EP1326486A1 - Operating circuit for discharge lamps with pre-heating electrodes - Google Patents

Operating circuit for discharge lamps with pre-heating electrodes Download PDF

Info

Publication number
EP1326486A1
EP1326486A1 EP02027136A EP02027136A EP1326486A1 EP 1326486 A1 EP1326486 A1 EP 1326486A1 EP 02027136 A EP02027136 A EP 02027136A EP 02027136 A EP02027136 A EP 02027136A EP 1326486 A1 EP1326486 A1 EP 1326486A1
Authority
EP
European Patent Office
Prior art keywords
frequency
operating
operating circuit
lamp
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02027136A
Other languages
German (de)
French (fr)
Other versions
EP1326486B1 (en
Inventor
Olaf Busse
Bernhard Schemmel
Michael Dr. Weirich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1326486A1 publication Critical patent/EP1326486A1/en
Application granted granted Critical
Publication of EP1326486B1 publication Critical patent/EP1326486B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/02High frequency starting operation for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to an operating circuit for a Discharge lamp with preheatable electrodes.
  • the electrodes to be preheated should be, for the preheating operation of the operating circuit Exploit resonant circuit resonance.
  • the electrodes to be preheated to a frequency generator Operating circuit be connected and on the other hand via a Capacitor and optional additional components of a preheater be connected.
  • the preheating device thus contains an oscillating circuit, during which vibrations current flows through the electrodes. If the operating device generates an oscillation in the resonant circuit, the electrodes are accordingly preheated.
  • the preheating mode can be ended, for example, by heating a PTC thermistor.
  • the present invention is based on the technical problem, a Operating circuit for discharge lamps with preheatable electrodes specify which has an improved preheater.
  • the operating circuit is designed for this is to generate an alternating voltage at the start of operation, the one Resonance frequency of the resonant circuit containing frequency range drive through and the response of the resonant circuit by measuring an electrotechnical quantity so that the resonance frequency identified and the lamp preheated with this resonance frequency can.
  • the invention proceeds from that cited in the unpublished Patent application already contained basic idea, a resonant circuit and use its resonance for preheating. It continues from an operating circuit in which the operating frequency of the Operating circuit can be changed and adjusted.
  • the invention suggests a frequency range after the start of operation Search resonance frequency of the resonant circuit, which is selected so that it can be safely assumed that the resonance frequency in it Find.
  • the resonance frequency can, for example, by Determining the amplitude of a voltage value or a current value be identified.
  • the frequency range does not have to be complete drive through, rather the drive through can be stopped, if the resonance frequency has already been found. For example one could look for increasing voltage or current values and a drop in the values suggest that the maximum was run through and define this maximum as a resonance peak.
  • the resonant frequency of the resonant circuit can thus be identified and used for the subsequent preheating process.
  • a particularly efficient preheating can be ensured in this way which, on the other hand, is influenced by component tolerances or temperature fluctuations, which can change inductances, for example, excluded are.
  • Another advantageous possibility consists of the amount of detected amplitude in the resonance peak conclusions on the type of a used discharge lamp to pull. Because if that Operating circuit is designed so that not only the operating frequency, but other operating parameters are adjustable, so it can be used for different lamp types can be used. Is particularly comfortable this procedure if the operating circuit turns on automatically sets the lamp type used. The lamp type can of course by an additional coding of the lamp can be detected. Simpler and However, it is more convenient to have the existing technical properties of the Use lamp for detection. In particular, the ohmic. Resistance of the lamp electrodes in different lamp types differently. As a result, there are various damping effects Resonance that is captured and used to draw conclusions about the lamp type can be. The operating circuit can then be the appropriate one Set operating parameters.
  • the detection of the lamp type can also be useful if basically only one lamp type is provided. It can then be prevented be that a mechanically fitting, but electrotechnical unsuitable lamp type is used and operated. In this case the operating circuit could detect the wrong type of lamp Refuse to switch on.
  • a preheating transformer is preferred Preheater, as already quoted in the unpublished Pre-registration is presented.
  • the related disclosure content, especially with regard to the various connection options and design variants for the resonant circuit is hereby expressly stated in Referred.
  • two secondary windings of the Preheating transformer each with one of the electrodes Discharge lamp can be connected in order to be able to preheat it.
  • the preheating transformer must be connected to the resonant circuit, it is preferred that the resonant circuit is on the primary side, that is Primary winding is connected to the resonant circuit. This allows the corresponding vibrations in the resonant circuit by a Start the frequency generator of the operating circuit without on the Need to translate the voltage level of the secondary side.
  • An inexpensive way to measure the response of the Resonant circuit to identify the resonance frequency and possibly also to determine the strength of the resonance with regard on the lamp type recognition is the measurement of the maximum amplitude of the Voltage on the primary winding of the preheating transformer. This will this voltage is preferably rectified, as in the exemplary embodiment shown.
  • the frequency generator of the operating circuit is preferably in the form of a realized digital control that generates digital frequencies. It can Passing through the frequency range according to the invention take place step by step. In this respect, it is not the actual resonance frequency, but the corresponding incremental next frequency recorded. Basically it plays no matter for the technical function of the invention, whether the Resonance frequency is exactly hit. For the purpose of preheating only the excessive resonance can be used. Because of the Attenuation of the resonance due to the ohmic resistances of the electrodes the response is generally not very narrow anyway, so the Resonance frequency should only be roughly hit.
  • a favorable order of magnitude for the resonance frequency is the double operating frequency of the operating circuit in continuous operation of the Discharge lamp.
  • Typical orders of magnitude can be, for example 80 - 100 kHz for the resonance frequency and about 40 - 50 kHz for the Continuous operating frequency.
  • FIG 1 is an electronic ballast as the invention Operating circuit shown.
  • LP is a low pressure discharge lamp referred to, the preheatable spiral electrodes are shown.
  • G denotes an AC voltage generator, which is a digital controller with digital frequency definition and facilities for the in Figure 2 and the associated description explains the process.
  • On one Output A becomes a high frequency AC voltage with respect to a Reference ground potential M specified. It can be, for example Half-bridge oscillator with two controlled by a digital control Act switching transistors.
  • the Parallel resonance capacitor C14 and the primary winding T11 form one Resonant circuit with a resonance frequency determined by these quantities.
  • the resonance frequency is designed to be about twice the continuous operating frequency equivalent.
  • the choice of double continuous operating frequency has the advantage that with the continuous operating frequency no vibration excitation of the Resonant circuit. Since almost square wave voltages are used and these have essentially odd harmonics is one Frequency choice close to twice the operating frequency cheap. A range of +/- 20% of twice the operating frequency is preferred.
  • the preheating transformer has two secondary windings T12 and T13, said loose coupling between the secondary windings and the primary winding T11 shown in Figure 1 with the dashed lines is.
  • the secondary windings T12 and T13 are each with the electrodes the discharge lamp LP connected, so in the secondary windings induced currents flow through the electrodes. Therefore the Resonant circuit from the parallel resonance capacitor C14 and Primary winding T11 together with the secondary windings T12 and T13 as a preheater.
  • the resonant frequency is the resonant circuit in continuous operation in the Low resistance compared to the trapezoidal capacitor C13 and therefore does not interfere the functions of the operating circuit in continuous operation. In continuous operation so there are only very small voltages on the primary winding T11, so the resulting additional heating currents in the spiral electrodes are negligible.
  • the frequency generator G is supposed to be the resonant circuit with a frequency in the immediate vicinity of its resonance frequency energize so that large currents flow through the primary winding T11 and corresponding preheating currents in the secondary windings T12 and T13 induced.
  • the invention now provides that the digital control of the Frequency generator G a certain frequency range at the start of operation passes through the resonance frequency of the resonant circuit C14, T11, around the To search for resonance frequency to a certain extent. This is exemplified in FIG shown.
  • the resonance frequency is around 90 kHz supposed.
  • the frequency of the half-bridge oscillator in the Frequency generator set to 95 kHz by the digital control.
  • the digital control measures the voltage at the primary winding T11 or on the parallel resonance capacitor C14 (UC14) and searches during the in Figure 2 depicted the maximum value of this voltage to the Identify resonance frequency. This maximum value is shown in FIG Umax abbreviated. It is stored in a memory of the digital control and is initially at 0.
  • the voltage UC14 is measured and judged whether it is greater than Umax is. Since Umax is still at 0, this question is answered in the affirmative. So that can according to the arrow pointing to the right, the measured value for UC14 can be stored as a new value for Umax. Accordingly, the predefined half-bridge frequency (fHB) of 95 kHz as the resonance frequency fres stored in another memory.
  • fHB half-bridge frequency
  • the half-bridge frequency becomes around 1 kHz, for example reduced, is now 94 kHz.
  • the next question is whether the Half-bridge frequency is greater than 85 kHz, is therefore affirmed, so that the process of measuring the voltage UC14 runs back.
  • the digital control can be used for preheating determined correct resonance frequency of the resonant circuit C14, T11 perform, the resonance frequency regardless of fluctuations due to temperature changes or component fluctuations between different individual operating circuits apply.
  • the digital control for preheating such as the preheating time, and also for the subsequent continuous operation that for the corresponding one Set the appropriate parameter for the lamp type.
  • FIG. 3 shows an exemplary course of a representation of the Primary winding voltage UC14 on an oscillograph.
  • the actual voltage UC14 is plotted with the range changing frequency oscillates while in the upper range the rectified and smoothed voltage is shown, which is actually the Measurement by the digital controller is based. From the left edge of the Figure up to the dashed vertical line is the one based on Figure 2 explained frequency sweep from 95 kHz to 85 kHz performed. It's closed recognize that the voltage UC14 in between a maximum has accepted.
  • the digital control closes the corresponding frequency value so that the preheating operation is on the right from the dashed vertical line with the resonance frequency can be carried out.

