and the reducing agent is then added.
  • the temperature in step c) is in the range between 0 and 100 ° C., preferably in the range from 30 to 100 ° C. and in particular in the range from 40 to 85 ° C.
  • the active component ie the platinum metal or the platinum metals and any additional components which may be present, generally make up 5 ⁇ 10 -4 to 5% by weight, in particular 10 -3 to 1% by weight, particularly preferably 0.01 to 1 0% by weight, based on the total catalyst mass (support + catalytically active coating).
  • an additional complexing agent is added to the solution, 0.1 to 10,000 equivalents, preferably 1 to 1000 equivalents, particularly preferably 10 to 600 equivalents of the complexing agent, based on the platinum metal component, are generally used.
  • the activated non-metallic support in step c) is only brought into contact with the aqueous medium when the aqueous medium contains at least the platinum metal complex, the reducing agent, at least part of the base and optionally the additional complexing agent.
  • the carrier can first be brought into contact with all of the components mentioned above, except for the platinum metal. The platinum metal is then at reaction temperature or a z. B. added up to 30 ° C lower temperature. “Reaction temperature” in the sense of the present invention means the temperature at which the platinum metal is deposited on the carrier.
  • reaction time required for the deposition of the platinum metal on the supports is generally between 0.5 and 500 minutes, preferably 1 and 300 minutes and particularly preferably between 2 and 60 minutes.
  • the platinum metals used are deposited on the support.
  • the platinum metal is bonded so tightly to the metallic support that it is not significantly replaced by contact with liquids and gases when used in catalytic reactions.
  • Additional components in particular the elements suitable as promoters or doping components, can optionally be added to the aqueous medium together with the platinum metal, so that the deposition of the platinum metal and the installation of the additional components take place essentially simultaneously.
  • the additional components can also be added to the reaction solution towards the end or after the platinum metal deposition has ended, as a result of which the additional components are preferably installed on the surface of the active component.
  • the additional components can also be applied to the catalysts of the invention in a separate second step, for. B. by vapor deposition or by electroless separation from aqueous and non-aqueous media.
  • the application of additional components to the catalysts of the invention in a separate second step is particularly advantageous if you want to apply them specifically to the surface of the active component.
  • other deposition conditions that deviate from the conditions according to the invention can be selected for the second step.
  • the catalysts obtained in step c) can then be formed at temperatures of 0 to 500 ° C, preferably 10 to 350 ° C, and pressures between normal pressure and 200 bar gauge pressure.
  • the formation can take place, for example, in the presence of water and / or hydrogen. These can be used in the form of mixtures with an inert gas such as nitrogen. Formation with hydrogen is preferred.
  • the temperature is preferably 10 to 200 ° C, in particular 30 to 150 ° C.
  • the pressure is preferably 1 to 150 bar, in particular 10 to 100 bar and particularly preferably 30 to 70 bar.
  • formation lasts 0.1 to 10 hours, preferably 1 to
  • the catalysts are formed in presence of the aqueous reaction medium which is described below for the synthesis of water peroxide according to the invention.
  • the catalysts according to the invention are prepared by at least 0.01 to 3 g / 1, preferably 0.05 to 0.3 g / 1, of at least one platinum metal complex (weights based on the metal) , optionally 0.0001 to 0.3 g / 1, preferably 0.001 to 0.03 g / 1 of at least one further element compound and, based on the platinum metal, at least 20, preferably 50 and particularly preferably at least 100 equivalents of a complexing agent and at least 10 to 100, preferably 20 to 80 and particularly preferably 40 to 60 equivalents of a reducing agent dissolves in an aqueous medium.
  • Another object of the present invention is a catalyst obtainable by one of the methods described above.
  • the invention also relates to platinum metal catalysts with a non-metallic support and a catalytically active coating applied thereon, which are characterized in that the catalytically active coating has discrete platinum metal particles immobilized on the support surface with an average particle diameter of less than about 1 ⁇ , preferably less less than about 100 nm.
  • the platinum metal particles preferably have an average diameter of more than about 1 nm and can e.g. B. have diameters in the range of about 20 to 100 nm.
  • the discrete particles preferably have an approximately spherical shape.
  • the subject matter is a catalyst in which the non-porous non-metallic support essentially consists of glass, ceramic or a polymer.
  • Such catalysts preferably have a platinum metal content in the range from 0.01 to 50 g / kg of support.
  • the catalysts obtainable by this process preferably have a selectivity of greater than 60%, in particular greater than 70% and particularly preferably greater than 80%.
  • the catalysts of the invention are preferably suitable for the hydrogenation of organic and inorganic compounds and in particular for organic compounds such as olefins, for. B. ethylene, propylene, acetylene and butadiene, carbonyl compounds, z. B. aldehydes, ketones, aromatics, such as. As benzene, and particularly preferably for the hydrogenation of oxygen.
  • organic compounds such as olefins, for. B. ethylene, propylene, acetylene and butadiene, carbonyl compounds, z. B. aldehydes, ketones, aromatics, such as. As benzene, and particularly preferably for the hydrogenation of oxygen.
  • Another object of the present invention is a process for the production of hydrogen peroxide, wherein a catalyst as described above in a liquid medium, preferably an essentially aqueous solution with an oxygen / hydrogen mixture with a mixing ratio in the range of about 5: 1 to 100: 1, especially 5: 1 to 30: 1.
  • the present invention also relates to the use of the catalysts according to the invention for the synthesis of hydrogen peroxide from the elements, both according to the anthraquinone process or an analogous process, and also by direct synthesis, ie by direct reaction of oxygen and hydrogen over a platinum metal catalyst in a liquid medium , Suitable methods are e.g. B. described in WO 98/16463, to which reference is made here in full.
  • the use of the catalysts according to the invention for the direct synthesis of H 2 0 is particularly preferred.
  • Suitable reactors for the synthesis of H 2 0 2 are described, for example, in EP-A-068 862, EP-A-201 614 and EP-A-448 884.
  • Tube reactors in which the catalyst according to the invention is present as a bed or in the form of cylindrical catalyst units are particularly preferred.
  • Appropriate shaping for the carriers, as described above, can ensure optimum flow conditions for gas and liquid.
  • the reaction is carried out in cocurrent with the reactor flooded with liquid and gas.
  • the liquid phase preferably trickles down over the catalyst bed.
  • the gas can be conducted in cocurrent or in countercurrent, preferably in cocurrent.
  • the hydrogen can preferably be fed to the reactor via one or more intermediate feeds downstream from the feed point of the oxygen or the air.
  • the empty tube speed of reaction gas and reaction medium is preferably in a range from about 20 to 7000 m / h, particularly preferably in a range from 50 to 1400 m / h.
  • Water and / or C ⁇ -C 3 -alkanols are preferably used as the reaction medium. If as a reaction medium water is used, this can be added up to 20 wt .-% of the alcohol, preferably methanol. If an alcoholic reaction medium is used, it can contain 40% by weight, preferably up to 20% by weight and particularly preferably up to 5% by weight of water. Water is very particularly preferably used as the sole reaction medium.
  • acids the pK a value of which is preferably smaller than that of acetic acid, in particular mineral acids, such as sulfuric acid, phosphoric acid or hydrochloric acid, are added to the reaction medium.
  • the acid concentration is generally at least 10 -4 mol / liter, preferably 10 -3 to 10 -1 mol / liter. Furthermore, traces of bromide or chloride are generally added in concentrations of 1 to 1000 ppm, preferably 5 to 700 ppm and particularly preferably 50 to 600 ppm. However, other stabilizers, such as. B. formaldehyde can be used.
  • the reaction gas which in addition to hydrogen and oxygen can also contain inert gases such as nitrogen or noble gases, generally has 0 2 : H 2 ratios in the range from 2: 1 to 1000: 1. Molar ratios in the range from 5: 1 to 100: 1, in particular 20: 1 to 100: 1, are preferably used.
  • the oxygen used in the reaction gas can also be added to the reaction gas in the form of air.
  • the reaction gas is circulated.
  • the molar ratio in the fresh gas mixture is close to the stoichiometry, preferably in the range from 1.5: 1 to 0.5: 1.
  • the molar ratio 0 2 : H 2 in the cycle gas should be in the range from 5: 1 to 1000: 1, preferably in the range from 20: 1 to 100: 1.
  • the reaction can be carried out at normal pressure and also under excess pressure up to 200 bar.
  • the pressure is preferably 10 to 300 bar, in particular 10 to 80 bar.
  • the reaction temperature can be in the range from 0 to 80 ° C., preferably in the range from 5 to 60 ° C. and in particular from 25 to 55 ° C.
  • the partial pressures of the reaction gases in the reaction gas mixture in the reactor and in the cycle gas are preferably selected such that the hydrogen concentration is below the lower explosion limit under reaction conditions.
  • the described process can be used to produce hydrogen peroxide solutions with hydrogen peroxide contents above 2% by weight, preferably in the range from 3 to 25% by weight.
  • the concentration can be preselected in the desired manner by adjusting the material flows.
  • the selectivity of the hydrogen peroxide education lies z. B. above 65%, preferably> 70%. Long-term studies have shown that even after more than 40 days of operation, there is no or only a slight decrease in the catalyst activity and selectivity.
  • Another object of the invention is a method for catalytic reduction by reacting an inorganic or organic compound containing at least one hydrogen acceptor group with hydrogen, the reaction taking place in the presence of at least one catalyst according to the invention, as described above.
  • the catalysts of the invention are preferably suitable for the hydrogenation of carbon-carbon double and triple bonds.
  • 850 ml of glass balls made of soda-lime glass with a diameter of 1 mm are mixed with 850 ml of silicon carbide sand in a rotating flask for 24 hours.
  • the balls are poured onto a suction filter with a perforated plate and the sand is washed out with water. Afterwards, place them on the built-in glass balls on a G3 nutsche.
  • the glass spheres treated in this way had a pore volume which was below the limit of quantification of the Hg porosimetry and a BET surface area of 0.024 m 2 / g.
  • a solution of 10 g of tin (II) chloride and 20 ml of concentrated hydrochloric acid in 2 l of water is made up and allowed to seep through the glass spheres in 2 minutes. Then it is rinsed with 2 l of water.
  • a solution of 0.4 g of palladium chloride and 2 ml of concentrated hydrochloric acid in 2 l of water is then allowed to seep through the glass ball layer again in 2 minutes and is then rinsed again with water. The entire procedure is repeated five more times.
  • the activated spheres are then dried overnight at 75 ° C. and 100 mbar.
  • a third of the activated glass balls are filled into a double-walled glass tube 1 m long and 2.2 cm in diameter.
  • To the Glass tube is connected to a hose pump for circulating liquid and a thermostat for heating via the jacket.
  • a solution of 14.2 g sodium hypophosphi, 32.8 g ammonium chloride and 47.5 ml 25% ammonia in 412 ml water is poured into the tube, the circulation pump is switched on and the thermostat is heated to an internal temperature of 58 ° C , A solution of 265 mg sodium tetrachloropalladate and 1 mg hexachloroplatinic acid in 10 ml water is then added.
  • the glass spheres turn black immediately with violent gas evolution.
  • the catalyst 40 circulated for 15 minutes at this temperature. After draining the liquid, the catalyst is washed with water and dried at 75 ° C and 100 mbar.
  • a solution of 346 mg of sodium tetrachloropalladate and 1.43 mg of hexachloroplatinic acid in 10 ml of water is then added with pumping. After 10 minutes, the solution is drained off and washed with water.
  • the second half of the activated carrier is mixed with the same chemicals as above in a stirred flask, stirring at 45 ° C. at 1000 rpm.
  • the catalyst is filtered off and washed with water. Both parts are mixed and dried at 50 ° C and 100 mbar.
  • the analysis showed that the precious metals were separated quantitatively. The analysis shows a palladium content of 285 mg / kg.
  • 750 ml of 3 mm Raschig rings made of glass (with a pore volume determined by mercury porosimetry of 0.036 ml / g and a BET surface area of 0.034 m 2 / g) are activated with tin and palladium as described for catalyst 1.
  • a third of the activated Raschig rings are filled into a double-walled glass tube 1 m long and 2 cm in diameter.
  • a peristaltic pump for circulating liquid and a thermostat for heating are attached to the glass tube
  • the catalyst 35 rinsed with water.
  • the catalyst is then dried overnight at 75 ° C and 100 mbar.
  • the coating is repeated with a further 115 ml of the activated glass balls, and both portions are mixed to form catalyst 14.
  • the palladium content of the catalyst is 71 mg / kg.
  • the properties of the catalysts were checked in the direct synthesis of hydrogen peroxide from hydrogen and oxygen (Examples B1 to B19) and in the hydrogenation of 2-ethylanthraquinone and hydrodehydrolinalool (Examples B20 and B21).
  • a double jacket reactor with an inner diameter of 2.1 cm and a length of 2 m is charged with the catalyst 1.
  • a solution of 5 g / 1 phosphoric acid and 120 mg / 1 hydrogen bromide in water is poured over the catalyst bed at a rate of 250 ml per hour.
  • a gas compressor with the help of a gas compressor, a mixture of 3% hydrogen and 97% oxygen is pumped from top to bottom in a circle over the catalyst bed at a rate of 10,400 Nl / h.
  • the gas mixture is generated using two mass flow meters for hydrogen and oxygen. Its composition is determined and readjusted with the help of a thermal conductivity detector, through which a small partial flow is passed as an exhaust gas flow.
  • the amount of hydrogen consumed by the reaction to form hydrogen peroxide and water is calculated from the introduced mass flows of the gases and from the exhaust gas flow.
  • the product mixture emerging from the reaction tube is separated from the gases under pressure in a separator and is conveyed out of the system in liquid form.
  • the mass flow is balanced against the inflow flow.
  • the hydrogen peroxide content in the liquid discharge is determined by titration.
  • the selectivity becomes from the mass of the discharge stream, the content of hydrogen peroxide and the amount of hydrogen consumed calculated based on hydrogen.
  • the space-time yield results from the amount of hydrogen peroxide formed per unit of time based on the volume of 690 ml of catalyst bed in the tubular reactor.
  • Examples 1 to 9 and 11 to 19 and comparative example 10 were carried out analogously to the instructions for example 1.
  • the reaction conditions and results of the reaction are summarized in Table 1.
  • a double jacket reactor with an inner diameter of 2.1 cm and a length of 2 m is charged with the catalyst 4.
  • a solution of 13% by weight of 2-ethylanthraquinone in a mixture of 70% by weight of a hydrocarbon mixture (Shellsol®) and 30% by weight of tetrabutylurea is left at a rate of 2700 continuously pour ml / h over the catalyst bed.
  • the hydrogenated working solution emerging from the reaction tube is separated from the gas in a separator and conveyed out of the system in liquid form.
  • Catalyst 14 (152 ml) is filled together with hydrodehydrolmalool in a double jacket tube with a diameter of 2 cm. With appropriate pumps, the liquid and hydrogen are circulated at 1.1 bar and 80 ° C with cross-sectional loads of 200 m 3 / m 2 each. The acetylene alcohol is hydrogenated with a conversion rate of 15% / h and a selectivity> 98% to hydrolinalool.

Abstract

The invention relates to a supported platinum group metal catalyst obtainable by controlled electroless deposition of at least one platinum group metal from a deposition solution which comprises i) at least one homogeneously dissolved platinum group metal compound, ii) a reducing agent and iii) at least one control agent selected from isopolyacids and heteropolyacids of niobium, tantalum, molybdenum, tungsten and vanadium or their salts.

