EP1309773B1 - Turbine vane system - Google Patents

Turbine vane system Download PDF

Info

Publication number
EP1309773B1
EP1309773B1 EP01962905A EP01962905A EP1309773B1 EP 1309773 B1 EP1309773 B1 EP 1309773B1 EP 01962905 A EP01962905 A EP 01962905A EP 01962905 A EP01962905 A EP 01962905A EP 1309773 B1 EP1309773 B1 EP 1309773B1
Authority
EP
European Patent Office
Prior art keywords
cooling
duct
cooling air
air
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01962905A
Other languages
German (de)
French (fr)
Other versions
EP1309773A1 (en
Inventor
Hans-Thomas Bolms
Michael Strassberger
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01962905A priority Critical patent/EP1309773B1/en
Publication of EP1309773A1 publication Critical patent/EP1309773A1/en
Application granted granted Critical
Publication of EP1309773B1 publication Critical patent/EP1309773B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling

Definitions

  • the invention relates to an arrangement of turbine guide vanes, in particular turbine vanes of the rearmost stages, each with a radially outwardly arranged foot area, a radially inwardly disposed head portion and an intermediate Head region and foot region extending radial cooling air channel, in the cooling air in an inlet opening in the foot area introducible and through an outlet opening in the head area is at least partially derivable.
  • a hot gas stream driving a turbine is driven by the stationary one Turbine vanes to the turbine blades, the disks revolving around a central turbine axis are fixed, conducted.
  • a circular arrangement of Turbine vanes, with their radially outer foot areas mounted on a stationary turbine casing wall are alternated with an arrangement of turbine blades on a spinning disc.
  • the radial inner head portions of the turbine vanes adjoin one another U-shaped inner ring, the one on its outside Labyrinth seal has, against the flow around the U-ring sealed with hot gas.
  • Turbine blades For cooling the heated by the passing hot gas Turbine blades are usually used cooling air.
  • the cooling air flows by a radial vane mounted in the turbine vane Cooling air duct from the radially outer foot region of the turbine guide vane to the radially inner head area. From the head area the cooling air is in the adjacent U-shaped ring initiated. This is due to the passing cooling air cooled.
  • an overpressure of the cooling air should also be prevented be that hot gas in the from the head area of the Turbine vanes and the underlying U-shaped Ring formed cavity penetrates.
  • the problem is that the U-shaped ring of manufacturing and cost reasons mostly from a little temperature resistant Material exists.
  • the cooling air usually heats up to the maximum permissible temperature of the turbine vane.
  • the cooling air thus already has when flowing into the U-ring a fairly high temperature and may be at the low Cooling air quantities required for cooling the turbine vane a rear stage compared to the other turbine vane stages not very warm, would suffice, do not provide sufficient cooling of the U-ring.
  • This is also problematic because of the U-ring and the cavity formed in the turbine bucket head area Cooling air discharged after flowing through the cavity and towards the farthest, largely uncooled, heat-sensitive turbine blade disk flows.
  • the previous problem solution consists in a lot of cooling air through a central bore of a turbine vane or through a cooling air duct of a largely hollow cast To guide turbine vane.
  • Object of the present invention is therefore an arrangement Turbine vanes create a lower Has cooling air demand, wherein at the same time the U-shaped Ring is sufficiently cooled.
  • the inner channel in a thede povertykanal usablemé Kunststoffleitrohr is, with arranged a distance from inner walls of the cooling air duct and the outer channel through the gap betweende povertyleitrohr and the inner walls of the cooling air channel is formed, wherein the distance is less than a cross section of thedeluftleitrohres.
  • the production of the cooling channel is simplified.
  • Thede povertyleitrohr can after casting in the Cooling air duct can be used.
  • the outer channel then exists from the space extending around the cooling air duct.
  • the thickness of the gap which is the distance of thede Kunststoffleitrohrs from the side walls of the cooling air duct can be adjusted as needed. The narrower the gap is, the faster the speed the squeezed through cooling air. By an increasing cooling air speed in turn increases its ability to dissipate heat.
  • the cooling air duct By dividing the cooling air duct into the inner and outer channels is achieved that the cooling air first through the inner channel flows and at the foot area partly for cooling the U-shaped Flows out and partly again after diverting flows back through the outer channel.
  • the inner channel becomes flowed through by the total amount of cooling air and a smaller Cooling air flow in the form of a counterflow.
  • the Cooling air flow in the outer channel surrounding the outer channel is included very fast. Thus, it provides a good cooling of the surrounding Areas of the turbine vane due to the increased Cooling performance of a fast cooling air flow.
  • the cooling air flowing back cools the side walls of the cooling air duct and thus the surrounding Areas of the turbine vane that the load-bearing Are areas of the turbine vane.
  • the walls of the Turbine blades surrounding the cooling air duct are in accordance with the invention thicker than in the prior art and thus more stable.
  • the invention thus offers the advantage that with low amounts of cooling air both the turbine vane as well as the U-shaped ring sufficiently cooled become.
  • the heat radiation through the inner channel directed cooling air almost all sides of the part the cooling air, which can be conducted through the outer channel, dissipated. Due to the large radiation area is a big one Heat transfer possible in a short time.
  • the arriving in the head area Cooling air thus has a very low temperature and can cool the U-shaped ring optimally.
  • the inner channel has at least one communication bore, can pass through the cooling air into the outer channel, the cooling air is accelerated very strong at the bore point. This improves the cooling properties of the cooling air in the Outdoor channel, because of the higher speed more heat can be included.
  • a long cooling air path inside the turbine vane and thus a good utilization of the cooling air is achieved if the inner channel at least at a head end portion has a communication hole.
  • the cooling air can the cooling air tube over almost the entire length between head and shield foot area from the hot paddle wall, so that emerging in the head region of the turbine vane Cooling air even with a small flow of cooling air in the inner channel has a sufficiently low temperature to the U-shaped Ring to cool well.
  • the cooling air flow flowing back in the outer channel At the same time it cools the surrounding areas of the turbine vane.
  • the turbine guide vane at the foot has an outlet opening in a trailing edge region, which communicates with the outer channel.
  • the Outlet opening occurs diverted cooling air, which on the inner channel past the turbine vane, without mixing with the introduced cooling air gives.
  • the arrangement of the outlet opening in the trailing edge region prevents ingress of inflowing hot gas, the would lead to damage.
  • the cooling air takes a very long distance inside the turbine vane and can also work with smaller amounts of cooling air absorb a lot of heat energy from the turbine vane and dissipate to the outside, without the air in the inner channel would be heated.
  • the speed is and the type of flow of the circulating cooling air on the total channel length approximately the same size and thus the Heat dissipation. This is a uniform cooling performance guaranteed.
  • the task also relates to a method for Production of a turbine guide vane.
  • the object is achieved by a casting method for the production an arrangement of turbine vanes in which a Core is used, which is the cooling air duct of the turbine vane produced, wherein after casting in the cooling air duct a provided with at least one communication borede Kunststoffleitrohr with distance to the inner walls of Cooling air duct is used, and in the wall in the trailing edge area the root area of the turbine vane up to the outer contour of the turbine vane passing Outlet openings are introduced.
  • Fig. 1 shows a perspective view of a turbine vane 1 of the rearmost steps.
  • foot area 2 which has retaining projections 24, becomes the turbine vane 1 on an inner wall, not shown attached cylindrical turbine housing.
  • the turbine vane 1 With the help of the foot area 2, which has retaining projections 24, becomes the turbine vane 1 on an inner wall, not shown attached cylindrical turbine housing. From there extends the turbine vane 1 with its blade 18 radially in the direction of a central turbine axis 30th of the turbine housing.
  • the radially inner end of the turbine vane 1 forms the head area 3, which is a plateau 25 and one with respect to the turbine axis 30 radially inner arcuate recess 26 has.
  • head area 3 is by means of rail-like retaining projections 27 is a U-shaped Ring 19 docked.
  • the retaining projections 27 engage in it Retaining 28 of the U-shaped ring 19 a.
  • the airfoil 18 has a radial, cylindrical Cooling air duct 4, the continuous from an inlet opening 36 of the cooling air 23 in the foot region 2 of the turbine guide vane 1 to its outlet opening 35 of the cooling air in Head portion 3 of the turbine vane 1 extends. He has a cross-sectional contour 34, which in the region of the airfoil 18 and the foot portion 2 of the outer contour 16 of the airfoil 18 is similar.
  • the cross-sectional contour 34 of the cooling air channel 4 remains in viewing from footer 2 to before Head area 3 in shape substantially preserved, can however, decrease in size.
  • the cross section 34 narrows in Shape of a circumferential step 33.
  • cooling air duct 4 mounted spacer webs 37 held centrally.
  • the cooling air duct 4 can be used during casting of the turbine blade 1 cast directly by inserting a G tellkerns become.
  • Thede povertyleitrohr 13 is after casting in the Cooling air duct 4 used.
  • FIG. 2 shows a longitudinal section through the turbine guide vane 1 according to Fig.1.
  • the entire cooling air flow 23 the foot-side End 5 flows into thede povertyleitrohr 13 is split into two cooling air flow components, the deflected Cooling air flow 41 through the holes 10 at the top End region 6 flows into the outer channel 9 and at the outlet opening 12 flows out again, and the U-shaped ring 19 outflowing cooling air flow 42.
  • FIG 3 shows the evolution of the temperature T of the cooling air flow components 41, 42, while the turbine vane 1 in the longitudinal direction 31 up to an end length 1 of the cooling air channel 4 flow through.
  • the maximum temperature Tmax is from the continuous current 42 is not reached, causing the U-shaped Ring can be sufficiently cooled.
  • the other part of cooling air 41 absorbs the greater part of the heat and carries him out of the turbine blade without the heat can damage the temperature-sensitive areas.
  • the whole Cooling air quantity 23, the sum of the two current components 41, 42 is much lower than in the prior art.