Abstract

The circuit has an alternating current voltage generator (G) to produce a voltage at the start of search operation to move through a frequency range that includes a resonant frequency of a circuit. The circuit records the response of the resonant circuit (C14, T11) by measuring an electrical variable corresponding to the resonant frequency. A lamp (LP) is preheated at this frequency by preheating transformers.

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf eine Betriebsschaltung für eine Entladungslampe mit vorheizbaren Elektroden.The invention relates to an operating circuit for a Discharge lamp with preheatable electrodes.

Stand der TechnikState of the art

Es ist bekannt, bei Entladungslampen, bei denen Elektroden vorgeheizt werden sollen, für den Vorheizbetrieb der Betriebsschaltung eine Schwingkreisresonanz auszunutzen. Beispielsweise können die vorzuheizenden Elektroden einerseits an einen Frequenzgenerator der Betriebsschaltung angeschlossen sein und andererseits über einen Kondensator und optionale weitere Bauteile einer Vorheizeinrichtung verbunden sein. Damit enthält die Vorheizeinrichtung einen Schwingkreis, bei dessen Schwingungen die Elektroden von Strom durchflossen werden. Wenn das Betriebsgerät eine Schwingung in dem Schwingkreis erzeugt, werden die Elektroden demzufolge vorgeheizt. Der Vorheizbetrieb kann beispielsweise durch die Erwärmung eines PTC-Kaltleiters beendet werden.It is known for discharge lamps in which electrodes are preheated should be, for the preheating operation of the operating circuit Exploit resonant circuit resonance. For example, the electrodes to be preheated to a frequency generator Operating circuit be connected and on the other hand via a Capacitor and optional additional components of a preheater be connected. The preheating device thus contains an oscillating circuit, during which vibrations current flows through the electrodes. If the operating device generates an oscillation in the resonant circuit, the electrodes are accordingly preheated. The preheating mode can can be ended, for example, by heating a PTC thermistor.

In einer unveröffentlichten früheren deutschen Patentanmeldung mit dem Aktenzeichen 101 02 837.7 ("Betriebsgerät für Gasentladungslampen mit Abschaltung der Wendelheizung") hat die Anmelderin bereits ein Betriebsgerät vorgeschlagen, bei dem die Vorheizung über einen Vorheiztransformator erfolgt und bei einer Resonanzfrequenz eines Schwingkreises vorgeheizt wird, in den der Transformator mit seiner Primärwicklung geschaltet ist.In an unpublished earlier German patent application with the File number 101 02 837.7 ("Operating device for gas discharge lamps with The applicant has already switched off the filament heating ") Operating device proposed, in which the preheating via a Preheating transformer takes place and at a resonance frequency of one Vibration circuit is preheated, in which the transformer with its Primary winding is switched.

Darstellung der ErfindungPresentation of the invention

Der vorliegenden Erfindung liegt das technische Problem zugrunde, eine Betriebsschaltung für Entladungslampen mit vorheizbaren Elektroden anzugeben, die eine verbesserte Vorheizeinrichtung aufweist.The present invention is based on the technical problem, a Operating circuit for discharge lamps with preheatable electrodes specify which has an improved preheater.