Description

VERFAHREN ZUR HERSTELLUNG VON PLATINMETALL-KATALYSATOREN DUCH STROMLOSE ABSCHEIDUNG UND DEREN VERWENDUNG ZUR DIREKTSYNTHESE VON WASSERSTOFFPEROXIDMETHOD FOR PRODUCING PLATINUM METAL CATALYSTS BY CURRENTLY DEPOSITING AND THE USE THEREOF FOR DIRECT SYNTHESIS OF HYDROGEN PEROXIDE
Beschreibung 5Description 5
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Katalysatoren durch stromloses Abscheiden wenigstens eines Platinmetalls auf einem nichtporösen nichtmetallischen Träger, die nach diesem Verfahren erhältlichen Katalysatoren, die Verwen-The present invention relates to a process for the preparation of catalysts by electroless deposition of at least one platinum metal on a non-porous non-metallic support, the catalysts obtainable by this process, the uses
10 d ng der Katalysatoren zur Synthese von Wasserstoffperoxid aus den Elementen und zur Hydrierung von anorganischen und organischen Verbindungen sowie ein Verfahren zur Herstellung von Wasserstoffperoxid und ein Verfahren zur katalytischen Reduktion unter Verwendung dieser Katalysatoren.10 d ng of the catalysts for the synthesis of hydrogen peroxide from the elements and for the hydrogenation of inorganic and organic compounds, as well as a process for the production of hydrogen peroxide and a process for catalytic reduction using these catalysts.
1515
Katalysatoren, die als katalytisch aktive Substanzen Platinmetalle enthalten, finden in vielfältiger Form Verwendung und haben große technische Bedeutung, z. B. bei der Reduktion bzw. Hydrierung organischer Verbindungen und in der katalytischen ReinigungCatalysts, which contain platinum metals as catalytically active substances, are used in a variety of forms and are of great technical importance, e.g. B. in the reduction or hydrogenation of organic compounds and in catalytic cleaning
20 von Abgasen aus Industrie und Verkehr.20 of exhaust gases from industry and traffic.
Für technische Anwendungen verwendet man nach Möglichkeit geträ- gerte Platinmetallkatalysatoren, die nur geringe Mengen der teuren Edelmetalle auf meist katalytisch inaktiven TrägermaterialienFor technical applications, use is made of supported platinum metal catalysts, which only use small amounts of the expensive noble metals on mostly catalytically inactive support materials
25 mit einer großen Oberfläche, wie z. B. Kohle, Alu iniumoxid, Si- liciumoxid, keramischen oder anderen mineralischen Trägern, aufweisen. Das Aufbringen der katalytisch aktiven Metalle auf solche porösen Träger erfolgt meist durch Tränken bzw. Imprägnieren der Träger mit Lösungen von Salzen oder metallorganischen Verbindun-25 with a large surface such. B. coal, aluminum oxide, silicon oxide, ceramic or other mineral carriers. The catalytically active metals are usually applied to such porous supports by impregnating or impregnating the supports with solutions of salts or organometallic compounds.
30 gen des katalytisch aktiven Metalls und anschließendes Immobilisieren durch Ausfällen, Hydrolysieren, Tempern, Calcinieren und/ oder Formieren.30 gene of the catalytically active metal and subsequent immobilization by precipitation, hydrolyzing, tempering, calcining and / or forming.
Die EP-A-0 875 235 beschreibt ein Verfahren zur Herstellung von 35 geträgerten Edelmetallkatalysatoren auf porösen oxidischen Trägern durch stromlose Abscheidung von Edelmetallen aus wässrigen Lösungen mit Reduktionsmitteln und in Gegenwart von Komplexbildnern.EP-A-0 875 235 describes a process for producing 35 supported noble metal catalysts on porous oxidic supports by electroless deposition of noble metals from aqueous solutions with reducing agents and in the presence of complexing agents.
40 Die unveröffentlichte deutsche Patentanmeldung P 199 15 681.6 beschreibt ein Verfahren zur Herstellung von geträgerten Platinmetallkatalysatoren auf metallischen Trägern durch stromlose Abscheidung eines Platinmetalls aus wässriger Lösung in Gegenwart wenigstens eines Reduktionsmittels und wenigstens eines Komplex-40 The unpublished German patent application P 199 15 681.6 describes a process for the preparation of supported platinum metal catalysts on metallic supports by electroless deposition of a platinum metal from aqueous solution in the presence of at least one reducing agent and at least one complex.
45 bildners. Die DE-A-44 12 463 beschreibt die Verwendung einer Palladiumkolloid-Lösung, enthaltend mindestens ein Reduktionsmittel und mindestens ein Schutzkolloid sowie zusätzlich mindestens ein Edelmetall oder eine Edelmetallverbindung, zur Vorbehandlung elektrisch nicht leitender Substratoberflächen vor ihrer Metallisierung mit einer Metallisierungslösung. Die Abscheidung wenigstens eines Platinmetalls auf einem nichtporösen nichtmetallischen Träger wird nicht beschrieben. Dieses Dokument enthält auch keine Lehre zur Herstellung von Katalysatoren.45 educators. DE-A-44 12 463 describes the use of a palladium colloid solution containing at least one reducing agent and at least one protective colloid and additionally at least one noble metal or a noble metal compound for pretreating electrically non-conductive substrate surfaces before they are metallized with a metallizing solution. The deposition of at least one platinum metal on a non-porous non-metallic support is not described. This document also contains no teaching on the production of catalysts.
Die US 5,082,647 beschreibt ein Verfahren zur Direktsynthese von Wasserstoffperoxid, wobei ein Katalysator eingesetzt wird, der wenigstens ein Metall der VIII. Nebengruppe auf einem hydrophoben Träger umfasst. Als hydrophobe Trägermaterialien werden dabei un- ter anderem Styrol-Divinylbenzol-Copolymere, Homo- und Copolymere des Ethylens und Propylens, hydrophobisiertes Siliciumdioxid, Po- lytetrafluorethylen, fluorierter Kohlenstoff und Kohlenstoff der durch Behandlung mit einem Silan oder mit Fluor hydrophobisiert wurde, genannt. Der hydrophobe Träger weist dabei eine Oberfläche von mindestens 50 m2/g auf.No. 5,082,647 describes a process for the direct synthesis of hydrogen peroxide, a catalyst being used which comprises at least one metal of subgroup VIII on a hydrophobic support. Styrene-divinylbenzene copolymers, homo- and copolymers of ethylene and propylene, hydrophobized silicon dioxide, polytetrafluoroethylene, fluorinated carbon and carbon which have been hydrophobized by treatment with a silane or with fluorine are mentioned as hydrophobic carrier materials. The hydrophobic carrier has a surface area of at least 50 m 2 / g.
Die WO-A-99/32398 beschreibt ein Verfahren zur Direktsynthese von Wasserstoffperoxid, wobei auch Katalysatoren auf Trägern mit geringen BET-Oberflachen von vorzugsweise weniger als 1 m2 pro ml Reaktorvolumen zum Einsatz kommen sollen. Dabei werden als Trägermaterialien nichtporöse Nichtmetalle, wie Glas, Quarz und organische Polymere vorgeschlagen. Zur Herstellung der Katalysatoren wird pauschal auf die Offenbarung der EP-A-0 878 235, US 5,338,531 und auf J.R. Kosak "A new novel fixed bed catalyst for the direct combination of H2 and 02 to H202", Chem. Ind. (Dek- ker) , 1995, Band 62, Catalysis of Organic Reactions, verwiesen. In keiner der zitierten Literaturstellen wird jedoch die Herstellung von Katalysatoren auf nichtmetallischen porenfreien Trägern beschrieben. Nach dem Ausführungsbeispiel der WO-A-99/32398 wird zur Herstellung eines Katalysators nicht vorbehandelte Glaswolle mit Palladiumchlorid und Hexachloroplatinsäure imprägniert und die Metalle anschließend bei 300 °C mit Wasserstoff reduziert. Bei der anschließenden Herstellung von Wasserstoffperoxid mit diesem Katalysator in der Gasphase werden nur äußerst geringe Raum-Zeit- Ausbeuten von etwa 5 g/1 x h erzielt.WO-A-99/32398 describes a process for the direct synthesis of hydrogen peroxide, wherein catalysts on supports with small BET surface areas of preferably less than 1 m 2 per ml reactor volume are also to be used. Non-porous non-metals such as glass, quartz and organic polymers are proposed as carrier materials. For the preparation of the catalysts, a general reference is made to the disclosure of EP-A-0 878 235, US 5,338,531 and to JR Kosak "A new novel fixed bed catalyst for the direct combination of H 2 and 0 2 to H 2 0 2 ", Chem. Ind. (Dekker), 1995, volume 62, Catalysis of Organic Reactions. However, none of the cited references describes the preparation of catalysts on non-metallic non-porous supports. According to the exemplary embodiment of WO-A-99/32398, glass wool which has not been pretreated to produce a catalyst is impregnated with palladium chloride and hexachloroplatinic acid and the metals are then reduced at 300 ° C. with hydrogen. In the subsequent production of hydrogen peroxide with this catalyst in the gas phase, only extremely low space-time yields of about 5 g / 1 × h are achieved.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung verbesserter Nichtmetall-geträgerter Platinmetallkatalysatoren zur Verfügung zu stellen. Dabei soll vor- zugsweise eine möglichst vollständige Abscheidung des teuren Platinmetalls und/oder eine gute Haftung des Edelmetalls auf dem Nichtmetallträger gewährleistet werden. Weiterhin sollen die Ka- talysatoren bevorzugt eine hohe katalytische Aktivität und Selektivität bei Hydrierungen, insbesondere bei der Direktsynthese von H202 aus Wasserstoff und Sauerstoff, aufweisen. Vorzugsweise sollen sich die Katalysatoren durch verbesserte Standzeiten aus- zeichnen.The present invention has for its object to provide a method for producing improved non-metal-supported platinum metal catalysts. The aim here is to ensure that the expensive platinum metal is deposited as completely as possible and / or that the noble metal adheres well to the non-metal carrier. Furthermore, the ca Talysators preferably have a high catalytic activity and selectivity in hydrogenations, in particular in the direct synthesis of H 2 0 2 from hydrogen and oxygen. The catalysts should preferably be distinguished by improved service lives.
Überraschenderweise wurde die Aufgabe gelöst durch die Bereitstellung eines Verfahrens zur Herstellung von Katalysatoren, die wenigstens ein Platinmetall auf einem nichtporösen nichtmetalli- sehen Träger umfassen, wobei man zunächst den Träger aktiviert und anschließend auf dem so vorbehandelten Träger wenigstens ein Platinmetall stromlos abscheidet. Zur stromlosen Abscheidung wird ein wässriges Medium, das wenigstens eine Verbindung oder einen Komplex eines Platinmetalls und wenigstens ein Reduktionsmittel umfasst, mit dem Träger in Kontakt gebracht. Im Gegensatz zu aus dem Stand der Technik bekannten Katalysatoren besitzen die erfindungsgemäß hergestellten Katalysatoren ausgezeichnete Katalysatoreigenschaften. Zudem ist eine im Wesentlichen quantitative Abscheidung des Platinmetalls aus der Lösung erreichbar. Überra- schenderweise wird auch auf den eingesetzten nichtporösen nichtmetallischen Trägern eine gute Haftung der Platinmetalle erzielt. So besitzen die erfindungsgemäß erzeugten katalytischen Beschichtungen selbst bei starker mechanischer Beanspruchung, wie sie z. B. bei der Wasserstoffperoxidsynthese auftritt, hohe Abriebfe- stigkeit. Auch nach längerem Betrieb ist in der Regel dabei keine mechanische Ablösung festzustellen.Surprisingly, the object was achieved by providing a process for the preparation of catalysts which comprise at least one platinum metal on a non-porous non-metallic support, wherein the support is first activated and then at least one platinum metal is electrolessly deposited on the support thus pretreated. For electroless deposition, an aqueous medium comprising at least one compound or a complex of a platinum metal and at least one reducing agent is brought into contact with the carrier. In contrast to catalysts known from the prior art, the catalysts produced according to the invention have excellent catalyst properties. In addition, essentially quantitative deposition of the platinum metal from the solution can be achieved. Surprisingly, good adhesion of the platinum metals is also achieved on the non-porous non-metallic supports used. Thus, the catalytic coatings produced according to the invention have even with strong mechanical stress, such as z. B. occurs in the hydrogen peroxide synthesis, high abrasion resistance. Even after prolonged operation, there is usually no mechanical detachment.
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Katalysators, der wenigstens ein Platinmetall auf einem nichtporösen nichtmetallischen Träger umfasst, wobei manThe present invention relates to a process for producing a catalyst which comprises at least one platinum metal on a non-porous non-metallic support, wherein
a) gegebenenfalls die Oberfläche des Trägers aufraut,a) optionally roughening the surface of the support,
b) den, gegebenenfalls oberflächig aufgerauten, Träger akti- viert, indem man ihn vorzugsweise mit einem Reduktionsmittel und einem Salz eines Platinmetalls behandelt,b) activating the support, which may have been roughened on the surface, by treating it preferably with a reducing agent and a salt of a platinum metal,
c) auf dem gemäß Schritt b) behandelten Träger wenigstens ein Platinmetall stromlos abscheidet, wobei man ein wässriges Me- dium, das wenigstens eine Verbindung oder einen Komplex eines Platinmetalls und wenigstens ein Reduktionsmittel umfasst, mit dem Träger in Kontakt bringt, undc) electrolessly depositing at least one platinum metal on the carrier treated according to step b), an aqueous medium comprising at least one compound or a complex of a platinum metal and at least one reducing agent being brought into contact with the carrier, and
d) gegebenenfalls den in Schritt c) erhaltenen Katalysator for- miert. Erfindungsgemäß wird zur Katalysatorherstellung ein nichtporöser Träger eingesetzt. Unter einem nichtporösen Träger wird dabei ein Träger mit einem durch Quecksilber-Porosimetrie (Hg-Porosimetrie) bestimmten Porenvolumen von höchstens 1,0 ml/g, vorzugsweise höchstens 0,1 ml/g und besonders bevorzugt höchstens 0,05 ml/g verstanden. Der Anteil des Porenvolumens am Gesamtvolumen des Trägerwerkstücks beträgt vorzugsweise höchstens 2 %, bevorzugt höchstens 0,5 %.d) optionally the catalyst obtained in step c) is formed. According to the invention, a non-porous support is used to produce the catalyst. A non-porous carrier is understood to mean a carrier with a pore volume determined by mercury porosimetry (Hg porosimetry) of at most 1.0 ml / g, preferably at most 0.1 ml / g and particularly preferably at most 0.05 ml / g. The proportion of the pore volume in the total volume of the carrier workpiece is preferably at most 2%, preferably at most 0.5%.
Die erfindungsgemäß eingesetzten Träger weisen vorzugsweise eine BET-Oberfläche von höchstens 5 m2/g, insbesondere höchstens 0,2 m2/g auf.The supports used according to the invention preferably have a BET surface area of at most 5 m 2 / g, in particular at most 0.2 m 2 / g.
Vorzugsweise ist der als Träger eingesetzte nichtmetallische Werkstoff ausgewählt unter mineralischen Werkstoffen, Kunststoffen und Mischungen und Kombinationen davon.The non-metallic material used as the carrier is preferably selected from mineral materials, plastics and mixtures and combinations thereof.
Der Ausdruck "mineralischer Werkstoff" umfasst vorliegend ganz allgemein nichtmetallische anorganische Werkstoffe, wie natürli- ehe und synthetische Mineralien, Gläser, Keramiken etc. Vorzugsweise wird als mineralischer Werkstoff ein Glas eingesetzt. Bevorzugt sind Gläser aus geschmolzenem Siliciumdioxid oder geschmolzenem Quarz sowie Gläser auf Basis von Alkali-, Erdalkali-, Boro-, Alumino- und Bleisilicat. Bevorzugte mineralische Träger- materialien sind weiterhin auch Borat-, Phosphat-, Germanat-,In the present case, the expression “mineral material” encompasses very generally non-metallic inorganic materials, such as natural and synthetic minerals, glasses, ceramics etc. A glass is preferably used as the mineral material. Glasses made of molten silicon dioxide or molten quartz and glasses based on alkali metal, alkaline earth metal, borosilicate, aluminosilicate and lead silicate are preferred. Preferred mineral carrier materials are also borate, phosphate, germanate,
Chalkogenid- und Halogenidgläser, wie z. B. aus Berylliumfluorid.Chalcogenide and halide glasses, such as. B. from beryllium fluoride.
Vorzugsweise ist der als Träger eingesetzte mineralische Werkstoff weiterhin ausgewählt aus keramischen Materialien. Geeignete keramische Materialien können aus Metalloxiden, -boriden, -nitri- den und/oder -carbiden hergestellt werden. Die erfindungsgemäß eingesetzten keramischen Materialien können glasiert oder unglasiert, kristallin oder teilkristallin sein. Bevorzugt werden für das erfindungsgemäße Verfahren Keramiken aus Basismaterialien eingesetzt, die ausgewählt sind unter Aluminiumoxid, Siliciumcar- bid, Siliciumnitrid, Zirkondioxid und Mischungen davon. Vorzugsweise werden weiterhin Keramiken eingesetzt, die Kationen enthalten, wie das z. B. in Chelatit, Steatit, Cordierit, Anorthit, Mullit oder Pollucit der Fall ist. Bevorzugt sind weiterhin kera- mische Kompositmaterialien.The mineral material used as the carrier is preferably also selected from ceramic materials. Suitable ceramic materials can be produced from metal oxides, borides, nitrides and / or carbides. The ceramic materials used according to the invention can be glazed or unglazed, crystalline or partially crystalline. For the method according to the invention, ceramics made from base materials are preferably used, which are selected from aluminum oxide, silicon carbide, silicon nitride, zirconium dioxide and mixtures thereof. Ceramics containing cations, such as the z. B. in chelate, steatite, cordierite, anorthite, mullite or pollucite is the case. Ceramic composite materials are also preferred.
Nach einer weiteren bevorzugten Ausführungsform wird für das erfindungsgemäße Verfahren ein Kunststoffträger eingesetzt.According to a further preferred embodiment, a plastic carrier is used for the method according to the invention.
Vorzugsweise umfassen die erfindungsgemäß eingesetzten Träger wenigstens ein natürliches oder synthetisches polymeres Material. Beispiele für derartige Materialien sind:The carriers used according to the invention preferably comprise at least one natural or synthetic polymeric material. Examples of such materials are:
1. Polymere von Mono- und Diolefinen, beispielsweise Polypropylen, Polyisobutylen, Polybuten-1, Poly-4-methyl-penten-l, Po- lyisopren oder Polybutadien sowie Polymerisate von Cycloole- finen, wie z. B. von Cyclopenten oder Norbornen; ferner Poly- ethylen (das gegebenenfalls vernetzt sein kann), z. B. Poly- ethylen hoher Dichte (HDPE), Polyethylen hoher Dichte und hoher Molmasse (HDPE-HMW), Polyethylen hoher Dichte und ultra- hoher Molmasse (HDPE-UHMW), Polyethylen mittlerer Dichte1. Polymers of mono- and diolefins, for example polypropylene, polyisobutylene, polybutene-1, poly-4-methyl-pentene-1, polyisoprene or polybutadiene, and polymers of cycloolefins, such as, for. B. of cyclopentene or norbornene; also polyethylene (which may optionally be crosslinked), e.g. B. High density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultra high molecular weight polyethylene (HDPE-UHMW), medium density polyethylene
(MDPE), Polyethylen niederer Dichte (LDPE), lineares Polyethylen niederer Dichte (LLDPE), verzweigtes Polyethylen niederer Dichte (VLDPE).(MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), branched low density polyethylene (VLDPE).
2. Mischungen der unter 1. genannten Polymeren, z. B. Mischungen von Polypropylen mit Polyisobutylen, Polypropylen mit Polyethylen (z. B. PP/HDPE, PP/LDPE) und Mischungen verschiedener Polyethylentypen (z. B. LDPE/HDPE).2. Mixtures of the polymers mentioned under 1., for. B. Mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (e.g. PP / HDPE, PP / LDPE) and mixtures of different types of polyethylene (e.g. LDPE / HDPE).
3. Copolymere von Mono- und Diolefinen untereinander oder mit anderen Vinylmonomeren, wie z. B. Ethylen-Propylen-Copoly- mere, und deren Mischungen mit anderen Polymeren, wie z. B. Polyamiden.3. Copolymers of mono- and diolefins with one another or with other vinyl monomers, such as. B. ethylene-propylene copolymers, and their mixtures with other polymers, such as. B. polyamides.
4. Polyvinylaromaten, wie Polystyrol, Poly-(p-methylstyrol) , Poly-(α-methylstyrol) .4. Polyvinyl aromatics such as polystyrene, poly- (p-methylstyrene), poly- (α-methylstyrene).
5. Copolymere von Polyvinylaromaten, wie Styrol oder α-Methyl- styrol, mit Dienen oder Acrylderivaten, wie z. B. Styrol-Bu- tadien, Styrol-Acrylnitril, Styrol-Alkylmethacrylat, Styrol- Butadien-Alkylacrylat und -methacrylat, Styrol-Maleinsäurean- hydrid, Styrol-Acrylnitril-Methylacrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z. B. einem Polyacrylat, einem Dien-Poly eren oder einem Ethylen-Propylen-Dien-Terpolymeren; sowie Block- Copolymere des Styrols, wie z. B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen-Styrol oder Styrol-Ethylen/Propylen-Styrol .5. Copolymers of polyvinyl aromatics, such as styrene or α-methyl styrene, with dienes or acrylic derivatives, such as. B. styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate and methacrylate, styrene-maleic anhydride, styrene-acrylonitrile-methyl acrylate; Mixtures of high impact strength from styrene copolymers and another polymer, such as. B. a polyacrylate, a diene poly eren or an ethylene-propylene-diene terpolymer; and block copolymers of styrene, such as. B. styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene / butylene-styrene or styrene-ethylene / propylene-styrene.
6. Pfropfcopolymere von Polyvinylaromaten, wie Styrol oder α-Me- thylstyrol, wie z. B. Styrol auf Polybutadien, Styrol auf Po- lybutadien-Styrol- oder Polybutadien-Acrylnitril-Copolymere, Styrol und Acrylnitril (bzw. Methacrylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybuta- dien; Styrol und Maleinsäureanhydrid auf Polybutadien; styrol, Acrylnitril und Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien; Styrol und Maleinsäureimid auf Polybuta- dien, Styrol und Alkylacrylate bzw. Alkyl ethacrylate auf Polybutadien, Styrol und Acrylnitril auf Ethylen-Propylen-Dien- Terpolymeren, Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten, Styrol und Acrylnitril auf Acry- lat-Butadien-Copolymeren, sowie deren Mischungen mit den unter 5. genannten Copolymeren, wie sie z. B. als sogenannte ABS-, MBS-, ASA- oder AES-Polymere bekannt sind.6. graft copolymers of polyvinylaromatics, such as styrene or α-methylstyrene, such as. B. styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; Styrene, acrylonitrile and methyl methacrylate on polybutadiene; Styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; Styrene and maleimide on polybuta- diene, styrene and alkyl acrylates or alkyl ethacrylates on polybutadiene, styrene and acrylonitrile on ethylene-propylene-diene terpolymers, styrene and acrylonitrile on polyalkylacrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate-butadiene copolymers, and mixtures thereof with the under 5. mentioned copolymers, such as. B. are known as so-called ABS, MBS, ASA or AES polymers.
7. Halogenhaltige Polymere, wie z. B. Polychloropren, Chlor- kautschuk, chloriertes und bromiertes Copolymer aus Isobuty- len-Isopren (Halobutylkautschuk) , chloriertes oder chlorsul- foniertes Polyethylen, Copolymere von Ethylen und chloriertem Ethylen, Epichlorhydrinhomo- und -copolymere, insbesondere Polymere aus halogenhaltigen VinylVerbindungen, wie z. B. Po- lyvinylchlorid, Polyvinylidenchlorid, Polyvinylfluorid, Poly- vinylidenfluorid; sowie deren Copolymere, wie Vinylchlorid- Vinylidenchlorid, Vinylchlorid-Vinylacetat oder Vinyli- denchlorid-Vinylacetat.7. Halogen-containing polymers, such as. B. polychloroprene, chlorinated rubber, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or chlorosulfonated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, in particular polymers of halogen-containing vinyl compounds, such as , B. polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride; and their copolymers, such as vinyl chloride-vinylidene chloride, vinyl chloride-vinyl acetate or vinylidene chloride-vinyl acetate.