Abstract

The invention relates to a turbine vane (1), especially a turbine vane of the last stages, respectively comprising a lower area (2) which is radially and externally arranged, an upper area (3) which is radially and internally arranged, and a radial cooling air channel (4) extending between the upper area and the lower area. Cooling air (23) can be introduced into said channel via an inlet (36) in the lower area, and can be at least partially discharged via an outlet (35) in the upper area. The cooling air channel comprises a radial inner channel through which the cooling air flows from the lower area to the upper area, and an outer channel (9) which is adjacent to the inner channel and which at least partially surrounds the inner channel on the circumferential side thereof. Said outer channel communicates with the inner channel and comprises an outlet (12) which is arranged in the lower area. Part of the cooling air (41) flows back in the direction of the lower area via the outer channel and emerges via the outlet.

Description

Die Erfindung betrifft eine Anordnung von Turbinenleitschaufeln, insbesondere Turbinenleitschaufeln der hintersten Stufen, mit jeweils einem radial außen angeordneten Fußbereich, einem radial innen angeordneten Kopfbereich und einem zwischen Kopfbereich und Fußbereich verlaufenden radialen Kühlluftkanal, in den Kühlluft in eine Eintrittsöffnung im Fußbereich einleitbar und durch eine Austrittsöffnung im Kopfbereich zumindest teilweise ausleitbar ist.The invention relates to an arrangement of turbine guide vanes, in particular turbine vanes of the rearmost stages, each with a radially outwardly arranged foot area, a radially inwardly disposed head portion and an intermediate Head region and foot region extending radial cooling air channel, in the cooling air in an inlet opening in the foot area introducible and through an outlet opening in the head area is at least partially derivable.

Ein eine Turbine antreibender Heißgasstrom wird von den stationären Turbinenleitschaufeln zu den Turbinenlaufschaufeln, die auf sich um eine zentrale Turbinenachse drehenden Scheiben befestigt sind, geleitet. Eine kreisförmige Anordnung von Turbinenleitschaufeln, die mit ihren radial äußeren Fußbereichen auf einer stationären Turbinengehäusewand befestigt sind, wechselt sich dabei ab mit einer Anordnung von Turbinenlaufschaufeln auf einer sich drehenden Scheibe. Die radial inneren Kopfbereiche der Turbinenleitschaufeln grenzen an einen U-förmigen inneren Ring, der auf seiner Außenseite eine Labyrinthdichtung aufweist, die gegen Umströmung des U-Rings mit Heißgas abdichtet.A hot gas stream driving a turbine is driven by the stationary one Turbine vanes to the turbine blades, the disks revolving around a central turbine axis are fixed, conducted. A circular arrangement of Turbine vanes, with their radially outer foot areas mounted on a stationary turbine casing wall are alternated with an arrangement of turbine blades on a spinning disc. The radial inner head portions of the turbine vanes adjoin one another U-shaped inner ring, the one on its outside Labyrinth seal has, against the flow around the U-ring sealed with hot gas.

Zur Kühlung der durch das vorbeiströmende Heißgas aufgeheizten Turbinenschaufeln wird in der Regel Kühlluft eingesetzt. Bei Turbinenleitschaufeln strömt die Kühlluft beispielsweise durch einen in der Turbinenleitschaufel angebrachten radialen Kühlluftkanal vom radial äußeren Fußbereich der Turbinenleitschaufel bis zum radial inneren Kopfbereich. Aus dem Kopfbereich wird die Kühlluft in den angrenzenden U-förmigen Ring eingeleitet. Dieser wird durch die vorbeiströmende Kühlluft gekühlt. Durch einen Überdruck der Kühlluft soll zudem verhindert werden, daß Heißgas in den von dem Kopfbereich der Turbinenleitschaufeln und dem darunterliegenden U-förmigen Ring gebildeten Hohlraum eindringt.For cooling the heated by the passing hot gas Turbine blades are usually used cooling air. In turbine vanes, for example, the cooling air flows by a radial vane mounted in the turbine vane Cooling air duct from the radially outer foot region of the turbine guide vane to the radially inner head area. From the head area the cooling air is in the adjacent U-shaped ring initiated. This is due to the passing cooling air cooled. By an overpressure of the cooling air should also be prevented be that hot gas in the from the head area of the Turbine vanes and the underlying U-shaped Ring formed cavity penetrates.