Erfindungsgemäß ist vorgesehen, dass die Betriebsschaltung dazu ausgelegt ist, bei Betriebsbeginn eine Wechselspannung zu erzeugen, dabei einen die Resonanzfrequenz des Schwingkreises enthaltenden Frequenzbereich zu durchfahren und dabei das Ansprechen des Schwingkreises durch Messen einer elektrotechnischen Größe zu erfassen, so dass die Resonanzfrequenz identifiziert und die Lampe mit dieser Resonanzfrequenz vorgeheizt werden kann.According to the invention, the operating circuit is designed for this is to generate an alternating voltage at the start of operation, the one Resonance frequency of the resonant circuit containing frequency range drive through and the response of the resonant circuit by measuring an electrotechnical quantity so that the resonance frequency identified and the lamp preheated with this resonance frequency can.

Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen wiedergegeben.Advantageous embodiments are in the dependent claims played.

Die Erfindung geht von der in der zitierten unveröffentlichten Patentanmeldung bereits enthaltenen Grundidee aus, einen Schwingkreis und dessen Resonanz zum Vorheizen zu verwenden. Sie geht weiterhin von einer Betriebsschaltung aus, bei der die Arbeitsfrequenz der Betriebsschaltung verändert und eingestellt werden kann. Die Erfindung schlägt vor, bei Betriebsbeginn einen Frequenzbereich nach der Resonanzfrequenz des Schwingkreises abzusuchen, der so gewählt ist, dass sicher davon ausgegangen werden kann, in ihm die Resonanzfrequenz zu finden. Die Resonanzfrequenz kann beispielsweise durch Amplitudenermittlung eines Spannungswertes oder eines Stromwertes identifiziert werden. Dabei muss der Frequenzbereich auch nicht zur Gänze durchfahren werden, vielmehr kann das Durchfahren gestoppt werden, wenn die Resonanzfrequenz bereits gefunden worden ist. Beispielsweise könnte man nach ansteigenden Spannungs- oder Stromwerten und nach einem Wiederabfallen der Werte darauf schließen, dass das Maximum durchlaufen wurde und dieses Maximum als Resonanzspitze definieren.The invention proceeds from that cited in the unpublished Patent application already contained basic idea, a resonant circuit and use its resonance for preheating. It continues from an operating circuit in which the operating frequency of the Operating circuit can be changed and adjusted. The invention suggests a frequency range after the start of operation Search resonance frequency of the resonant circuit, which is selected so that it can be safely assumed that the resonance frequency in it Find. The resonance frequency can, for example, by Determining the amplitude of a voltage value or a current value be identified. The frequency range does not have to be complete drive through, rather the drive through can be stopped, if the resonance frequency has already been found. For example one could look for increasing voltage or current values and a drop in the values suggest that the maximum was run through and define this maximum as a resonance peak.

Somit kann die Resonanzfrequenz des Schwingkreises identifiziert werden und für den darauffolgenden Vorheizvorgang verwendet werden. In dieser Weise kann eine besonders effiziente Vorheizung sichergestellt werden, bei der andererseits Einflüsse durch Bauteiltoleranzen oder Temperaturschwankungen, die beispielsweise Induktivitäten verändern können, ausgeschlossen sind.The resonant frequency of the resonant circuit can thus be identified and used for the subsequent preheating process. In this A particularly efficient preheating can be ensured in this way which, on the other hand, is influenced by component tolerances or temperature fluctuations, which can change inductances, for example, excluded are.

Eine weitere vorteilhafte Möglichkeit besteht darin, aus der Höhe der erfassten Amplitude in der Resonanzspitze Rückschlüsse auf den Typ einer eingesetzten Entladungslampe zu ziehen. Wenn nämlich die Betriebsschaltung so ausgelegt ist, dass nicht nur die Betriebsfrequenz, sondern auch andere Betriebsparameter einstellbar sind, so kann sie für verschiedene Lampentypen eingesetzt werden. Besonders komfortabel ist diese Vorgehensweise dann, wenn sich die Betriebsschaltung selbständig auf den eingesetzten Lampentyp einstellt. Der Lampentyp kann natürlich durch eine zusätzliche Kodierung der Lampe erfassbar sein. Einfacher und komfortabler ist es jedoch, ohnehin vorhandene technische Eigenschaften der Lampe zur Erkennung zu verwenden. Insbesondere sind die Ohmschen. Widerstände der Lampenelektroden bei verschiedenen Lampentypen unterschiedlich. Demzufolge ergeben sich verschiedene Dämpfungen der Resonanz, die erfasst und für Rückschlüsse auf den Lampentyp genutzt werden können. Die Betriebsschaltung kann dann die geeigneten Betriebsparameter einstellen.Another advantageous possibility consists of the amount of detected amplitude in the resonance peak conclusions on the type of a used discharge lamp to pull. Because if that Operating circuit is designed so that not only the operating frequency, but other operating parameters are adjustable, so it can be used for different lamp types can be used. Is particularly comfortable this procedure if the operating circuit turns on automatically sets the lamp type used. The lamp type can of course by an additional coding of the lamp can be detected. Simpler and However, it is more convenient to have the existing technical properties of the Use lamp for detection. In particular, the ohmic. Resistance of the lamp electrodes in different lamp types differently. As a result, there are various damping effects Resonance that is captured and used to draw conclusions about the lamp type can be. The operating circuit can then be the appropriate one Set operating parameters.

Die Erkennung des Lampentyps kann im Prinzip auch sinnvoll sein, wenn im Grunde nur ein Lampentyp vorgesehen ist. Es kann dann verhindert werden, dass ein mechanisch passender, jedoch elektrotechnisch ungeeigneter Lampentyp eingesetzt und betrieben wird. In diesem Fall könnte die Betriebsschaltung bei Erkennung eines falschen Lampentyps die Einschaltung verweigern.In principle, the detection of the lamp type can also be useful if basically only one lamp type is provided. It can then be prevented be that a mechanically fitting, but electrotechnical unsuitable lamp type is used and operated. In this case the operating circuit could detect the wrong type of lamp Refuse to switch on.

