EP1317610A1 - Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation - Google Patents

Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation

Info

Publication number
EP1317610A1
EP1317610A1 EP01971683A EP01971683A EP1317610A1 EP 1317610 A1 EP1317610 A1 EP 1317610A1 EP 01971683 A EP01971683 A EP 01971683A EP 01971683 A EP01971683 A EP 01971683A EP 1317610 A1 EP1317610 A1 EP 1317610A1
Authority
EP
European Patent Office
Prior art keywords
lambda
fuel
exhaust gas
internal combustion
regeneration gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01971683A
Other languages
German (de)
French (fr)
Other versions
EP1317610B1 (en
Inventor
Gholamabas Esteghlal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1317610A1 publication Critical patent/EP1317610A1/en
Application granted granted Critical
Publication of EP1317610B1 publication Critical patent/EP1317610B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to the technical field of tank ventilation in internal combustion engines with gasoline direct injection.
  • Engines with direct petrol injection can be operated in the stratified mode as well as in the homogeneous mode.
  • the engine In shift operation, the engine is operated with a strongly stratified cylinder charge and a large excess of air in order to achieve the lowest possible fuel consumption.
  • the stratified charge is achieved by a late fuel injection, which ideally leads to the combustion chamber being divided into two zones: the first zone contains a combustible air-fuel mixture cloud on the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas.
  • the potential for optimizing consumption results from the possibility of operating the engine largely unthrottled while avoiding 5 gas exchange losses. Shift operation is preferred at a comparatively low load.
  • Cylinder filling operated.
  • the homogeneous cylinder charge results from early fuel injection during the intake process. As a result, there is more time available for mixture formation until combustion.
  • the L5 potential of this operating mode for performance optimization results, for example, from the use of the entire combustion chamber volume for filling with a combustible mixture.
  • the fuel flow flowing through the injection valves is reduced.
  • an engine Intake manifold injection from DE 38 13 220 known to learn a measure FTEAD for the fuel content of the regeneration gas from the parameters known in the control unit, such as the fuel flow via the injection valves, the amount of regeneration gas when the tank ventilation valve is open, the intake air quantity of the engine and the signal from an exhaust gas probe ,
  • the learned dimension is used to coordinate the reduction of the fuel flow via the injection valves to the fuel flow via the tank ventilation valve with the aim of
  • L0 check the composition of the entire fuel / air mixture.
  • Tank ventilation control applicable, as is known from the field of manifold injection.
  • the invention aims at eliminating the 25 disturbances mentioned and thus at improving predictability of the influence of the tank ventilation on the mixture composition in the shift operation.
  • the determination according to the invention of the fuel content of a regeneration gas provides for the regeneration of a fuel vapor intermediate store Internal combustion engines with gasoline direct injection in lean (stratified) operation, in which the stored fuel vapor is supplied to the internal combustion engine as regeneration gas via a controllable tank ventilation valve and in which the signal of an exhaust gas probe in the exhaust gas of the internal combustion engine is taken into account in order to determine the fuel content of the regeneration gas in front:
  • the invention is based on the knowledge that the measured lambda value from the physical
  • the solution according to the invention provides an adjustment of the probe signal in stratified operation with the closed Tank vent valve before. This decouples the probe signal from the absolute lambda value. If the influence of the regeneration gas is added when the tank ventilation valve is open, this influence can be determined from the relative change in the probe signal.
  • One embodiment of the invention provides that a measured lambda value (lambda measurement) is formed from the signal of the exhaust gas probe and that the difference of the measured lambda value from the product of the adjustment factor and the
  • Another embodiment is characterized in that the adjustment factor in the steady state corresponds to the average quotient (Lambdamess -1) / (Lambda target - 1).
  • This function has the advantage that fluctuations in Lambdamess are averaged out through the integration process during the adjustment process and thus do not falsify the adjustment factor.
  • Another embodiment provides that a new adjustment in shift operation is carried out when the combustion engine changes its working point or when certain environmental conditions change.
  • Another embodiment provides that the ambient temperature and the level at which the motor is operated are such ambient conditions. 5
  • Another embodiment is characterized in that an operating point change is defined by a minimum change in the lambda setpoint.
  • an adjustment is ended when the absolute amount of the integrator input falls below a predetermined threshold value.
  • the invention also relates to an electronic L5 control device for performing at least one of the above-mentioned methods and embodiments.
  • Fig. 1 shows the technical environment of the invention and Fig. 2 discloses an embodiment of the invention in the form of functional blocks.
  • the 1 in FIG. 1 represents the combustion chamber of a
  • Cylinder of an internal combustion engine The inflow of air to the combustion chamber is controlled via an inlet valve 2. The air is sucked in via a suction pipe 3. The amount of intake air can be varied via a throttle valve 4 by one
  • the control unit 5 is controlled.
  • Exhaust gas sensor 12 can be, for example, a lambda sensor whose Nernst voltage or, depending on the type of probe, whose pump current indicates the oxygen content in the exhaust gas.
  • the exhaust gas is passed through at least one catalytic converter 15, in which pollutants from the exhaust gas are converted and / or temporarily stored.
  • control unit 5 From these and possibly other input signals via further parameters of the internal combustion engine, such as intake air and coolant temperature and so on, the control unit 5 forms output signals for setting the throttle valve angle alpha by means of an actuator 9 and for controlling a fuel injection valve 10, by means of which fuel is metered into the combustion chamber of the engine becomes.
  • the control unit also controls the triggering of the ignition via an ignition device 11.
  • the throttle valve angle alpha and the injection pulse width ti are essential, coordinated manipulated variables for realizing the desired torque.
  • Another important manipulated variable for influencing the torque is the angular position of the ignition relative to the piston movement. The determination of the manipulated variables for setting the
  • Torque is the subject of DE 1 98 51 990, which is to be included in the disclosure to this extent.
  • control unit controls a tank ventilation 12 and other functions to achieve an efficient one
  • the tank ventilation system 12 consists of an activated carbon filter 15, which communicates with the tank, the ambient air and the intake manifold of the internal combustion engine via corresponding lines or connections, a tank ventilation valve 16 being arranged in the line to the intake manifold.
  • the activated carbon filter 15 stores evaporating fuel in the tank 5.
  • air is drawn from the environment 17 through the activated carbon filter, which releases the stored fuel into the air.
  • This fuel-air mixture also known as a tank ventilation mixture or also as a regeneration gas, influences the composition of the mixture supplied to the internal combustion engine as a whole.
  • the proportion of fuel in the mixture is also determined by metering fuel via the fuel metering device 10, which is adapted to the amount of air drawn in.
  • the fuel drawn in via the tank ventilation system can correspond to a proportion of approximately one third to half of the total fuel quantity.
  • FIG. 2 shows a functional block representation of the method according to the invention.
  • Block 2.1 provides the measured lambda value, which is obtained from the signal Us of the exhaust gas probe.
  • Block 2.2. provides the setpoint for the composition lambda of the entire mixture burned by the internal combustion engine.
  • block 2.3 the difference between the Setpoint of value 1. This difference is linked in block 2.4 with an adjustment factor.
  • block 2.5 the difference between the measured lambda value and the value 1 is formed.
  • block 2.6 the deviation of the difference between the measured lambda value and the product from the adjustment factor and that of the difference between the lambda setpoint and the value 1 are determined. This deviation is fed to an integrator 2.7.
  • Block 2.8 provides a correction value for operating points in the vicinity of the operating point in which the adjustment takes place. Under the above-mentioned condition of a stationary operating state, block 2.8 supplies the value 1, so that the output value of integrator 2.7 is not changed by the result of the links in blocks 2.9 to 2.11.
  • the output value of the integrator is fed back directly as an adjustment factor and linked to the desired lambda setpoint.
  • This structure has the following function:
  • the integrator input is positive and the integrator output increases. This increases the adjustment factor. This increases the above Product. As a result, the distance between the product and the deviation of the measured lambda value from 1 decreases. The integrator input becomes smaller. The integrator output grows more slowly.
  • the adaptation factor in the steady state corresponds to a certain extent to the middle quotient (Lambdamess -1) / (Lambda target - 1).
  • This function has the advantage that fluctuations in Lambdamess are averaged out through the integration process during the adjustment process and thus do not falsify the adjustment factor.
  • the actual lambda can be determined by the following rule:
  • the actual lambda is proportional to the quotient of the total air volume and total fuel volume.
  • the total amount of air is made up of the amount of air flowing through the throttle valve and the proportion of air in the regeneration gas from the tank ventilation.
  • the proportion of air in the regeneration gas corresponds approximately to the quantity of regeneration gas. This can be derived from variables known in the control unit, such as intake manifold pressure and the control duty cycle. The proportion of air is therefore known. The same applies to the amount of air flowing via the throttle valve, which can be detected, for example, by a hot film air mass meter.
  • the amount of fuel flowing through the injectors is from the
  • Control pulse widths and the pressure in the fuel system so derived from known quantities. Therefore, the fuel portion of the tank ventilation can also be determined in shift operation using the adjustment factor from the measured lambda value using the method according to the invention.
  • Blocks 2.12 to 2.17 represent a structure for triggering the adjustment.
  • a new adjustment in shift operation is carried out when the combustion engine changes its operating point or when certain ambient conditions change. Examples of such ambient conditions are the ambient temperature, which can be provided by an intake air temperature sensor, for example, and the level at which the engine is operated. Information about this height is available in modern motor controls. For example, it becomes a
  • Ambient pressure sensor determined or calculated from the load detection (intake air quantity, cylinder filling).
  • An operating point change can be defined, for example, as a minimum change in the lambda setpoint, for example by a minimum value of 0.3. If one of these conditions occurs, block 2.12 activates via flip-flop 2.13 a closing of the tank ventilation valve in block 2.14 and a start of integrator 2.7.
  • Block 2.15 provides a threshold DLAMSCE and block 2.16 provides the positive absolute amount of the integrator input. If the stated amount falls below the specified threshold value, this is recognized in block 2.17 and the closing command for the tank ventilation valve is canceled by resetting the flip-flop 2.13.
  • Blocks 2.8 to 2.11 allow small lambda setpoint changes to be taken into account, which are not yet considered to be a change in the operating point in the above sense.
  • the relationship between the probe voltage and the lambda value is generally not linear.
  • block 2.7 alternatively provides a correction variable, for example on the basis of a computational linearization of the relationship ⁇ between Us and lambda target in an environment of the adjusted working point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A method for determining the fuel content of a regeneration gas during regeneration of an intermediate fuel vapor storage unit in internal combustion engines with gasoline direct injection in lean (stratified) mode. Stored fuel vapor is supplied to the engine as regeneration gas via a controllable tank venting valve. The signal of an exhaust gas analyzer probe in the exhaust gas is considered for determining the fuel content of the regeneration gas. An adjustment between the analyzer probe signal and a preselected setpoint occurs while the tank venting valve is closed. The analyzer probe signal is combined with a correction quantity while the tank venting valve is closed, so that the combination corresponds to the setpoint. The analyzer probe signal is combined in the same manner with the previously obtained correction valve while the tank venting value is open. Regeneration gas charge is determined from this combination.