Problematisch ist dabei, daß der U-förmige Ring aus Fertigungs- und Kostengründen zumeist aus einem wenig temperaturresistenten Material besteht. Beim Durchströmen der Turbinenleitschaufel heizt sich die Kühlluft in der Regel bis zur maximalen zulässigen Temperatur der Turbinenleitschaufel auf. Die Kühlluft besitzt somit beim Einströmen in den U-Ring bereits eine recht hohe Temperatur und kann bei den geringen Kühlluftmengen, die für eine Kühlung der Turbinenleitschaufel einer hinteren Stufe, die im Vergleich zu den anderen Turbinenleitschaufelstufen nicht sehr warm wird, ausreichen würden, keine genügende Kühlung des U-Rings liefern. Dies ist auch deswegen problematisch, weil die in den durch den U-Ring und den Turbinenschaufelkopfbereich gebildeten Hohlraum eingeleitete Kühlluft nach Durchströmen des Hohlraums ausgeleitet wird und in Richtung der hintersten, weitgehend ungekühlten, hitzeempfindlichen Turbinenlaufschaufelscheibe strömt.The problem is that the U-shaped ring of manufacturing and cost reasons mostly from a little temperature resistant Material exists. When flowing through the turbine vane The cooling air usually heats up to the maximum permissible temperature of the turbine vane. The cooling air thus already has when flowing into the U-ring a fairly high temperature and may be at the low Cooling air quantities required for cooling the turbine vane a rear stage compared to the other turbine vane stages not very warm, would suffice, do not provide sufficient cooling of the U-ring. This is also problematic because of the U-ring and the cavity formed in the turbine bucket head area Cooling air discharged after flowing through the cavity and towards the farthest, largely uncooled, heat-sensitive turbine blade disk flows.

Die bisherige Problemlösung besteht darin, sehr viel Kühlluft durch eine zentrale Bohrung einer Turbinenleitschaufel oder durch einen Kühlluftkanal einer weitgehend hohl gegossenen Turbinenleitschaufel zu leiten.The previous problem solution consists in a lot of cooling air through a central bore of a turbine vane or through a cooling air duct of a largely hollow cast To guide turbine vane.

Zudem ist aus der Patentschrift DE 121 02 54 eine Leitschaufel mit einer Leitschaufelhülse bekannt, in der unter Belassung eines Zwischenraumes ein Rohr einen Leitschaufelkühlkanal bildet. Das Rohr weist in den Zwischenraum mündende Öffnungen und in der Nähe der Schaufelhinterkante schräg gerichtete Kühlluftaustrittsöffnungen auf, durch die ein Teil der Kühlluft austreten kann.In addition, from the patent DE 121 02 54 a Guide vane with a guide vane known in the leaving a gap a tube Guide vane cooling channel forms. The tube points in the Gap opening openings and near the Vane trailing edge slanted Cooling air outlet openings through which a part of Cooling air can escape.

Aufgabe der vorliegenden Erfindung ist es daher, eine Anordnung von Turbinenleitschaufeln zu schaffen, die einen geringeren Kühlluftbedarf aufweist, wobei zugleich der U-förmige Ring ausreichend gekühlt wird.Object of the present invention is therefore an arrangement Turbine vanes create a lower Has cooling air demand, wherein at the same time the U-shaped Ring is sufficiently cooled.

Die Aufgabe wird dadurch gelöst, daß der Innenkanal ein in den Kühlluftkanal einsetzbares Kühlluftleitrohr ist, das mit einem Abstand zu Innenwänden des Kühlluftkanals angeordnet und der Außenkanal durch den Zwischenraum zwischen Kühlluftleitrohr und den Innenwänden des Kühlluftkanals gebildet ist, wobei der Abstand geringer ist als ein Querschnitt des Kühlluftleitrohres. Die Herstellung des Kühlkanals ist vereinfacht. Das Kühlluftleitrohr kann nach dem Giessen in den Kühlluftkanal eingesetzt werden. Der Außenkanal besteht dann aus dem sich um das Kühlluftleitrohr herum erstreckenden Zwischenraum. Die Dicke des Zwischenraums, die dem Abstand des Kühlluftleitrohrs von den Seitenwänden des Kühlluftkanals entspricht, kann nach Bedarf eingestellt werden. Je schmaler der Zwischenraum ist, desto größer wird die Geschwindigkeit der hindurchgepreßten Kühlluft. Durch eine steigende Kühlluftgeschwindigkeit steigt wiederum ihre Fähigkeit zum Wärmeabtransport.The object is achieved in that the inner channel in a the Kühlluftkanal usable Kühlluftleitrohr is, with arranged a distance from inner walls of the cooling air duct and the outer channel through the gap between Kühlluftleitrohr and the inner walls of the cooling air channel is formed, wherein the distance is less than a cross section of the Kühlluftleitrohres. The production of the cooling channel is simplified. The Kühlluftleitrohr can after casting in the Cooling air duct can be used. The outer channel then exists from the space extending around the cooling air duct. The thickness of the gap, which is the distance of the Kühlluftleitrohrs from the side walls of the cooling air duct can be adjusted as needed. The narrower the gap is, the faster the speed the squeezed through cooling air. By an increasing cooling air speed in turn increases its ability to dissipate heat.

Durch die Aufteilung des Kühlluftkanals in Innen- und Außenkanal wird erreicht, daß die Kühlluft zuerst durch den Innenkanal strömt und am Fußbereich teilweise zur Kühlung des U-förmigen Rings ausströmt und teilweise wieder nach dem Umleiten durch den Außenkanal zurückströmt. Der Innenkanal wird von der Gesamtkühlluftmenge durchströmt und von einer geringeren Kühlluftmenge in Form einer Gegenströmung umströmt. Der Kühlluftstrom im den Innenkanal umgebenden Außenkanal ist dabei sehr schnell. Somit liefert er eine gute Kühlung der umgebenden Bereiche der Turbinenleitschaufel aufgrund der erhöhten Kühlleistung eines schnelles Kühlluftflusses. Die in einem schnellen Strom zurückströmende Kühlluft isoliert einerseits den Innenkanal und ermöglicht, daß die Kühlluft an der Ausströmstelle in den U-Ring am Kopfbereich eine niedrige Temperatur aufweist, ohne daß große Mengen Kühlluft eingesetzt werden müßten. Zugleich kühlt die zurückströmende Kühlluft die Seitenwände des Kühlluftkanals und somit die umgebenden Bereiche der Turbinenleitschaufel, die die lasttragenden Bereiche der Turbinenleitschaufel sind. Die Wände der Turbinenschaufel, die den Kühlluftkanal umgeben, sind erfindungsgemäß dicker ausgebildet als im Stand der Technik und somit stabiler. Durch die Umleitung eines Teils des Kühlluftstroms durch den Außenkanal und die schnellere Leitung der Kühlluft im Außenkanal wird somit die Gesamtkühlluftmenge reduziert und zugleich die Temperatur der im Kopfbereich aus der Turbinenleitschaufel zur Kühlung des U-Rings austretenden Kühlluft herabgesetzt. Die Erfindung bietet somit den Vorteil, daß mit geringen Kühlluftmengen sowohl die Turbinenleitschaufel als auch der U-förmige Ring ausreichend gekühlt werden.By dividing the cooling air duct into the inner and outer channels is achieved that the cooling air first through the inner channel flows and at the foot area partly for cooling the U-shaped Flows out and partly again after diverting flows back through the outer channel. The inner channel becomes flowed through by the total amount of cooling air and a smaller Cooling air flow in the form of a counterflow. Of the Cooling air flow in the outer channel surrounding the outer channel is included very fast. Thus, it provides a good cooling of the surrounding Areas of the turbine vane due to the increased Cooling performance of a fast cooling air flow. In the a cooling air flowing back a fast stream isolated on the one hand the inner channel and allows the cooling air to the discharge point in the U-ring at the head area a low Temperature without large amounts of cooling air used would have to be. At the same time, the cooling air flowing back cools the side walls of the cooling air duct and thus the surrounding Areas of the turbine vane that the load-bearing Are areas of the turbine vane. The walls of the Turbine blades surrounding the cooling air duct are in accordance with the invention thicker than in the prior art and thus more stable. By diverting part of the cooling air flow through the outer channel and the faster conduction of the Cooling air in the outer channel thus reduces the total amount of cooling air and at the same time the temperature of the head area the turbine vane for cooling the U-ring emerging Cooling air reduced. The invention thus offers the advantage that with low amounts of cooling air both the turbine vane as well as the U-shaped ring sufficiently cooled become.