8. Polymere, die sich von α,ß-ungesättigten Säuren und deren Derivaten ableiten, wie Polyacrylate und Polymethacrylate, mit Butylacrylat schlagzäh modifizierte Polymethylmethacrylate, Polyacrylamide und Polyacrylnitrile .8. Polymers which are derived from α, β-unsaturated acids and their derivatives, such as polyacrylates and polymethacrylates, impact-modified polymethyl methacrylates, polyacrylamides and polyacrylonitriles with butyl acrylate.
9. Copolymere der unter 8. genannten Monomeren untereinander oder mit anderen ungesättigten Monomeren, wie z. B. Acrylni- tril-Butadien-Copolymere, Acrylnitril-Alkylacrylat-Copoly- mere, Acrylnitril-Alkoxyalkylacrylat-Copoly ere, Acrylnitril- Vinylhalogenid-Copolymere oder Acrylnitril-Alkylmethacrylat- Butadien-Terpolymere.9. copolymers of the monomers mentioned under 8 with each other or with other unsaturated monomers, such as. B. acrylonitrile-butadiene copolymers, acrylonitrile-alkyl acrylate copolymers, acrylonitrile-alkoxyalkyl acrylate copolymers, acrylonitrile-vinyl halide copolymers or acrylonitrile-alkyl methacrylate-butadiene terpolymers.
10. Polyurethane .10. Polyurethanes.
11. Polyamide und Copolyamide, die sich von Diaminen und Dicar- bonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Läc amen"ableiten"," wie "Polyamid"4","Polyamid' 6, PöTy- ~ amid 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, Polyamid 11, Polyamid 12, aromatische Polyamide z. B. ausgehend von p-Phenylendia- min und Adipinsäure; Polyamide, hergestellt aus Hexamethylen- dia in und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z. B. Poly-2,4,4-trimethyl- hexamethylenterephthalamid oder Poly-m-phenylen-isophthala- mid. Geeignet sind auch Block-Copolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin-Copolymeren, Iono- meren oder chemisch gebundenen oder gepfropften Elastomeren; oder mit Polyethern, wie z. B. mit Polyethylenglykol, Poly- propylenglykol oder Polytetramethylenglykol . Geeignet sind ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ( "RIM-Polyamidsysteme" ) .11. Polyamides and copolyamides from diamines and dicarboxylic acids to and / or from aminocarboxylic acids or the corresponding LAECs Amen "derive", "such as" polyamide "4", "polyamide '6, ~ amide PöTy- 6/6, 6 / 10, 6/9, 6/12, 4/6, 12/12, polyamide 11, polyamide 12, aromatic polyamides, for example starting from p-phenylenediamine and adipic acid, polyamides made from hexamethylene diamine in and Iso- and / or terephthalic acid and optionally an elastomer as modifier, for example poly-2,4,4-trimethyl-hexamethylene terephthalamide or poly-m-phenylene-isophthalamide. Block copolymers of the above-mentioned polyamides are also suitable Polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers, or with polyethers, such as, for example, with polyethylene glycol, polypropylene glycol or polytetramethylene glycol, are suitable also polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (“RIM polyamide systems”).
12. Polyharnstoffe, Polyimide, Polyamidimide, Polyetherimide, Po- lyesterimide, Polyhydantoine und Polybenzimidazole.12. Polyureas, polyimides, polyamideimides, polyetherimides, polyesterimides, polyhydantoins and polybenzimidazoles.
13. Polyester, die sich von Dicarbonsäuren und Dialkoholen und/ oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ableiten, wie Polyethylenterephthalat, Polybutylenterephtha- lat, Poly-l,4-dimethylolcyclohexanterephthalat, Polyhydroxy- benzoate, sowie Block-Polyetherester, die sich von Polyethern mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester.13. Polyesters which are derived from dicarboxylic acids and dialcohols and / or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-l, 4-dimethylolcyclohexane terephthalate, polyhydroxybenzoates, and block polyether esters which differ from polyethers Derive hydroxyl end groups; furthermore polyesters modified with polycarbonates or MBS.
14. Polycarbonate und Polyestercarbonate .14. Polycarbonates and polyester carbonates.
15. Vernetzte Polymere, die sich z. B. von Aldehyden einerseits und Phenolen, Harnstoff oder Melamin andererseits ableiten, wie Phenol-Formaldehyd-, Harnstoff-Formaldehyd- und Melamin- Formaldehydharze .15. Crosslinked polymers, which, for. B. from aldehydes on the one hand and phenols, urea or melamine on the other hand, such as phenol-formaldehyde, urea-formaldehyde and melamine-formaldehyde resins.
16. Vernetzbare Acrylharze, die sich von substituierten Acrylsäu- reestern ableiten, wie z. B. von Epoxyacrylaten, Urethanacry- laten oder Polyesteracrylaten.16. Crosslinkable acrylic resins derived from substituted acrylic acid esters, such as. B. of epoxy acrylates, urethane acrylates or polyester acrylates.
17. Alkydharze, Polyesterharze und Acrylatharze, die mit Melamin- harzen, Harnstoffharzen, Isocyanaten, Isocyanuraten, Polyiso- cyanaten oder Epoxidharzen vernetzt sind.17. Alkyd resins, polyester resins and acrylate resins which are crosslinked with melamine resins, urea resins, isocyanates, isocyanurates, polyisocyanates or epoxy resins.
18. Vernetzte Epoxidharze, die sich von aliphatischen, cycloali- phatischen, heterocyclischen oder aromatischen Glycidylver- bindungen ableiten, z. B. Produkte von Bisphenol-A-diglyci- dylethern, Bisphenol-F-diglycid lethern, die mittels üblichen Härtern, wie z. B. Anhydriden oder Aminen mit oder ohne Beschleunigern vernetzt werden.18. Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, eg. B. products of bisphenol A diglycidyl ether, bisphenol F diglycid lethern, using conventional hardeners, such as. B. anhydrides or amines with or without accelerators.
Vorzugsweise wird der Träger in Form eines teilchenförmigen, li- nienförmigen, flächenförmigen oder dreidimensionalen Gebildes eingesetzt. Der Begriff teilchenförmige Gebilde umfasst dabei den Bereich der feinen Pigmente bis hin zu makroskopischen Partikeln. Dazu zählen insbesondere solche mit einer Teilchengröße von 0,25 nm bis 10 mm. Unter linienförmigen Gebilden werden insbesondere Fasern, Filamente und dergleichen verstanden. Vorzugsweise werden die nichtmetallischen Träger in Form von Glas- oder Kunststofffasern eingesetzt. Flächenförmige Gebilde sind insbesondere Gewebe, Gewirke, Filze, Vliese, Netze, Gestricke, Matten etc. Dreidimensionale Gebilde sind allgemein Formkörper unterschiedlichster Dimension.The carrier is preferably used in the form of a particulate, line-shaped, sheet-like or three-dimensional structure. The term particulate structures encompasses everything from fine pigments to macroscopic particles. These include in particular those with a particle size of 0.25 nm to 10 mm. Line-shaped structures are understood to mean in particular fibers, filaments and the like. The non-metallic supports are preferably used in the form of glass or plastic fibers. Sheet-like structures are in particular woven fabrics, knitted fabrics, felts, nonwovens, nets, knitted fabrics, mats, etc. Three-dimensional structures are generally shaped bodies of various dimensions.
Die nichtmetallischen Träger werden bevorzugt in Form von Form- körpern eingesetzt. Die Formkörper können die Gestalt von Kugeln, Pellets, kurzen Strängen, Raschigringen, Pall®-Ringen, Sattelkörpern, zylindrischen Gitterfüllkörpern, Hacketten, Spiralen oder Helices haben.The non-metallic supports are preferably used in the form of shaped bodies. The shaped bodies can have the shape of spheres, pellets, short strands, Raschig rings, Pall® rings, saddle bodies, cylindrical lattice fillers, Hackettes, spirals or helices.
Die nichtmetallischen Träger werden weiterhin bevorzugt in Form von Geweben eingesetzt. Die Gewebe ihrerseits können in Gestalt von Monolithen, d. h. geordneten Packungen, verwendet werden.The non-metallic supports are also preferably used in the form of fabrics. The tissues in turn can be in the form of monoliths, i.e. H. ordered packs.
Besonders geeignete Monolithe sind aus mehreren Lagen gewellter, geknickter und/oder glatter Gewebe aufgebaut, die vorzugsweise so angeordnet sind, dass benachbarte Lagen mehr oder weniger abgeschlossene Kanäle bilden. Der hydraulische Durchmesser der Kanäle liegt vorzugsweise im Bereich von 1 bis 10 mm, insbesondere von 1,5 bis 3 mm (gemäß Definition in VDI-Wärmeatlas, Abschnitt LE 1) . Die Kanäle können gerade oder gebogen sein. Bevorzugt werden mehrlagige Gewebe eingesetzt, in denen sich glatte und gewellte bzw. geknickte Kanäle bilden. Während Füllkörper in der Regel als lose Schüttung in den Reaktor gegeben werden, werden Monolithe bevorzugt in den Reaktor eingebaut, insbesondere so, dass die Ka- näle gegen die Durchströmungsrichtung des Reaktionsmediums geneigt sind. Die Gewebelagen selber werden vorzugsweise parallel zur Strömungsrichtung im Reaktor eingebaut. Sind mehrere dieser Baueinheiten nacheinander geschaltet, so erfolgt der Einbau vorzugsweise so, dass die Durchströmungskanäle gegen die Strömungs- richtung alternierend in entgegengesetzte Richtungen geneigt sind. Die Baueinheiten werden vorzugsweise so eingebaut, dass die Gewebelagen zweier aufeinander folgender Baueinheiten einen Winkel von vorzugsweise etwa 90° zueinander einnehmen. Wickelmodule aus gewellten oder geknickten und gegebenenfalls auch aus ebenen Gewebelagen sind ebenfalls geeignet.Particularly suitable monoliths are made up of several layers of corrugated, kinked and / or smooth fabric, which are preferably arranged in such a way that adjacent layers form more or less closed channels. The hydraulic diameter of the channels is preferably in the range from 1 to 10 mm, in particular from 1.5 to 3 mm (as defined in VDI Heat Atlas, section LE 1). The channels can be straight or curved. Multi-layer fabrics are preferably used, in which smooth and wavy or kinked channels are formed. While packings are generally added to the reactor as a loose bed, monoliths are preferably installed in the reactor, in particular in such a way that the channels are inclined against the flow direction of the reaction medium. The fabric layers themselves are preferably installed parallel to the flow direction in the reactor. If several of these units are connected in series, the installation is preferably carried out in such a way that the throughflow channels are inclined alternately in opposite directions to the direction of flow. The structural units are preferably installed in such a way that the fabric layers of two successive structural units form an angle of preferably approximately 90 ° to one another. Winding modules made of corrugated or kinked and, if necessary, also of flat fabric layers are also suitable.
Schritt a)Step a)
Im Allgemeinen können die erfindungsgemäß eingesetzten nichtporö- sen nichtmetallischen Träger zur Katalysatorherstellung so eingesetzt werden, wie sie in ihrem jeweiligen Herstellungsprozess anfallen. Gewünschtenfalls kann die Oberfläche des Trägers jedoch vor den nachfolgenden Verfahrensschritten aufgeraut werden.In general, the non-porous non-metallic supports used according to the invention can be used for catalyst production in the way that they occur in their respective production process. If desired, however, the surface of the carrier can be roughened before the subsequent process steps.
zur Aufrauung der Trägeroberfläche können mechanische und/oder chemische Verfahren zum Einsatz kommen. Eine Aufrauung von Trägern aus mineralischen Werkstoffen, wie z. B. von gläsernen oder keramischen Trägern, erfolgt vorzugsweise durch bekannte mechanische Verfahren, wie z. B. durch Schleifen mit einem Material, das eine höhere Härte als die des Trägers aufweist. Geeignete Schleifmaterialien sind z. B. Quarz, Korund, Granat, Schmirgel und Diamant. Ein geeignetes Verfahren zur Aufrauung von Glasoder Keramikkugeln umfasst die Behandlung in einem rotierenden Drehrohr mit einem feinpulverigen Schleifmittel. Das Schleifmittel kann anschließend durch übliche Verfahren, wie Absieben oder Herausspülen mit Wasser von dem Trägermaterial abgetrennt werden. Gläserne Oberflächen können auch durch Sandstrahlen aufgeraut werden.Mechanical and / or chemical methods can be used to roughen the carrier surface. A roughening of carriers made of mineral materials, such as. B. of glass or ceramic carriers, is preferably carried out by known mechanical methods, such as. B. by grinding with a material that has a higher hardness than that of the carrier. Suitable abrasive materials are e.g. B. quartz, corundum, garnet, emery and diamond. A suitable method for roughening glass or ceramic balls involves treatment in a rotating rotary tube with a finely powdered abrasive. The abrasive can then be separated from the backing material by conventional methods such as sieving or rinsing out with water. Glass surfaces can also be roughened by sandblasting.
Ein weiteres geeignetes Verfahren zur Erhöhung der Rauheit der Trägeroberfläche besteht in der Behandlung mit geeigneten Chemi- kalien. Mineralische Werkstoffe können vorzugsweise durch Ätzen, z. B. mit Flusssäure, wässrigem Alkali oder wässriger Mineralsäure, wie z. B. Salzsäure, Salpetersäure, Phosphorsäure, oberflächig aufgeraut werden. Träger aus Kunststoff können vorzugsweise durch Behandlung mit die Oberfläche angreifenden Chemika- lien, vorzugsweise mit Oxidationsmitteln, aufgeraut werden. Geeignete Chemikalien zur Aufrauung von Kunststoffoberflächen sind z. B. Salpetersäure, Wasserstoffperoxid, Ammoniak etc. Vorzugsweise wird ca. 10 %ige Salpetersäure, ca. 50 %iges Wasserstoffperoxid oder ein Gemisch von ca. 10 %igem Ammoniak und ca. 10 %igem Wasserstoffperoxid, gegebenenfalls über mehrere Stunden und bei erhöhten Temperaturen, eingesetzt.Another suitable method for increasing the roughness of the carrier surface is treatment with suitable chemicals. Mineral materials can preferably be etched, e.g. B. with hydrofluoric acid, aqueous alkali or aqueous mineral acid, such as. As hydrochloric acid, nitric acid, phosphoric acid, are roughened on the surface. Carriers made of plastic can preferably be roughened by treatment with chemicals attacking the surface, preferably with oxidizing agents. Suitable chemicals for roughening plastic surfaces are e.g. B. nitric acid, hydrogen peroxide, ammonia etc. Preferably about 10% nitric acid, about 50% hydrogen peroxide or a mixture of about 10% ammonia and about 10% hydrogen peroxide, optionally over several hours and at elevated temperatures , used.
Schritt b)Step b)
Unter "Aktivierung" des Trägers wird ein Vorgang verstanden, bei dem auf der Oberfläche des Trägers Keime für die stromlose Abscheidung ausgebildet werden. Die Keime für die stromlose Abscheidung bestehen in der Regel aus einem Metall, vorzugsweise einem Platinmetall, besonders bevorzugt Palladium. Zweckmäßiger- weise aktiviert man den Träger, indem man ihn mit einem Reduktionsmittel und einem Salz eines Platinmetalls behandelt.“Activation” of the carrier is understood to mean a process in which germs for electroless deposition are formed on the surface of the carrier. The nuclei for electroless deposition generally consist of a metal, preferably a platinum metal, particularly preferably palladium. The carrier is expediently activated by treating it with a reducing agent and a salt of a platinum metal.
Die Behandlung des Trägers mit dem Reduktionsmittel und dem Platinmetallsalz kann gleichzeitig oder nacheinander erfolgen, in beiden Fällen kann die Behandlung jeweils in einem oder mehreren Schritten erfolgen. Gewünschtenfalls kann der Träger vor der Behandlung einer Reinigung unterzogen werden. Desgleichen kann sich an die Behandlung oder bei einer Behandlung in mehreren Schritten an jeden Behandlungsschritt ein Reinigungsschritt anschließen. Nach einer ersten bevorzugten Ausführungsform erfolgt die Behandlung des Trägers in Schritt b) mit einem wassrigen Medium, das wenigstens ein Reduktionsmittel und wenigstens ein Salz eines Platinmetalls umfasst. Die Behandlung kann dabei in einem oder mehreren Schritten erfolgen.The treatment of the carrier with the reducing agent and the platinum metal salt can be carried out simultaneously or in succession, in both cases the treatment can be carried out in one or more steps. If desired, the carrier can be cleaned prior to treatment. Likewise, a cleaning step can follow the treatment or, in the case of a treatment in several steps, each treatment step. According to a first preferred embodiment, the treatment of the carrier in step b) is carried out with an aqueous medium which comprises at least one reducing agent and at least one salt of a platinum metal. The treatment can take place in one or more steps.
Nach einer weiteren bevorzugten Ausführungsform erfolgt die Behandlung des Trägers in Schritt b) separat mit wenigstens einem Reduktionsmittel und wenigstens einem Platinmetallsalz. Ein be- vorzugtes Verfahren zur Behandlung des Trägers in Schritt b) umfasst die folgenden Teilschritte:According to a further preferred embodiment, the carrier is treated in step b) separately with at least one reducing agent and at least one platinum metal salt. A preferred method for treating the carrier in step b) comprises the following substeps:
bl) gegebenenfalls Reinigen des Trägers,bl) optionally cleaning the carrier,
b2 ) Behandeln des Trägers mit einem wassrigen Medium, das wenigstens ein Reduktionsmittel enthält,b2) treating the carrier with an aqueous medium which contains at least one reducing agent,
b3) Behandeln des Trägers mit einem wassrigen Medium, das wenigstens ein Salz eines Platinmetalls umfasst,b3) treating the support with an aqueous medium which comprises at least one salt of a platinum metal,
wobei die Schritte b2 ) bis b3 ) einmal oder mehrfach durchlaufen werden können. Dabei kann die Behandlung sowohl mit Schritt b2) als auch mit Schritt b3 ) begonnen und abgeschlossen werden. Bevorzugt werden die Schritte b2 ) und b3 ) ein- bis zehnmal wieder- holt.Steps b2) to b3) can be carried out once or several times. The treatment can be started and completed both with step b2) and with step b3). Steps b2) and b3) are preferably repeated one to ten times.
Gewunschtenfalls kann sich an die Behandlungsschritte b2) und/ oder b3) ein Reinigungsschritt anschließen, z. B. durch Inkon- taktbringen des Trägers mit einer Spüllösung.If desired, a cleaning step can follow treatment steps b2) and / or b3), e.g. B. by bringing the carrier into contact with a rinsing solution.
Die Reinigung des Trägers vor den Behandlungsschritten kann nach üblichen, dem Fachmann bekannten Verfahren erfolgen. Dazu gehört z. B. die Behandlung mit wassrigen Tensidlösungen und/oder die Behandlung mit organischen Lösungsmitteln und Lösungsmittelgemi- sehen, wie z. B. Ethanol, Ethanol-Wasser-Gemische, Essigester, Aceton etc. Gewunschtenfalls kann die Reinigung unter Einsatz von Ultraschall erfolgen. Als Spüllösungen zur Reinigung des Trägers nach einem Behandlungsschritt eignen sich z. B. die für die Behandlungsschritte eingesetzten reinen wassrigen Medien und insbe- sondere Wasser.The carrier can be cleaned before the treatment steps by customary methods known to those skilled in the art. This includes e.g. B. see the treatment with aqueous surfactant solutions and / or the treatment with organic solvents and solvent mixtures, such as. As ethanol, ethanol-water mixtures, ethyl acetate, acetone, etc. If desired, cleaning can be carried out using ultrasound. As rinsing solutions for cleaning the carrier after a treatment step are, for. B. the pure aqueous media used for the treatment steps and in particular water.
Geeignete wassrige Medien für die Behandlungsschritte werden im Folgenden bei Schritt c) genannt, worauf hier Bezug genommen wird. Bevorzugt wird in Schritt b) ein wässriges Medium einge- setzt, das im Wesentlichen frei von organischen Lösungsmitteln ist. Vorzugsweise enthält dieses Medium zusätzlich wenigstens eine anorganische Säure, insbesondere Salzsäure. Bevorzugt weisen die in Schritt b) eingesetzten wassrigen Medien einen sauren pH- Wert auf. Besonders bevorzugt ist ein pH < 6, insbesondere < 5.Suitable aqueous media for the treatment steps are mentioned below in step c), to which reference is made here. In step b), an aqueous medium which is essentially free of organic solvents is preferably used. This medium preferably additionally contains at least one inorganic acid, in particular hydrochloric acid. Preferably point the aqueous media used in step b) have an acidic pH. A pH <6, in particular <5, is particularly preferred.
Zur Behandlung des Trägers mit dem Reduktionsmittel (und gegebe- 5 nenfalls gleichzeitig mit dem Platinmetallsalz) wird ein wässriges Medium eingesetzt, das wenigstens ein Reduktionsmittel in ganz oder teilweise gelöster Form enthält. Geeignete Reduktionsmittel werden im Folgenden bei Schritt c) genannt, worauf hier Bezug genommen wird. Bevorzugt in Schritt b) eingesetzte Redukti- 10 onsmittel sind Zinn(II)Chlorid und Titan(III )chlorid.To treat the carrier with the reducing agent (and, if appropriate, simultaneously with the platinum metal salt), an aqueous medium is used which contains at least one reducing agent in completely or partially dissolved form. Suitable reducing agents are mentioned below in step c), to which reference is made here. Reducing agents preferably used in step b) are tin (II) chloride and titanium (III) chloride.
Zur Behandlung des Trägers in Schritt b) geeignete Platinmetallsalze werden im folgenden Schritt c) genannt, worauf hier Bezug genommen wird. Bevorzugt wird als Platinmetallsalz wenigstens einPlatinum metal salts suitable for treating the carrier in step b) are mentioned in the following step c), to which reference is made here. At least one is preferred as the platinum metal salt
15 Palladiumsalz eingesetzt. Das zur Behandlung des Trägers in15 palladium salt used. That to treat the wearer in
Schritt b) eingesetzte wässrige Medium kann zusätzlich zu wenigstens einem Platinmetallsalz noch wenigstens ein weiteres Salz eines Metalls der Eisengruppe und/oder der 1. Nebengruppe enthalten. Bevorzugt sind Nickel- und Silbersalze.Step b) the aqueous medium used can contain, in addition to at least one platinum metal salt, at least one further salt of a metal of the iron group and / or the 1st subgroup. Nickel and silver salts are preferred.
2020
Nach einer bevorzugten Ausführungsform umfasst die Behandlung des Trägers in Schritt b) das Inkontaktbringen mit einem wassrigen Medium mit einem Zinn(II)chloridgehalt im Bereich von etwa 1 bis 20 g/1 und einem Gehalt an konzentrierter Salzsäure von etwa 1According to a preferred embodiment, the treatment of the carrier in step b) comprises contacting with an aqueous medium with a tin (II) chloride content in the range from about 1 to 20 g / 1 and a content of concentrated hydrochloric acid of about 1
25 bis 50 ml/1. Die Behandlung erfolgt vorzugsweise bei einer Temperatur im Bereich von etwa 10 bis 40 °C, insbesondere bei Umgebungstemperatur. Die Behandlungsdauer mit dem Reduktionsmittel liegt insbesondere in einem Bereich von etwa 0,1 bis 30 Minuten, insbesondere 0,5 bis 10 Minuten. Bevorzugt wird der Träger nach25 to 50 ml / 1. The treatment is preferably carried out at a temperature in the range from about 10 to 40 ° C., in particular at ambient temperature. The treatment time with the reducing agent is in particular in a range from about 0.1 to 30 minutes, in particular 0.5 to 10 minutes. The carrier is preferably after