Bevorzugt ist die Verwendung eines Vorheiztransformators in der Vorheizeinrichtung, wie dies bereits in der zitierten unveröffentlichten Voranmeldung dargestellt wird. Der diesbezügliche Offenbarungsgehalt, insbesondere im Hinblick auf die verschiedenen Verschaltungsmöglichkeiten und Ausführungsvarianten für den Schwingkreis, ist hiermit ausdrücklich in Bezug genommen. In jedem Fall sollen zwei Sekundärwicklungen des Vorheiztransformators jeweils mit einer der Elektroden der Entladungslampe verschaltet sein, um diese vorheizen zu können. Ferner muss der Vorheiztransformator mit dem Schwingkreis verschaltet sein, wobei bevorzugt ist, dass der Schwingkreis auf der Primärseite liegt, also die Primärwicklung mit dem Schwingkreis verschaltet ist. Dadurch lassen sich die entsprechenden Schwingungen in dem Schwingkreis durch einen Frequenzgenerator der Betriebsschaltung in Gang setzen, ohne auf das Spannungsniveau der Sekundärseite übersetzen zu müssen.The use of a preheating transformer is preferred Preheater, as already quoted in the unpublished Pre-registration is presented. The related disclosure content, especially with regard to the various connection options and design variants for the resonant circuit is hereby expressly stated in Referred. In any case, two secondary windings of the Preheating transformer each with one of the electrodes Discharge lamp can be connected in order to be able to preheat it. Further the preheating transformer must be connected to the resonant circuit, it is preferred that the resonant circuit is on the primary side, that is Primary winding is connected to the resonant circuit. This allows the corresponding vibrations in the resonant circuit by a Start the frequency generator of the operating circuit without on the Need to translate the voltage level of the secondary side.

Eine günstige Möglichkeit zum Erfassen des Ansprechens des Schwingkreises zur Identifizierung der Resonanzfrequenz und gegebenenfalls auch zur Bestimmung der Stärke der Resonanz im Hinblick auf die Lampentyperkennung ist die Messung der maximalen Amplitude der Spannung an der Primärwicklung des Vorheiztransformators. Dazu wird diese Spannung vorzugsweise gleichgerichtet, wie im Ausführungsbeispiel dargestellt.An inexpensive way to measure the response of the Resonant circuit to identify the resonance frequency and possibly also to determine the strength of the resonance with regard on the lamp type recognition is the measurement of the maximum amplitude of the Voltage on the primary winding of the preheating transformer. This will this voltage is preferably rectified, as in the exemplary embodiment shown.

Der Frequenzgenerator der Betriebsschaltung ist vorzugsweise in Form einer digitalen Steuerung realisiert, die digital Frequenzen erzeugt. Dabei kann das erfindungsgemäße Durchfahren des Frequenzbereichs schrittweise erfolgen. Insofern wird nicht die eigentliche Resonanzfrequenz, sondern die entsprechende schrittweite nächste Frequenz erfasst. Grundsätzlich spielt es für die technische Funktion der Erfindung keine Rolle, ob die Resonanzfrequenz genau getroffen wird. Zum Zweck des Vorheizens soll lediglich die Resonanzüberhöhung ausgenutzt werden. Wegen der Dämpfung der Resonanz infolge der Ohmschen Widerstände der Elektroden ist die Resonanz im Allgemeinen ohnehin nicht sehr schmal, so dass die Resonanzfrequenz nur ungefähr getroffen werden soll.The frequency generator of the operating circuit is preferably in the form of a realized digital control that generates digital frequencies. It can Passing through the frequency range according to the invention take place step by step. In this respect, it is not the actual resonance frequency, but the corresponding incremental next frequency recorded. Basically it plays no matter for the technical function of the invention, whether the Resonance frequency is exactly hit. For the purpose of preheating only the excessive resonance can be used. Because of the Attenuation of the resonance due to the ohmic resistances of the electrodes the response is generally not very narrow anyway, so the Resonance frequency should only be roughly hit.

Eine günstige Größenordnung für die Resonanzfrequenz liegt bei der doppelten Arbeitsfrequenz der Betriebsschaltung im Dauerbetrieb der Entladungslampe. Typische Größenordnungen können beispielsweise etwa 80 - 100 kHz für die Resonanzfrequenz und etwa 40 - 50 kHz für die Dauerbetriebsfrequenz sein.A favorable order of magnitude for the resonance frequency is the double operating frequency of the operating circuit in continuous operation of the Discharge lamp. Typical orders of magnitude can be, for example 80 - 100 kHz for the resonance frequency and about 40 - 50 kHz for the Continuous operating frequency.

Beschreibung der ZeichnungenDescription of the drawings

Im Folgenden wird ein Ausführungsbeispiel der Erfindung erläutert, um diese näher zu illustrieren. Dabei offenbarte Einzelmerkmale können auch in anderen Kombinationen erfindungswesentlich sein. Im Übrigen ist darauf hinzuweisen, dass die Erfindung auch Verfahrenscharakter haben kann und die vorstehende und folgende Offenbarung auch im Hinblick auf Verfahrensmerkmale auszulegen ist.

Figur 1
zeigt ein schematisiertes Schaltdiagramm einer erfindungsgemäßen Betriebsschaltung.
Figur 2
zeigt einen beispielhaften Ablauf der Funktionsweise der Betriebsschaltung.
Figur 3
zeigt zwei Messkurven zur Illustration des in Figur 2 dargestellten Ablaufs.
An exemplary embodiment of the invention is explained below in order to illustrate it in more detail. Individual features disclosed here can also be essential to the invention in other combinations. In addition, it should be pointed out that the invention can also have the character of a method and that the above and the following disclosure should also be interpreted with regard to method features.
Figure 1
shows a schematic circuit diagram of an operating circuit according to the invention.
Figure 2
shows an exemplary sequence of the operation of the operating circuit.
Figure 3
shows two measurement curves to illustrate the process shown in Figure 2.

In Figur 1 ist ein elektronisches Vorschaltgerät als erfindungsgemäße Betriebsschaltung dargestellt. Mit LP ist eine Niederdruckentladungslampe bezeichnet, deren vorheizbare Wendelelektroden dargestellt sind. G bezeichnet einen Wechselspannungsgenerator, der eine digitale Steuerung mit digitaler Frequenzdefinition und Einrichtungen für den in Figur 2 und der zugehörigen Beschreibung erläuterten Ablauf handelt. An einem Ausgang A wird eine hochfrequente Wechselspannung bezüglich eines Bezugsmassepotentials M angegeben. Es kann sich beispielsweise um einen Halbbrückenoszillator mit zwei durch eine digitale Steuerung angesteuerten Schalttransistoren handeln.In Figure 1 is an electronic ballast as the invention Operating circuit shown. With LP is a low pressure discharge lamp referred to, the preheatable spiral electrodes are shown. G denotes an AC voltage generator, which is a digital controller with digital frequency definition and facilities for the in Figure 2 and the associated description explains the process. On one Output A becomes a high frequency AC voltage with respect to a Reference ground potential M specified. It can be, for example Half-bridge oscillator with two controlled by a digital control Act switching transistors.