Wenn die Turbinenleitschaufeln Turbinenleitschaufeln der hintersten Stufen sind, ist gegenüber der Verwendung üblicher Kühlluftkanäle eine verhältnismäßig große Einsparung von Kühlluft gegeben, weil sich das Heißgas bis zum Erreichen der letzten Stufen bereits wesentlich abgekühlt hat und deshalb die Turbinenleitschaufeln der hintersten Stufen grundsätzlich nicht so stark aufgeheizt sind. Gerade für diese Turbinenleitschaufeln ergibt sich somit durch die erfindungsgemäße Anordnung der Turbinenleitschaufeln eine wesentliche Einsparmöglichkeit der Kühlluft.If the turbine vanes turbine vanes of the rearmost Stages are more common than the use Cooling air ducts a relatively large saving of Cooling air given because the hot gas until reaching the last stages has already cooled significantly and therefore the turbine vanes of the rearmost stages in principle are not heated up so much. Especially for these turbine vanes thus results from the invention Arrangement of turbine vanes a significant savings the cooling air.

Wenn der Außenkanal den Innenkanal praktisch allseitig umfangsseitig umgibt, wird die Wärmestrahlung der durch den Innenkanal geleiteten Kühlluft nahezu allseitig von dem Teil der Kühlluft, die durch den Außenkanal leitbar ist, abgeführt. Aufgrund der großen Strahlungsfläche ist ein großer Wärmeübertrag in kurzer Zeit möglich. Die im Kopfbereich ankommende Kühlluft hat somit eine sehr niedrige Temperatur und kann den U-förmigen Ring optimal kühlen.If the outer channel of the inner channel virtually peripherally on all sides surrounds, the heat radiation through the inner channel directed cooling air almost all sides of the part the cooling air, which can be conducted through the outer channel, dissipated. Due to the large radiation area is a big one Heat transfer possible in a short time. The arriving in the head area Cooling air thus has a very low temperature and can cool the U-shaped ring optimally.

Wenn der Innenkanal zumindest eine Kommunikationsbohrung aufweist, durch die Kühlluft in den Außenkanal übertreten kann, wird die Kühlluft an der Bohrungsstelle sehr stark beschleunigt. Dies verbessert die Kühleigenschaften der Kühlluft im Außenkanal, da durch die höhere Geschwindigkeit mehr Wärme aufgenommen werden kann.If the inner channel has at least one communication bore, can pass through the cooling air into the outer channel, the cooling air is accelerated very strong at the bore point. This improves the cooling properties of the cooling air in the Outdoor channel, because of the higher speed more heat can be included.

Einen langen Kühlluftweg innerhalb der Turbinenleitschaufel und somit eine gute Ausnutzung der Kühlluft wird erreicht, wenn der Innenkanal an einem kopfseitigen Endbereich zumindest eine Kommunikationsbohrung aufweist. Die Kühlluft kann das Kühlluftrohr auf nahezu der gesamten Länge zwischen Kopf- und Fußbereich von der heißen Schaufelwand abschirmen, so daß die im Kopfbereich der Turbinenleitschaufel austretende Kühlluft auch bei einem geringen Kühlluftstrom im Innenkanal eine ausreichend geringe Temperatur hat, um den U-förmigen Ring gut zu kühlen. Der im Außenkanal zurückströmende Kühlluftstrom kühlt zugleich die umgebenden Bereiche der Turbinenleitschaufel. A long cooling air path inside the turbine vane and thus a good utilization of the cooling air is achieved if the inner channel at least at a head end portion has a communication hole. The cooling air can the cooling air tube over almost the entire length between head and shield foot area from the hot paddle wall, so that emerging in the head region of the turbine vane Cooling air even with a small flow of cooling air in the inner channel has a sufficiently low temperature to the U-shaped Ring to cool well. The cooling air flow flowing back in the outer channel At the same time it cools the surrounding areas of the turbine vane.

Vorteilhaft ist es, wenn die Turbinenleitschaufel am Fußbereich in einem Hinterkantenbereich eine Austrittsöffnung aufweist, die mit dem Außenkanal in Verbindung steht. Durch die Austrittsöffnung tritt umgeleitete Kühlluft, die am Innenkanal vorbeigestreift ist, aus der Turbinenleitschaufel aus, ohne daß es eine Vermischung mit der eingeleiteten Kühlluft gibt. Die Anordnung der Austrittsöffnung im Hinterkantenbereich verhindert ein Eindringen von anströmendem Heißgas, das zu Beschädigungen führen würde. Dadurch, daß die Austrittsöffnungen für die den Außenkanal durchströmende Kühlluft im Fußbereich der Turbinenleitschaufel untergebracht sind, hat die Kühlluft einen sehr langen Weg innerhalb der Turbinenleitschaufel und kann auch bei geringeren Kühlluftmengen entsprechend viel Wärmeenergie aus der Turbinenleitschaufel aufnehmen und nach außen abführen, ohne daß die Luft im Innenkanal aufgeheizt würde.It is advantageous if the turbine guide vane at the foot has an outlet opening in a trailing edge region, which communicates with the outer channel. By the Outlet opening occurs diverted cooling air, which on the inner channel past the turbine vane, without mixing with the introduced cooling air gives. The arrangement of the outlet opening in the trailing edge region prevents ingress of inflowing hot gas, the would lead to damage. Characterized in that the outlet openings for the cooling air flowing through the outer channel in Base portion of the turbine vane are housed the cooling air takes a very long distance inside the turbine vane and can also work with smaller amounts of cooling air absorb a lot of heat energy from the turbine vane and dissipate to the outside, without the air in the inner channel would be heated.

Wenn der Innenkanal zylindrisch ist, ist die Geschwindigkeit und die Art der Strömung der umströmenden Kühlluft auf der gesamten Kanallänge annähernd gleich groß und somit auch der Wärmeabtransport. Hierdurch ist eine gleichmäßige Kühlleistung gewährleistet. If the inner channel is cylindrical, the speed is and the type of flow of the circulating cooling air on the total channel length approximately the same size and thus the Heat dissipation. This is a uniform cooling performance guaranteed.