Description

Verfahren zur Bestimmung des Kraftstoffgehaltes des Regeneriergases bei einem Verbrennungsmotor mit Benzindirekteinspritzung im SchichtbetriebMethod for determining the fuel content of the regeneration gas in an internal combustion engine with gasoline direct injection in shift operation
Stand der TechnikState of the art
Die Erfindung betrifft das technische Umfeld der Tankentlüftung bei Verbrennungsmotoren mit Benzindirekteinspritzung .The invention relates to the technical field of tank ventilation in internal combustion engines with gasoline direct injection.
Motoren mit Benzindirekteinspritzung können sowohl in der Betriebsart Schichtbetrieb als auch in der Betriebsart Homogenbetrieb betrieben werden.Engines with direct petrol injection can be operated in the stratified mode as well as in the homogeneous mode.
Aus der DE 198 50 586 ist ein Motorsteuerungsprogramm bekannt, das die ümschaltung zwischen beiden Betriebsarten steuert.From DE 198 50 586 an engine control program is known which controls the switching between the two operating modes.
Im Schichtbetrieb wird der Motor mit einer stark geschichteten Zylinderladung und hohem Luftüberschuß betrieben, um einen möglichst niedrigen Kraftstoffverbrauch zu erreichen. Die geschichtete Ladung wird durch eine späte Kraftstoffeinspritzung erreicht, die im Idealfall zur Aufteilung des Brennraums in zwei Zonen führt: Die erste Zone enthält eine brennfähige Luft-Kraftstoff-Gemischwolke an der Zündkerze. Sie wird von der zweiten Zone umgeben, die aus einer isolierenden Schicht aus Luft und Restgas besteht. Das Potential zur Verbrauchsoptimierung ergibt sich aus der Möglichkeit, den Motor unter Vermeidung von 5 Ladungswechselverlusten weitgehend ungedrosselt zu betreiben. Der Schichtbetrieb wird bei vergleichsweise niedriger Last bevorzugt.In shift operation, the engine is operated with a strongly stratified cylinder charge and a large excess of air in order to achieve the lowest possible fuel consumption. The stratified charge is achieved by a late fuel injection, which ideally leads to the combustion chamber being divided into two zones: the first zone contains a combustible air-fuel mixture cloud on the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas. The potential for optimizing consumption results from the possibility of operating the engine largely unthrottled while avoiding 5 gas exchange losses. Shift operation is preferred at a comparatively low load.
Bei höherer Last, wenn die Leistungsoptimierung im L0 Vordergrund steht, wird der Motor mit homogenerAt higher loads, when the focus is on performance optimization in L0, the engine becomes more homogeneous
Zylinderfüllung betrieben. Die homogene Zylinderfüllung ergibt sich aus einer frühen Kraftstoffeinspritzung während des Ansaugvorganges. Als Folge steht bis zur Verbrennung eine größere Zeit zur Gemischbildung zur Verfügung. Das L5 Potential dieser Betriebsart zur Leistungsoptimierung ergibt sich zum Beispiel aus der Ausnutzung des gesamten Brennraumvolumens zur Füllung mit brennfähigem Gemisch.Cylinder filling operated. The homogeneous cylinder charge results from early fuel injection during the intake process. As a result, there is more time available for mixture formation until combustion. The L5 potential of this operating mode for performance optimization results, for example, from the use of the entire combustion chamber volume for filling with a combustible mixture.
Im Kraftstofftank eines Fahrzeugs fällt je nach .0 Kraftstofftemperatur, Kraftstoffsorte und Druckverhältnissen eine unterschiedliche Menge an Kraftstoffdampf pro Zeiteinheit an. Es ist bereits bekannt, diesen Kraftstoffdampf zunächst im einem Aktivkohlefilter zu speichern und dann während des Betriebs des 25 Verbrennungsmotors über ein steuerbaresDepending on the .0 fuel temperature, fuel type and pressure conditions, a different amount of fuel vapor is generated in a vehicle's fuel tank per unit of time. It is already known to store this fuel vapor first in an activated carbon filter and then via a controllable one during the operation of the internal combustion engine
Tankentluftungsventil mit Luft vermischt der motorischen Verbrennung zuzuführen. Dadurch wird der Aktivkohlefilter wieder aufnahmefähig für weiteren Kraftstoffdampf (regeneriert) . Der mit Luft vermischte Kraftstoffdampf wird SO als Regeneriergas bezeichnet.To supply tank ventilation valve mixed with air for engine combustion. This makes the activated carbon filter ready for further fuel vapor (regenerated). The fuel vapor mixed with air is called SO as regeneration gas.
Zur Kompensation des über das Tankentluftungsventil fließenden Kraftstoffstroms wird der über die Einspritzventile fließende Kraftstoffström reduziert. In diesem Zusammenhang ist es für einen Motor mit Saugrohreinspritzung aus der DE 38 13 220 bekannt, ein Maß FTEAD für den Kraftstoffgehalt des Regeneriergases aus den im Steuergerät bekannten Größen wie dem Kraftstoffstrom über die Einspritzventile, der Menge des Regeniergases bei 5 göffnetem Tankentluftungsventil, der Ansaugluftmenge des Motors und dem Signal einer Abgassonde zu lernen. Das gelernte Maß dient zur Abstimmung der Reduktion des Kraftstoffstroms über die Einspritzventile zum Kraftstoffström über das Tankentluftungsventil mit dem Ziel,To compensate for the fuel flow flowing through the tank ventilation valve, the fuel flow flowing through the injection valves is reduced. In this context it is for an engine Intake manifold injection from DE 38 13 220 known to learn a measure FTEAD for the fuel content of the regeneration gas from the parameters known in the control unit, such as the fuel flow via the injection valves, the amount of regeneration gas when the tank ventilation valve is open, the intake air quantity of the engine and the signal from an exhaust gas probe , The learned dimension is used to coordinate the reduction of the fuel flow via the injection valves to the fuel flow via the tank ventilation valve with the aim of
L0 die Zusammensetzung des gesamten Kraftstoff/Luftgemisches zu kontrollieren. Beim Betrieb eines Motors mit Saugrohreinspritzung tritt wie beim Betrieb eines Motores mit Benzindirekteinspritzung in der Betriebsart Homogenbetrieb eine homogene Füllung des Brennraums mitL0 check the composition of the entire fuel / air mixture. When operating an engine with intake manifold injection, homogeneous filling of the combustion chamber occurs in the homogeneous operating mode, as when operating an engine with direct gasoline injection
L5 Gemisch auf. Für diese Betriebsart ist daher dieL5 mixture on. For this operating mode is therefore the