In an sich konventioneller Weise ist zwischen den Ausgang A und Masse die Lampe LP geschaltet, wobei zwischen der versorgungsspannungsseitigen (in Figur 1 oberen) Elektrode und dem Ausgang A eine Serienschaltung aus einem Koppelkondensator C11 zum Abblocken von Gleichstromanteilen und einer Lampendrossel L11 liegt. Die Lampendrossel dient zur Anpassung der Entladungslampe an den Generator G. Ein zwischen der versorgungsspannungsseitigen Elektrode, der Entladungslampe LP und Masse liegender Zündkondensator C12 dient zur Erzeugung einer Zündspannung und kann ebenfalls zur Anpassung mit verwendet werden. Der Zündkondensator liegt parallel zu der Entladungslampe LP, und zwar genau genommen zu jeweils einem Anschluss jeder Elektrode.In a conventional manner, there is between the output A and ground Lamp LP switched, wherein between the supply voltage side (in Figure 1 upper) electrode and the output A from a series circuit a coupling capacitor C11 for blocking DC components and a lamp choke L11. The lamp choke is used to adjust the Discharge lamp to the generator G. A between the supply-side electrode, the discharge lamp LP and Ground ignition capacitor C12 is used to generate a Ignition voltage and can also be used for adaptation. The ignition capacitor is parallel to the discharge lamp LP, namely strictly speaking, to one connection of each electrode.

Ferner ist ein sogenannter Trapezkondensator C13 zwischen dem Ausgang A und Masse vorgesehen, der zur Schaltentlastung der erwähnten Schalttransistoren dient. Soweit bislang beschrieben ist die in Figur 1 dargestellte Betriebsschaltung konventionell aufgebaut und dem Fachmann aus anderen Veröffentlichungen vertraut, so dass hier Einzelheiten nicht näher erläutert werden müssen.There is also a so-called trapezoidal capacitor C13 between the output A. and mass is provided to relieve the switching of the mentioned Switching transistors are used. So far, that is described in FIG. 1 Operating circuit shown constructed conventionally and the specialist familiar from other publications, so details here are not must be explained in more detail.

Zwischen der versorgungsspannungfernen Seite des Trapezkondensators C13 und Masse liegt ein Parallelresonanzkondensator C14 und parallel dazu eine Primärwicklung T11 eines Vorheiztransformators. Der Parallelresonanzkondensator C14 und die Primärwicklung T11 bilden einen Schwingkreis mit einer durch diese Größen festgelegten Resonanzfrequenz. Bei der Berechnung der Resonanzfrequenz ist die an der Primärwicklung T11 wirksame Primärinduktivität zu berücksichtigen. Der Heiztransformator kann eine sogenannte lose Kopplung aufweisen, um für die Primärinduktivität genügend hohe Werte zu erzielen. Die Resonanzfrequenz ist so ausgelegt, dass sie etwa der doppelten Dauerbetriebsfrequenz entspricht. Die Wahl der doppelten Dauerbetriebsfrequenz hat den Vorteil, dass mit der Dauerbetriebsfrequenz keine Schwingungsanregung des Schwingkreises erfolgt. Da nahezu Rechteckspannungen verwendet werden und diese im Wesentlichen ungerade Oberschwingungen aufweisen ist eine Frequenzwahl in der Nähe der doppelten Betriebsfrequenz günstig. Bevorzugt ist ein Bereich +/- 20% der doppelten Betriebsfrequenz. Between the supply voltage side of the trapezoidal capacitor C13 and ground is a parallel resonance capacitor C14 and parallel to it a primary winding T11 of a preheating transformer. The Parallel resonance capacitor C14 and the primary winding T11 form one Resonant circuit with a resonance frequency determined by these quantities. When calculating the resonance frequency, that on the primary winding is T11 effective primary inductance. The heating transformer can have a so-called loose coupling in order for the Primary inductance to achieve sufficiently high values. The resonance frequency is designed to be about twice the continuous operating frequency equivalent. The choice of double continuous operating frequency has the advantage that with the continuous operating frequency no vibration excitation of the Resonant circuit. Since almost square wave voltages are used and these have essentially odd harmonics is one Frequency choice close to twice the operating frequency cheap. A range of +/- 20% of twice the operating frequency is preferred.

Der Vorheiztransformator weist zwei Sekundärwicklungen T12 und T13 auf, wobei die erwähnte lose Kopplung zwischen den Sekundärwicklungen und der Primärwicklung T11 in Figur 1 mit den gestrichelten Linien dargestellt ist. Die Sekundärwicklungen T12 und T13 sind jeweils mit den Elektroden der Entladungslampe LP verschaltet, so das in den Sekundärwicklungen induzierte Ströme durch die Elektroden fließen. Daher wirkt der Schwingkreis aus dem Parallelresonanzkondensator C14 und der Primärwicklung T11 gemeinsam mit den Sekundärwicklungen T12 und T13 als Vorheizeinrichtung.The preheating transformer has two secondary windings T12 and T13, said loose coupling between the secondary windings and the primary winding T11 shown in Figure 1 with the dashed lines is. The secondary windings T12 and T13 are each with the electrodes the discharge lamp LP connected, so in the secondary windings induced currents flow through the electrodes. Therefore the Resonant circuit from the parallel resonance capacitor C14 and Primary winding T11 together with the secondary windings T12 and T13 as a preheater.

Durch die gegenüber der Dauerbetriebsfrequenz verdoppelte Resonanzfrequenz ist der Schwingkreis im Übrigen im Dauerbetrieb im Vergleich zu dem Trapezkondensator C13 niederohmig und stört damit nicht die Funktionen der Betriebsschaltung im Dauerbetrieb. Im Dauerbetrieb liegen damit an der Primärwicklung T11 nur sehr kleine Spannungen an, so dass daraus resultierende Zusatzheizströme in den Wendelelektroden vernachlässigbar sind.By doubling compared to the continuous operating frequency The resonant frequency is the resonant circuit in continuous operation in the Low resistance compared to the trapezoidal capacitor C13 and therefore does not interfere the functions of the operating circuit in continuous operation. In continuous operation so there are only very small voltages on the primary winding T11, so the resulting additional heating currents in the spiral electrodes are negligible.