30 der Behandlung mit dem Reduktionsmittel mit Wasser abgespült. Anschließend erfolgt ein Inkontaktbringen mit einem wassrigen Medium mit einem Palladiumchloridgehalt im Bereich von etwa 0,02 bis 2 g/1 und einem Gehalt an konzentrierter Salzsäure im Bereich von etwa 0,1 bis 10 ml/1. Dieses wässrige Medium kann weitere Me-30 treatment with the reducing agent rinsed with water. This is then brought into contact with an aqueous medium with a palladium chloride content in the range from about 0.02 to 2 g / 1 and a content of concentrated hydrochloric acid in the range from about 0.1 to 10 ml / 1. This aqueous medium can
35 tallsalze, wie zuvor beschrieben, enthalten. Die Behandlung mit dem Platinmetall erfolgt vorzugsweise ebenfalls bei einer Temperatur im Bereich von etwa 10 bis 40 °C, insbesondere bei Umgebungstemperatur. Die Behandlungsdauer liegt vorzugsweise in einem Bereich von etwa 0,1 bis 30 Minuten, besonders bevorzugt 0,5 bis35 tall salts, as previously described, included. The treatment with the platinum metal is preferably also carried out at a temperature in the range from about 10 to 40 ° C., in particular at ambient temperature. The treatment time is preferably in a range from about 0.1 to 30 minutes, particularly preferably 0.5 to
40 10 Minuten. Abschließend wird der behandelte Träger vorzugsweise wiederum mit Wasser gespült.40 10 minutes. Finally, the treated carrier is preferably rinsed again with water.
Nach einer weiteren bevorzugten Ausführungsform wird zur Behandlung des Trägers in Schritt b) zunächst ein wässriges Medium be- 45 reitgestellt, das wenigstens ein Reduktionsmittel, wenigstens ein Platinmetallsalz und gegebenenfalls wenigstens ein weiteres Salz eines Metalls der Eisengruppe oder der 1. Nebengruppe enthält und der Träger anschließend damit in Kontakt gebracht. Bevorzugt erfolgt die Behandlung des Trägers mit der bereitgestellten Lösung innerhalb von etwa 24 Stunden. Abschließend wird der behandelte Träger vorzugsweise mit Wasser gespült.According to a further preferred embodiment, an aqueous medium which contains at least one reducing agent, at least one platinum metal salt and, if appropriate, at least one further salt of a metal of the iron group or the first subgroup, is first provided in step b) and the carrier then brought into contact with it. The treatment of the carrier with the solution provided is preferably carried out within about 24 hours. Finally, the treated carrier is preferably rinsed with water.
In Schritt b) wird eine Platinmetallmenge auf dem Träger abgeschieden, die klein ist gegenüber der insgesamt auf dem Träger abgeschiedenen Menge. Vorzugsweise beträgt die in Schritt b) abgeschiedene Platinmetallmenge höchstens 10 Gew.-%, besonders be- vorzugt höchstens 1 Gew.-%, bezogen auf die insgesamt auf dem Träger abgeschiedene Menge.In step b) a quantity of platinum metal is deposited on the carrier which is small compared to the total quantity deposited on the carrier. The amount of platinum metal deposited in step b) is preferably at most 10% by weight, particularly preferably at most 1% by weight, based on the total amount deposited on the support.
Die Vorbehandlung des Trägers in Schritt b) trägt dazu bei, dass nach dem erfindungsgemäßen Verfahren Katalysatoren erhalten wer- den, bei denen das Platinmetall gut auf dem nichtporösen Trägermaterial haftet. Die so hergestellten katalytischen Beschichtungen weisen selbst bei starker mechanischer Beanspruchung eine hohe Abriebfestigkeit auf.The pretreatment of the support in step b) contributes to the fact that the process according to the invention gives catalysts in which the platinum metal adheres well to the non-porous support material. The catalytic coatings produced in this way have a high abrasion resistance even under heavy mechanical stress.
Gewunschtenfalls kann der so vorbehandelte Träger abschließend nach üblichen, dem Fachmann bekannten Verfahren getrocknet werden. Er kann jedoch auch feucht für die anschließende Behandlung in Schritt c) eingesetzt werden.If desired, the support which has been pretreated in this way can finally be dried by customary processes known to those skilled in the art. However, it can also be used moist for the subsequent treatment in step c).
Schritt c)Step c)
Platinmetalle im Sinne der Erfindung sind die nicht zur Eisengruppe gehörenden Edelmetalle der 8. Nebengruppe des Periodensystems, nämlich Ruthenium, Rhodium, Iridium, Palladium, Osmium und Platin. Bevorzugt sind Ruthenium, Rhodium, Palladium und Platin, besonders bevorzugt sind Palladium und Platin. Die erfindungsgemäßen Katalysatoren können mehrere Platinmetalle umfassen. Geeignet sind alle Kombinationen der genannten Platinmetalle, bevorzugt sind Kombinationen aus Palladium und Platin, aus Palla- dium und Rhodium, aus Palladium und Iridium, aus Palladium, Platin und Rhodium und aus Palladium, Platin und Iridium. Besonders bevorzugt als Kombination ist Palladium und Platin. Bei den Kombinationen mit Palladium stellt Palladium vorzugsweise die Hauptplatinmetallkomponente dar. Der Palladiumanteil liegt dann vor- zugsweise oberhalb von 40 Gew.-%, vorzugsweise oberhalb vonPlatinum metals in the sense of the invention are the noble metals of the 8th subgroup of the periodic table which do not belong to the iron group, namely ruthenium, rhodium, iridium, palladium, osmium and platinum. Ruthenium, rhodium, palladium and platinum are preferred, palladium and platinum are particularly preferred. The catalysts according to the invention can comprise several platinum metals. All combinations of the platinum metals mentioned are suitable, combinations of palladium and platinum, of palladium and rhodium, of palladium and iridium, of palladium, platinum and rhodium and of palladium, platinum and iridium are preferred. Palladium and platinum are particularly preferred as a combination. In the combinations with palladium, palladium is preferably the main platinum metal component. The palladium content is then preferably above 40% by weight, preferably above
60 Gew.-% und besonders bevorzugt oberhalb von 80 Gew.-%, bezogen auf den Gesamtplatinmetallgehalt. Die gegebenenfalls als Nebenbestandteile enthaltenen weiteren Platinmetalle können jeweils bis zu 30 Gew.-%, vorzugsweise bis zu 20 Gew.-% und besonders bevor- zugt bis zu 15 Gew.-% am Gesamtplatinmetallgehalt ausmachen. Vorzugsweise umfassen die Platinmetalle 80 bis 100 Gew.-% Palladium und 0 bis 20 Gew.-% Platin oder Iridium. In den meisten Fällen machen 1 bis 3 der genannten Platinmetalle mehr als 95 Gew.-% der eingesetzten Platinmetallmenge aus . Wenn außer einem Hauptplatinmetall noch weitere Platinmetalle enthalten sind, so sind diese in der Regel in Mengen von größer als 0,001 Gew.-%, vorzugsweise größer als 0,01 Gew.-% enthalten, z. B. zu etwa 0,1 Gew.-%, etwa 1 Gew.-% oder etwa 5 Gew.-%.60 wt .-% and particularly preferably above 80 wt .-%, based on the total platinum metal content. The further platinum metals optionally contained as secondary constituents can each account for up to 30% by weight, preferably up to 20% by weight and particularly preferably up to 15% by weight, of the total platinum metal content. The platinum metals preferably comprise 80 to 100% by weight of palladium and 0 to 20% by weight of platinum or iridium. In most cases make up 1 to 3 of the platinum metals mentioned more than 95 wt .-% of the amount of platinum metal used. If, in addition to a main platinum metal, other platinum metals are also present, these are generally present in amounts of greater than 0.001% by weight, preferably greater than 0.01% by weight, e.g. B. about 0.1% by weight, about 1% by weight or about 5% by weight.
Die katalytisch aktive Komponente der erfindungsgemäßen Katalysatoren kann außer Platinmetallen noch weitere Elemente als Zusatz- komponenten oder gegebenenfalls in Form von Verunreinigungen enthalten. Bevorzugte Zusatzkomponenten, die z. B. die Aktivität und/oder Selektivität des Katalysators beeinflussen können, sind ausgewählt unter Metallen, Nichtmetallen und deren Verbindungen. Dazu zählen bevorzugt Metalle, wie Cobalt, Nickel, Kupfer, Sil- ber, Gold, Chrom, Molybdän, Wolfram, Mangan, Rhenium, Aluminium, Zinn, Blei, Arsen, Antimon und Wismut, und Nichtmetalle, wie Bor, Kohlenstoff, Silicium, Stickstoff und Phosphor. Die genannten Metalle und Nichtmetalle können sowohl in ionischer als auch in nichtionischer Form in der katalytisch aktiven Beschichtung vor- liegen. Darüber hinaus kann die katalytisch aktive Komponente weitere Elemente (Metalle und Nichtmetalle) als Verunreinigungen enthalten, z. B. dadurch, dass die eingesetzten katalytisch aktiven Komponenten Verunreinigungen enthalten, oder dass während des Verfahrens zur Herstellung der erfindungsgemäßen Katalysatoren Bestandteile der im erfindungsgemäßen Verfahren eingesetzten Komponenten in die Platinmetallbeschichtungen eingebaut werden, wie z. B. Alkali- und Erdalkalimetalle, Phosphor, Bor und Halogene.In addition to platinum metals, the catalytically active component of the catalysts according to the invention can contain further elements as additional components or, if appropriate, in the form of impurities. Preferred additional components, the z. B. can affect the activity and / or selectivity of the catalyst are selected from metals, non-metals and their compounds. These preferably include metals such as cobalt, nickel, copper, silver, gold, chromium, molybdenum, tungsten, manganese, rhenium, aluminum, tin, lead, arsenic, antimony and bismuth, and non-metals such as boron, carbon, silicon, Nitrogen and phosphorus. The metals and non-metals mentioned can be present in the catalytically active coating both in ionic and in nonionic form. In addition, the catalytically active component may contain other elements (metals and non-metals) as impurities, e.g. B. by the fact that the catalytically active components used contain impurities, or that components of the components used in the process according to the invention are incorporated into the platinum metal coatings during the process for the preparation of the catalysts according to the invention, such as. B. alkali and alkaline earth metals, phosphorus, boron and halogens.
Bevorzugt wird in Schritt c) ein wässriges Medium eingesetzt, das zusätzlich wenigstens eine Verbindung eines Metalls der 6. , 7. oder 1. Nebengruppe, der Eisen-Gruppe oder des Bismuts umfasst.In step c), an aqueous medium is preferably used which additionally comprises at least one compound of a metal from the 6th, 7th or 1st subgroup, the iron group or bismuth.
Die Zusatzkomponenten können zu 0,001 bis 25 Gew.-%, bezogen auf den Platinmetallgehalt, vorliegen. Als Promotoren oder Dotierun- gen eingesetzte Zusatzkomponenten machen in der Regel 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 15 Gew.-% und insbesondere 0,5 bis 10 Gew.-%, bezogen auf den Platinmetallgehalt, aus.The additional components can be present at 0.001 to 25% by weight, based on the platinum metal content. Additional components used as promoters or dopants generally make up 0.01 to 20% by weight, preferably 0.1 to 15% by weight and in particular 0.5 to 10% by weight, based on the platinum metal content ,
Im erfindungsgemäßen Verfahren werden die Platinmetalle vorzugs- weise als 'Platinmetallkomplexe eingesetzt. Bevorzugt werden dabei Platinmetallkomplexe eingesetzt, in denen das Platinmetall in den Oxidationsstufen +1 bis +4 vorliegt. Vierfach koordinierte Komplexe sind bevorzugt. Das erfindungsgemäße Verfahren eignet sich vorzugsweise zur Herstellung von Platinmetallkatalysatoren, bei dem Palladium die Platinmetallhauptkomponente darstellt.In the novel process, the platinum metals are preferential, as a 'platinum metal complexes used. Platinum metal complexes in which the platinum metal is present in the oxidation states +1 to +4 are preferably used. Four-coordinate complexes are preferred. The process according to the invention is preferably suitable for the production of platinum metal catalysts in which palladium is the main platinum metal component.
Zur Herstellung von Katalysatoren, die Palladium enthalten, und insbesondere von Katalysatoren, die Palladium als Platinmetallhauptkomponente enthalten, sind Palladium(II) omplexe vorzugsweise geeignet. Insbesondere geeignet sind Palladium(II)komplexe, in denen Palladium in der Koordinationszahl 4 vorliegt.Palladium (II) complexes are preferably suitable for the preparation of catalysts which contain palladium, and in particular of catalysts which contain palladium as the main platinum metal component. Palladium (II) complexes in which palladium has the coordination number 4 are particularly suitable.
Vorzugsweise werden solche Kombinationen aus Platinmetallionen und Ligand ausgewählt, deren Komplexbildungskonstante > 1000 und insbesondere > 10000 ist.Such combinations of platinum metal ions and ligand are preferably selected whose complex formation constant is> 1000 and in particular> 10000.
Geeignete Kombinationen von Liganden und Gegenionen für Palladiumkomplexe und für von Palladium verschiedene Platinmetallkomplexe können nach dem Grundsatz der Ladungsneutralität ausgewählt werden. Geeignete negativ geladene Liganden sind z. B. ausgewählt unter Halogeniden und Pseudohalogeniden, wie Chlorid, Bromid, Jo- did, CN, OCN und SCN, Cι-C6-Carbonsäuren, wie Ameisensäure, Essigsäure und Propionsäure und deren Salzen, Chelatliganden, wie zum Beispiel Ethylendiamintetraessigsäure (EDTA), Nitrilotriessig- säure, 1,2-Diaminocyclohexantetraessigsäure und deren Salzen, Aminophosphonsäuren, wie Nitrilomethylenphosphonsäure, Diketona- ten, wie Acetylacetonat, Hydroxycarbonsäuren, wie Glykolsäure, Milchsäure, Weinsäure und Gluconsäure, und deren Salzen. Geeignet als elektroneutrale Liganden sind z. B. Alkylnitrile, wie Aceto- nitril, Amine, wie Ammoniak, primäre, sekundäre und tertiäre Cι-C6-Alkyl-Amine, wie Ethylamin, n-Propylamin, Isopropylamin, n-Butylamin, tert-Butylamin, Hexylamin, Dimethylamin, Di- ethylamin, Diisopropylamin, Di-n-butylamin, Trimethylamin, Tri- ethylamin, Tripropylamin, N,N-Dimethylethylamin, N,N-Dimethyliso- propylamin und N,N-Dimethylbutylamin, Di-, Tri-, Tetra- und Poly- amine, wie Ethylendiamin, Diethylentriamin und Triethylentetra- min, nichtaromatische und aromatische cyclische Amine, wie Pyrro- lidin, Piperidin, Morpholin, Piperazin, Pyrrol und deren n-C-C6-Alkylderivate, Pyridin und Phenanthrolin, Phosphine, wie tertiäre Ci-Cö-Al yl- und C6-Cι2-Arylphosphine, insbesondere Tri- phenylphosphin, sowie Sulfide, wie Cι-C6-Mono- und -Dialkylsul- fide, C6-C12-Mono- und -Diarylsulfide und SauerstoffVerbindungen, Di-Cι-C6-alkanole und Phenole sowie deren Ether.Suitable combinations of ligands and counterions for palladium complexes and for platinum metal complexes other than palladium can be selected according to the principle of charge neutrality. Suitable negatively charged ligands are e.g. B. selected from halides and pseudohalides, such as chloride, bromide, yodide, CN, OCN and SCN, -C-C 6 carboxylic acids, such as formic acid, acetic acid and propionic acid and their salts, chelate ligands, such as ethylenediaminetetraacetic acid (EDTA), Nitrilotriacetic acid, 1,2-diaminocyclohexanetetraacetic acid and its salts, aminophosphonic acids such as nitrilomethylenephosphonic acid, diketonates such as acetylacetonate, hydroxycarboxylic acids such as glycolic acid, lactic acid, tartaric acid and gluconic acid, and their salts. Suitable as electroneutral ligands are e.g. B. alkyl nitriles such as acetonitrile, amines such as ammonia, primary, secondary and tertiary C 1 -C 6 alkyl amines such as ethylamine, n-propylamine, isopropylamine, n-butylamine, tert-butylamine, hexylamine, dimethylamine, di - ethylamine, diisopropylamine, di-n-butylamine, trimethylamine, triethylamine, tripropylamine, N, N-dimethylethylamine, N, N-dimethylisopropylamine and N, N-dimethylbutylamine, di-, tri-, tetra- and poly- amines, such as ethylenediamine, diethylenetriamine and triethylenetetraamine, non-aromatic and aromatic cyclic amines, such as pyrolidine, piperidine, morpholine, piperazine, pyrrole and their nCC 6 alkyl derivatives, pyridine and phenanthroline, phosphines, such as tertiary Ci-C ö -Al yl and C 6 -C 2 arylphosphines, in particular triphenylphosphine, and sulfides, such as C 6 -C 6 mono- and dialkyl sulfides, C 6 -C 12 mono- and diaryl sulfides and oxygen compounds, di-Cι -C 6 alkanols and phenols and their ethers.
Besonders bevorzugt als Komplexliganden sind die Halogenide Chlorid und Bromid; Amine, insbesondere Ammoniak und Triethylamin, Cyanid und Ethylendiamintetraessigsäure, sowie die Di-, Tri- oder Tetra-Alkalimetall- (wie z. B. Natrium) oder Ammoniumsalze davon. Als Gegenionen vorzugsweise geeignet sind Alkalimetalle, wie Lithium, Natrium und Kalium, Erdalkalimetalle, wie Magnesium und Calcium, Nitrit, Nitrat und Ammonium.The halides chloride and bromide are particularly preferred as complex ligands; Amines, especially ammonia and triethylamine, cyanide and ethylenediaminetetraacetic acid, and the di-, tri- or tetra-alkali metal (such as sodium) or ammonium salts thereof. Alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, nitrite, nitrate and ammonium are preferably suitable as counterions.
Geeignete Platinmetallkomplexe sind vorzugsweise bei Raumtemperatur (25 °C) zu mindestens 0,01 Gew.-% in Wasser löslich. Der (die) Platinmetallkomplex(e) werden erfindungsgemäß in einem wassrigen Medium eingesetzt, und zwar in einer solchen Konzentration, dass der Platinmetallgehalt der Lösung im Bereich von 0,001 bis 2 g/1, vorzugsweise im Bereich von 0,1 bis 0,5 g/1.Suitable platinum metal complexes are preferably at least 0.01% by weight soluble in water at room temperature (25 ° C.). According to the invention, the platinum metal complex (s) are used in an aqueous medium, in such a concentration that the platinum metal content of the solution is in the range from 0.001 to 2 g / 1, preferably in the range from 0.1 to 0.5 g /1.
Bevorzugte Palladiumkomplexe sind H2PdHal4, M2PdHal , M2Pd(CN)4, (NH4)2PdHal4, Pd(NH3)4Hal2, Pd(NH3 )4 (N03)2 und Pd(NH3 )4 (CN)2, wobei M für Alkalimetalle, insbesondere Natrium und Kalium, und Hai für Halogenatome, insbesondere für Chlor, Brom oder Iod, steht.Preferred palladium complexes are H 2 PdHal 4 , M 2 PdHal, M 2 Pd (CN) 4 , (NH 4 ) 2 PdHal 4 , Pd (NH 3 ) 4 Hal 2 , Pd (NH 3 ) 4 (N0 3 ) 2 and Pd (NH 3 ) 4 (CN) 2 , where M represents alkali metals, especially sodium and potassium, and shark represents halogen atoms, especially chlorine, bromine or iodine.
Bevorzugte weitere Platinmetallkomplexe sind (NH4)2IrCl6, HPtCl , (NH )2PtCl , Na2PtCl4 und K2PtCl4.Preferred further platinum metal complexes are (NH 4 ) 2 IrCl 6 , HPtCl, (NH) 2 PtCl, Na 2 PtCl 4 and K 2 PtCl 4 .
Darüber hinaus enthält das wässrige Medium wenigstens ein Reduktionsmittel in ganz oder teilweise gelöster Form. Geeignet als Reduktionsmittel für die Schritte b) und c) sind alle Stoffe oder Stoffgemische, deren Redoxpotential unterhalb des Redoxpotentials des eingesetzten Platinmetallkomplexes liegt. Bevorzugt sind Stoffe mit einem Standardpotential in wässrigem Medium von kleiner als +0,5 Volt, vorzugsweise jedoch mit einem Standardpotential kleiner als 0 Volt. Das Reduktionsmittel oder Reduktionsmittelgemisch ist zu mindestens 1 Gew.-%, vorzugsweise zu mindestens 10 Gew.-%, bei Raumtemperatur (25 °C) in dem wassrigen Medium lös- lieh. In bevorzugten Ausführungsformen der vorliegenden Erfindung ist das Reduktionsmittel oder das Reduktionsmittelgemisch im wassrigen Medium praktisch vollständig löslich.In addition, the aqueous medium contains at least one reducing agent in completely or partially dissolved form. Suitable as reducing agents for steps b) and c) are all substances or mixtures of substances whose redox potential lies below the redox potential of the platinum metal complex used. Substances with a standard potential in aqueous medium of less than +0.5 volts are preferred, but preferably with a standard potential less than 0 volts. At least 1% by weight, preferably at least 10% by weight, of the reducing agent or mixture of reducing agents is lent in the aqueous medium at room temperature (25.degree. C.). In preferred embodiments of the present invention, the reducing agent or the reducing agent mixture is practically completely soluble in the aqueous medium.
Beispiele für geeignete Reduktionsmittel sind Carbonsäuren, wie Ameisensäure, Citronensäure, Milchsäure, Weinsäure und insbesondere die Salze der Carbonsäuren, bevorzugt die Alkali-, Erdalkali-, Ammonium- und Ci-Cio-Alkylammoniumsalze, phosphorige oder hypophosphorige Säure, die Salze der phosphorigen oder hypo- phosphorigen Säure, insbesondere die Alkalimetall- oder Erdalka- limetallsalze, Ci-Cio-Alkanole, wie Methanol, Ethanol und Isopro- panol, Zucker, wie Aldosen und Ketosen in Form von Mono-, Di- und Oligosacchariden, insbesondere Glucose, Fructose und Lactose, Aldehyde, wie Formaldehyd, Borwasserstoffverbindungen, wie z. B. Borhydride, Borane, Metallboranate und Borankomplexe, z. B. Dibo- ran, Natriumborhydrid und Aminoborane, insbesondere Trimethyl- aminboran, Hydrazin und Alkylhydrazine, wie Methylhydrazin, Hy- drogendithionite und Dithionite, insbesondere Natrium- und Ka- liumhydrogendithionit, Natrium-, Kalium- und Zinkdithionit, Hydrogensulfite und Sulfite, insbesondere Natrium- und Kaliumhydrogensulfit, Natrium-, Kalium- und Calciumsulfit, Hydroxylamin und Harnstoff, sowie Gemische davon.Examples of suitable reducing agents are carboxylic acids, such as formic acid, citric acid, lactic acid, tartaric acid and in particular the salts of the carboxylic acids, preferably the alkali metal, alkaline earth metal, ammonium and Ci-Cio-alkylammonium salts, phosphorous or hypophosphorous acid, the salts of phosphorous or hypo - Phosphorous acid, especially the alkali metal or alkaline earth metal salts, Ci-Cio-alkanols, such as methanol, ethanol and isopropanol, sugar, such as aldoses and ketoses in the form of mono-, di- and oligosaccharides, especially glucose, fructose and Lactose, aldehydes, such as formaldehyde, hydrogen boron compounds, such as. B. borohydrides, boranes, metal boranates and borane complexes, for. B. diborane, sodium borohydride and aminoboranes, in particular trimethylamine borane, hydrazine and alkylhydrazines, such as methylhydrazine, hydrogendithionites and dithionites, especially sodium and potassium liumhydrogen dithionite, sodium, potassium and zinc dithionite, hydrogen sulfites and sulfites, in particular sodium and potassium hydrogen sulfite, sodium, potassium and calcium sulfite, hydroxylamine and urea, and mixtures thereof.
Bevorzugte Reduktionsmittel für Schritt c) sind Natrium- und Ka- liumhypophosphit, Ammoniumformiat, Trimethylamin-boran, Natriumborhydrid, Natriumdithionit und Natriumhydrogendithionit, sowie Gemische von Ammoniumformiat und Natriumhypophosphit.Preferred reducing agents for step c) are sodium and potassium hypophosphite, ammonium formate, trimethylamine borane, sodium borohydride, sodium dithionite and sodium hydrogen dithionite, and mixtures of ammonium formate and sodium hypophosphite.
In der Regel wird mindestens ein Redoxäquivalent, bezogen auf die Summe der Platinmetalle und Zusatzkomponenten (z. B. Promotoren/ Dotierungskomponenten), an Reduktionsmittel eingesetzt. Bevorzugt wird das Reduktionsmittel im Überschuss eingesetzt. Insbesondere geeignet ist ein molares Verhältnis von Reduktionsmittel zu Platinmetall von 10:1 bis 100:1 und besonders bevorzugt 20:1 bis 60:1, wie zum Beispiel etwa 30:1, etwa 40:1 oder etwa 50:1.As a rule, at least one redox equivalent, based on the sum of the platinum metals and additional components (e.g. promoters / doping components), of reducing agent is used. The reducing agent is preferably used in excess. A molar ratio of reducing agent to platinum metal of 10: 1 to 100: 1 and particularly preferably 20: 1 to 60: 1, such as for example about 30: 1, about 40: 1 or about 50: 1, is particularly suitable.