Tankentlüftungssteuerung anwendbar, wie sie aus dem Bereich der Saugrohreinspritzung bekannt ist.Tank ventilation control applicable, as is known from the field of manifold injection.
Beim Betrieb eines Motors mit Benzindirekteinspritzung in 20 der Betriebsart Schichtbetrieb hat sich dagegen gezeigt, dass bei der Kontrolle des gesamten Kraftstoff/Luftgemisches bei offenem Tankentluftungsventil Störungen auftreten.In contrast, when operating an engine with gasoline direct injection in the operating mode stratified operation, it has been shown that faults occur when checking the entire fuel / air mixture with the tank ventilation valve open.
Die Erfindung zielt auf die Beseitigung der genannten 25 Störungen und damit auf eine Verbesserung Vorhersagbarkeit des Einflusses der Tankentlüftung auf die Gemischzusammensetzung im Schichtbetrieb.The invention aims at eliminating the 25 disturbances mentioned and thus at improving predictability of the influence of the tank ventilation on the mixture composition in the shift operation.
Die angestrebte Wirkung wird mit den Merkmalen des Anspruchs $0 1 erreicht.The desired effect is achieved with the features of claim $ 0 1.
Im einzelnen sieht die erfindungsgemäße Bestimmung des Kraftstoffgehaltes eines Regeneriergases bei der Regeneration eines KraftstoffdampfZwischenspeichers bei Verbrennungsmotoren mit Benzindirekteinspritzung im Mager- (Schicht) -Betrieb, bei dem der gespeicherte Kraftstoffdampf dem Verbrennungsmotor als Reneriergas über ein steuerbares Tankentluftungsventil zugeführt wird und bei dem zur 5 Bestimmung des Kraftstoffgehaltes des Regneriergases das Signal einer Abgassonde im Abgas des Verbrennungsmotors berücksichtigt wird, folgende Schritte vor:Specifically, the determination according to the invention of the fuel content of a regeneration gas provides for the regeneration of a fuel vapor intermediate store Internal combustion engines with gasoline direct injection in lean (stratified) operation, in which the stored fuel vapor is supplied to the internal combustion engine as regeneration gas via a controllable tank ventilation valve and in which the signal of an exhaust gas probe in the exhaust gas of the internal combustion engine is taken into account in order to determine the fuel content of the regeneration gas in front:
- Durchführen eines Abgleichs zwischen dem Signal der- Perform a comparison between the signal of the
10 Abgassonde und einem vorgegebenen Sollwert bei geschlossenem Tankentluftungsventil, bei dem das Signal der Abgassonde bei geschlossenem Tankentluftungsventil mit einer Korrekturgröße so verknüpft wird, dass das Ergebnis der Verknüpfung dem Sollwert entspricht.10 Exhaust gas probe and a specified setpoint with the tank ventilation valve closed, in which the signal of the exhaust gas probe with the tank ventilation valve closed is linked with a correction quantity in such a way that the result of the linkage corresponds to the setpoint.
L5L5
- Verknüpfen des Signals der Abgassonde bei offenem Tankentluftungsventil mit dem vorher gewonnenen Korrekturwert auf gleiche Weise und- Link the signal of the exhaust gas probe with the tank ventilation valve open to the previously obtained correction value in the same way and
20 - Bestimmung der Beladung des Regeneriergases aus dem Ergebnis der Verknüpfung.20 - Determination of the loading of the regeneration gas from the result of the link.
Die Erfindung basiert auf der Erkenntnis, dass im Schichtbetrieb der gemessene Lambdawert vom physikalischThe invention is based on the knowledge that the measured lambda value from the physical
25 vorhandenen Lambdawert vergleichsweise stark abweichen kann. Als Ursache kommen Sondenexemplarstreuungen, Alterungseffekte und stark schwankende Abgastemperaturen im Schichtbetrieb bei nicht geregelter Sondenheizung in Frage. Unabhängig davon, welche Ursache letztlich vorliegt, tritt25 existing lambda value can deviate comparatively strongly. Scattered probes, aging effects and strongly fluctuating exhaust gas temperatures in shift operation with unregulated probe heating are possible causes. Regardless of which cause ultimately exists
50 jedenfalls das Problem der Abweichung zwischen Sondensignal und tatsächlich vorhandenem Lambdawert auf.50 in any case the problem of the deviation between the probe signal and the actually existing lambda value.
Die erfindungsgemäße Lösung sieht einen Abgleich des Sondensignals im Schichtbetrieb bei geschlossenem Tankentluftungsventil vor. Dadurch wird das Sondensignal vom absoluten Lambdawert entkoppelt. Kommt dann bei offenem Tankentluftungsventil der Einfluss des Regeneriergases hinzu, so kann dieser Einfluss aus der relativen Änderung des Sondensignals bestimmt werden.The solution according to the invention provides an adjustment of the probe signal in stratified operation with the closed Tank vent valve before. This decouples the probe signal from the absolute lambda value. If the influence of the regeneration gas is added when the tank ventilation valve is open, this influence can be determined from the relative change in the probe signal.
Eine Ausführungsform der Efindung sieht vor, daß aus dem Signal der Abgassonde ein gemessener Lambdawert (Lambdamess) gebildet wird und daß die Differenz des gemessenen Lambdawertes vom Produkt aus Abgleichfaktor und derOne embodiment of the invention provides that a measured lambda value (lambda measurement) is formed from the signal of the exhaust gas probe and that the difference of the measured lambda value from the product of the adjustment factor and the
Differenz des Lambdasollwertes (Lambdasoll) vom Wert 1 ermittelt und integriert wird.Difference of the lambda setpoint (lambda setpoint) from the value 1 is determined and integrated.
Eine weitere Ausführungsform zeichent sich dadurch aus, daß der Abgleichsfaktor im eingeschwungenen Zustand dem mittleren Quotienten (Lambdamess -1 ) / (Lambdasoll - 1) entspricht .Another embodiment is characterized in that the adjustment factor in the steady state corresponds to the average quotient (Lambdamess -1) / (Lambda target - 1).
Diese Funktion liefert den Vorteil, dass Schwankungen von Lambdamess durch den Integrationsprozess während des Abgleichvorgangs ausgemittelt werden und damit den Abgleichsfaktor nicht verfälschen.This function has the advantage that fluctuations in Lambdamess are averaged out through the integration process during the adjustment process and thus do not falsify the adjustment factor.
Eine weitere Ausführungsform sieht vor, daß das tatsächliche Lambda im Betrieb mit offenem Tankentluftungsventil durch folgende Vorschrift bestimmt wird:Another embodiment provides that the actual lambda in operation with the tank ventilation valve open is determined by the following rule:
tatsächlichesactual
Lambda = (1/Abgleichsfaktor) * (Lambdamess - 1) + 1Lambda = (1 / adjustment factor) * (Lambdamess - 1) + 1
Eine weitere Ausführungsform sieht vor, daß ein neuer Abgleich im Schichtbetrieb bei einem Arbeitspunktwechsel des Verbrennungsmotors oder bei der Änderung bestimmter Umgebungsbedingungen durchgeführt wird. Eine weitere Ausführungsform sieht vor, daß die Umgebungstemperatur und die Höhe, in der der Motor betrieben wird, solche Umgebungsbedingungen sind. 5Another embodiment provides that a new adjustment in shift operation is carried out when the combustion engine changes its working point or when certain environmental conditions change. Another embodiment provides that the ambient temperature and the level at which the motor is operated are such ambient conditions. 5
Eine weitere Ausführungsform zeichnet sich dadurch aus, daß ein Arbeitspunktwechsel durch eine Mindeständerung des Lambdasollwertes definiert ist.Another embodiment is characterized in that an operating point change is defined by a minimum change in the lambda setpoint.
L0 Gemäß einer weiteren Ausführungsform wird ein Abgleich beendet, wenn der Absolutbetrag des Integratoreingangs einen vorbestimmten Schwellwert unterschreitet.L0 According to a further embodiment, an adjustment is ended when the absolute amount of the integrator input falls below a predetermined threshold value.
Die Erfindung richtet sich auch auf eine elektronische L5 Steuereinrichtung zur Durchführung wenigstens eines der oben genannten Verfahren und Ausführungsformen.The invention also relates to an electronic L5 control device for performing at least one of the above-mentioned methods and embodiments.
Im folgenden wird ein Ausführungsbeispiel der Erfindung mit Bezug auf die Figuren erläutert. 20In the following an embodiment of the invention is explained with reference to the figures. 20
Fig. 1 zeigt das technische Umfeld der Erfindung und Fig. 2 offenbart ein Ausführungsbeispiel der Erfindung in der Form von Funktionsblöcken.Fig. 1 shows the technical environment of the invention and Fig. 2 discloses an embodiment of the invention in the form of functional blocks.
25 Die 1 in der Fig. 1 repräsentiert den Brennraum eines25 The 1 in FIG. 1 represents the combustion chamber of a
Zylinders eines Verbrennungsmotors. Über ein Einlaßventil 2 wird der Zustrom von Luft zum Brennraum gesteuert. Die Luft wird über ein Saugrohr 3 angesaugt. Die Ansaugluftmenge kann über eine Drosselklappe 4 variiert werden, die von einemCylinder of an internal combustion engine. The inflow of air to the combustion chamber is controlled via an inlet valve 2. The air is sucked in via a suction pipe 3. The amount of intake air can be varied via a throttle valve 4 by one
SO Steuergerät 5 angesteuert wird. Dem Steuergerät werdenSO control unit 5 is controlled. The control unit
Signale über den Drehmomentwunsch des Fahrers, bspw. über die Stellung eines Fahrpedals 6, ein Signal über die Motordrehzahl n von einem Drehzahlgeber 7 und ein Signal über die Menge ml der angesaugten Luft von einem Luftmengenmesser 8 zugeführt und ein Signal Us über die AbgasZusammensetzung und/oder Abgastemperatur von einem Abgassensor 16 zugeführt. Abgassensor 12 kann beispielsweise eine Lambdasonde sein, deren Nernstspannung oder, je nach Sondentyp, deren Pumpstrom den Sauerstoffgehalt im Abgas angibt. Das Abgas wird durch wenigstens einen Katalysator 15 geführt, in dem Schadstoffe aus dem Abgas konvertiert und/oder vorübergehend gespeichert werden.Signals about the driver's torque request, for example about the position of an accelerator pedal 6, a signal about the engine speed n from a speed sensor 7 and a signal about the amount ml of the intake air from one Air flow meter 8 supplied and a signal Us via the exhaust gas composition and / or exhaust gas temperature supplied by an exhaust gas sensor 16. Exhaust gas sensor 12 can be, for example, a lambda sensor whose Nernst voltage or, depending on the type of probe, whose pump current indicates the oxygen content in the exhaust gas. The exhaust gas is passed through at least one catalytic converter 15, in which pollutants from the exhaust gas are converted and / or temporarily stored.
Aus diesen und ggf. weiteren Eingangssignalen über weitere Parameter des Verbrennungsmotors wie Ansaugluft- und Kühlmitteltemperatur und so weiter bildet das Steuergerät 5 Ausgangssignale zur Einstellung des Drosselklappenwinkels alpha durch ein Stellglied 9 und zur Ansteuerung eines Kraftstoffeinspritzventils 10, durch das Kraftstoff in den Brennraum des Motors dosiert wird. Außerdem wird durch das Steuergerät die Auslösung der Zündung über eine Zündeinrichtung 11 gesteuert.From these and possibly other input signals via further parameters of the internal combustion engine, such as intake air and coolant temperature and so on, the control unit 5 forms output signals for setting the throttle valve angle alpha by means of an actuator 9 and for controlling a fuel injection valve 10, by means of which fuel is metered into the combustion chamber of the engine becomes. The control unit also controls the triggering of the ignition via an ignition device 11.
Der Drosselklappenwinkel alpha und die Einspritzimpulsbreite ti sind wesentliche, aufeinander abzustimmende Stellgrößen zur Realisierung des gewünschten Drehmomentes. Eine weitere wesentliche Stellgröße zur Beeinflussung des Drehmomentes ist die Winkellage der Zündung relativ zur Kolbenbewegung. Die Bestimmung der Stellgrößen zur Einstellung desThe throttle valve angle alpha and the injection pulse width ti are essential, coordinated manipulated variables for realizing the desired torque. Another important manipulated variable for influencing the torque is the angular position of the ignition relative to the piston movement. The determination of the manipulated variables for setting the
Drehmomentes ist Gegenstand der DE 1 98 51 990, die insoweit in die Offenbarung einbezogen sein soll.Torque is the subject of DE 1 98 51 990, which is to be included in the disclosure to this extent.
Weiterhin steuert das Steuergerät eine Tankentlüftung 12 sowie weitere Funktionen zur Erzielung einer effizientenFurthermore, the control unit controls a tank ventilation 12 and other functions to achieve an efficient one