Im Vorheizbetrieb soll der Frequenzgenerator G den Schwingkreis allerdings mit einer Frequenz in der unmittelbaren Nähe seiner Resonanzfrequenz anregen, so dass die Primärwicklung T11 von großen Strömen durchflossen wird und entsprechende Vorheizströme in den Sekundärwicklungen T12 und T13 induziert.In preheating mode, however, the frequency generator G is supposed to be the resonant circuit with a frequency in the immediate vicinity of its resonance frequency energize so that large currents flow through the primary winding T11 and corresponding preheating currents in the secondary windings T12 and T13 induced.

Bezüglich der Funktionsweise und des Schaltungsaufbaus der Betriebsschaltung aus Figur 1 wird im übrigen ergänzend auf die bereits zitierte unveröffentlichte Voranmeldung verwiesen. Regarding the functioning and the circuit structure of the Operating circuit from Figure 1 is otherwise in addition to the already cited unpublished advance notification.

Die Erfindung sieht nun vor, dass die digitale Steuerung des Frequenzgenerators G bei Betriebsbeginn einen bestimmten Frequenzbereich um die Resonanzfrequenz des Schwingkreises C14, T11 durchfährt, um die Resonanzfrequenz gewissermaßen zu suchen. In Figur 2 ist dies beispielhaft dargestellt. Die Resonanzfrequenz wird in der Umgebung von 90 kHz vermutet. Am Beginn wird die Frequenz des Halbbrückenoszillators in dem Frequenzgenerator durch die digitale Steuerung auf 95 kHz festgelegt.The invention now provides that the digital control of the Frequency generator G a certain frequency range at the start of operation passes through the resonance frequency of the resonant circuit C14, T11, around the To search for resonance frequency to a certain extent. This is exemplified in FIG shown. The resonance frequency is around 90 kHz supposed. At the beginning, the frequency of the half-bridge oscillator in the Frequency generator set to 95 kHz by the digital control.

Die digitale Steuerung misst die Spannung an der Primärwicklung T11 bzw. an dem Parallelresonanzkondensator C14 (UC14) und sucht während des in Figur 2 dargestellten Ablaufs den Maximalwert dieser Spannung, um die Resonanzfrequenz zu identifizieren. Dieser Maximalwert ist in Figur 2 mit Umax abgekürzt. Er ist in einem Speicher der digitalen Steuerung abgelegt und liegt am Anfang bei 0.The digital control measures the voltage at the primary winding T11 or on the parallel resonance capacitor C14 (UC14) and searches during the in Figure 2 depicted the maximum value of this voltage to the Identify resonance frequency. This maximum value is shown in FIG Umax abbreviated. It is stored in a memory of the digital control and is initially at 0.

Nach einem sehr kurzzeitigen Betrieb bei einer Halbbrückenfrequenz von 95 kHz wird die Spannung UC14 gemessen und beurteilt, ob diese größer als Umax ist. Da Umax noch bei 0 liegt, wird diese Frage bejaht. Damit kann entsprechend dem nach rechts weisenden Pfeil der gemessene Wert für UC14 als neuer Wert für Umax abgelegt werden. Entsprechend wird die vorgegebene Halbbrückenfrequenz (fHB) von 95kHz als Resonanzfrequenz fres in einem weiteren Speicher abgelegt.After a very brief operation at a half-bridge frequency of 95 kHz, the voltage UC14 is measured and judged whether it is greater than Umax is. Since Umax is still at 0, this question is answered in the affirmative. So that can according to the arrow pointing to the right, the measured value for UC14 can be stored as a new value for Umax. Accordingly, the predefined half-bridge frequency (fHB) of 95 kHz as the resonance frequency fres stored in another memory.

Daraufhin wird die Halbbrückenfrequenz beispielsweise um 1 kHz reduziert, liegt also jetzt bei 94 kHz. Die darauffolgende Frage, ob die Halbbrückenfrequenz größer als 85 kHz ist, wird demzufolge bejaht, so dass der Prozess zu der Messung der Spannung UC14 zurückläuft. Thereupon, the half-bridge frequency becomes around 1 kHz, for example reduced, is now 94 kHz. The next question is whether the Half-bridge frequency is greater than 85 kHz, is therefore affirmed, so that the process of measuring the voltage UC14 runs back.

Man erkennt, dass diese Schleife so lange durchgeführt wird, bis die Halbbrückenfrequenz bei 85 kHz angekommen ist. Da der Umax speichernde Speicher nur dann überschrieben wurde, wenn der neue Messwert größer als der vorherige Messwert war, liegt der größte Messwert in dem Umax-Speicher. Entsprechendes gilt für die zugehörige Resonanzfrequenz, die nämlich die Halbbrückenfrequenz ist, bei der dieser Umax-Wert gemessen wurde.It can be seen that this loop is carried out until the Half-bridge frequency has reached 85 kHz. Since the Umax storing memory was only overwritten if the new one If the measured value was greater than the previous measured value, the largest measured value lies in the umax memory. The same applies to the associated Resonance frequency, which is namely the half-bridge frequency at which this Umax value was measured.

Nach dem Durchlauf bei 85 kHz wird die Frage in der Mitte der Figur 2 verneint, so dass Umax nun ausgewertet werden kann. Bei dem vorliegenden Beispiel werden Maximalspannungswerte unter 35 V, zwischen 35 V und 40 V und über 40 V unterschieden und jeweils einer 24 W-Lampe, einer 18 W-Lampe bzw. einer 13 W-Lampe zugeordnet. Diese Zuordnung ist möglich, weil die Lampen mit niedrigerer Leistung Wendelelektroden aus dünneren Drähten aufweisen und daher wegen der höheren Ohmschen Widerstände die geringste Dämpfung der Resonanz verursachen. Demzufolge sind die Primärwicklungsspannungen UC14 bei den niederwattigen Lampen am größten.After running at 85 kHz, the question in the middle of Figure 2 no, so that Umax can now be evaluated. In which present example, maximum voltage values below 35 V, between 35 V and 40 V and over 40 V different and each a 24 W lamp, assigned to an 18 W lamp or a 13 W lamp. This assignment is possible because the lamps have lower power filament electrodes have thinner wires and therefore because of the higher ohmic Resistors cause the least attenuation of the resonance. As a result, the primary winding voltages UC14 are at low-watt lamps.