Vorteilhaft ist es, wenn der Querschnitt des Außenkanals so gewählt wird, daß die Kühlluft schnell durch den Kanal strömt und damit eine ausreichende Kühlung gewährleistet ist.It is advantageous if the cross section of the outer channel so it is chosen that the cooling air flows quickly through the channel and thus a sufficient cooling is ensured.

Die gestellte Aufgabe bezieht sich auch auf ein Verfahren zur Herstellung einer Turbinenleitschaufel.The task also relates to a method for Production of a turbine guide vane.

Die Aufgabe wird gelöst durch ein Gießverfahren zur Herstellung einer Anordnung von Turbinenleitschaufeln, bei dem ein Kern verwendet wird, der den Kühlluftkanal der Turbinenleitschaufel erzeugt, wobei nach dem Gießen in den Kühlluftkanal ein mit zumindest einer Kommunikationsbohrung versehenes Kühlluftleitrohr mit Abstand zu den Innenwänden des Kühlluftkanals eingesetzt wird, und in die Wand im Hinterkantenbereich des Fußbereichs der Turbinenleitschaufel bis zu der Außenkontur der Turbinenleitschaufel hindurchgehende Austrittsöffnungen eingebracht werden.The object is achieved by a casting method for the production an arrangement of turbine vanes in which a Core is used, which is the cooling air duct of the turbine vane produced, wherein after casting in the cooling air duct a provided with at least one communication bore Kühlluftleitrohr with distance to the inner walls of Cooling air duct is used, and in the wall in the trailing edge area the root area of the turbine vane up to the outer contour of the turbine vane passing Outlet openings are introduced.

Bei der Herstellung kann die Form des Schaufelkerns für den Guß gegenüber üblichen Gußkernen verkleinert werden. Da der sich ergebende Kühlkanal somit kleiner ist nimmt die Wanddicke der Turbinenschaufel somit insbesondere zur Eintrittskante hin stark zu. Der Guß wird somit im Hinblick auf unkritische Wanddicken wesentlich vereinfacht. Nach dem Giessen wird dann ein Kühlluftleitrohr eingesetzt. Zwischen Kühlluftleitrohr und Kühlkanalinnenwand entsteht lediglich ein schmaler Außenkanal, der das Kühlluftleitrohr ringförmig umgibt. Durch die Reduzierung der Größe des Gußkerns und somit der Fläche der Kühlkanalinnenwand wird die Strahlungsfläche für die Wärmestrahlung reduziert und somit die in den Kühlluftstrom pro Zeiteinheit abgegebene Wärmemenge. Die Kühlluft wird somit nicht so stark aufgeheizt. Es reicht eine geringere Kühlluftmenge aus. Die Kühlung der Turbinenleitschaufel ist bei den relativ geringen Temperaturen insbesondere in den hinteren Stufen ausreichend.In the manufacture of the shape of the blade core for the Guß be reduced compared to conventional casting cores. Since the resulting cooling channel is thus smaller takes the wall thickness the turbine blade thus in particular to the leading edge strongly towards. The casting is thus with regard to uncritical Wall thicknesses significantly simplified. After casting Then a Kühlluftleitrohr is used. Between Kühlluftleitrohr and cooling channel inner wall is formed only one Narrow outer channel, the Kühlluftleitrohr annular surrounds. By reducing the size of the casting core and Thus, the surface of the cooling channel inner wall is the Radiation surface for the heat radiation reduced and thus the amount of heat released into the cooling air flow per unit of time. The cooling air is thus not heated as much. It is enough a smaller amount of cooling air out. The cooling of the turbine vane is at the relatively low temperatures, especially in the rear Sufficient levels.

Anhand der Figuren soll ein Ausführungsbeispiel der Erfindung gegeben werden. Es zeigen:

Fig. 1
eine Turbinenleitschaufel der hintersten Stufen,
Fig. 2
einen Längsschnitt durch eine Turbinenleitschaufel nach Fig.1 und
Fig.3
eine schematische Darstellung der Temperaturentwicklung der Kühlluftmassenströme.
With reference to the figures, an embodiment of the invention will be given. Show it:
Fig. 1
a turbine vane of the rearmost stages,
Fig. 2
a longitudinal section through a turbine vane according to Fig.1 and
Figure 3
a schematic representation of the temperature development of the cooling air mass flows.

Fig. 1 zeigt eine perspektivische Darstellung einer Turbinenleitschaufel 1 der hintersten Stufen. Mit Hilfe des Fußbereichs 2, der Haltevorsprünge 24 aufweist, wird die Turbinenleitschaufel 1 an einer nicht dargestellten Innenwand eines zylinderförmigen Turbinengehäuses befestigt. Von dort aus erstreckt sich die Turbinenleitschaufel 1 mit ihrem Schaufelblatt 18 radial in Richtung einer zentralen Turbinenachse 30 des Turbinengehäuses. Den radial inneren Abschluß der Turbinenleitschaufel 1 bildet der Kopfbereich 3, der ein Plateau 25 und eine bezogen auf die Turbinenachse 30 radial innere bogenförmige Ausnehmung 26 aufweist. An diesen Kopfbereich 3 ist mittels schienenartiger Haltevorsprünge 27 ein U-förmiger Ring 19 angekoppelt. Die Haltevorsprünge 27 greifen dabei in Haltenuten 28 des Uförmigen Rings 19 ein. Die bogenförmige Ausnehmung 26 des Kopfbereichs 3 begrenzt zusammen mit dem U-förmigen Ring 19 einen Hohlraum 20, dessen Längsrichtung 29 quer zur Turbinenachse 30 und zu einer Schaufelachse 31 verläuft. Radial innen am U-förmigen Ring 19 befindet sich eine Labyrinthdichtung 21. Diese dichtet die sich bei Betrieb der Turbine um die zentrale Turbinenachse 31 drehende, angrenzend darunterliegende Turbinenlaufschaufelscheibe 22, die mit nicht dargestellten Turbinenlaufschaufeln besetzt ist, gegen ein direktes Durchströmen von Heißgas 17 ab.Fig. 1 shows a perspective view of a turbine vane 1 of the rearmost steps. With the help of the foot area 2, which has retaining projections 24, becomes the turbine vane 1 on an inner wall, not shown attached cylindrical turbine housing. From there extends the turbine vane 1 with its blade 18 radially in the direction of a central turbine axis 30th of the turbine housing. The radially inner end of the turbine vane 1 forms the head area 3, which is a plateau 25 and one with respect to the turbine axis 30 radially inner arcuate recess 26 has. At this head area 3 is by means of rail-like retaining projections 27 is a U-shaped Ring 19 docked. The retaining projections 27 engage in it Retaining 28 of the U-shaped ring 19 a. The arcuate Recess 26 of the head portion 3 bounded together with the U-shaped Ring 19 a cavity 20, the longitudinal direction of the 29th transverse to the turbine axis 30 and to a blade axis 31 extends. Radially inside the U-shaped ring 19 is a Labyrinth seal 21. This seals when operating the Turbine rotating around the central turbine axis 31, adjacent underlying turbine blade 22, which with not shown turbine blades is occupied, against a direct flow of hot gas 17 from.