Bevorzugt wird in Schritt c) zur stromlosen Abscheidung des Pla- tinmetalls ein wässriges Medium mit einem pH-Wert von größer als 6 eingesetzt. Dieser liegt vorzugsweise in einem Bereich von 7 bis 14, insbesondere 8 bis 12. Dazu kann es erforderlich sein, zu dem den Platinmetallkomplex und das Reduktionsmittel enthaltenden wassrigen Medium wenigstens eine Base zuzugeben, um den gewünsch- ten pH-Wert zu erreichen. Basen im Sinne der vorliegenden Erfindung sind alle Stoffe bzw. Verbindungen, die geeignet sind, den pH-Wert des wassrigen Mediums auf den gewünschten Wert einzustellen. Insbesondere werden solche Basen eingesetzt, die komplexstabilisierende Eigenschaften aufweisen, d. h. zumindest partiell Lewis-Basencharakter aufweisen. Vorzugsweise wird die Base ausgewählt unter Metalloxiden, Metallhydroxiden, insbesondere Alkali- metallhydroxiden, wie Natriumhydroxid und Kaliumhydroxid, Metall- carbonaten, insbesondere Alkalimetall- und Erdalkalimetallcarbo- naten, wie Lithiumcarbonat, Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat und Calciumcarbonat, Stickstoffbasen, insbesondere Ammoniak, primäre, sekundäre und tertiäre A inen, wie die zuvor bei den stickstoffhaltigen Komplexliganden beschriebenen. Ebenfalls geeignet sind Puffersysteme, insbesondere solche aus den vorgenannten Basen, den Salzen der vorgenannten Basen und/ oder geeigneten Säuren. Besonders bevorzugte Basen sind Ammoniak und Natronlauge.In step c), an aqueous medium with a pH of greater than 6 is preferably used for the electroless deposition of the platinum metal. This is preferably in a range from 7 to 14, in particular 8 to 12. To this end, it may be necessary to add at least one base to the aqueous medium containing the platinum metal complex and the reducing agent in order to achieve the desired pH. For the purposes of the present invention, bases are all substances or compounds which are suitable for adjusting the pH of the aqueous medium to the desired value. In particular, those bases are used which have complex stabilizing properties, i. H. at least partially have a Lewis base character. The base is preferably selected from metal oxides, metal hydroxides, in particular alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide, metal carbonates, in particular alkali metal and alkaline earth metal carbonates, such as lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate and calcium carbonate, nitrogen bases, in particular ammonia, primary, secondary and tertiary amines, such as those previously described for the nitrogen-containing complex ligands. Buffer systems are also suitable, in particular those from the aforementioned bases, the salts of the aforementioned bases and / or suitable acids. Particularly preferred bases are ammonia and sodium hydroxide solution.
Wässrige Medien im Sinne der Erfindung sind Stoffe oder Stoffgemische, die unter den Verfahrensbedingungen flüssig sind und min- destens 10 Gew.-%, vorzugsweise mindestens 30 Gew.-% und insbesondere mindestens 50 Gew.-% Wasser enthalten. Der von Wasser verschiedene Teil ist vorzugsweise ausgewählt unter in Wasser we- nigstens partiell löslichen oder mit Wasser wenigstens partiell mischbaren anorganischen oder organischen Stoffen. Beispielsweise sind die von Wasser verschiedenen Stoffe ausgewählt unter organischen Lösungsmitteln, Cι-C22-Alkanolen, insbesondere Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec-Butanol, tert- Butanol, Pentanolen und Hexanolen, C4-C8-Cycloalkylethern, wie Te- trahydrofuranen, Pyranen, Dioxanen und Trioxanen, Cι-Cχ -Dialkyl- ethern, wie Dimethylether, Dibutylether und Methylbutylether, und üblichen Hilfsstoffen, wie sie bei Verfahren zur stromlosen Ab- Scheidung eingesetzt werden.For the purposes of the invention, aqueous media are substances or mixtures of substances which are liquid under the process conditions and contain at least 10% by weight, preferably at least 30% by weight and in particular at least 50% by weight of water. The part other than water is preferably selected from water- at least partially soluble or at least partially miscible with water inorganic or organic substances. For example, the substances other than water are selected from organic solvents, -C 22 alkanols, in particular methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, pentanols and hexanols, C 4 -C 8- cycloalkyl ethers, such as tetrahydrofuran, pyrans, dioxanes and trioxanes, C 1 -C 4 -dialkyl ethers, such as dimethyl ether, dibutyl ether and methyl butyl ether, and customary auxiliaries, such as are used in processes for electroless deposition.
Vorzugsweise enthält das wässrige Medium weniger als 40 %, insbesondere weniger als 30 % und besonders bevorzugt weniger als 20 % organisches Lösungsmittel.The aqueous medium preferably contains less than 40%, in particular less than 30% and particularly preferably less than 20% organic solvent.
In bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens ist das wässrige Medium im Wesentlichen frei von organischen LösungsmitteIn.In preferred embodiments of the method according to the invention, the aqueous medium is essentially free of organic solvents.
Vorzugsweise enthält die wässrige Lösung außer wenigstens einer Verbindung oder einem Komplex eines Platinmetalls und dem Reduktionsmittel zusätzlich wenigstens einen Liganden (Komplexbildner) . Vorzugsweise weist der Ligand wenigstens ein Halogen-, Stickstoff-, Sauerstoff- und/oder Phosphoratom auf. Komplexbild- ner im Sinne der vorliegenden Erfindung sind Ionen oder Verbindungen, die in der Lage sind, Metallionen in wassrigen Medien zu stabilisieren. In der Regel sind solche Komplexbildner Donoren oder Salze von Donoren. Geeignete Donoren weisen in der Regel ein freies Elektronenpaar auf, das mit den Metallionen wechselwirken kann. Insbesondere geeignet für das erfindungsgemäße Verfahren sind Komplexbildner, die als Donoren die vorstehend genannten He- teroatome aufweisen. Beispiele für geeignete Komplexbildner sind die Metallsalze, insbesondere die Alkalimetall- und Erdalkalimetallsalze, der zuvor als Komplexliganden der Platinmetalle ge- nannten Verbindungen.In addition to at least one compound or a complex of a platinum metal and the reducing agent, the aqueous solution preferably additionally comprises at least one ligand (complexing agent). The ligand preferably has at least one halogen, nitrogen, oxygen and / or phosphorus atom. Complexing agents in the sense of the present invention are ions or compounds which are able to stabilize metal ions in aqueous media. As a rule, such complexing agents are donors or salts of donors. Suitable donors usually have a lone pair of electrons that can interact with the metal ions. Complexing agents which have the above-mentioned hetero atoms as donors are particularly suitable for the process according to the invention. Examples of suitable complexing agents are the metal salts, in particular the alkali metal and alkaline earth metal salts, of the compounds previously mentioned as complex ligands of the platinum metals.
Insbesondere geeignet als Komplexbildner sind Halogenwasserstoffsäuren, wie Bromwasserstoff, Chlorwasserstoff und Iodwasserstoff, die Metallsalze der genannten Halogenwasserstoffsäuren, insbeson- dere die Alkalimetall- und Erdalkalimetallsalze, sowie Zinndiha- logenide, Zinkdihalogenide, Ammoniumsalze, wie Ammoniumchlorid, Ammoniumbromid, Ammoniumiodid, Ammoniumnitrit, Ammoniumnitrat, die Alkalimetall-, Erdalkalimetall- und Ammoniumsalze von Carbonsäuren und Hydroxycarbonsäuren, z. B. Natrium- und/oder Kalium- tartrat. In der Regel können Platinmetallkomplex, Reduktionsmittel, gegebenenfalls Base und gegebenenfalls Komplexbildner in beliebiger Reihenfolge zu dem wassrigen Medium gegeben werden. Vorzugsweise wird zumindest ein Teil der Base zu dem wassrigen Medium gegeben, bevor das Reduktionsmittel zugegeben wird.Particularly suitable as complexing agents are hydrohalic acids, such as hydrogen bromide, hydrogen chloride and hydrogen iodide, the metal salts of the hydrohalic acids mentioned, in particular the alkali metal and alkaline earth metal salts, and also tin dihalides, zinc dihalides, ammonium salts, such as ammonium chloride, ammonium nitride, ammonium ammonium, ammonium ammonium, ammonium ammonium, ammonium ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium, ammonium ammonium, Alkali metal, alkaline earth metal and ammonium salts of carboxylic acids and hydroxycarboxylic acids, e.g. B. sodium and / or potassium tartrate. As a rule, platinum metal complex, reducing agent, optionally base and optionally complexing agent can be added to the aqueous medium in any order. Preferably at least a portion of the base is added to the aqueous medium before the reducing agent is added.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird in Schritt c) zuerst der Platinmetallkomplex, gegebenenfalls der Komplexbildner und/oder die Base in dem wassrigen Medium vorge- legt und anschließend das Reduktionsmittel zugegeben.In one embodiment of the process according to the invention, the platinum metal complex, if appropriate the complexing agent and / or the base, are initially introduced into the aqueous medium in step c) and the reducing agent is then added.
In der Regel liegt die Temperatur in Schritt c) im Bereich zwischen 0 und 100 °C, vorzugsweise im Bereich von 30 bis 100 °C und insbesondere im Bereich von 40 bis 85 °C.As a rule, the temperature in step c) is in the range between 0 and 100 ° C., preferably in the range from 30 to 100 ° C. and in particular in the range from 40 to 85 ° C.
Die aktive Komponente, d. h. das Platinmetall oder die Platinmetalle sowie die gegebenenfalls anwesenden Zusatzkomponenten machen in der Regel 5 x 10-4 bis 5 Gew.-%, insbesondere 10-3 bis 1 Gew.-%, besonders bevorzugt 0,01 bis 1,0 Gew.-%, bezogen auf die gesamte Katalysatormasse (Träger + katalytisch aktive Beschichtung) aus.The active component, ie the platinum metal or the platinum metals and any additional components which may be present, generally make up 5 × 10 -4 to 5% by weight, in particular 10 -3 to 1% by weight, particularly preferably 0.01 to 1 0% by weight, based on the total catalyst mass (support + catalytically active coating).
Wenn der Lösung ein zusätzlicher Komplexbildner zugesetzt wird, werden in der Regel 0,1 bis 10000 Äquivalente, vorzugsweise 1 bis 1000 Äquivalente, besonders bevorzugt 10 bis 600 Äquivalente des Komplexbildners, bezogen auf die Platinmetallkomponente, eingesetzt.If an additional complexing agent is added to the solution, 0.1 to 10,000 equivalents, preferably 1 to 1000 equivalents, particularly preferably 10 to 600 equivalents of the complexing agent, based on the platinum metal component, are generally used.
Beispielsweise wird der aktivierte nichtmetallische Träger in Schritt c) erst mit dem wassrigen Medium in Kontakt gebracht, wenn das wässrige Medium wenigstens den Platinmetallkomplex, das Reduktionsmittel, wenigstens einen Teil der Base und gegebenenfalls des zusätzlichen Komplexbildners enthält. Ebenso kann der Träger zunächst mit allen oben genannten Komponenten außer dem Platinmetall in Kontakt gebracht werden. Das Platinmetall wird dann bei Reaktionstemperatur oder einer z. B. bis zu 30 °C tieferen Temperatur zugesetzt. Unter "Reaktionstemperatur" im Sinne der vorliegenden Erfindung versteht man diejenige Temperatur, bei der die Abscheidung des Platinmetalls auf dem Träger erfolgt.For example, the activated non-metallic support in step c) is only brought into contact with the aqueous medium when the aqueous medium contains at least the platinum metal complex, the reducing agent, at least part of the base and optionally the additional complexing agent. Likewise, the carrier can first be brought into contact with all of the components mentioned above, except for the platinum metal. The platinum metal is then at reaction temperature or a z. B. added up to 30 ° C lower temperature. “Reaction temperature” in the sense of the present invention means the temperature at which the platinum metal is deposited on the carrier.
Im erfindungsgemäßen Verfahren hat es sich als vorteilhaft erwiesen, während der Abscheidung des Platinmetalls auf dem Träger in Schritt c) für eine ausreichende Umwälzung der Reaktionslösung bzw. des Reaktionsgemischs zu sorgen, z. B. durch Pumpen oder Rühren. Die zur Abscheidung des Platinmetalls auf den Trägern erforderliche Reaktionszeit liegt in der Regel zwischen 0,5 und 500 Minuten, vorzugsweise 1 und 300 Minuten und besonders bevorzugt zwischen 2 und 60 Minuten.In the process according to the invention, it has proven to be advantageous to ensure sufficient circulation of the reaction solution or the reaction mixture during the deposition of the platinum metal on the support in step c), for. B. by pumping or stirring. The reaction time required for the deposition of the platinum metal on the supports is generally between 0.5 and 500 minutes, preferably 1 and 300 minutes and particularly preferably between 2 and 60 minutes.
Vorzugsweise wird bei dem erfindungsgemäßen Verfahren mehr als 70 Gew.-%, vorzugsweise mehr als 80 Gew.-% und besonders bevorzugt mehr als 90 Gew.-% der eingesetzten Platinmetalle auf dem Träger abgeschieden. Dabei wird das Platinmetall in der Regel so fest an den metallischen Träger gebunden, dass es beim Einsatz in katalytischen Reaktionen durch den Kontakt mit Flüssigkeiten und Gasen nicht nennenswert abgelöst wird.In the process according to the invention, preferably more than 70% by weight, preferably more than 80% by weight and particularly preferably more than 90% by weight of the platinum metals used are deposited on the support. As a rule, the platinum metal is bonded so tightly to the metallic support that it is not significantly replaced by contact with liquids and gases when used in catalytic reactions.
Zusatzkomponenten, insbesondere die als Promotoren oder Dotie- rungskomponenten geeigneten Elemente, können gegebenenfalls zusammen mit dem Platinmetall in das wässrige Medium gegeben werden, so dass die Abscheidung des Platinmetalls und der Einbau der Zusatzkomponenten im Wesentlichen gleichzeitig erfolgt. Die Zugabe der Zusatzkomponenten in die Reaktionslösung kann auch gegen Ende oder nach beendeter Platinmetallabscheidung erfolgen, wodurch die Zusatzkomponenten vorzugsweise an der Oberfläche der aktiven Komponente eingebaut werden. Die Zusatzkomponenten können auch in einem separaten zweiten Schritt auf die erfindungsgemäßen Katalysatoren aufgebracht werden, z. B. durch Bedampfen oder durch stromlose Abscheidung aus wassrigen und nichtwässrigen Medien. Das Aufbringen von Zusatzkomponenten auf die erfindungsgemäßen Katalysatoren in einem separaten zweiten Schritt ist insbesondere dann vorteilhaft, wenn man diese gezielt auf der Oberfläche der aktiven Komponente aufbringen möchte. Ferner können für den zweiten Schritt andere von den erfindungsgemäßen Bedingungen abweichende Abscheidungsbedingungen gewählt werden.Additional components, in particular the elements suitable as promoters or doping components, can optionally be added to the aqueous medium together with the platinum metal, so that the deposition of the platinum metal and the installation of the additional components take place essentially simultaneously. The additional components can also be added to the reaction solution towards the end or after the platinum metal deposition has ended, as a result of which the additional components are preferably installed on the surface of the active component. The additional components can also be applied to the catalysts of the invention in a separate second step, for. B. by vapor deposition or by electroless separation from aqueous and non-aqueous media. The application of additional components to the catalysts of the invention in a separate second step is particularly advantageous if you want to apply them specifically to the surface of the active component. Furthermore, other deposition conditions that deviate from the conditions according to the invention can be selected for the second step.
Schritt d)Step d)
Die in Schritt c) erhaltenen Katalysatoren können anschließend bei Temperaturen von 0 bis 500 °C, vorzugsweise 10 bis 350 °C, und Drücken zwischen Normaldruck und 200 bar Überdruck formiert werden. Die Formierung kann beispielsweise in Gegenwart von Wasser und/oder Wasserstoff erfolgen. Diese können in Form von Mischun- gen mit einem Inertgas, wie Stickstoff, eingesetzt werden. Bevorzugt ist die Formierung mit Wasserstoff. Die Temperatur liegt vorzugsweise bei 10 bis 200 °C, insbesondere 30 bis 150 °C. Der Druck liegt vorzugsweise bei 1 bis 150 bar, insbesondere 10 bis 100 bar und besonders bevorzugt 30 bis 70 bar. In der Regel dauert eine Formierung 0,1 bis 10 Stunden, vorzugsweise 1 bisThe catalysts obtained in step c) can then be formed at temperatures of 0 to 500 ° C, preferably 10 to 350 ° C, and pressures between normal pressure and 200 bar gauge pressure. The formation can take place, for example, in the presence of water and / or hydrogen. These can be used in the form of mixtures with an inert gas such as nitrogen. Formation with hydrogen is preferred. The temperature is preferably 10 to 200 ° C, in particular 30 to 150 ° C. The pressure is preferably 1 to 150 bar, in particular 10 to 100 bar and particularly preferably 30 to 70 bar. Typically, formation lasts 0.1 to 10 hours, preferably 1 to
5 Stunden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Formierung der Katalysatoren in Ge- genwart des wassrigen Reaktionsmediums, das nachstehend für die erfindungsgemäße Synthese von Wasserperoxid beschrieben wird.5 hours. In a preferred embodiment of the process according to the invention, the catalysts are formed in presence of the aqueous reaction medium which is described below for the synthesis of water peroxide according to the invention.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Ver- fahrens erfolgt die Herstellung der erfindungsgemäßen Katalysatoren dadurch, dass man wenigstens 0,01 bis 3 g/1, vorzugsweise 0,05 bis 0,3 g/1 wenigstens eines Platinmetallkomplexes (Gewichte auf das Metall bezogen), gegebenenfalls 0,0001 bis 0,3 g/1, vorzugsweise 0,001 bis 0,03 g/1 wenigstens einer weiteren Element- Verbindung und, bezogen auf das Platinmetall, wenigstens 20, vorzugsweise 50 und besonders bevorzugt wenigstens 100 Äquivalente eines Komplexbildners und wenigstens 10 bis 100, vorzugsweise 20 bis 80 und besonders bevorzugt 40 bis 60 Äquivalente eines Reduktionsmittels in einem wassrigen Medium löst.In a preferred embodiment of the process according to the invention, the catalysts according to the invention are prepared by at least 0.01 to 3 g / 1, preferably 0.05 to 0.3 g / 1, of at least one platinum metal complex (weights based on the metal) , optionally 0.0001 to 0.3 g / 1, preferably 0.001 to 0.03 g / 1 of at least one further element compound and, based on the platinum metal, at least 20, preferably 50 and particularly preferably at least 100 equivalents of a complexing agent and at least 10 to 100, preferably 20 to 80 and particularly preferably 40 to 60 equivalents of a reducing agent dissolves in an aqueous medium.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Katalysator, erhältlich durch eines der oben beschriebenen Verfahren.Another object of the present invention is a catalyst obtainable by one of the methods described above.
Gegenstand der Erfindung sind auch Platinmetallkatalysatoren, mit einem nichtmetallischen Träger und einer darauf aufgebrachten katalytisch aktiven Beschichtung, die dadurch gekennzeichnet sind, dass die katalytisch aktive Beschichtung auf der Trägeroberfläche immobilisierte, diskrete Platinmetallpartikel mit einem mittleren Partikeldurchmesser von weniger als etwa 1 μ , vorzugsweise weni- ger als etwa 100 nm, umfasst. Vorzugsweise besitzen die Platinmetallpartikel einen mittleren Durchmesser von mehr als etwa 1 nm und können z. B. Durchmesser im Bereich von etwa 20 bis 100 nm besitzen. Die diskreten Partikel besitzen vorzugsweise in etwa sphärische Gestalt.The invention also relates to platinum metal catalysts with a non-metallic support and a catalytically active coating applied thereon, which are characterized in that the catalytically active coating has discrete platinum metal particles immobilized on the support surface with an average particle diameter of less than about 1 μ, preferably less less than about 100 nm. The platinum metal particles preferably have an average diameter of more than about 1 nm and can e.g. B. have diameters in the range of about 20 to 100 nm. The discrete particles preferably have an approximately spherical shape.
Insbesondere ist Gegenstand ein Katalysator, bei dem der nichtporöse nichtmetallische Träger im Wesentlichen aus Glas, Keramik oder einem Polymer besteht.In particular, the subject matter is a catalyst in which the non-porous non-metallic support essentially consists of glass, ceramic or a polymer.
Vorzugsweise weisen solche Katalysatoren einen Platinmetallgehalt im Bereich von 0,01 bis 50 g/kg Träger auf. Die nach diesem Verfahren erhältlichen Katalysatoren weisen bei der Direktsynthese von Wasserstoffperoxid aus den Elementen vorzugsweise eine Selektivität von größer 60 %, insbesondere größer 70 % und besonders bevorzugt größer 80 % auf.Such catalysts preferably have a platinum metal content in the range from 0.01 to 50 g / kg of support. In the direct synthesis of hydrogen peroxide from the elements, the catalysts obtainable by this process preferably have a selectivity of greater than 60%, in particular greater than 70% and particularly preferably greater than 80%.
Die erfindungsgemäßen Katalysatoren eignen sich vorzugsweise für die Hydrierung organischer und anorganischer Verbindungen und insbesondere für organische Verbindungen, wie Olefine, z. B. Ethylen, Propylen, Acetylen und Butadien, Carbonylverbindungen, z. B. Aldehyden, Ketonen, Aromaten, wie z. B. Benzol, und besonders bevorzugt zur Hydrierung von Sauerstoff.The catalysts of the invention are preferably suitable for the hydrogenation of organic and inorganic compounds and in particular for organic compounds such as olefins, for. B. ethylene, propylene, acetylene and butadiene, carbonyl compounds, z. B. aldehydes, ketones, aromatics, such as. As benzene, and particularly preferably for the hydrogenation of oxygen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Ver- fahren zur Herstellung von Wasserstoffperoxid, wobei man einen Katalysator wie vorstehend beschrieben in einem flüssigen Medium, vorzugsweise einer im Wesentlichen wassrigen Lösung mit einem Sauerstoff/Wasserstoff-Gemisch mit einem Mischungsverhältnis im Bereich von etwa 5:1 bis 100:1, insbesondere 5:1 bis 30:1 in Kon- takt bringt.Another object of the present invention is a process for the production of hydrogen peroxide, wherein a catalyst as described above in a liquid medium, preferably an essentially aqueous solution with an oxygen / hydrogen mixture with a mixing ratio in the range of about 5: 1 to 100: 1, especially 5: 1 to 30: 1.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Katalysatoren zur Synthese von Wasserstoffperoxid aus den Elementen, sowohl gemäß dem Anthrachinonver- fahren oder einem analogen Verfahren, als auch durch Direktsynthese, d. h. durch direkte Umsetzung von Sauerstoff und Wasserstoff an einem Platinmetallkatalysator in einem flüssigen Medium. Geeignete Verfahren sind z. B. beschrieben in WO 98/16463, worauf hier in vollem Umfang Bezug genommen wird. Die Verwendung der erfindungsgemäßen Katalysatoren für die Direktsynthese von H20 ist besonders bevorzugt.The present invention also relates to the use of the catalysts according to the invention for the synthesis of hydrogen peroxide from the elements, both according to the anthraquinone process or an analogous process, and also by direct synthesis, ie by direct reaction of oxygen and hydrogen over a platinum metal catalyst in a liquid medium , Suitable methods are e.g. B. described in WO 98/16463, to which reference is made here in full. The use of the catalysts according to the invention for the direct synthesis of H 2 0 is particularly preferred.