Im Folgenden kann die digitale Steuerung einen Vorheizbetrieb mit der ermittelten korrekten Resonanzfrequenz des Schwingkreises C14, T11 durchführen, wobei die Resonanzfrequenz unabhängig von Schwankungen infolge von Temperaturveränderungen oder Bauteilschwankungen zwischen verschiedenen individuellen Betriebsschaltungen zutrifft. Im Übrigen kann die digitale Steuerung für den Vorheizbetrieb, etwa die Vorheizdauer, und auch für den darauffolgenden Dauerbetrieb die für den entsprechenden Lampentyp geeigneten Parameter einstellen. In the following, the digital control can be used for preheating determined correct resonance frequency of the resonant circuit C14, T11 perform, the resonance frequency regardless of fluctuations due to temperature changes or component fluctuations between different individual operating circuits apply. Incidentally, can the digital control for preheating, such as the preheating time, and also for the subsequent continuous operation that for the corresponding one Set the appropriate parameter for the lamp type.

Figur 3 zeigt einen beispielhaften Verlauf einer Darstellung der Primärwicklungsspannung UC14 auf einem Oszillographen. Im unteren Bereich ist die tatsächliche Spannung UC14 aufgetragen, die mit der sich verändernden Frequenz oszilliert, während im oberen Bereich die gleichgerichtete und geglättete Spannung dargestellt ist, die tatsächlich der Messung durch die digitale Steuerung zugrunde liegt. Vom linken Rand der Figur bis zu der gestrichelten vertikalen Linie wird der anhand Figur 2 erläuterte Frequenzdurchlauf von 95 kHz bis 85 kHz durchgeführt. Es ist zu erkennen, dass die Spannung UC14 zwischendurch ein Maximum angenommen hat. Nach Ende des Durchlaufs fährt die digitale Steuerung zu dem entsprechenden Frequenzwert zurück, so dass der Vorheizbetrieb rechts von der gestrichelten vertikalen Linie mit der Resonanzfrequenz durchgeführt werden kann.FIG. 3 shows an exemplary course of a representation of the Primary winding voltage UC14 on an oscillograph. At the bottom The actual voltage UC14 is plotted with the range changing frequency oscillates while in the upper range the rectified and smoothed voltage is shown, which is actually the Measurement by the digital controller is based. From the left edge of the Figure up to the dashed vertical line is the one based on Figure 2 explained frequency sweep from 95 kHz to 85 kHz performed. It's closed recognize that the voltage UC14 in between a maximum has accepted. At the end of the run, the digital control closes the corresponding frequency value so that the preheating operation is on the right from the dashed vertical line with the resonance frequency can be carried out.

Claims (8)

Betriebsschaltung für eine Entladungslampe (LP) mit vorheizbaren Elektroden,
welche Betriebsschaltung eine Einrichtung (C14, T11, T12, T13, G) zum Vorheizen der Elektroden aufweist, die einen Schwingkreis (C14, T11) aufweist, der beim Vorheizen schwingt,
dadurch gekennzeichnet, dass die Betriebsschaltung dazu ausgelegt ist, bei Betriebsbeginn eine Wechselspannung zu erzeugen, dabei einen die Resonanzfrequenz des Schwingkreises (C14, T11) enthaltenden Frequenzbereich zu durchfahren und dabei das Ansprechen des Schwingkreises (C14, T11) durch Messen einer elektrotechnischen Größe (UC14) zu erfassen, so dass die Resonanzfrequenz identifiziert und die Lampe (LP) mit dieser Resonanzfrequenz vorgeheizt werden kann.
Operating circuit for a discharge lamp (LP) with preheatable electrodes,
which operating circuit has a device (C14, T11, T12, T13, G) for preheating the electrodes, which has a resonant circuit (C14, T11) which vibrates during preheating,
characterized in that the operating circuit is designed to generate an alternating voltage at the start of operation, passing through a frequency range containing the resonance frequency of the resonant circuit (C14, T11) and thereby responding to the resonant circuit (C14, T11) by measuring an electrotechnical variable (UC14 ) to be detected so that the resonance frequency can be identified and the lamp (LP) can be preheated with this resonance frequency.
Betriebsschaltung nach Anspruch 1, bei der eine Resonanzamplitude (Umax) des Schwingkreises (C14, T11) bestimmt wird, um den Typ einer eingesetzten Entladungslampe (LP) erkennen zu können.Operating circuit according to claim 1, wherein a resonance amplitude (Umax) of the resonant circuit (C14, T11) is determined by the type an inserted discharge lamp (LP). Betriebsschaltung nach Anspruch 2, die für den Betrieb einer Mehrzahl Lampentypen ausgelegt ist und ferner dazu ausgelegt ist, den Betrieb mit dem erkannten Lampentyp zugeordneten Betriebsparametern durchzuführen.Operating circuit according to claim 2, for the operation of a A plurality of lamp types is designed and is also designed to assigned operation with the recognized lamp type Operating parameters. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der die Vorheizeinrichtung (C14, T11, T12, T13, G) einen Vorheiztransformator (T11, T12, T13) enthält, der zwei Sekundärwicklungen (T12, T13) aufweist, die jeweils mit einer Elektrode der Entladungslampe (LP) verschaltet sind.Operating circuit according to one of the preceding claims, in which the preheater (C14, T11, T12, T13, G) one Preheater transformer (T11, T12, T13) contains two Has secondary windings (T12, T13), each with a Electrode of the discharge lamp (LP) are connected. Betriebsschaltung nach Anspruch 4, bei der die Primärwicklung (T11) des Vorheiztransformators (T11, T12, T13) in den Schwingkreis der Vorheizeinrichtung (C14, T11, T12, T13, G) geschaltet ist.Operating circuit according to Claim 4, in which the primary winding (T11) of the preheating transformer (T11, T12, T13) in the resonant circuit of the Preheater (C14, T11, T12, T13, G) is switched. Betriebsschaltung nach Anspruch 4 oder 5, bei der das Ansprechen des Schwingkreises (C14, T11) über die maximale Amplitude (Umax) der Spannung (UC14) an der Primärwicklung (T11) des Vorheiztransformators (T11, T12, T13) erfasst werden kann.Operating circuit according to claim 4 or 5, wherein the response of the resonant circuit (C14, T11) over the maximum amplitude (Umax) the voltage (UC14) on the primary winding (T11) of the Preheating transformers (T11, T12, T13) can be detected. Betriebsschaltung nach einem der vorstehenden Ansprüche, die eine digitale Steuerung (G) aufweist und bei der das Durchfahren des Frequenzbereichs schrittweise erfolgt.Operating circuit according to one of the preceding claims, the one digital control (G) and in which the passage of the Frequency range is gradual. Betriebsschaltung nach einem der vorstehenden Ansprüche, bei der die Resonanzfrequenz ungefähr doppelt so groß wie eine Dauerbetriebsfrequenz ist.Operating circuit according to one of the preceding claims, in which the resonance frequency is about twice as large as one Continuous operating frequency.
EP02027136A 2002-01-02 2002-12-04 Operating circuit for discharge lamps with pre-heating electrodes Expired - Lifetime EP1326486B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10200053A DE10200053A1 (en) 2002-01-02 2002-01-02 Operating device for discharge lamps with preheating device
DE10200053 2002-01-02