Das Schaufelblatt 18 weist einen radialen, zylinderförmigen Kühlluftkanal 4 auf, der durchgehend von einer Eintrittsöffnung 36 der Kühlluft 23 im Fußbereich 2 der Turbinenleitschaufel 1 bis zu seiner Austrittsöffnung 35 der Kühlluft im Kopfbereich 3 der Turbinenleitschaufel 1 verläuft. Er hat eine Querschnittskontur 34, die im Bereich des Schaufelblatts 18 und des Fußbereichs 2 der Außenkontur 16 des Schaufelblatts 18 ähnelt. Die Querschnittskontur 34 des Kühlluftkanals 4 bleibt bei Betrachtung vom Fußbereich 2 bis vor den Kopfbereich 3 in ihrer Form im wesentlichen erhalten, kann jedoch in der Größe abnehmen. Bei Eintritt des Kühlluftkanals 4 in den Kopfbereich 3 verengt sich der Querschnitt 34 in Form einer umlaufenden Stufe 33. Dieser verengte Querschnitt 34 wird dann bis zur Ausnehmung 26 im Kopfbereich 3, in der die Austrittsöffnung 35 des Kühlkanals 4 in den Hohlraum 20 liegt, annähernd beibehalten. In den Kühlluftkanal 4 ist ein zylindrisches Kühlluftleitrohr 13 annähernd mittig eingesetzt. Das Kühlluftleitrohr 13 weist einen nahezu gleichbleibend elliptischen Querschnitt 15 auf. Gehalten wird das Kühlluftleitrohr 13 am Kopfbereich 3 der Turbinenleitschaufel 1 im wesentlichen dadurch, daß es bis an die umlaufende Stufe 33 mit einem an den Übergang angepaßten Querschnitt 15 reicht oder sogar in dem Kopfbereich 3 in den verengten Querschnitt 34 des Kühlluftkanals 4 eingesetzt ist. Im Fußbereich 2 wird das Kühlluftleitrohr 13 beispielsweise durch an Seitenwände 8 des Kühlluftkanals 4 angebrachte Abstandsstege 37 mittig gehalten. Der Kühlluftkanal 4 kann beim Gießen der Turbinenschaufel 1 durch Einsetzen eines Gießkerns direkt mitgegossen werden. Das Kühlluftleitrohr 13 wird nach dem Guß in den Kühlluftkanal 4 eingesetzt.The airfoil 18 has a radial, cylindrical Cooling air duct 4, the continuous from an inlet opening 36 of the cooling air 23 in the foot region 2 of the turbine guide vane 1 to its outlet opening 35 of the cooling air in Head portion 3 of the turbine vane 1 extends. He has a cross-sectional contour 34, which in the region of the airfoil 18 and the foot portion 2 of the outer contour 16 of the airfoil 18 is similar. The cross-sectional contour 34 of the cooling air channel 4 remains in viewing from footer 2 to before Head area 3 in shape substantially preserved, can however, decrease in size. Upon entry of the cooling air duct 4 in the head area 3, the cross section 34 narrows in Shape of a circumferential step 33. This narrowed cross-section 34 is then up to the recess 26 in the head area 3, in the the outlet opening 35 of the cooling channel 4 in the cavity 20th is, approximately maintained. In the cooling air duct 4 is a cylindrical Kühlluftleitrohr 13 used approximately centrally. The Kühlluftleitrohr 13 has a nearly constant elliptical cross section 15 on. Held the Kühlluftleitrohr 13 at the head portion 3 of the turbine vane. 1 essentially in that it reaches the peripheral step 33 with a matched to the transition cross section 15 extends or even in the head area 3 in the narrowed cross-section 34 of the cooling air channel 4 is inserted. In the foot area 2 becomes the Kühlluftleitrohr 13, for example, by on side walls. 8 the cooling air duct 4 mounted spacer webs 37 held centrally. The cooling air duct 4 can be used during casting of the turbine blade 1 cast directly by inserting a Gießkerns become. The Kühlluftleitrohr 13 is after casting in the Cooling air duct 4 used.

Im Fußbereich 2 wird die Kühlluft 23 in die Eintrittsöffnung 36 des Kühlluftleitrohrs 13, das bis zu einer Oberseite 32 des Fußbereichs 2 der Turbinenleitschaufel 1 reicht, eingeleitet. Die Kühlluft 23 durchströmt dann das Kühlluftleitrohr 13 bis zu einer Kommunikationsbohrung 10. Ein Kühlluftstromanteil 42 strömt weiter bis zum Kopfbereich 3 der Turbinenschaufel 1 und dort durch die Austrittsöffnung 35 in den Hohlraum 20. Ein anderer Kühlluftstromanteil 41 strömt vom Kühlluftleitrohr 13 durch eine Kommunikationsbohrung 10 in einen Außenkanal 9 zwischen Kühlluftleitrohr 13 und Kühlluftkanal 4 und dort in entgegengesetzter Richtung in Richtung Fußbereich 2, wie in Fig.2 dargestellt. Durch die verengten Bohrungen 10 strömt der Kühlluftanteil 41 beschleunigt auf die Kühlkanalinnenwand 8. Hierdurch entsteht aufgrund des geringeren Durchmessers der Bohrung 10 eine Beschleunigung der Kühlluftströmung 41 und somit ein sehr starker Kühleffekt an der Kühlkanalinnenwand 8. Da der Außenkanal 9 im Vergleich zum Kühlluftleitrohr 13 schmaler ist, strömt der Kühlluftstromanteil 41 dort schneller. Schließlich wird die erwärmte Kühlluft 41 durch eine Austrittsöffnung 12, die an dem Hinterkantenbereich 11 des Schaufelblatts 18 von dem Außenkanal 9 zur Schaufelaußenkontur 16 der Turbinenleitschaufel 1 reicht, ausgeleitet. Der durch die Austrittsöffnung 35 im Kopfbereich 3 ausströmende Kühlluftanteil 42 strömt zunächst in den Hohlraum 20 und kühlt den U-förmigen Ring 19, der den Hohlraum 20 radial innen begrenzt. Der Kühlluftstrom 42 kann dann durch eine Bohrung 38 in einer Wand 40 des U-förmigen Rings 19 austreten.In the foot area 2, the cooling air 23 in the inlet opening 36 of the Kühlluftleitrohrs 13, which up to a top 32nd of the foot portion 2 of the turbine vane 1 is sufficient. The cooling air 23 then flows through the Kühlluftleitrohr 13 to a communication hole 10. A cooling air flow component 42 continues to the head portion 3 of the turbine blade 1 and there through the outlet opening 35 in the Cavity 20. Another cooling air flow component 41 flows from Kühlluftleitrohr 13 through a communication bore 10 in an outer channel 9 between Kühlluftleitrohr 13 and cooling air duct 4 and there in the opposite direction in the direction Foot area 2, as shown in Fig.2. By the narrowed Holes 10, the cooling air portion 41 flows on accelerated the cooling channel inner wall 8. This is due to the lower Diameter of the bore 10 an acceleration of the Cooling air flow 41 and thus a very strong cooling effect the cooling channel inner wall 8. Since the outer channel 9 in comparison is narrower to Kühlluftleitrohr 13, the cooling air flow component flows 41 faster there. Finally, the heated Cooling air 41 through an outlet opening 12, which at the trailing edge region 11 of the airfoil 18 from the outer channel 9 to the blade outer contour 16 of the turbine vane. 1 is sufficient, discharged. The through the outlet opening 35 in Head portion 3 flowing cooling air portion 42 flows first in the cavity 20 and cools the U-shaped ring 19, the Cavity 20 radially limited inside. The cooling air flow 42 can then through a bore 38 in a wall 40 of the U-shaped Exit 19.