Verbrennung des Kraftstoff/Luftgemisches im Brennraum. Die aus der Verbrennung resultierende Gaskraft wird durch Kolben 13 und Kurbeltrieb 14 in ein Drehmoment gewandelt. Die Tankentlüftungsanlage 12 besteht aus einem Aktivkohlefilter 15, der über entsprechende Leitungen beziehungsweise Anschlüsse mit dem Tank, der Umgebungsluft und dem Saugrohr des Verbrennungsmotors kommuniziert, wobei in der Leitung zum Saugrohr ein Tankentluftungsventil 16 angeordnet ist.Combustion of the fuel / air mixture in the combustion chamber. The gas force resulting from the combustion is converted into a torque by pistons 13 and crank mechanism 14. The tank ventilation system 12 consists of an activated carbon filter 15, which communicates with the tank, the ambient air and the intake manifold of the internal combustion engine via corresponding lines or connections, a tank ventilation valve 16 being arranged in the line to the intake manifold.
Der Aktivkohlefilter 15 speichert im Tank 5 verdunstenden Kraftstoff. Bei vom Steuergerät 6 öffnend angesteuertem Tankentluftungsventil 11 wird Luft aus der Umgebung 17 durch den Aktivkohlefilter gesaugt, der dabei den gespeicherten Kraftstoff an die Luft abgibt. Dieses auch als Tankentlüftungsgemisch oder auch als Regeneriergas bezeichnete Kraftstoff-Luft-Gemisch beeinflußt die Zusammensetzung des dem Verbrennungsmotor insgesamt zugeführten Gemisches. Der Kraftstoffanteil am Gemisch wird im übrigen durch eine Zumessung von Kraftstoff über die Kraftstoffzumeßvorrichtung 10 mitbestimmt, die der angesaugten Luftmenge angepaßt ist. Dabei kann der über das Tankentlüftungssystem angesaugte Kraftstoff in Extremfällen einem Anteil von ca. einem Drittel bis zur Hälfte der Gesamtkraftstoffmenge entsprechen.The activated carbon filter 15 stores evaporating fuel in the tank 5. When the tank ventilation valve 11 is opened by the control unit 6, air is drawn from the environment 17 through the activated carbon filter, which releases the stored fuel into the air. This fuel-air mixture, also known as a tank ventilation mixture or also as a regeneration gas, influences the composition of the mixture supplied to the internal combustion engine as a whole. The proportion of fuel in the mixture is also determined by metering fuel via the fuel metering device 10, which is adapted to the amount of air drawn in. In extreme cases, the fuel drawn in via the tank ventilation system can correspond to a proportion of approximately one third to half of the total fuel quantity.
Fig. 2 zeigt eine Funktionsblockdarstellung des erfindungsgemäßen Verfahrens.2 shows a functional block representation of the method according to the invention.
Zunächst wird ein geschlossenes Tankentluftungsventil und ein stationärer Betriebszustand vorausgesetzt.First of all, a closed tank ventilation valve and a steady operating condition are assumed.
Block 2.1 stellt den gemessenen Lambdawert bereit, der aus dem Signal Us der Abgassonde gewonnen wird. Block 2.2. stellt den Sollwert für die Zusammensetzung Lambda des gesamten, von dem Verbrennungsmotor verbrannten Gemisches bereit. Im Block 2.3 erfolgt die Bildung der Differenz des Sollwertes vom Wert 1. Diese Differenz wird im Block 2.4 mit einem Abgleichfaktor verknüpft. Im Block 2.5 erfolgt die Bildung der Differenz des gemessenen Lambdawertes vom Wert 1. Im Block 2.6 wird die Abweichung der Differenz des gemessenen Lambdawertes vom Produkt aus Abgleichfaktor und der der Differenz des Lambdasollwertes vom Wert 1 ermittelt. Diese Abweichung wird einem Integrator 2.7 zugeführt. Block 2.8 liefert einen Korrekturwert für Betriebspunkte in der Nachbarschaft des Betriebspunktes, in dem der Abgleich erfolgt. Unter der oben angegebenen Voraussetzung eines stationären Betriebszustands liefert Block 2.8 den Wert 1, so das der Ausgangswert des Integrators 2.7 durch das Ergebnis der Verknüpfungen in den Blöcken 2.9 bis 2.11 nicht geändert wird.Block 2.1 provides the measured lambda value, which is obtained from the signal Us of the exhaust gas probe. Block 2.2. provides the setpoint for the composition lambda of the entire mixture burned by the internal combustion engine. In block 2.3, the difference between the Setpoint of value 1. This difference is linked in block 2.4 with an adjustment factor. In block 2.5, the difference between the measured lambda value and the value 1 is formed. In block 2.6, the deviation of the difference between the measured lambda value and the product from the adjustment factor and that of the difference between the lambda setpoint and the value 1 are determined. This deviation is fed to an integrator 2.7. Block 2.8 provides a correction value for operating points in the vicinity of the operating point in which the adjustment takes place. Under the above-mentioned condition of a stationary operating state, block 2.8 supplies the value 1, so that the output value of integrator 2.7 is not changed by the result of the links in blocks 2.9 to 2.11.
In diesem Fall wird der Ausgangswert des Integrators direkt als Abgleichsfaktor zurückgeführt und mit dem gewünschten Lambdasollwert verknüpft.In this case, the output value of the integrator is fed back directly as an adjustment factor and linked to the desired lambda setpoint.
Diese Struktur bewirkt folgende Funktion:This structure has the following function:
Solange das Produkt aus Abgleichsfaktor und der Abweichung des gewünschten Lambdawerts von 1 kleiner ist als die Abweichung des gemessenen Lambdawerts von 1, ist der Integratoreingang positiv und der Integratorausgang wächst an. Dadurch wird der Abgleichsfaktor vergrößert. Dies vergrößert das o.a. Produkt. Als Folge verkleinert sich der Abstand des Produktes von der Abweichung des gemessenen Lambdawerts von 1. Der Integratoreingang wird kleiner. Der Integratorausgang wächst langsamer.As long as the product of the adjustment factor and the deviation of the desired lambda value of 1 is smaller than the deviation of the measured lambda value of 1, the integrator input is positive and the integrator output increases. This increases the adjustment factor. This increases the above Product. As a result, the distance between the product and the deviation of the measured lambda value from 1 decreases. The integrator input becomes smaller. The integrator output grows more slowly.
Wird der Integratorausgang zu groß, ändert sich durch die Rückführung das Vorzeichen des Integratoreingangs und der Integratorausgang wird in der Folge wieder verkleinert. Dies führt dazu, dass der Adaptionsfaktor im eingeschwungenen Zustand gewissermaßen dem mittleren Quotienten (Lambdamess -1 ) / (Lambdasoll - 1) entspricht.If the integrator output becomes too large, the feedback changes the sign of the integrator input and the integrator output is subsequently reduced again. This means that the adaptation factor in the steady state corresponds to a certain extent to the middle quotient (Lambdamess -1) / (Lambda target - 1).