Publications (2)

Publication Number Publication Date
EP1326486A1 true EP1326486A1 (en) 2003-07-09
EP1326486B1 EP1326486B1 (en) 2005-10-26

Family

ID=7711456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02027136A Expired - Lifetime EP1326486B1 (en) 2002-01-02 2002-12-04 Operating circuit for discharge lamps with pre-heating electrodes

Country Status (6)

Country Link
US (1) US6753659B2 (en)
EP (1) EP1326486B1 (en)
CN (1) CN100527913C (en)
AT (1) ATE308226T1 (en)
CA (1) CA2415512A1 (en)
DE (2) DE10200053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015600A1 (en) * 2006-07-31 2008-02-07 Koninklijke Philips Electronics N.V. Method and circuit for heating an electrode of a discharge lamp

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345610A1 (en) * 2003-09-29 2005-05-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating at least one low-pressure discharge lamp
DE102004044180A1 (en) * 2004-09-13 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electronic ballast with pumping circuit for discharge lamp with preheatable electrodes
DE102006010996A1 (en) * 2006-03-09 2007-09-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electronic ballast and method of operating an electric lamp
GB2437755A (en) * 2006-05-02 2007-11-07 Koen Geirnaert Controlling gas discharge lamps
TW200744405A (en) * 2006-05-16 2007-12-01 Delta Electronics Inc Driving circuit for multiple discharge lamps
US7560868B2 (en) * 2007-05-11 2009-07-14 Osram Sylvania, Inc. Ballast with filament heating and ignition control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2110890A (en) * 1981-12-07 1983-06-22 Krauss Innovatron Frequency controlled excitation of a gas discharge lamp
EP0271396A1 (en) * 1986-12-04 1988-06-15 Etablissements Perche Process and device for igniting discharge lamps
JPH09260080A (en) * 1996-03-15 1997-10-03 Matsushita Electric Works Ltd Discharging lamp lighting device
US5757140A (en) * 1978-03-20 1998-05-26 Nilssen; Ole K. Electronic ballast with frequency control
JPH11185984A (en) * 1997-12-25 1999-07-09 Kyocera Corp Discharge lamp lighting system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363020A (en) * 1993-02-05 1994-11-08 Systems And Service International, Inc. Electronic power controller
DE19708792A1 (en) * 1997-03-04 1998-09-10 Tridonic Bauelemente Method and device for detecting the rectification effect occurring in a gas discharge lamp
JP2002544654A (en) * 1999-05-06 2002-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Circuit device
AU761360B2 (en) * 1999-05-25 2003-06-05 Tridonic Bauelemente Gmbh Electronic ballast for at least one low-pressure discharge lamp
DE19923945A1 (en) * 1999-05-25 2000-12-28 Tridonic Bauelemente Electronic ballast for at least one low-pressure discharge lamp
DE10102837A1 (en) 2001-01-22 2002-07-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Control gear for gas discharge lamps with shutdown of the filament heating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757140A (en) * 1978-03-20 1998-05-26 Nilssen; Ole K. Electronic ballast with frequency control
GB2110890A (en) * 1981-12-07 1983-06-22 Krauss Innovatron Frequency controlled excitation of a gas discharge lamp
EP0271396A1 (en) * 1986-12-04 1988-06-15 Etablissements Perche Process and device for igniting discharge lamps
JPH09260080A (en) * 1996-03-15 1997-10-03 Matsushita Electric Works Ltd Discharging lamp lighting device
JPH11185984A (en) * 1997-12-25 1999-07-09 Kyocera Corp Discharge lamp lighting system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12 29 October 1999 (1999-10-29) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015600A1 (en) * 2006-07-31 2008-02-07 Koninklijke Philips Electronics N.V. Method and circuit for heating an electrode of a discharge lamp

Also Published As

Publication number Publication date
CN1430459A (en) 2003-07-16
ATE308226T1 (en) 2005-11-15
CN100527913C (en) 2009-08-12
CA2415512A1 (en) 2003-07-02
DE10200053A1 (en) 2003-07-17
US20030122499A1 (en) 2003-07-03
US6753659B2 (en) 2004-06-22
EP1326486B1 (en) 2005-10-26
DE50204674D1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
DE69726246T2 (en) Inverter assembly
DE2710036A1 (en) MATCHED SUPPORTING CIRCUIT
DE3407067A1 (en) CONTROL CIRCUIT FOR GAS DISCHARGE LAMPS
EP0329988B1 (en) High frequency power generator
DE19805732A1 (en) Control method for output power of fluorescent lamps
DE19653604A1 (en) Ballast unit for starting fluorescent lamp
EP2216124A1 (en) Method for regulating a welding power source and welding power source for carrying out the method
DE10205896A1 (en) Operating circuit for discharge lamp with variable-frequency ignition
EP1326486B1 (en) Operating circuit for discharge lamps with pre-heating electrodes
DE1291412B (en) High frequency generator
DE19606874A1 (en) Power supply fed by DC source e.g. for high-pressure discharge lamp
EP0114370A1 (en) Method of operating a gas-discharge lamp
DE3711814A1 (en) Electronic ballast for operating fluorescent lamps
DE3402479A1 (en) POWER SUPPLY
DE3400580C2 (en)
DE1802149A1 (en) Electrical system for operating a gas discharge lamp
EP0657091B1 (en) Freely oscillating inverter with pulse width control
DE3338464A1 (en) High-frequency brightness control for fluorescent lamps
EP1276355B1 (en) Circuit arrangement to determine the pre-heating power
DE102009019625A1 (en) A method of determining a type of gas discharge lamp and electronic ballast for operating at least two different types of gas discharge lamps
DE69817326T2 (en) BALLAST
EP1443808A2 (en) Circuit and method for starting and operating gas discharge lamps with preheating filaments
DE10245368A1 (en) Operation of welding power supply, includes switching components controlled to produce required inverter output voltage and current profile
DE3208607C2 (en)
DE3315481A1 (en) Lighting device having an oscillator, a power stage and a gas-discharge lamp, as well as a method for operating a gas discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20030804

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50204674

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060112

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060327

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20051231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50204674

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 308226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50204674

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50204674

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20131219

Year of fee payment: 12

Ref country code: GB

Payment date: 20131219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141205

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181210

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50204674

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701