Fig.2 zeigt einen Längsschnitt durch die Turbinenleitschaufel 1 nach Fig.1. Der gesamte Kühlluftstrom 23, der am fußseitigen Endbereich 5 in das Kühlluftleitrohr 13 einströmt, wird in zwei Kühlluftstromanteile aufgespalten, den umgelenkten Kühlluftstrom 41, der durch die Bohrungen 10 am kopfseitigen Endbereich 6 in den Außenkanal 9 einströmt und an der Austrittsöffnung 12 wieder ausströmt, und den zum U-fömigen Ring 19 herausströmenden Kühlluftstrom 42.2 shows a longitudinal section through the turbine guide vane 1 according to Fig.1. The entire cooling air flow 23, the foot-side End 5 flows into the Kühlluftleitrohr 13 is split into two cooling air flow components, the deflected Cooling air flow 41 through the holes 10 at the top End region 6 flows into the outer channel 9 and at the outlet opening 12 flows out again, and the U-shaped ring 19 outflowing cooling air flow 42.

Fig.3 zeigt die Entwicklung der Temperatur T der Kühlluftstromanteile 41, 42, während sie die Turbinenleitschaufel 1 in Längsrichtung 31 bis zu einer Endlänge 1 des Kühlluftkanals 4 durchströmen. Die maximale Temperatur Tmax wird vom durchgehenden Strom 42 nicht erreicht, wodurch der U-förmige Ring ausreichend gekühlt werden kann. Der andere Kühlluftanteil 41 nimmt hingegen den größeren Teil der Wärme mit und befördert ihn aus der Turbinenschaufel, ohne daß die Wärme die temperaturempfindlichen Bereiche schädigen kann. Die gesamte Kühlluftmenge 23, die Summe aus beiden Stromanteilen 41, 42 ist wesentlich niedriger als im Stand der Technik.3 shows the evolution of the temperature T of the cooling air flow components 41, 42, while the turbine vane 1 in the longitudinal direction 31 up to an end length 1 of the cooling air channel 4 flow through. The maximum temperature Tmax is from the continuous current 42 is not reached, causing the U-shaped Ring can be sufficiently cooled. The other part of cooling air 41, on the other hand, absorbs the greater part of the heat and carries him out of the turbine blade without the heat can damage the temperature-sensitive areas. The whole Cooling air quantity 23, the sum of the two current components 41, 42 is much lower than in the prior art.

Claims (8)

  1. Turbine guide vane (1), in particular turbine guide vane (1) of the rearmost stages, in each case with a foot region (2) arranged radially on the outside, with a head region (3) arranged radially on the inside and with a cooling-air duct (4) which runs between the head region (3) and the foot region (2) and into which cooling air (23) can be introduced into an inlet orifice (36) in the foot region (2) and can be at least partially discharged through an outlet orifice (35) in the head region (3), the cooling-air duct (4) having a radial inner duct, through which the cooling air (23) flows from the foot region (2) to the head region (3), and an outer duct (9), which is contiguous to the inner duct and which at least partially surrounds the inner duct circumferentially, communicates with the inner duct and has an outlet orifice (12) in the foot region (2), a cooling-air fraction (41) flowing through the outer duct (9) back in the direction of the foot region (2) and flowing out through the outlet orifice (12), the inner duct being a cooling-air guide pipe (13) which can be inserted into the cooling-air duct (4) and which is arranged at a distance (14) from the inner wall (8) of the cooling-air duct (4), and the outer duct (9) being formed by the interspace between the cooling-air guide pipe (13) and the inner wall (8) of the cooling-air duct (4), characterized in that the distance (14) is smaller than a cross section (15) of the cooling-air guide pipe (13).
  2. Turbine guide vane according to Claim 1, characterized in that the outer duct (9) virtually completely surrounds the inner duct circumferentially.
  3. Turbine guide vane according to Claim 1 or 2, characterized in that the inner duct has at least one communication bore (10), through which the cooling-air fraction (41) can flow over into the outer duct (9).
  4. Turbine guide vane according to Claim 3, characterized in that the communication bore (10) is arranged in a head-side end region (6).
  5. Turbine guide vane according to one of Claims 1 to 4, characterized in that the turbine guide vane (1) has in the foot region (2), in a trailing edge region (11), an outlet orifice (12) which communicates with the outer duct (9) .
  6. Turbine guide vane according to one of Claims 1 to 5, characterized in that the inner duct is cylindrical.
  7. Turbine guide vane according to one of Claims 1 to 6, characterized in that the flow of the cooling-air fraction (41) is more rapid in the outer duct (9) than in the inner duct.
  8. Casting method for producing a turbine guide vane according to one of Claims 1 to 8, in which the cooling-air duct (4) of the turbine guide vane (1) is generated by means of a core, characterized in that a cooling-air guide pipe (13) provided with at least one communication bore (10) is inserted, after casting, into the cooling-air duct (4) at a distance (14) from the inner walls (8) of the cooling-air duct (4), and outlet orifices (12) which pass through as far as the outer contour (16) of the turbine guide vane (1) being introduced into the inner walls (8) in the trailing edge region (11) of the foot region (2) of the turbine guide vane (1).
EP01962905A 2000-08-16 2001-08-03 Turbine vane system Expired - Lifetime EP1309773B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01962905A EP1309773B1 (en) 2000-08-16 2001-08-03 Turbine vane system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00117667A EP1180578A1 (en) 2000-08-16 2000-08-16 Statoric blades for a turbomachine
EP00117667 2000-08-16
PCT/EP2001/009015 WO2002014654A1 (en) 2000-08-16 2001-08-03 Turbine vane system
EP01962905A EP1309773B1 (en) 2000-08-16 2001-08-03 Turbine vane system

Publications (2)

Publication Number Publication Date
EP1309773A1 EP1309773A1 (en) 2003-05-14
EP1309773B1 true EP1309773B1 (en) 2005-12-21

Family

ID=8169551

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00117667A Withdrawn EP1180578A1 (en) 2000-08-16 2000-08-16 Statoric blades for a turbomachine
EP01962905A Expired - Lifetime EP1309773B1 (en) 2000-08-16 2001-08-03 Turbine vane system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00117667A Withdrawn EP1180578A1 (en) 2000-08-16 2000-08-16 Statoric blades for a turbomachine

Country Status (6)