Diese Funktion liefert den Vorteil, dass Schwankungen von Lambdamess durch den Integrationsprozess während des Abgleichvorgangs ausgemittelt werden und damit den Abgleichsfaktor nicht verfälschen.This function has the advantage that fluctuations in Lambdamess are averaged out through the integration process during the adjustment process and thus do not falsify the adjustment factor.
Im Betrieb mit offenem Tankentluftungsventil kann das tatsächliche Lambda durch folgende Vorschrift bestimmt werden:In operation with the tank vent valve open, the actual lambda can be determined by the following rule:
tatsächlichesactual
Lambda = (1/Abgleichsfaktor) * (Lambdamess - 1) + 1Lambda = (1 / adjustment factor) * (Lambdamess - 1) + 1
Das tatsächliche Lambda ist zum Quotienten aus gesamter Luftmenge und gesamter Kraftstoffmenge proportional.The actual lambda is proportional to the quotient of the total air volume and total fuel volume.
Die gesamte Luftmenge setzt sich aus der Luftmenge, die über die Drosselklappe fließt und dem Luftanteil am Regeneriergas aus der Tankentlüftung zusammen. Der Luftanteil am Regeneriergas entspricht etwa der Regeneriergasmenge. Diese ist aus im Steuergerät bekannten Größen wie Saugrohrdruck und dem Ansteuertastverhältnis ableitbar. Der Luftanteil ist daher bekannt. Gleiches gilt für die über die Drosselklappe strömende Luftmenge, die beispielsweise durch einen Heißfilmluftmassenmesser erfaßt werden kann. Die über die Einspritzventile fließende Kraftstoffmenge ist aus denThe total amount of air is made up of the amount of air flowing through the throttle valve and the proportion of air in the regeneration gas from the tank ventilation. The proportion of air in the regeneration gas corresponds approximately to the quantity of regeneration gas. This can be derived from variables known in the control unit, such as intake manifold pressure and the control duty cycle. The proportion of air is therefore known. The same applies to the amount of air flowing via the throttle valve, which can be detected, for example, by a hot film air mass meter. The amount of fuel flowing through the injectors is from the
Ansteuerimpulsbreiten und den Druck im Kraftstoffsystem, also aus bekannten Größen ableitbar. Daher kann der Kraftstoffanteil der Tankentlüftung nach dem erfindungsgemäßen Verfahren auch im Schichtbetrieb mit Hilfe des Abgleichfaktors aus dem gemessenen Lambdawert bestimmt werden.Control pulse widths and the pressure in the fuel system, so derived from known quantities. Therefore, the fuel portion of the tank ventilation can also be determined in shift operation using the adjustment factor from the measured lambda value using the method according to the invention.
Die Blöcke 2.12 bis 2.17 stellen eine Struktur zur Auslösung des Abgleichs dar. Ein neuer Abgleich im Schichtbetrieb wird bei einem Arbeitspunktwechsel des Verbrennungsmotors oder bei der Änderung bestimmter Umgebungsbedingungen durchgeführt. Beispiele solcher Umgebungsbedingungen sind die Umgebungstemperatur, die bspw. durch einen Ansauglufttemperaturfühler bereitgestellt werden kann und die Höhe, in der der Motor betrieben wird. Eine Information über diese Höhe ist in modernen Motorsteuerungen vorhanden. Sie wird beispielsweise aus dem Signal einesBlocks 2.12 to 2.17 represent a structure for triggering the adjustment. A new adjustment in shift operation is carried out when the combustion engine changes its operating point or when certain ambient conditions change. Examples of such ambient conditions are the ambient temperature, which can be provided by an intake air temperature sensor, for example, and the level at which the engine is operated. Information about this height is available in modern motor controls. For example, it becomes a
Umgebungsdruckfühlers ermittelt oder aus der Lasterfassung (Ansaugluftmenge, Zylinderfüllung) berechnet. Ein Arbeitspunktwechsel läßt sich beispielsweise definieren als eine Mindeständerung des Lambdasollwertes, beispielsweise um einen Mindestwert von 0,3. Tritt eine dieser Bedingungen ein, aktiviert Block 2.12 über den Flip-Flop 2.13 ein Schließen des Tanlentlüftungsventils im Block 2.14 und einen Start des Integrators 2.7.Ambient pressure sensor determined or calculated from the load detection (intake air quantity, cylinder filling). An operating point change can be defined, for example, as a minimum change in the lambda setpoint, for example by a minimum value of 0.3. If one of these conditions occurs, block 2.12 activates via flip-flop 2.13 a closing of the tank ventilation valve in block 2.14 and a start of integrator 2.7.
Das Ende des Abgleichs wird durch die Blöcke 2.15 bis 2.17 erkannt. Block 2.15 stellt einen Schwellwert DLAMSCE bereit und Block 2.16 liefert den positiven Absolutbetrag des Integratoreingangs. Unterschreitet der genannte Betrag den genannten Schwellwert, wird dies im Block 2.17 erkannt und der Schließbefehl für das Tankentluftungsventil durch Rücksetzen des Flip-Flop 2.13 aufgehoben. Die Blöcke 2.8 bis 2.11 ermöglichen eine Berücksichtigung kleiner Lambdasollwertänderungen, die noch nicht als Arbeitspunktwechsel im o.a. Sinne gelten.The end of the comparison is recognized by blocks 2.15 to 2.17. Block 2.15 provides a threshold DLAMSCE and block 2.16 provides the positive absolute amount of the integrator input. If the stated amount falls below the specified threshold value, this is recognized in block 2.17 and the closing command for the tank ventilation valve is canceled by resetting the flip-flop 2.13. Blocks 2.8 to 2.11 allow small lambda setpoint changes to be taken into account, which are not yet considered to be a change in the operating point in the above sense.
Die Beziehung zwischen der Sondenspannung und dem Lambdawert ist im allgemeinen nicht linear.The relationship between the probe voltage and the lambda value is generally not linear.
Bei größeren Lambdasolländerungen (Arbeitspunktwechsel) erfolgt daher ein neuer Abgleich. Bei kleineren Lambdasolländerungen liefert Block 2.7 ersatzweise eine Korrekturgröße, bspw. auf der Basis einer rechnerischen Linearisierung der Beziehung^ zwischen Us und Lambdasoll in einer Umgebung des abgeglichenen Arbeitspunktes . In the event of major changes in the lambda target (change in operating point), a new adjustment is therefore made. In the case of smaller lambda target changes, block 2.7 alternatively provides a correction variable, for example on the basis of a computational linearization of the relationship ^ between Us and lambda target in an environment of the adjusted working point.