Geeignete Reaktoren für die Synthese von H202 sind beispielsweise in den EP-A-068 862, EP-A-201 614 und der EP-A-448 884 beschrie- ben. Besonders bevorzugt sind Rohrreaktoren, in denen der erfindungsgemäße Katalysator als Schüttung vorliegt oder in Form von zylindrisch aufgebauten Katalysatoreinheiten eingepasst ist. Durch entsprechende Formgebung für die Träger, wie zuvor beschrieben, kann für optimale Strömungsverhältnisse für Gas und Flüssigkeit gesorgt werden.Suitable reactors for the synthesis of H 2 0 2 are described, for example, in EP-A-068 862, EP-A-201 614 and EP-A-448 884. Tube reactors in which the catalyst according to the invention is present as a bed or in the form of cylindrical catalyst units are particularly preferred. Appropriate shaping for the carriers, as described above, can ensure optimum flow conditions for gas and liquid.
Nach einer bevorzugten Ausführungsform wird die Reaktion bei geflutetem Reaktor mit Flüssigkeit und Gas im Gleichstrom durchgeführt. Bevorzugt rieselt die flüssige Phase von oben nach unten über das Katalysatorbett. Dabei kann das Gas im Gleichstrom oder im Gegenstrom geführt werden kann, bevorzugt im Gleichstrom.According to a preferred embodiment, the reaction is carried out in cocurrent with the reactor flooded with liquid and gas. The liquid phase preferably trickles down over the catalyst bed. The gas can be conducted in cocurrent or in countercurrent, preferably in cocurrent.
Bevorzugt kann der Wasserstoff dem Reaktor über eine oder mehrere Zwischeneinspeisungen stromabwärts vom Einspeisungspunkt des Sauerstoffs oder der Luft zugeführt werden. Die Leerrohrgeschwindig- keit von Reaktionsgas und Reaktionsmedium liegt vorzugsweise in einem Bereich von etwa 20 bis 7000 m/h, besonders bevorzugt in einem Bereich von 50 bis 1400 m/h.The hydrogen can preferably be fed to the reactor via one or more intermediate feeds downstream from the feed point of the oxygen or the air. The empty tube speed of reaction gas and reaction medium is preferably in a range from about 20 to 7000 m / h, particularly preferably in a range from 50 to 1400 m / h.
Als Reaktionsmedium dient vorzugsweise Wasser und/oder Cχ-C3-Alka- nole, insbesondere Wasser und/oder Methanol. Wenn als Reaktions- medium Wasser verwendet wird, kann diesem bis zu 20 Gew.-% des Alkohols, vorzugsweise Methanol, zugesetzt werden. Wird ein alkoholisches Reaktionsmedium eingesetzt, kann dieses zu 40 Gew.-%, vorzugsweise bis zu 20 Gew.-% und besonders bevorzugt bis zu 5 Gew.-% Wasser enthalten. Ganz besonders bevorzugt wird Wasser als alleiniges Reaktionsmedium verwendet. Zur Stabilisierung des Wasserstoffperoxids gegen Zersetzung werden dem Reaktionsmedium Säuren, deren pKa-Wert vorzugsweise kleiner als der der Essigsäure ist, insbesondere Mineralsäuren, wie Schwefelsäure, Phosphorsäure oder Salzsäure, zugesetzt. Die Säurekonzentration beträgt in der Regel wenigstens 10-4 Mol/Liter, vorzugsweise 10-3 bis 10_1 Mol/Liter. Weiterhin werden in der Regel noch Spuren von Bromid oder Chlorid in Konzentrationen von 1 bis 1000 ppm, vorzugsweise 5 bis 700 ppm und besonders bevorzugt 50 bis 600 ppm zugesetzt. Es kön- nen aber auch andere Stabilisatoren, wie z. B. Formaldehyd, verwendet werden.Water and / or Cχ-C 3 -alkanols, in particular water and / or methanol, are preferably used as the reaction medium. If as a reaction medium water is used, this can be added up to 20 wt .-% of the alcohol, preferably methanol. If an alcoholic reaction medium is used, it can contain 40% by weight, preferably up to 20% by weight and particularly preferably up to 5% by weight of water. Water is very particularly preferably used as the sole reaction medium. To stabilize the hydrogen peroxide against decomposition, acids, the pK a value of which is preferably smaller than that of acetic acid, in particular mineral acids, such as sulfuric acid, phosphoric acid or hydrochloric acid, are added to the reaction medium. The acid concentration is generally at least 10 -4 mol / liter, preferably 10 -3 to 10 -1 mol / liter. Furthermore, traces of bromide or chloride are generally added in concentrations of 1 to 1000 ppm, preferably 5 to 700 ppm and particularly preferably 50 to 600 ppm. However, other stabilizers, such as. B. formaldehyde can be used.
Das Reaktionsgas, das neben Wasserstoff und Sauerstoff auch noch inerte Gase wie Stickstoff oder Edelgase enthalten kann, weist in der Regel 02:H2-Verhältnisse im Bereich von 2:1 bis 1000:1 auf. Vorzugsweise werden Molverhältnisse im Bereich von 5:1 bis 100:1, insbesondere 20:1 bis 100:1 eingesetzt. Der im Reaktionsgas verwendete Sauerstoff kann auch in Form von Luft dem Reaktionsgas zugemischt werden.The reaction gas, which in addition to hydrogen and oxygen can also contain inert gases such as nitrogen or noble gases, generally has 0 2 : H 2 ratios in the range from 2: 1 to 1000: 1. Molar ratios in the range from 5: 1 to 100: 1, in particular 20: 1 to 100: 1, are preferably used. The oxygen used in the reaction gas can also be added to the reaction gas in the form of air.
In einer bevorzugten Ausführungsform wird das Reaktionsgas im Kreis geführt. In diesem Fall liegt das Molverhältnis im Frischgasgemisch in der Nähe der Stöchiometrie, vorzugsweise im Bereich von 1,5:1 bis 0,5:1. Das Molverhältnis 02:H2 im Kreisgas sollte im Bereich von 5:1 bis 1000:1, vorzugsweise im Bereich von 20:1 bis 100:1 liegen. Die Reaktion kann bei Normaldruck als auch bei Überdrucken bis zu 200 bar durchgeführt werden. Vorzugsweise beträgt der Druck 10 bis 300 bar, insbesondere 10 bis 80 bar. Die Reaktionstempertur kann im Bereich von 0 bis 80 °C liegen, vorzugsweise wird im Bereich von 5 bis 60 °C und insbesondere von 25 bis 55 °C gearbeitet. Vorzugsweise werden die Partialdrücke der Reaktionsgase in der Reaktionsgasmischung im Reaktor als auch im Kreisgas so gewählt, dass sich unter Reaktionsbedingungen die Wasserstoffkonzentration unterhalb der unteren Explosionsgrenze befindet.In a preferred embodiment, the reaction gas is circulated. In this case, the molar ratio in the fresh gas mixture is close to the stoichiometry, preferably in the range from 1.5: 1 to 0.5: 1. The molar ratio 0 2 : H 2 in the cycle gas should be in the range from 5: 1 to 1000: 1, preferably in the range from 20: 1 to 100: 1. The reaction can be carried out at normal pressure and also under excess pressure up to 200 bar. The pressure is preferably 10 to 300 bar, in particular 10 to 80 bar. The reaction temperature can be in the range from 0 to 80 ° C., preferably in the range from 5 to 60 ° C. and in particular from 25 to 55 ° C. The partial pressures of the reaction gases in the reaction gas mixture in the reactor and in the cycle gas are preferably selected such that the hydrogen concentration is below the lower explosion limit under reaction conditions.
Durch das beschriebene Verfahren lassen sich Wasserstoffperoxidlösungen mit Wasserstoffperoxidgehalten oberhalb 2 Gew.-%, vor- zugsweise im Bereich von 3 bis 25 Gew.-% herstellen. Die Konzentration kann durch Einstellung der Stoffströme in der gewünschten Weise vorgewählt werden. Die Selektivität der Wasserstoffperoxid- bildung liegt dabei z. B. oberhalb 65 %, vorzugsweise > 70 %. Langzeituntersuchungen haben gezeigt, dass auch nach mehr als 40 Tagen Betriebsdauer keine oder nur eine geringfügige Abnahme der Katalysatoraktivität und Selektivität zu verzeichnen ist.The described process can be used to produce hydrogen peroxide solutions with hydrogen peroxide contents above 2% by weight, preferably in the range from 3 to 25% by weight. The concentration can be preselected in the desired manner by adjusting the material flows. The selectivity of the hydrogen peroxide education lies z. B. above 65%, preferably> 70%. Long-term studies have shown that even after more than 40 days of operation, there is no or only a slight decrease in the catalyst activity and selectivity.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur katalytischen Reduktion durch Umsetzung einer anorganischen oder organischen Verbindung, enthaltend wenigstens eine Wasserstoff-Akzeptorgruppe mit Wasserstoff, wobei die Umsetzung in Gegenwart wenigstens eines erfindungsgemäßen Katalysators, wie zuvor beschrieben, erfolgt.Another object of the invention is a method for catalytic reduction by reacting an inorganic or organic compound containing at least one hydrogen acceptor group with hydrogen, the reaction taking place in the presence of at least one catalyst according to the invention, as described above.
Bevorzugt eignen sich die erfindungsgemäßen Katalysatoren zur Hydrierung von Kohlenstoff-Kohlenstoff-Doppel- und Dreifachbindungen.The catalysts of the invention are preferably suitable for the hydrogenation of carbon-carbon double and triple bonds.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.The invention is illustrated by the following, non-limiting examples.
BeispieleExamples
I . KatalysatorherstellungI. catalyst Preparation
Katalysator 1 :Catalyst 1:
850 ml Glaskugeln aus Natronkalkglas mit dem Durchmesser 1 mm werden mit 850 ml Schleifsand aus Siliciumcarbid in einem rotie- renden Kolben 24 Stunden lang vermischt. Man gießt die Kugeln auf eine Nutsche mit Lochplatte und wäscht den Sand mit Wasser heraus. Anschließend werden die auf erauten Glaskugeln auf eine G3-Nutsche gegeben. Die so behandelten Glaskugeln wiesen ein Porenvolumen, das unterhalb der Bestimmungsgrenze der Hg-Porosime- trie lag, und eine BET-Oberflache von 0,024 m2/g auf. Man setzt eine Lösung von 10 g Zinn(II)chlorid und 20 ml konzentrierter Salzsäure in 2 1 Wasser an und lasst diese in 2 Minuten durch die Glaskugeln durchsickern. Danach wird mit 2 1 Wasser nachgespült. Anschließend lässt man eine Lösung von 0,4 g Palladiumchlorid und 2 ml konzentrierter Salzsäure in 2 1 Wasser wiederum in 2 Minuten durch die Glaskugelschicht sickern und spült wiederum mit Wasser nach. Die gesamte Prozedur wird noch fünfmal wiederholt. Danach werden die aktivierten Kugeln über Nacht bei 75 °C und 100 mbar getrocknet.850 ml of glass balls made of soda-lime glass with a diameter of 1 mm are mixed with 850 ml of silicon carbide sand in a rotating flask for 24 hours. The balls are poured onto a suction filter with a perforated plate and the sand is washed out with water. Afterwards, place them on the built-in glass balls on a G3 nutsche. The glass spheres treated in this way had a pore volume which was below the limit of quantification of the Hg porosimetry and a BET surface area of 0.024 m 2 / g. A solution of 10 g of tin (II) chloride and 20 ml of concentrated hydrochloric acid in 2 l of water is made up and allowed to seep through the glass spheres in 2 minutes. Then it is rinsed with 2 l of water. A solution of 0.4 g of palladium chloride and 2 ml of concentrated hydrochloric acid in 2 l of water is then allowed to seep through the glass ball layer again in 2 minutes and is then rinsed again with water. The entire procedure is repeated five more times. The activated spheres are then dried overnight at 75 ° C. and 100 mbar.
Ein Drittel der aktivierten Glaskugeln werden in ein Doppelmantelglasrohr von 1 m Länge und 2 , 2 cm Durchmesser gefüllt. An das Glasrohr ist eine Schlauchpumpe zur Umwälzung von Flüssigkeit und ein Thermostat zur Beheizung über den Mantel angeschlossen. In das Rohr füllt man eine Lösung von 14,2 g Natriumhypophosphi , 32,8 g Ammoniumchlorid und 47,5 ml 25%iges Ammoniak in 412 ml Wasser ein, schaltet die Umwälzpumpe ein und heizt mit dem Thermostaten auf eine Innentemperatur von 58 °C. Anschließend fügt man eine Lösung von 265 mg Natriumtetrachloropalladat und 1 mg He- xachloroplatinsäure in 10 ml Wasser zu. Unter heftiger Gasentwicklung werden die Glaskugeln sofort schwarz. Nach 5 Minuten lässt man die Flüssigkeit ab, spült mit Wasser nach und trocknet über Nacht bei 75 °C und 100 mbar. Eine Analyse zeigt, dass sich 87,4 % des angebotenen Palladiums und 77 % des Platins auf dem Träger abgeschieden haben. Der Beschichtungsvorgang wird mit jeweils einem weiteren Drittel des aktivierten Trägers wiederholt. Zum Schluss werden alle drei Portionen zum Katalysator 1 vermischt.A third of the activated glass balls are filled into a double-walled glass tube 1 m long and 2.2 cm in diameter. To the Glass tube is connected to a hose pump for circulating liquid and a thermostat for heating via the jacket. A solution of 14.2 g sodium hypophosphi, 32.8 g ammonium chloride and 47.5 ml 25% ammonia in 412 ml water is poured into the tube, the circulation pump is switched on and the thermostat is heated to an internal temperature of 58 ° C , A solution of 265 mg sodium tetrachloropalladate and 1 mg hexachloroplatinic acid in 10 ml water is then added. The glass spheres turn black immediately with violent gas evolution. After 5 minutes, the liquid is drained off, rinsed with water and dried overnight at 75 ° C. and 100 mbar. An analysis shows that 87.4% of the palladium on offer and 77% of the platinum have deposited on the carrier. The coating process is repeated with a further third of the activated carrier. Finally, all three portions of catalyst 1 are mixed.
Katalysator 2 :Catalyst 2:
Aufrauen und Aktivierung mit Zinn und Palladium werden wie bei Katalysator 1 beschrieben mit Glaskugeln aus Natronkalkglas mit einem Durchmesser von 2 mm wiederholt. Die aufgerauten Glaskugeln wiesen ein durch Hg-Porosimetrie bestimmtes Porenvolumen von 0,005 ml/g und eine BET-Oberflache von 0,018 m2/g auf.Roughening and activation with tin and palladium are repeated as described for catalyst 1 with glass balls made of soda-lime glass with a diameter of 2 mm. The roughened glass spheres had a pore volume determined by mercury porosimetry of 0.005 ml / g and a BET surface area of 0.018 m 2 / g.
270 ml der aktivierten Glaskugeln werden in das Beschichtungsrohr gefüllt. Man fügt eine Lösung von 32,4 g Natriumhypophosphit, 72,9 g Ammoniumchlorid und 108 ml 25%iges Ammoniak in 540 ml Was- ser hinzu und erwärmt unter Ümpumpen auf 42 °C. Anschließend wird eine Lösung von 542 mg Natriumtetrachloropalladat und 2,05 mg He- xachloroplatinsäure in 17 ml Wasser zugefügt und unter weiterem Umwälzen auf 46 °C erwärmt. Nach 5 Minuten wird die Flüssigkeit abgelassen und der Trägerkatalysator mit Wasser nachgespült. Der Katalysator wird anschließend über Nacht bei 75 °C und 100 mbar getrocknet. Der Vorgang wird noch zweimal wiederholt und die drei Portionen zu der Katalysatorprobe 2 gemischt.270 ml of the activated glass balls are filled into the coating tube. A solution of 32.4 g of sodium hypophosphite, 72.9 g of ammonium chloride and 108 ml of 25% ammonia in 540 ml of water is added, and the mixture is heated to 42 ° C. while being pumped over. A solution of 542 mg of sodium tetrachloropalladate and 2.05 mg of hexachloroplatinic acid in 17 ml of water is then added and the mixture is heated to 46 ° C. with further stirring. After 5 minutes, the liquid is drained off and the supported catalyst is rinsed with water. The catalyst is then dried overnight at 75 ° C and 100 mbar. The process is repeated two more times and the three portions are mixed to form catalyst sample 2.
Katalysator 3:Catalyst 3:
1 mm Glaskugeln werden wie bei Katalysator 1 beschrieben aufgeraut und aktiviert.1 mm glass balls are roughened and activated as described for catalyst 1.
270 ml der aktivierten Glaskugeln werden in das Beschichtungsrohr gefüllt. Man fügt eine Lösung von 168 mg Natriumtetrachloropalladat und 0,70 mg Hexachloroplatinsäure, 80 mg Drnatriumwolframat, 30,6 g Ammoniumchlorid und 45 ml 25%iges Ammoniak in 438 ml Was- ser hinzu und erwärmt auf 42 °C unter Umwälzen. Anschließend gibt man eine Lösung von 13,6 g Natriumhypophosphit in 14,6 g Wasser dazu und erwärmt weiter auf 46 °C. Nach 5 Minuten lässt man die Lösung ab und spült mit Wasser nach. Die anschließende Analyse 5 zeigt, dass sich 88 % des Palladiums und 39 % des Platins abgeschieden haben. Das Verfahren wird in gleicher Weise mit den beiden anderen Dritteln des aktivierten Trägers wiederholt, und anschließend werden die drei Teile zu Katalysator 3 vereinigt. Die Analyse zeigte einen Palladiumgehalt von 180 mg/kg. 10270 ml of the activated glass balls are filled into the coating tube. A solution of 168 mg of sodium tetrachloropalladate and 0.70 mg of hexachloroplatinic acid, 80 mg of sodium tungstate, 30.6 g of ammonium chloride and 45 ml of 25% ammonia in 438 ml of water is added. water and heated to 42 ° C with circulation. A solution of 13.6 g of sodium hypophosphite in 14.6 g of water is then added and the mixture is further heated to 46 ° C. After 5 minutes, the solution is drained off and rinsed with water. The subsequent analysis 5 shows that 88% of the palladium and 39% of the platinum have deposited. The process is repeated in the same way with the other two thirds of the activated support, and then the three parts are combined to give catalyst 3. The analysis showed a palladium content of 180 mg / kg. 10
Katalysator 4 :Catalyst 4:
Das zur Herstellung von Katalysator 1 beschriebene Verfahren wird unter Weglassen der Platinsäure wiederholt. Die Analyse zeigteThe process described for the preparation of catalyst 1 is repeated with the platinum acid omitted. The analysis showed
15 einen Gehalt von 115 mg/kg Palladium.15 a content of 115 mg / kg palladium.
Katalysator 5 :Catalyst 5:
20 Das zur Herstellung von Katalysator 3 beschriebene Verfahren wird unter Weglassen des Aufrauungssehritts wiederholt. Die Analyse zeigte einen Gehalt von 210 mg/kg Palladium.20 The procedure described for the preparation of catalyst 3 is repeated with the omission of the roughening step. The analysis showed a content of 210 mg / kg palladium.
Katalysator 6 :Catalyst 6:
2525
Das zur Herstellung von Katalysator 3 beschriebene Verfahren wird* wiederholt, wobei die Oberfläche nicht mechanisch, sondern durch Ätzen mit Flusssäure aufgeraut wurde.The process described for the preparation of catalyst 3 is repeated * , the surface not being roughened mechanically but by etching with hydrofluoric acid.
3030
Katalysator 7 :Catalyst 7:
220 ml Glaskugeln mit 1 mm Durchmesser werden wie bei Katalysator 1 beschrieben aufgeraut und aktiviert. Der Träger wird anschlie-220 ml 1 mm diameter glass balls are roughened and activated as described for catalyst 1. The carrier will then
35 ßend in dem Beschichtungsrohr mit einer Lösung von 187,2 mg Rutheniumchlorid und 10 ml 25%iges Ammoniak in 200 ml Wasser versetzt und unter Umwälzen auf 27 °C erwärmt. In zwei Portionen wird eine Lösung von 200 mg Natriumborhydrid in 10 ml Wasser zugesetzt. Nach 20 Minuten wird auf 40 °C aufgeheizt und weitere35 ßend in the coating tube with a solution of 187.2 mg ruthenium chloride and 10 ml of 25% ammonia in 200 ml of water and heated to 27 ° C with circulation. A solution of 200 mg of sodium borohydride in 10 ml of water is added in two portions. After 20 minutes, the mixture is heated to 40 ° C. and others
40 15 Minuten bei dieser Temperatur umgewälzt. Nach dem Ablassen der Flüssigkeit wird der Katalysator mit Wasser nachgewaschen und bei 75 °C und 100 mbar getrocknet.40 circulated for 15 minutes at this temperature. After draining the liquid, the catalyst is washed with water and dried at 75 ° C and 100 mbar.
Die Analyse zeigt, dass 87 % des angebotenen Rutheniums auf dem Träger abgeschieden waren. Katalysator 8 : Vergleichsbeispiel mit einem porösen TrägerThe analysis shows that 87% of the ruthenium offered was deposited on the carrier. Catalyst 8: Comparative example with a porous support
375 ml Kugeln aus α-Aluminiumoxid mit einem Durchmesser von 1 bis 1,5 mm werden wie bei Katalysator 1 beschrieben mit Zinn und Pal- 5 ladium aktiviert. Sie werden anschließend in den Rohrreaktor gefüllt und mit einer Lösung von 41,9 g Ammoniumchlorid, 18,6 g Natriumhypophosphit und 62 ml 25%iges Ammoniak in 600 ml Wasser versetzt und auf 60 °C erwärmt. Man gibt eine Lösung von 346 mg Natriumtetrachloropalladat und 1,5 mg Hexachloroplatinsäure in 10 13 ml Wasser zu und erwärmt auf 40 °C. Nach 10 Minuten lässt man die Flüssigkeit ab und wäscht den Katalysator mit Wasser nach.375 ml of spheres of α-alumina having a diameter of 1 to 1.5 as described for Catalyst 1 with tin and Pal- 5 ladium activated mm. They are then filled into the tubular reactor and mixed with a solution of 41.9 g ammonium chloride, 18.6 g sodium hypophosphite and 62 ml 25% ammonia in 600 ml water and heated to 60 ° C. A solution of 346 mg of sodium tetrachloropalladate and 1.5 mg of hexachloroplatinic acid in 10 13 ml of water is added and the mixture is warmed to 40.degree. After 10 minutes, the liquid is drained off and the catalyst is washed with water.
Die Prozedur wird noch einmal wiederholt, und die beiden Anteile werden zu Katalysator 8 vereinigt.The procedure is repeated once more and the two portions are combined to form catalyst 8.
1515
Katalysator 9 :Catalyst 9:
700 ml Kugeln aus besplittetem Steatit (mit einem durch Hg-Poro- 20 simetrie bestimmten Porenvolumen von 0,011 ml/g und einer BET- Oberflache von 0,031 m2/g) mit einem Durchmesser von 2 - 3 mm werden zweimal wie bei Katalysator 1 beschrieben mit Palladiumchlorid und Zinnchlorid behandelt. 340 ml der aktivierten Kugeln werden in den Beschichtungsreaktor gefüllt. Nach Zugabe einer Lösung 25 von 18,6 g Natriumhypophosphit, 41,9 g Ammoniumchlorid und 62 ml 25%iges Ammoniak in 500 ml Wasser wird unter Ümpumpen auf 29 °C erwärmt. Anschließend wird eine Lösung von 83,4 mg Natriumtetrachloropalladat und 4,8 mg Hexachloroplatinsäure in 8 ml Wasser zugesetzt und die Mischung weiter umgewälzt. Nach 15 Minuten wird 30 die Flüssigkeit abgelassen, der Katalysator mit Wasser salzfrei gespült und bei 75 °C im Vakuum getrocknet. Der Vorgang wird noch einmal wiederholt und danach werden beide Portionen zu Katalysator 9 vermischt. Eine Analyse zeigt, dass sich 95 % des Palladium und 100 % des Platins auf dem Träger abgeschieden haben.700 ml spheres of split steatite (with a pore volume of 0.011 ml / g determined by Hg porosimetry and a BET surface area of 0.031 m 2 / g) with a diameter of 2-3 mm are described twice as for catalyst 1 treated with palladium chloride and tin chloride. 340 ml of the activated balls are filled into the coating reactor. After adding a solution 25 of 18.6 g of sodium hypophosphite, 41.9 g of ammonium chloride and 62 ml of 25% ammonia in 500 ml of water, the mixture is heated to 29 ° C. while being pumped over. A solution of 83.4 mg of sodium tetrachloropalladate and 4.8 mg of hexachloroplatinic acid in 8 ml of water is then added and the mixture is circulated further. After 15 minutes, the liquid is drained off, the catalyst is rinsed salt-free with water and dried at 75 ° C. in vacuo. The process is repeated once more and then both portions are mixed to form catalyst 9. Analysis shows that 95% of the palladium and 100% of the platinum have deposited on the support.
3535
Katalysator 10:Catalyst 10:
700 ml Kugeln aus Steatit mit einem Durchmesser von 1,5 - 2,5 mm (mit einem Porenvolumen unterhalb der Bestimmungsgrenze der Hg-700 ml balls made of steatite with a diameter of 1.5 - 2.5 mm (with a pore volume below the limit of determination of the mercury
40 Porosimetrie und einer BET-Oberflache von 0,005 m2/g) werden zweimal wie bei Katalysator 1 beschrieben mit Palladiumchlorid und Zinnchlorid behandelt. 340 ml der aktivierten Kugeln werden in den Beschichtungsreaktor gefüllt. Nach Zugabe einer Lösung von 18,6 g Natriumhypophosphit, 41,9 g Ammoniumchlorid und 62 ml40 porosimetry and a BET surface area of 0.005 m 2 / g) are treated twice with palladium chloride and tin chloride as described for catalyst 1. 340 ml of the activated balls are filled into the coating reactor. After adding a solution of 18.6 g sodium hypophosphite, 41.9 g ammonium chloride and 62 ml