Country Link
US (1) US7201564B2 (en)
EP (2) EP1180578A1 (en)
JP (1) JP4726389B2 (en)
DE (1) DE50108476D1 (en)
ES (1) ES2255567T3 (en)
WO (1) WO2002014654A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728973A1 (en) 2005-06-01 2006-12-06 Siemens Aktiengesellschaft Method to block a clearance in a Turbomachine and Turbomachine to carry out the method
US8182205B2 (en) * 2007-02-06 2012-05-22 General Electric Company Gas turbine engine with insulated cooling circuit
US20100000219A1 (en) * 2008-07-02 2010-01-07 General Electric Company Systems and Methods for Supplying Cooling Air to a Gas Turbine
US8292580B2 (en) * 2008-09-18 2012-10-23 Siemens Energy, Inc. CMC vane assembly apparatus and method
US8376697B2 (en) * 2008-09-25 2013-02-19 Siemens Energy, Inc. Gas turbine sealing apparatus
US8162598B2 (en) * 2008-09-25 2012-04-24 Siemens Energy, Inc. Gas turbine sealing apparatus
US8388309B2 (en) * 2008-09-25 2013-03-05 Siemens Energy, Inc. Gas turbine sealing apparatus
US8397516B2 (en) * 2009-10-01 2013-03-19 General Electric Company Apparatus and method for removing heat from a gas turbine
US20120003076A1 (en) * 2010-06-30 2012-01-05 Josef Scott Cummins Method and apparatus for assembling rotating machines
US8662826B2 (en) * 2010-12-13 2014-03-04 General Electric Company Cooling circuit for a drum rotor
US9403208B2 (en) 2010-12-30 2016-08-02 United Technologies Corporation Method and casting core for forming a landing for welding a baffle inserted in an airfoil
GB201112803D0 (en) * 2011-07-26 2011-09-07 Rolls Royce Plc Master component for flow calibration
JP6392333B2 (en) 2013-06-14 2018-09-19 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbine vane with variable trailing edge inner radius
US20150013344A1 (en) * 2013-07-15 2015-01-15 United Technologies Corporation Tube
EP2840231A1 (en) * 2013-08-23 2015-02-25 Siemens Aktiengesellschaft Turbine blade with a hollow turbine blade
US9435212B2 (en) * 2013-11-08 2016-09-06 Siemens Energy, Inc. Turbine airfoil with laterally extending snubber having internal cooling system
US11033845B2 (en) 2014-05-29 2021-06-15 General Electric Company Turbine engine and particle separators therefore
CA2949547A1 (en) 2014-05-29 2016-02-18 General Electric Company Turbine engine and particle separators therefore
US10125632B2 (en) 2015-10-20 2018-11-13 General Electric Company Wheel space purge flow mixing chamber
US10132195B2 (en) 2015-10-20 2018-11-20 General Electric Company Wheel space purge flow mixing chamber
US10337334B2 (en) * 2015-12-07 2019-07-02 United Technologies Corporation Gas turbine engine component with a baffle insert
US10577947B2 (en) 2015-12-07 2020-03-03 United Technologies Corporation Baffle insert for a gas turbine engine component
US10280841B2 (en) 2015-12-07 2019-05-07 United Technologies Corporation Baffle insert for a gas turbine engine component and method of cooling
US10422233B2 (en) 2015-12-07 2019-09-24 United Technologies Corporation Baffle insert for a gas turbine engine component and component with baffle insert
US10975708B2 (en) * 2019-04-23 2021-04-13 Rolls-Royce Plc Turbine section assembly with ceramic matrix composite vane
CN113236371B (en) * 2021-06-04 2023-01-17 中国航发沈阳发动机研究所 Blade cold air conduit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045965A (en) * 1959-04-27 1962-07-24 Rolls Royce Turbine blades, vanes and the like
GB895077A (en) * 1959-12-09 1962-05-02 Rolls Royce Blades for fluid flow machines such as axial flow turbines
DE1210254B (en) * 1962-03-26 1966-02-03 Rolls Royce Gas turbine engine with cooled turbine blades
GB976124A (en) * 1962-09-24 1964-11-25 Gen Electric Improvements in compressor or turbine guide vanes
US3540810A (en) * 1966-03-17 1970-11-17 Gen Electric Slanted partition for hollow airfoil vane insert
US3858290A (en) * 1972-11-21 1975-01-07 Avco Corp Method of making inserts for cooled turbine blades
GB1555587A (en) * 1977-07-22 1979-11-14 Rolls Royce Aerofoil blade for a gas turbine engine
JPS6043102A (en) * 1983-08-18 1985-03-07 Toshiba Corp Turbine rotor
JPS62135603A (en) * 1985-12-06 1987-06-18 Toshiba Corp Moving blade of gas turbine
DE3603350A1 (en) * 1986-02-04 1987-08-06 Walter Prof Dipl Ph Sibbertsen METHOD FOR COOLING THERMALLY LOADED COMPONENTS OF FLOWING MACHINES, DEVICE FOR CARRYING OUT THE METHOD AND TRAINING THERMALLY LOADED BLADES
US5752801A (en) * 1997-02-20 1998-05-19 Westinghouse Electric Corporation Apparatus for cooling a gas turbine airfoil and method of making same
US5813827A (en) * 1997-04-15 1998-09-29 Westinghouse Electric Corporation Apparatus for cooling a gas turbine airfoil
FR2771446B1 (en) * 1997-11-27 1999-12-31 Snecma COOLING TURBINE DISTRIBUTOR BLADE
US6065928A (en) * 1998-07-22 2000-05-23 General Electric Company Turbine nozzle having purge air circuit

Also Published As

Publication number Publication date
WO2002014654A1 (en) 2002-02-21
ES2255567T3 (en) 2006-07-01
EP1180578A1 (en) 2002-02-20
DE50108476D1 (en) 2006-01-26
US20030180147A1 (en) 2003-09-25
JP2004506827A (en) 2004-03-04
EP1309773A1 (en) 2003-05-14
US7201564B2 (en) 2007-04-10
JP4726389B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP1309773B1 (en) Turbine vane system
DE19813173C2 (en) Cooled gas turbine blade
EP1270873B1 (en) Gas turbine blade
DE2718661C2 (en) Guide vane grille for a gas turbine with an axial flow
EP1267039B1 (en) Cooling configuration for an airfoil trailing edge
EP1789654B1 (en) Turbine engine vane with fluid cooled shroud
DE102011000878B4 (en) Turbine blade with shielded coolant supply channel
DE3345263C2 (en) Cooled turbine blade
DE60307070T2 (en) BREATHING OF THE GAS TURBINE BOOMS
EP1191189A1 (en) Gas turbine blades
DE69833811T2 (en) Air-cooled gas turbine
EP0964981B1 (en) Turbine blade and its use in a gas turbine system
CH704935B1 (en) Stator-rotor assembly, flow machine and method for producing a pattern of inverted turbulators
DE19919654A1 (en) Heat shield for a gas turbine
DE60117337T2 (en) Arrangement of the Leitschaufelplattformen in an axial turbine to reduce the gap losses
DE19617539B4 (en) Rotor for a thermal turbomachine
EP2087207B1 (en) Turbine blade
DE1601563C3 (en) Air-cooled blade
EP1113144B1 (en) Cooled fluid directing means for a turbomachine working at high temperatures
EP1207269B1 (en) Gas turbine vane
EP3473808B1 (en) Blade for an internally cooled turbine blade and method for producing same
EP3263838A1 (en) Turbine blade having internal cooling passage
DE102013226490A1 (en) Chilled flange connection of a gas turbine engine
DE102016202741A1 (en) Rotor and electric machine
EP1046784B1 (en) Cooled structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030108

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040823

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051221

REF Corresponds to:

Ref document number: 50108476

Country of ref document: DE

Date of ref document: 20060126

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2255567

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130904

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130814

Year of fee payment: 13

Ref country code: GB

Payment date: 20130814

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130827

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131021

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108476

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108476

Country of ref document: DE

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140803

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140804