Claims

Ansprüche Expectations
1. Verfahren zur Bestimmung des Kraftstoffgehaltes eines Regeneriergases bei der Regeneration eines KraftstoffdampfZwischenspeichers bei Verbrennungsmotoren mit Benzindirekteinspritzung im Mager- (Schicht) -Betrieb, bei dem der gespeicherte Kraftstoffdampf dem Verbrennungsmotor als Reneriergas über ein steuerbares Tankentluftungsventil zugeführt wird und bei dem zur Bestimmung des Kraftstoffgehaltes des Regneriergases das Signal einer Abgassonde im Abgas des1.Procedure for determining the fuel content of a regeneration gas during the regeneration of a fuel vapor intermediate store in internal combustion engines with gasoline direct injection in lean (stratified) operation, in which the stored fuel vapor is supplied to the internal combustion engine as a regeneration gas via a controllable tank ventilation valve and in which to determine the fuel content of the Regeneration gas the signal of an exhaust gas probe in the exhaust gas of the
Verbrennungsmotors berücksichtigt wird,Internal combustion engine is taken into account
dadurch gekennzeichnet,characterized,
das bei geschlossenem Tankentluftungsventil ein Abgleich zwischen dem Signal der Abgassonde und einem vorgegebenen Sollwert erfolgt, bei dem das Signal der Abgassonde bei geschlossenem Tankentluftungsventil mit einer Korrekturgröße so verknüpft wird, dass das Ergebnis der Verknüpfung demthat, when the tank ventilation valve is closed, there is a comparison between the signal of the exhaust gas probe and a predetermined target value, at which the signal of the exhaust gas probe is linked to a correction variable in such a way that the result of the linkage corresponds to the
Sollwert entspricht und bei dem das Signal der Abgassonde bei offenemCorresponds to the setpoint and at which the signal of the exhaust gas probe when open
Tankentluftungsventil auf gleiche Weise mit dem vorher gewonnenen Korrekturwert verknüpft wird und bei dem die Beladung des Regeneriergases aus dem Ergebnis der Verknüpfung bestimmt wird.Tank vent valve is linked in the same way with the previously obtained correction value and at which the Loading of the regeneration gas is determined from the result of the link.
2.Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus dem Signal der Abgassonde ein gemessener Lambdawert (Lambdamess) gebildet wird und daß die Differenz des gemessenen Lambdawertes vom Produkt aus Abgleichfaktor und der Differenz des Lambdasollwertes (Lambdasoll) vom Wert 1 ermittelt und integriert wird.2. The method according to claim 1, characterized in that a measured lambda value (lambda measurement) is formed from the signal of the exhaust gas probe and that the difference of the measured lambda value from the product of the adjustment factor and the difference in the lambda setpoint (lambda setpoint) of the value 1 is determined and integrated ,
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Abgleichsfaktor im eingeschwungenen Zustand dem mittleren Quotienten (Lambdamess -1 ) / (Lambdasoll - 1) entspricht.3. The method according to claim 2, characterized in that the adjustment factor in the steady state corresponds to the average quotient (Lambdamess -1) / (Lambda target - 1).
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das tatsächliche Lambda im Betrieb mit offenem Tankentluftungsventil durch folgende Vorschrift bestimmt wird:4. The method according to claim 2, characterized in that the actual lambda is determined in operation with the tank vent valve open by the following regulation:
tatsächlichesactual
Lambda = (1/Abgleichsfaktor) * (Lambdamess - 1) + 1Lambda = (1 / adjustment factor) * (Lambdamess - 1) + 1
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein neuer Abgleich im Schichtbetrieb bei einem5. The method according to claim 1, characterized in that a new adjustment in shift operation at one
Arbeitspunktwechsel des Verbrennungsmotors oder bei der Änderung bestimmter Umgebungsbedingungen durchgeführt wird.Operating point change of the internal combustion engine or when certain environmental conditions change.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Umgebungstemperatur und die Höhe, in der der Motor betrieben wird, solche Umgebungsbedingungen sind. 6. The method according to claim 5, characterized in that the ambient temperature and the height at which the engine is operated are such environmental conditions.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, ein Arbeitspunktwechsel definiert ist als eine Mindeständerung des Lambdasollwertes.7. The method according to claim 5, characterized in that an operating point change is defined as a minimum change in the lambda setpoint.
8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Abgleich beendet wird, wenn der Absolutbetrag des Integratoreingangs einen vorbestimmten Schwellwert unterschreitet.8. The method according to claim 2, characterized in that a comparison is ended when the absolute amount of the integrator input falls below a predetermined threshold.
9. Elektronische Steuereinrichtung zur Durchführung wenigstens eines der Verfahren nach den Ansprüchen 1 - 8. 9. Electronic control device for performing at least one of the methods according to claims 1-8.
EP01971683A 2000-09-04 2001-09-03 Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation Expired - Lifetime EP1317610B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043699 2000-09-04
DE10043699A DE10043699A1 (en) 2000-09-04 2000-09-04 Method for determining the fuel content of the regeneration gas in an internal combustion engine with gasoline direct injection in shift operation
PCT/DE2001/003321 WO2002020961A1 (en) 2000-09-04 2001-09-03 Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation

Publications (2)

Publication Number Publication Date
EP1317610A1 true EP1317610A1 (en) 2003-06-11
EP1317610B1 EP1317610B1 (en) 2006-08-30

Family

ID=7655035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971683A Expired - Lifetime EP1317610B1 (en) 2000-09-04 2001-09-03 Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation

Country Status (7)

Country Link
US (1) US6805091B2 (en)
EP (1) EP1317610B1 (en)
JP (1) JP2004508483A (en)
KR (1) KR100777935B1 (en)
AT (1) ATE338203T1 (en)
DE (2) DE10043699A1 (en)
WO (1) WO2002020961A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228004A1 (en) 2002-06-22 2004-01-15 Daimlerchrysler Ag Method for determining a loading of an activated carbon container of a tank ventilation system
US7441403B2 (en) * 2004-12-20 2008-10-28 Detroit Diesel Corporation Method and system for determining temperature set points in systems having particulate filters with regeneration capabilities
US7210286B2 (en) * 2004-12-20 2007-05-01 Detroit Diesel Corporation Method and system for controlling fuel included within exhaust gases to facilitate regeneration of a particulate filter
US7461504B2 (en) * 2004-12-21 2008-12-09 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter
US7076945B2 (en) * 2004-12-22 2006-07-18 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from an internal combustion engine to facilitate regeneration of a particulate filter
US20060130465A1 (en) * 2004-12-22 2006-06-22 Detroit Diesel Corporation Method and system for controlling exhaust gases emitted from an internal combustion engine
US7434388B2 (en) 2004-12-22 2008-10-14 Detroit Diesel Corporation Method and system for regeneration of a particulate filter
DE102007008119B4 (en) * 2007-02-19 2008-11-13 Continental Automotive Gmbh Method for controlling an internal combustion engine and internal combustion engine
US10851725B2 (en) * 2018-12-18 2020-12-01 Caterpillar Inc. Fuel content detection based on a measurement from a sensor and a model estimation of the measurement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3813220C2 (en) 1988-04-20 1997-03-20 Bosch Gmbh Robert Method and device for setting a tank ventilation valve
US5765541A (en) * 1997-04-03 1998-06-16 Ford Global Technologies, Inc. Engine control system for a lean burn engine having fuel vapor recovery
DE19727297C2 (en) * 1997-06-27 2003-11-13 Bosch Gmbh Robert Method for operating an internal combustion engine, in particular a motor vehicle
JP3861446B2 (en) * 1998-03-30 2006-12-20 トヨタ自動車株式会社 Evaporative fuel concentration detection device for lean combustion internal combustion engine and its application device
DE19850586A1 (en) 1998-11-03 2000-05-04 Bosch Gmbh Robert Method for operating an internal combustion engine
DE19851990A1 (en) 1998-11-03 2000-06-21 Bosch Gmbh Robert Process for determining manipulated variables in the control of gasoline direct injection engines
US6622691B2 (en) 2001-09-10 2003-09-23 Delphi Technologies, Inc. Control method for a direct injection gas engine with fuel vapor purging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0220961A1 *

Also Published As

Publication number Publication date
JP2004508483A (en) 2004-03-18
EP1317610B1 (en) 2006-08-30
KR100777935B1 (en) 2007-11-20
DE10043699A1 (en) 2002-03-14
ATE338203T1 (en) 2006-09-15
US20030029427A1 (en) 2003-02-13
KR20020068337A (en) 2002-08-27
US6805091B2 (en) 2004-10-19
DE50110890D1 (en) 2006-10-12
WO2002020961A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
DE102008001241B4 (en) Oxygen sensor delivery corrector for an internal combustion engine
DE4324312C2 (en) Method for operating an internal combustion engine in a lean mixture combustion area
DE60117427T2 (en) Autoignition of a gasoline engine by changing the duration of the exhaust gas retention
DE69923532T2 (en) DEVICE FOR CONTROLLING THE EXHAUST GAS RECYCLING IN AN INTERNAL COMBUSTION ENGINE
DE19741180A1 (en) Engine control system and method
WO2008009499A1 (en) Method and device for the diagnosis of the cylinder-selective uneven distribution of a fuel-air mixture fed to the cylinders of an internal combustion engine
DE19640403A1 (en) Control of motor vehicle IC engine with direct fuel injection
DE102006020675A1 (en) Method for lambda and torque control of an internal combustion engine and program algorithm
DE10239065A1 (en) Four-stroke internal combustion engine operating method, involves controlling combustion in operating ranges of engine, combustion being independent of engine torque
EP1317616B1 (en) Method for determining nox mass flow from characteristics map data with a variable air inlet and engine temperature
EP1317617B1 (en) Method and electronic control device for diagnosing the mixture production in an internal combustion engine
DE19938037A1 (en) Diagnostic system for an engine
DE60011382T2 (en) Internal combustion engine with brake system
EP1250525B1 (en) Method and device for controlling an internal combustion engine
DE10046597B4 (en) Control system for direct injection engines
DE112019002741T9 (en) Control device and control method for an internal combustion engine
DE3931501A1 (en) COMBUSTION ENGINE CONTROL UNIT
EP1315630B1 (en) Method for diagnosing a tank ventilation valve and electronic control device
DE19530274B4 (en) Method for controlling a piston internal combustion engine
DE102016102613A1 (en) Methods and systems for estimating an air-fuel ratio with a variable voltage oxygen sensor
DE10134555C2 (en) Cylinder air / fuel ratio estimation system of an internal combustion engine
EP1317610B1 (en) Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation
DE10120653A1 (en) Fast transient speed management for spark-ignited engines with direct fuel injection (DISI)
DE19727866C2 (en) Device for controlling an internal combustion engine
DE69806899T2 (en) CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION AND DIRECT INJECTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030404

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110890

Country of ref document: DE

Date of ref document: 20061012

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060830

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060903

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060903

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140923

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140917

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161125

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110890

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404