45 25%iges Ammoniak in 500 ml Wasser wird unter Ümpumpen auf 44 °C geheizt. Anschließend wird eine Lösung von 83,4 mg Natriumtetrachloropalladat und 4,8 mg Hexachloroplatinsäure in 8 ml Wasser zugesetzt und die Mischung weiter umgewälzt. Nach 20 Minuten wird die Flüssigkeit abgelassen, der Katalysator mit Wasser salzfrei gespült und bei 75 °C im Vakuum getrocknet. Der Vorgang wird noch einmal wiederholt, und danach werden beide Portionen zu Katalysa- tor 10 vermischt.45 25% ammonia in 500 ml of water is heated to 44 ° C while pumping over. Then a solution of 83.4 mg sodium tetrachloropalladate and 4.8 mg hexachloroplatinic acid in 8 ml of water added and the mixture circulated further. After 20 minutes, the liquid is drained off, the catalyst is rinsed salt-free with water and dried at 75 ° C. in vacuo. The process is repeated once more and then both portions are mixed to form catalyst 10.
Katalysator 11:Catalyst 11:
740 ml (447 g) Polystyrol-Stränglinge der Abmessungen 1 mm Durchmesser und 1,1 mm Länge (mit einem Porenvolumen unterhalb der Bestimmungsgrenze der Hg-Porosimetrie und einer BET-Oberfläche von 0,029 m2/g) werden wie bei Katalysator 1 beschrieben mit Zinn und Palladium aktiviert. Die Hälfte des Trägers wird dann in den Beschichtungsreaktor gefüllt und mit einer Lösung von 18,6 g Natriumhypophosphit, 41,9 g Ammoniumchlorid und 62 ml 25%iges Ammoniak in 620 ml Wasser versetzt und auf 42 °C erwärmt. Man gibt anschließend unter Ümpumpen eine Lösung von 346 mg Natriumtetrach- loropalladat und 1,43 mg Hexachloroplatinsäure in 10 ml Wasser dazu. Nach 10 Minuten lässt man die Lösung ab und wäscht mit Wasser nach. Die zweite Hälfte des aktivierten Trägers wird in einem Rührkolben mit denselben Chemikalien wie vorstehend versetzt, wobei man bei 45 °C mit 1000 Upm rührt. Der Katalysator wird abfiltriert und mit Wasser nachgewaschen. Beide Teile werden gemischt und bei 50 °C und 100 mbar getrocknet. Die Analyse zeigte, dass die Edelmetalle quantitativ abgeschieden wurden. Die Analyse zeigt einen Palladiumgehalt von 285 mg/kg.740 ml (447 g) polystyrene extrudates measuring 1 mm in diameter and 1.1 mm in length (with a pore volume below the limit of quantification of mercury porosimetry and a BET surface area of 0.029 m 2 / g) are mixed in as described for catalyst 1 Tin and palladium activated. Half of the carrier is then filled into the coating reactor and mixed with a solution of 18.6 g sodium hypophosphite, 41.9 g ammonium chloride and 62 ml 25% ammonia in 620 ml water and heated to 42 ° C. A solution of 346 mg of sodium tetrachloropalladate and 1.43 mg of hexachloroplatinic acid in 10 ml of water is then added with pumping. After 10 minutes, the solution is drained off and washed with water. The second half of the activated carrier is mixed with the same chemicals as above in a stirred flask, stirring at 45 ° C. at 1000 rpm. The catalyst is filtered off and washed with water. Both parts are mixed and dried at 50 ° C and 100 mbar. The analysis showed that the precious metals were separated quantitatively. The analysis shows a palladium content of 285 mg / kg.
Katalysator 12:Catalyst 12:
840 ml 3 mm Pellets aus einem Polyamid 6 (Ultramid® B3 der Fa. BASF AG) (mit einem Porenvolumen unterhalb der Bestimmungsgrenze der Hg-Porosimetrie und einer BET-Oberfläche von 0,027 m2/g) werden wie bei Katalysator 1 beschrieben mit Zinn und Palladium ak- tiviert. 240 ml der Pellets werden in das Beschichtungsrohr gefüllt und mit einer Lösung von 9,6 g Natriumhypophosphit, 21,6 g Ammoniumchlorid und 32 ml 25%iges Ammoniak in 160 ml Wasser versetzt und auf 45 °C erwärmt. Man gibt anschließend unter Ümpumpen eine Lösung von 137 mg Natriumtetrachloropalladat und 0,52 mg He- xachloroplatmsäure in 10 ml Wasser und anschließend 67,7 mg Di- natriumwolframat in 5 ml Wasser dazu. Nach 25 Minuten lässt man die Lösung ab und wäscht mit Wasser nach. Der Beschichtungsvor- gang wird noch mit dem restlichen aktivierten Träger (in 2 Portionen) wiederholt. Zum Schluss werden alle drei Portionen zum Katalysator 12 vermischt. Katalysator 13 :840 ml of 3 mm pellets made of a polyamide 6 (Ultramid® B3 from BASF AG) (with a pore volume below the limit of determination of the mercury porosimetry and a BET surface area of 0.027 m 2 / g) are described with tin as described for catalyst 1 and activated palladium. 240 ml of the pellets are filled into the coating tube and mixed with a solution of 9.6 g sodium hypophosphite, 21.6 g ammonium chloride and 32 ml 25% ammonia in 160 ml water and heated to 45 ° C. A solution of 137 mg of sodium tetrachloropalladate and 0.52 mg of hexachloroplatinic acid in 10 ml of water and then 67.7 mg of sodium tungstate in 5 ml of water are then added with pumping. After 25 minutes, the solution is drained off and washed with water. The coating process is repeated with the remaining activated carrier (in 2 portions). Finally, all three portions of the catalyst 12 are mixed. Catalyst 13:
750 ml 3 mm Raschig-Ringe aus Glas (mit einem durch Hg-Porosimetrie bestimmten Porenvolumen von 0,036 ml/g und einer BET-Ober- ^ fläche von 0,034 m2/g) werden wie bei Katalysator 1 beschrieben mit Zinn und Palladium aktiviert. Ein Drittel der aktivierten Raschig-Ringe werden in ein Doppelmantelglasrohr von 1 m Länge und 2 cm Durchmesser gefüllt. An das Glasrohr ist eine Schlauchpumpe zur Umwälzung von Flüssigkeit und ein Thermostat zur Beheizung750 ml of 3 mm Raschig rings made of glass (with a pore volume determined by mercury porosimetry of 0.036 ml / g and a BET surface area of 0.034 m 2 / g) are activated with tin and palladium as described for catalyst 1. A third of the activated Raschig rings are filled into a double-walled glass tube 1 m long and 2 cm in diameter. A peristaltic pump for circulating liquid and a thermostat for heating are attached to the glass tube
10 über den Mantel angeschlossen. In das Rohr füllt man eine Lösung von 15,6 g Natriumhypophosphit, 35,1 g Ammoniumchlorid und 52 ml 25%iges Ammoniak in 430 ml Wasser ein, schaltet die Umwälzpumpe ein und heizt mit dem Thermostaten auf eine Innentemperatur von 46 °C. Anschließend fügt man eine Lösung von 250 mg Natriumte-10 connected via the jacket. A solution of 15.6 g sodium hypophosphite, 35.1 g ammonium chloride and 52 ml 25% ammonia in 430 ml water is poured into the tube, the circulation pump is switched on and the thermostat is heated to an internal temperature of 46 ° C. Then add a solution of 250 mg sodium te-
15 trachloropalladat und 1,1 mg Hexachloroplatinsäure in 10 ml Wasser zu. unter heftiger Gasentwicklung werden die Glasringe sofort schwarz. Nach 5 Minuten lässt man die Flüssigkeit ab, spült mit Wasser nach und trocknet über Nacht bei 75 °C und 100 mbar. Der Beschichtungsvorgang wird mit jeweils einem weiteren Drittel des15 trachloropalladate and 1.1 mg hexachloroplatinic acid in 10 ml water. with violent gas evolution, the glass rings turn black immediately. After 5 minutes, the liquid is drained off, rinsed with water and dried overnight at 75 ° C. and 100 mbar. The coating process is carried out with a further third of each
20 aktivierten Trägers wiederholt. Zum Schluss werden alle drei Portionen zum Katalysator 13 vermischt. Die Analyse zeigt einen Gehalt von 155 mg/kg Palladium.20 activated carrier repeated. Finally, all three portions of the catalyst 13 are mixed. The analysis shows a content of 155 mg / kg palladium.
„ Katalysator 14 : 25"Catalyst 14:25
5 mm Glaskugeln aus Natronkalkglas werden wie bei Katalysator 1 aufgeraut und aktiviert. 115 ml der aktivierten Glaskugeln werden in das Beschichtungsrohr gefüllt. Man fügt eine Lösung von 6,8 g5 mm glass balls made of soda-lime glass are roughened and activated as with catalyst 1. 115 ml of the activated glass balls are filled into the coating tube. A solution of 6.8 g is added
30 Natriumhypophosphit, 15,3 g Ammoniumchlorid und 23 ml 25%iges Ammoniak in 228 ml Wasser hinzu und temperiert unter Ümpumpen auf 25 °C. Anschließend wird eine Lösung von 38,8 mg Natriumtetrachlo- ropalladat in 3,8 ml Wasser zugesetzt und weiter umgepumpt. Nach 12 Minuten wird die Flüssigkeit abgelassen und der Trägerkataly-30 sodium hypophosphite, 15.3 g of ammonium chloride and 23 ml of 25% ammonia in 228 ml of water are added and the temperature is raised to 25 ° C. while pumping over. A solution of 38.8 mg of sodium tetrachloropalladate in 3.8 ml of water is then added and pumped further. After 12 minutes the liquid is drained and the carrier catalyst
35 sator mit Wasser nachgespült. Der Katalysator wird anschließend über Nacht bei 75 °C und 100 mbar getrocknet. Die Beschichtung wird mit weiteren 115 ml der aktivierten Glaskugeln wiederholt, und beide Portionen werden zu Katalysator 14 vermischt. Der Palladiumgehalt des Katalysators ist 71 mg/kg.35 rinsed with water. The catalyst is then dried overnight at 75 ° C and 100 mbar. The coating is repeated with a further 115 ml of the activated glass balls, and both portions are mixed to form catalyst 14. The palladium content of the catalyst is 71 mg / kg.
4040
Katalysator 15:Catalyst 15:
100 ml Kugeln aus Steatit mit einem Durchmesser von 1,5 - 2,5 mm werden zweimal wie bei Katalysator 1 beschrieben mit Palladiumch- lorid und Zinnchlorid behandelt. Die aktivierten Kugeln werden in den Beschichtungsreaktor gefüllt. Nach Zugabe einer Lösung von 40 mg Hexachloroplatinsäure (als l%ige Lösung in Wasser) 21,6 g Ammoniumchlorid und 32 ml 25%iges Ammoniak in 220 ml Wasser wird unter Ümpumpen auf 24 °C temperiert. Anschließend wird eine Lösung von 200 mg Natriumborhydrid in 7 ml Wasser in zwei Portionen zugesetzt und die Mischung weiter umgewälzt. Nach 40 Minuten wird die Flüssigkeit abgelassen, der Katalysator mit Wasser salzfrei gespült und bei 75 °C im Vakuum getrocknet. Die Analyse zeigt, dass sich 60 % des Platins auf dem Träger abgeschieden haben.100 ml balls of steatite with a diameter of 1.5-2.5 mm are treated twice with palladium chloride and tin chloride as described for catalyst 1. The activated balls are filled into the coating reactor. After adding a solution of 40 mg hexachloroplatinic acid (as a 1% solution in water) 21.6 g Ammonium chloride and 32 ml of 25% ammonia in 220 ml of water are heated to 24 ° C. while pumping over. A solution of 200 mg of sodium borohydride in 7 ml of water is then added in two portions and the mixture is circulated further. After 40 minutes, the liquid is drained off, the catalyst is rinsed salt-free with water and dried at 75 ° C. in vacuo. The analysis shows that 60% of the platinum has deposited on the carrier.
II. Anwendungstechnische EigenschaftenII. Application properties
Die Eigenschaften der Katalysatoren wurden in der Direktsynthese von Wasserstoffperoxid aus Wasserstoff und Sauerstoff (Beispiele Bl bis B19) und in der Hydrierung von 2-Ethylanthrachinon und Hy- drodehydrolinalool (Beispiele B20 und B21) überprüft.The properties of the catalysts were checked in the direct synthesis of hydrogen peroxide from hydrogen and oxygen (Examples B1 to B19) and in the hydrogenation of 2-ethylanthraquinone and hydrodehydrolinalool (Examples B20 and B21).
Beispiele Bl - B9 und Bll - B19, Vergleichsbeispiel BIO:Examples B1 - B9 and B1 - B19, comparative example BIO:
Beispiel 1example 1
Ein Doppelmantelreaktor mit einem Innendurchmesser von 2,1 cm und einer Länge von 2 m wird mit dem Katalysator 1 beschickt. Bei 40 °C und 50 bar Druck lässt man eine Lösung von 5 g/1 Phosphorsäure und 120 mg/1 Bromwasserstoff in Wasser mit einer Geschwindigkeit von 250 ml pro Stunde über das Katalysatorbett rieseln. Gleichzeitig wird mit Hilfe eines Gaskompressors ein Gemisch von 3 % Wasserstoff und 97 % Sauerstoff mit einer Geschwindigkeit von 10400 Nl/h von oben nach unten im Kreis über das Katalysatorbett gepumpt. Das Gasgemisch wird mit Hilfe von zwei Massendurchfluss- messern für Wasserstoff und Sauerstoff erzeugt. Seine Zusammensetzung wird mit Hilfe eines Wärmeleitdetektors, über den ein kleiner Teilstrom als Abgasstrom geleitet wird, ermittelt und nachgeregelt.A double jacket reactor with an inner diameter of 2.1 cm and a length of 2 m is charged with the catalyst 1. At 40 ° C and 50 bar pressure, a solution of 5 g / 1 phosphoric acid and 120 mg / 1 hydrogen bromide in water is poured over the catalyst bed at a rate of 250 ml per hour. At the same time, with the help of a gas compressor, a mixture of 3% hydrogen and 97% oxygen is pumped from top to bottom in a circle over the catalyst bed at a rate of 10,400 Nl / h. The gas mixture is generated using two mass flow meters for hydrogen and oxygen. Its composition is determined and readjusted with the help of a thermal conductivity detector, through which a small partial flow is passed as an exhaust gas flow.
Die Menge an durch die Reaktion zu Wasserstoffperoxid und Wasser verbrauchten Wasserstoffs wird aus den eingeleiteten Massenströmen der Gase und aus dem Abgasstrom errechnet.The amount of hydrogen consumed by the reaction to form hydrogen peroxide and water is calculated from the introduced mass flows of the gases and from the exhaust gas flow.
Das aus dem Reaktionsrohr austretende Produktgemisch wird in einem Abscheider noch unter Druck von den Gasen getrennt und flüssig aus der Anlage herausgefördert. Der Massenstrom wird gegen den Zulaufström bilanziert. Der Wasserstoffperoxidgehalt in dem flüssigen Austrag wird durch Titration bestimmt.The product mixture emerging from the reaction tube is separated from the gases under pressure in a separator and is conveyed out of the system in liquid form. The mass flow is balanced against the inflow flow. The hydrogen peroxide content in the liquid discharge is determined by titration.
Aus der Masse des AustragsStroms, dem Gehalt an Wasserstoffperoxid und der Menge verbrauchten Wasserstoffs wird die Selektivität bezogen auf Wasserstoff errechnet . Die Raum-Zeit-Ausbeute ergibt sich aus der pro Zeiteinheit gebildeten Menge Wasserstoffperoxids bezogen auf das Volumen von 690 ml Katalysator schüttung in dem Rohrreaktor .The selectivity becomes from the mass of the discharge stream, the content of hydrogen peroxide and the amount of hydrogen consumed calculated based on hydrogen. The space-time yield results from the amount of hydrogen peroxide formed per unit of time based on the volume of 690 ml of catalyst bed in the tubular reactor.
Analog der Vorschrift zu Beispiel 1 wurden die Beispiele 1 bis 9 und 11 bis 19 sowie das Vergleichsbeispiel 10 durchgeführt. Die Reaktionsbedingungen und Ergebnisse der Reaktion sind in Tabelle 1 zusammengefasst.Examples 1 to 9 and 11 to 19 and comparative example 10 were carried out analogously to the instructions for example 1. The reaction conditions and results of the reaction are summarized in Table 1.
Tabelle 1Table 1
Wie das Vergleichsbeispiel 10 mit dem nicht erfindungsgemäßen Katalysator 8 belegt, weisen Katalysatoren auf einem porösen Träger gemäß dem Stand der Technik eine deutlich geringere Aktivität auf , als die erfindungsgemäßen Katalysatoren. Beispiel 20: Hydrierung von 2-EthylanthrachinonAs the comparative example 10 shows with the catalyst 8 not according to the invention, catalysts on a porous support according to the prior art have a significantly lower activity than the catalysts according to the invention. Example 20: Hydrogenation of 2-ethylanthraquinone
Ein Doppelmantelreaktor mit einem Innendurchmesser von 2,1 cm und einer Länge von 2 m wird mit dem Katalysator 4 beschickt. Bei 40 °C und 10 bar Wasserstoffdruck lässt man eine Lösung von 13 Gew.-% 2-Ethylanthrachinon in einem Gemisch aus 70 Gew.-% eines Kohlenwasserstoffgemischs (Shellsol®) und 30 Gew.-% Tetra- butylharnstoff mit einer Geschwindigkeit von 2700 ml/h kontinuierlich über das Katalysatorbett rieseln.A double jacket reactor with an inner diameter of 2.1 cm and a length of 2 m is charged with the catalyst 4. At 40 ° C. and 10 bar hydrogen pressure, a solution of 13% by weight of 2-ethylanthraquinone in a mixture of 70% by weight of a hydrocarbon mixture (Shellsol®) and 30% by weight of tetrabutylurea is left at a rate of 2700 continuously pour ml / h over the catalyst bed.
Die aus dem Reaktionsrohr austretende hydrierte Arbeitslösung wird in einem Abscheider vom Gas getrennt und flüssig aus der Anlage herausgefördert.The hydrogenated working solution emerging from the reaction tube is separated from the gas in a separator and conveyed out of the system in liquid form.
Die gaschromatographische Analyse der Arbeitslösung ergab einenThe gas chromatographic analysis of the working solution showed one
Umsatz von 73 % und eine Selektivität von 99,9 % bezüglich 2-Ethylanthrahydrochinon.Conversion of 73% and a selectivity of 99.9% regarding 2-ethylanthrahydroquinone.
Beispiel 21: Hydrierung von HydrodehydrolmaloolExample 21: Hydrogenation of hydrodehydrolmalool
Katalysator 14 (152 ml) wird zusammen mit Hydrodehydrolmalool in ein Doppelmantelrohr mit 2 cm Durchmesser gefüllt. Mit entsprechenden Pumpen werden die Flüssigkeit und Wasserstoff bei 1,1 bar und 80 °C mit Querschnittsbelastungen von jeweils 200 m3/m2 umgewälzt. Der Acetylenalkohol wird mit einer Umsatzrate von 15 %/h und einer Selektivität > 98 % zu Hydrolinalool hydriert. Catalyst 14 (152 ml) is filled together with hydrodehydrolmalool in a double jacket tube with a diameter of 2 cm. With appropriate pumps, the liquid and hydrogen are circulated at 1.1 bar and 80 ° C with cross-sectional loads of 200 m 3 / m 2 each. The acetylene alcohol is hydrogenated with a conversion rate of 15% / h and a selectivity> 98% to hydrolinalool.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Katalysators, der wenigstens ein Platinmetall auf einem nichtporösen nichtmetallischen1. A process for the preparation of a catalyst comprising at least one platinum metal on a non-porous non-metallic
Träger umfasst, wobei man den Träger aktiviert und auf dem aktivierten Träger wenigstens ein Platinmetall stromlos abscheidet, wobei man ein wässriges Medium, das wenigstens eine Verbindung oder einen Komplex eines Platinmetalls und wenig- stens ein Reduktionsmittel umfasst, mit dem Träger in Kontakt bringt.Carrier comprises, wherein the carrier is activated and at least one platinum metal is electrolessly deposited on the activated carrier, an aqueous medium comprising at least one compound or complex of a platinum metal and at least one reducing agent being brought into contact with the carrier.
2. Verfahren nach Anspruch 1, wobei man den Träger aktiviert, indem man ihn mit einem Reduktionsmittel und einem Salz eines Platinmetalls behandelt.2. The method of claim 1, wherein the carrier is activated by treating it with a reducing agent and a salt of a platinum metal.
3. Verfahren nach Anspruch 1 oder 2 , wobei als Träger ein mineralischer Werkstoff eingesetzt wird, der ausgewählt ist unter keramischen Werkstoffen, Gläsern und Mischungen davon.3. The method according to claim 1 or 2, wherein a mineral material is used as a carrier, which is selected from ceramic materials, glasses and mixtures thereof.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei man die Oberfläche des Trägers vor dem Aktivieren aufraut.4. The method according to any one of the preceding claims, wherein the surface of the carrier is roughened before activation.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei man einen Träger einsetzt, dessen durch Quecksilber-Porosimetrie bestimmtes Porenvolumen höchstens 0,1 ml/g beträgt.5. The method according to any one of the preceding claims, wherein a carrier is used, the pore volume determined by mercury porosimetry is at most 0.1 ml / g.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei man zur stromlosen Abscheidung ein wässriges Medium einsetzt, das zusätzlich wenigstens eine Verbindung eines Metalls der 6.,6. The method according to any one of the preceding claims, wherein an aqueous medium is used for electroless deposition, which additionally contains at least one compound of a metal of the 6th,
7. oder 1. Nebengruppe, der Eisen-Gruppe oder des Bismuts umfasst.7th or 1st subgroup, the iron group or bismuth.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei man zur stromlosen Abscheidung ein wässriges Medium einsetzt, das zusätzlich wenigstens einen Liganden umfasst, der zur Komplexbildung mit dem Platinmetall befähigt ist.7. The method according to any one of the preceding claims, wherein for the electroless deposition an aqueous medium is used which additionally comprises at least one ligand which is capable of complexing with the platinum metal.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei man zur stromlosen Abscheidung ein Reduktionsmittel mit einem8. The method according to any one of the preceding claims, wherein for a currentless deposition, a reducing agent with a
Standard-Potential von höchstens +0,5 V einsetzt.Standard potential of at most +0.5 V is used.
9. Katalysator, erhältlich durch ein Verfahren gemäß einem der Ansprüche 1 bis 8. 9. A catalyst obtainable by a process according to any one of claims 1 to 8.
10. Platinmetall-Katalysator, mit einem nichtporösen nichtmetallischen Träger und einer darauf aufgebrachten katalytisch aktiven Beschichtung, dadurch gekennzeichnet, dass die katalytisch aktive Beschichtung auf der Trägeroberfläche immobili-10. platinum metal catalyst, with a non-porous non-metallic support and a catalytically active coating applied thereon, characterized in that the catalytically active coating is immobilized on the support surface.
5 sierte, diskrete Platinmetallpartikel mit einem mittleren Partikeldurchmesser von weniger als etwa 1 μm umfasst.5 siert, discrete platinum metal particles having an average particle diameter of less than about 1 micron.
11. Verwendung eines Katalysators gemäß Anspruch 9 oder 10 zur Hydrierung von anorganischen und organischen Verbindungen.11. Use of a catalyst according to claim 9 or 10 for the hydrogenation of inorganic and organic compounds.
1010
12. Verwendung nach Anspruch 11, wobei die anorganische Verbindung molekularer Sauerstoff ist und Wasserstoffperoxid erhalten wird.12. Use according to claim 11, wherein the inorganic compound is molecular oxygen and hydrogen peroxide is obtained.
15 13. Verfahren zur Herstellung von Wasserstoffperoxid durch Direktsynthese, wobei man einen Katalysator gemäß Anspruch 9 oder 10 in einem flüssigen Medium mit Sauerstoff und Wasserstoff in Kontakt bringt.13. A process for the production of hydrogen peroxide by direct synthesis, wherein a catalyst according to claim 9 or 10 is brought into contact with oxygen and hydrogen in a liquid medium.
20 14. Verfahren nach Anspruch 13, wobei man den Katalysator in einem flüssigen Medium mit einem Sauerstoff-Wasserstoff-Gemisch mit einem Mischungsverhältnis im Bereich von etwa 5 : 1 bis 100:1 in Kontakt bringt.14. The method according to claim 13, wherein the catalyst is brought into contact in a liquid medium with an oxygen-hydrogen mixture with a mixing ratio in the range from about 5: 1 to 100: 1.
25 15. Verfahren zur katalytischen Reduktion durch Umsetzung einer anorganischen oder organischen Verbindung, enthaltend wenigstens eine Wasserstoff-Akzeptorgruppe, mit Wasserstoff, wobei die Umsetzung in Gegenwart wenigstens eines Katalysators nach Anspruch 9 oder 10 erfolgt.15. A process for the catalytic reduction by reacting an inorganic or organic compound containing at least one hydrogen acceptor group with hydrogen, the reaction being carried out in the presence of at least one catalyst as claimed in claim 9 or 10.
3030
3535
4040
45 45
EP01969806A 2000-10-02 2001-10-01 Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide Withdrawn EP1326709A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10048844A DE10048844A1 (en) 2000-10-02 2000-10-02 Process for the production of platinum metal catalysts
DE10048844 2000-10-02
PCT/EP2001/011347 WO2002028527A1 (en) 2000-10-02 2001-10-01 Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide

Publications (1)

Publication Number Publication Date
EP1326709A1 true EP1326709A1 (en) 2003-07-16

Family

ID=7658474

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01969806A Withdrawn EP1326709A1 (en) 2000-10-02 2001-10-01 Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide
EP01982387A Expired - Lifetime EP1328344B1 (en) 2000-10-02 2001-10-01 Supported catalyst consisting of metal of the platinum group and obtained by means of controlled electroless deposition

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP01982387A Expired - Lifetime EP1328344B1 (en) 2000-10-02 2001-10-01 Supported catalyst consisting of metal of the platinum group and obtained by means of controlled electroless deposition

Country Status (13)

Country Link
US (2) US7070757B2 (en)
EP (2) EP1326709A1 (en)
JP (2) JP4054676B2 (en)
KR (2) KR20030041143A (en)
CN (2) CN1255212C (en)
AT (1) ATE369912T1 (en)
AU (2) AU2001289946A1 (en)
CA (2) CA2423009C (en)
DE (2) DE10048844A1 (en)
MX (2) MXPA03002660A (en)
MY (1) MY131574A (en)
WO (2) WO2002028528A1 (en)
ZA (2) ZA200303326B (en)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20011688A1 (en) * 2001-08-02 2003-02-02 Enichem Spa CATALYST AND ITS USE IN THE SYNTHESIS OF OXYGEN WATER
US6799615B2 (en) * 2002-02-26 2004-10-05 Leslie G. Smith Tenon maker
DE10253180B4 (en) * 2002-09-03 2017-12-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the metallization of plastics
JP4552378B2 (en) * 2003-01-16 2010-09-29 住友化学株式会社 Olefin hydrogenation method
US7067103B2 (en) * 2003-03-28 2006-06-27 Headwaters Nanokinetix, Inc. Direct hydrogen peroxide production using staged hydrogen addition
US6887821B2 (en) * 2003-04-01 2005-05-03 The Boeing Company High-temperature catalyst for catalytic combustion and decomposition
US20040248403A1 (en) * 2003-06-09 2004-12-09 Dubin Valery M. Method for forming electroless metal low resistivity interconnects
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions
US7045479B2 (en) * 2003-07-14 2006-05-16 Headwaters Nanokinetix, Inc. Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions
US7011807B2 (en) * 2003-07-14 2006-03-14 Headwaters Nanokinetix, Inc. Supported catalysts having a controlled coordination structure and methods for preparing such catalysts
US7144565B2 (en) * 2003-07-29 2006-12-05 Headwaters Nanokinetix, Inc. Process for direct catalytic hydrogen peroxide production
MX274369B (en) * 2004-04-28 2010-03-05 Headwaters Heavy Oil Llc Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system.
PL1753844T3 (en) * 2004-04-28 2016-12-30 Hydroprocessing method and system for upgrading heavy oil
JP5318410B2 (en) * 2004-04-28 2013-10-16 ヘッドウォーターズ ヘビー オイル リミテッド ライアビリティ カンパニー Boiling bed hydroprocessing method and system and method for upgrading an existing boiling bed system
US10941353B2 (en) 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
EP1773969B1 (en) * 2004-06-17 2015-08-12 ExxonMobil Research and Engineering Company Two-step hydroprocessing method for heavy hydrocarbon oil
US20060166816A1 (en) * 2004-06-23 2006-07-27 Catalytic Solutions, Inc. Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
US7632775B2 (en) * 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
US7718309B2 (en) * 2004-12-06 2010-05-18 Honda Motor Co., Ltd. Platinum and tungsten containing electrocatalysts
US7736790B2 (en) * 2004-12-06 2010-06-15 Honda Motor Co., Ltd. Platinum and tungsten containing electrocatalysts
US7449423B2 (en) 2005-01-14 2008-11-11 Headwaters Technology Innovation, Llc Heat treatment of anchored nanocatalysts in a non-zero oxidation state and catalysts made by such method
US7803201B2 (en) * 2005-02-09 2010-09-28 Headwaters Technology Innovation, Llc Organically complexed nanocatalysts for improving combustion properties of fuels and fuel compositions incorporating such catalysts
US7856992B2 (en) 2005-02-09 2010-12-28 Headwaters Technology Innovation, Llc Tobacco catalyst and methods for reducing the amount of undesirable small molecules in tobacco smoke
FR2882531B1 (en) * 2005-02-25 2007-04-27 Inst Francais Du Petrole PROCESS FOR THE PREPARATION OF MULTIMETALLIC CATALYSTS FOR USE IN HYDROCARBON PROCESSING REACTIONS
US7045481B1 (en) 2005-04-12 2006-05-16 Headwaters Nanokinetix, Inc. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same
US7357903B2 (en) 2005-04-12 2008-04-15 Headwaters Heavy Oil, Llc Method for reducing NOx during combustion of coal in a burner
US7326399B2 (en) * 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
US20060258875A1 (en) * 2005-05-10 2006-11-16 Clementine Reyes Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
NL1029311C2 (en) * 2005-06-22 2006-12-27 Nanotechnology B V Microscopic substrate covered on all sides with a metal layer and method for metallizing a microscopic substrate.
US7435504B2 (en) * 2005-08-25 2008-10-14 Honda Motor Co., Ltd. Platinum, tungsten, and nickel or zirconium containing electrocatalysts
US7288500B2 (en) * 2005-08-31 2007-10-30 Headwaters Technology Innovation, Llc Selective hydrogenation of nitro groups of halonitro aromatic compounds
US7396795B2 (en) * 2005-08-31 2008-07-08 Headwaters Technology Innovation, Llc Low temperature preparation of supported nanoparticle catalysts having increased dispersion
US7892299B2 (en) * 2005-09-15 2011-02-22 Headwaters Technology Innovation, Llc Methods of manufacturing fuel cell electrodes incorporating highly dispersed nanoparticle catalysts
US7935652B2 (en) * 2005-09-15 2011-05-03 Headwaters Technology Innovation, Llc. Supported nanoparticle catalysts manufactured using caged catalyst atoms
US20080280190A1 (en) * 2005-10-20 2008-11-13 Robert Brian Dopp Electrochemical catalysts
US7758660B2 (en) 2006-02-09 2010-07-20 Headwaters Technology Innovation, Llc Crystalline nanocatalysts for improving combustion properties of fuels and fuel compositions incorporating such catalysts
US7718710B2 (en) * 2006-03-17 2010-05-18 Headwaters Technology Innovation, Llc Stable concentrated metal colloids and methods of making same
US7632774B2 (en) * 2006-03-30 2009-12-15 Headwaters Technology Innovation, Llc Method for manufacturing supported nanocatalysts having an acid-functionalized support
US20070235876A1 (en) * 2006-03-30 2007-10-11 Michael Goldstein Method of forming an atomic layer thin film out of the liquid phase
US7955755B2 (en) * 2006-03-31 2011-06-07 Quantumsphere, Inc. Compositions of nanometal particles containing a metal or alloy and platinum particles
EP2006943B1 (en) * 2006-03-31 2012-08-01 Cataler Corporation Production process of electrode catalyst for fuel cell
US7285142B1 (en) * 2006-04-28 2007-10-23 University Of Central Florida Research Foundation, Inc. Catalytic dehydrogenation of amine borane complexes
US7541309B2 (en) * 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
DE102006029947B4 (en) * 2006-06-29 2013-01-17 Basf Se Method for applying a metallic cover layer to a high-temperature superconductor
US20080003366A1 (en) * 2006-06-30 2008-01-03 Dubin Valery M Method of forming a conducting layer on a conducting and non-conducting substrate
US7601668B2 (en) * 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
EP2086673A2 (en) * 2006-11-11 2009-08-12 Uop Llc Selective hydrogenation processes using functional surface catalyst composition
TW200843858A (en) * 2006-11-11 2008-11-16 Uop Llc Oxidation processes using functional surface catalyst composition
WO2008060970A2 (en) * 2006-11-11 2008-05-22 Uop Llc Hydrogenation processes using functional surface catalyst composition
US7534741B2 (en) * 2007-02-09 2009-05-19 Headwaters Technology Innovation, Llc Supported nanocatalyst particles manufactured by heating complexed catalyst atoms
WO2009032203A1 (en) * 2007-08-30 2009-03-12 Solutions Biomed, Llc Colloidal metal-containing skin sanitizer
CA2699501A1 (en) 2007-09-13 2009-03-19 Velocys Inc. Porous electrolessly deposited coatings
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8142645B2 (en) * 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
EP2265656B1 (en) * 2008-04-17 2016-10-26 Agency for Science, Technology And Research Polyisocyanurates
KR101503067B1 (en) * 2008-10-01 2015-03-16 에스케이이노베이션 주식회사 Process for preparing producing Hydrogen Peroxide using Palladium-Exchanged Insoluble Heteropolyacid
US8377840B2 (en) * 2009-02-13 2013-02-19 Babcock & Wilcox Technical Services Y-12, Llc Method of producing catalytic materials for fabricating nanostructures
JP5322733B2 (en) * 2009-03-31 2013-10-23 Jx日鉱日石エネルギー株式会社 Method for producing catalyst for selective oxidation reaction of carbon monoxide
US20100273645A1 (en) * 2009-04-24 2010-10-28 Bedard Robert L Functional Surface Catalyst Composition
KR101474571B1 (en) * 2009-05-13 2014-12-19 에스케이이노베이션 주식회사 Catalyst Comprising Polymer Electrolyte Multilayer and Method for Preparation of the Same
EP2305376A1 (en) * 2009-09-23 2011-04-06 Lonza Ltd. Process and catalyst for the catalytic hydrogenation of aromatic and heteroaromatic nitro compounds
IN2012DN06287A (en) 2010-02-12 2015-09-25 Utc Power Corp
DE112010005263B4 (en) 2010-02-12 2022-07-21 Audi Ag Platinum monolayer on hollow, porous nanoparticles with large surface areas and fabrication process
US9169449B2 (en) 2010-12-20 2015-10-27 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8822370B2 (en) * 2011-05-16 2014-09-02 Uop Llc Substantially non-porous substrate supported noble metal-and lanthanide-containing catalysts
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
WO2014088538A1 (en) 2012-12-03 2014-06-12 United Technologies Corporation Core-shell catalyst and method for palladium-based core particle
US9469902B2 (en) * 2014-02-18 2016-10-18 Lam Research Corporation Electroless deposition of continuous platinum layer
US9499913B2 (en) * 2014-04-02 2016-11-22 Lam Research Corporation Electroless deposition of continuous platinum layer using complexed Co2+ metal ion reducing agent
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
JP6352879B2 (en) * 2015-10-15 2018-07-04 小島化学薬品株式会社 Electroless platinum plating solution
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
JP6329589B2 (en) * 2016-06-13 2018-05-23 上村工業株式会社 Film formation method
JP6811041B2 (en) * 2016-07-04 2021-01-13 上村工業株式会社 Electroless platinum plating bath
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
US11118119B2 (en) 2017-03-02 2021-09-14 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with less fouling sediment
WO2018200370A1 (en) * 2017-04-24 2018-11-01 University Of North Texas Nanomanufacturing of metallic glasses for energy conversion and storage
EP3635154A1 (en) * 2017-06-06 2020-04-15 Uniwersytet Warszawski A method of electroless deposition of platinum group metals and their alloys and a plating bath used therein
US20190032220A1 (en) * 2017-07-25 2019-01-31 Rohm And Haas Electronic Materials Llc Chrome-free etch solutions for chemically resistant polymer materials
US10245583B1 (en) 2017-09-12 2019-04-02 Chevron Phillips Chemical Company, Lp Use of charge-containing molecules linked with covalent bonds to enhance acetylene hydrogenation catalysts
US10232360B1 (en) * 2017-09-12 2019-03-19 Chevron Phillips Chemical Company, Lp Use of organic dopants to enhance acetylene hydrogenation catalysts
CN109806861B (en) * 2017-11-20 2020-06-23 中国科学院大连化学物理研究所 Preparation of nano-sandwich structure noble metal catalyst and application of nano-sandwich structure noble metal catalyst in hydrogen and oxygen direct synthesis of hydrogen peroxide
JP6886992B2 (en) 2018-03-30 2021-06-16 恵和株式会社 Light diffusing plate laminate, backlight unit, and liquid crystal display device
RU2687449C1 (en) * 2018-05-07 2019-05-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет" (ФГБОУ ВО "ИГУ") Method of producing hydrogen peroxide
DE102018207589A1 (en) * 2018-05-16 2019-11-21 Robert Bosch Gmbh Process for recovering gold, silver and platinum metals from components of a fuel cell stack or an electrolyzer
CA3057131A1 (en) 2018-10-17 2020-04-17 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
CN110420637B (en) * 2019-08-06 2020-10-02 北京化工大学 Method for preparing composite catalyst by using W modified carrier loaded with metal Pd and application of composite catalyst
KR102223597B1 (en) * 2019-10-10 2021-03-05 한국화학연구원 Catalyst for Selective Hydrogenation of Acetylene and Method for Preparing the Same
EP3835639B1 (en) 2019-12-12 2023-08-30 Basf Se Gas-tight, heat permeable, ceramic and multilayer composite pipe
CN112973677A (en) * 2019-12-13 2021-06-18 山西潞安矿业(集团)有限责任公司 Preparation method and application of hydrophobic noble metal catalyst
DE102022200652A1 (en) 2022-01-20 2023-07-20 Universität Stuttgart, Körperschaft Des Öffentlichen Rechts Multi-layer composite pipe, use of the multi-layer composite pipe and method for its manufacture
CN115772042A (en) * 2022-11-28 2023-03-10 晋城市晋陶陶瓷有限公司 Ceramic tea set containing germanium and rhodium elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698939A (en) * 1970-07-09 1972-10-17 Frank H Leaman Method and composition of platinum plating
US4200552A (en) * 1976-10-06 1980-04-29 Toyota Jidosha Kogyo Kabushiki Kaisha Catalyst carrier, catalyst and their manufacturing process
EP0584887A2 (en) * 1992-08-28 1994-03-02 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for treating exhaust gases from internal combustion and stationary source engines

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE572358A (en) 1958-10-24 1900-01-01
DE1943213A1 (en) * 1969-08-20 1971-05-19 Schering Ag (de)hydrogenation and oxidation catalysts - deposited on supports by reduction from sol
DE2046521A1 (en) 1970-09-22 1972-03-23 Licentia Gmbh Molybdenum or tungsten deposition - with nickel using chemical plating baths contg molybdates or tungstates
US3696939A (en) 1971-01-04 1972-10-10 Karl B Drowatzky Smoke tree
CH606475A5 (en) * 1976-02-05 1978-10-31 Bbc Brown Boveri & Cie
SE7800987L (en) * 1977-02-04 1978-08-05 Johnson Matthey Co Ltd CATALYST
DE2934584A1 (en) 1979-08-27 1981-03-19 Dr.-Ing. Max Schlötter GmbH & Co KG, 7340 Geislingen Activation bath contg. noble metal complex - in polyglycol or polyglycol-ether, for treating synthetics, ceramics or glass for metallisation
US4341662A (en) * 1980-04-11 1982-07-27 Pfefferle William C Method of catalytically coating low porosity ceramic surfaces
US4471014A (en) 1981-06-30 1984-09-11 Atomic Energy Of Canada Limited Ordered bed packing module
EP0201614B1 (en) * 1985-05-14 1989-12-27 GebràœDer Sulzer Aktiengesellschaft Reactor for carrying out heterogeneous catalytic chemical reactions
GB8630728D0 (en) * 1986-12-23 1987-02-04 Johnson Matthey Plc Ammonia oxidation catalyst pack
CA1317740C (en) 1988-10-24 1993-05-18 Karl T. Chuang Production of hydrogen peroxide
US5792721A (en) * 1990-03-05 1998-08-11 Catalytica, Inc. Preparation of phosphomolybdovanadate polyoxoanions
DE69019731T2 (en) 1990-03-30 1996-01-18 Koch Eng Co Inc Structure and method for catalytically reacting fluid flows in a mass transfer device.
US5338531A (en) 1992-01-21 1994-08-16 Chuang Karl T Production of hydrogen peroxide
JPH05270806A (en) * 1992-03-25 1993-10-19 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
JP3212699B2 (en) * 1992-06-22 2001-09-25 田中貴金属工業株式会社 Oxidation catalyst and method for producing the same
US5347046A (en) * 1993-05-25 1994-09-13 Engelhard Corporation Catalyst and process for using same for the preparation of unsaturated carboxylic acid esters
US6325910B1 (en) 1994-04-08 2001-12-04 Atotch Deutschland Gmbh Palladium colloid solution and its utilization
US6044644A (en) * 1994-12-06 2000-04-04 Engelhard Corporation Close coupled catalyst
DE69520094T2 (en) * 1994-12-27 2001-06-13 Ibiden Co Ltd PRE-TREATMENT SOLUTION FOR ELECTRONLESS COATING, BATH AND METHOD
US5756717A (en) * 1995-05-24 1998-05-26 Perseptive Biosystems, Inc Protein imaging
DE19526473A1 (en) 1995-07-20 1997-01-23 Basf Ag Process for the preparation of alkenes by partial hydrogenation of alkynes on fixed bed palladium catalysts
FR2737482B1 (en) * 1995-08-02 1997-09-19 Elf Aquitaine PROCESS FOR OBTAINING TITANIUM ZEOLITHS INSERTED IN THE NETWORK AND APPLICATION
US5739075A (en) * 1995-10-06 1998-04-14 Shell Oil Company Process for preparing ethylene oxide catalysts
WO1997013763A1 (en) * 1995-10-13 1997-04-17 The Penn State Research Foundation Asymmetric synthesis catalyzed by transition metal complexes with new chiral ligands
SE9504327D0 (en) * 1995-12-04 1995-12-04 Eka Nobel Ab Method of treating a catalyst
US5853693A (en) * 1996-04-03 1998-12-29 Mitsubishi Gas Chemical Company, Inc. Hydrogenation catalyst for production of hydrogen peroxide, and method for preparation of same
US5690900A (en) * 1996-10-10 1997-11-25 Smojver; Radmil Ammonia oxidation catalyst
DE19642770A1 (en) 1996-10-16 1998-04-23 Basf Ag Process for the production of hydrogen peroxide
DE69836295T2 (en) * 1997-05-05 2007-04-12 Akzo Nobel N.V. Process for the preparation of supported catalysts by electroless metal deposition
US6207128B1 (en) * 1997-05-05 2001-03-27 Akzo Nobel N.V. Method of producing a catalyst
EP1001910B1 (en) * 1997-08-12 2004-04-28 Basf Aktiengesellschaft Method for producing nitric acid and device for carrying out said method
DE19734974A1 (en) * 1997-08-13 1999-02-25 Hoechst Ag Production of supported catalyst for vinyl acetate production
DE69815156T2 (en) * 1997-12-22 2004-02-19 Akzo Nobel N.V. METHOD FOR PRODUCING HYDROGEN PEROXIDE
US6297185B1 (en) * 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
GB9810928D0 (en) * 1998-05-22 1998-07-22 Bp Chem Int Ltd Catalyst and process
US6500968B2 (en) * 1998-08-26 2002-12-31 Hydrocarbon Technologies, Inc. Process for selective oxidation of organic feedstocks with hydrogen peroxide
US6168775B1 (en) * 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
DE19912733A1 (en) * 1999-03-20 2000-09-21 Degussa Process for the production of hydrogen peroxide by direct synthesis
DE19915681A1 (en) 1999-04-07 2000-10-12 Basf Ag Process for the production of platinum metal catalysts
US6534033B1 (en) * 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
IT1318550B1 (en) * 2000-06-01 2003-08-27 Eni Spa CATALYST AND PROCESS FOR DIRECT SYNTHESIS OF OXYGEN WATER.
US6468496B2 (en) * 2000-12-21 2002-10-22 Arco Chemical Technology, L.P. Process for producing hydrogen peroxide
US6534661B1 (en) * 2000-12-28 2003-03-18 Hydrocarbon Technologies, Inc. Integrated process and dual-function catalyst for olefin epoxidation
JP2003112058A (en) * 2001-07-30 2003-04-15 Denso Corp Ceramic catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698939A (en) * 1970-07-09 1972-10-17 Frank H Leaman Method and composition of platinum plating
US4200552A (en) * 1976-10-06 1980-04-29 Toyota Jidosha Kogyo Kabushiki Kaisha Catalyst carrier, catalyst and their manufacturing process
EP0584887A2 (en) * 1992-08-28 1994-03-02 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for treating exhaust gases from internal combustion and stationary source engines

Also Published As

Publication number Publication date
DE10048844A1 (en) 2002-04-11
US20040037770A1 (en) 2004-02-26
KR100821423B1 (en) 2008-04-10
JP2004516921A (en) 2004-06-10
DE50112872D1 (en) 2007-09-27
CN1276789C (en) 2006-09-27
MXPA03002660A (en) 2003-06-24
EP1328344A1 (en) 2003-07-23
JP2004516922A (en) 2004-06-10
CN1468150A (en) 2004-01-14
KR20030041143A (en) 2003-05-23
WO2002028528A1 (en) 2002-04-11
ATE369912T1 (en) 2007-09-15
CA2423009A1 (en) 2003-03-20
WO2002028527A1 (en) 2002-04-11
AU2002213986A1 (en) 2002-04-15
JP4054676B2 (en) 2008-02-27
US7070757B2 (en) 2006-07-04
KR20030041144A (en) 2003-05-23
CA2422806A1 (en) 2003-03-18
MXPA03002396A (en) 2003-06-19
US6936564B2 (en) 2005-08-30
EP1328344B1 (en) 2007-08-15
CN1255212C (en) 2006-05-10
MY131574A (en) 2007-08-30
ZA200303326B (en) 2004-04-30
AU2001289946A1 (en) 2002-04-15
CA2423009C (en) 2010-12-14
JP4308517B2 (en) 2009-08-05
CN1468148A (en) 2004-01-14
US20040013601A1 (en) 2004-01-22
ZA200303325B (en) 2004-04-30

Similar Documents

Publication Publication Date Title
EP1326709A1 (en) Method for producing catalysts consisting of metal of the platinum group by means of electroless deposition and the use thereof for the direct synthesis of hydrogen peroxide
EP1169129A1 (en) Method for producing platinum metal catalysts
DE3019582C2 (en)
EP0083791B1 (en) Shaped articles containing silica, processes for their preparation and their use
EP1038833B1 (en) Process for the preparation of hydrogen peroxide by direct synthesis
EP0490151B1 (en) Process for the preparation of aniline
DE1667200A1 (en) Multiphase catalyst and process for making the same
US4111842A (en) Process for the preparation of supported catalysts
CN1469851A (en) Method for the hydrogenation of unsubstituted or alkyl substituted aromatics
DE112009001486B4 (en) Process for producing a catalyst with a support holding fine gold particles for a fuel cell
WO1998013140A1 (en) Catalyst for dehydrogenation of amino alcohols to amino carboxylic acids or of ethylene glycol (derivatives) to oxycarboxylic acids, method for their production and their use
EP1127839A1 (en) Process for the preparation of hydrogen peroxide by direct synthesis and noble metal catalyst therefor
EP2750793A1 (en) Catalyst and method for producing aromatic amines in the gaseous phase
EP1127613A1 (en) Shaped fixed bed copper-Raney catalyst to be used in the dehydrogenation of alcohols
EP0484754A2 (en) Shaped polymeric transition metal complex catalysts comprising organosiloxane-diphenylphosphine ligands
EP1125634A1 (en) Shaped fixed bed Raney-Cu catalyst
KR20180115503A (en) Method for preparing metal-organic composite of containing 4b group metal elements
DE202021100461U1 (en) supported catalysts
DE102014209114A1 (en) Process for the preparation of hydrogen peroxide
CN110078771B (en) Preparation method of iridium catalyst
EP0755718B1 (en) Process for the preparation of a loaded non porous carrier material
CN1330068A (en) Method for preparing pyridine alkalis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030401

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUTZ, THOMAS

Inventor name: FISCHER, MARTIN

17Q First examination report despatched

Effective date: 20031110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120120