EP1308685B1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP1308685B1
EP1308685B1 EP02023318A EP02023318A EP1308685B1 EP 1308685 B1 EP1308685 B1 EP 1308685B1 EP 02023318 A EP02023318 A EP 02023318A EP 02023318 A EP02023318 A EP 02023318A EP 1308685 B1 EP1308685 B1 EP 1308685B1
Authority
EP
European Patent Office
Prior art keywords
plates
heat exchanger
apertures
regions
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023318A
Other languages
German (de)
French (fr)
Other versions
EP1308685A3 (en
EP1308685A2 (en
Inventor
Hans-H. Dr. Angermann
Herbert Dr.-Ing. Damsohn
Klaus Dipl.-Ing. Luz
Conrad Dr. Ing. Pfender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1308685A2 publication Critical patent/EP1308685A2/en
Publication of EP1308685A3 publication Critical patent/EP1308685A3/en
Application granted granted Critical
Publication of EP1308685B1 publication Critical patent/EP1308685B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/916Oil cooler

Definitions

  • the invention relates to a heat exchanger, in particular in cross-flow design, which can be flowed through by at least two separate media.
  • Heat exchangers of the generic type are for example from the DE 199 09 881 A1 known.
  • This known heat exchanger has stacked plates which are partially spaced from each other and are partially in contact. In this way, in each case a flow path for a medium, for example a fluid, is formed between respectively adjacent plates in a heat transfer area. So that the plates can be arranged spaced from each other, are formed on these knobs and beads.
  • the plates further include inlet passage apertures and exit passage apertures adjacent the heat transfer areas.
  • the heat exchanger is formed.
  • the plates are in this case rotated 90 ° to each other - with respect to a central axis of the plates - arranged so that it comes to sealed flow channels.
  • the plates are soldered to the adjacent knobs and / or beads. It is disadvantageous that a considerable production cost is given. Furthermore, even minor Height tolerances in the beads and / or knobs to a gap, which can be compensated by soldering only with a considerable additional effort or in extreme cases.
  • a plate heat exchanger is known in which trough-shaped heat exchanger plates are stacked in one another. Between the heat exchanger plates turbulence inserts can be arranged to form flow channels. The heat exchanger plates with each other are soldered together in their peripheral edge regions. To form the mutually sealed flow paths, the arrangement of additional sealing washers is provided. This results in addition to an increased cost of materials a high production cost.
  • Further plate heat exchangers are from the DE 195 17 174 C1 , of the JP 83 27 275 A or the US 6,182,748 B1 known.
  • the invention has for its object to provide a heat exchanger of the generic type, which is characterized by a simple construction and associated simple production possibility
  • this object is achieved by a heat exchanger with the features mentioned in claim 1 characterized in that over the circumference of the plates successive areas, each having breakthroughs are formed alternately from the plane of the plates opposite, can be in a simple manner by stacking such Form plates heat exchanger with adjacent, mutually sealed flow paths.
  • the regions of adjacent plates which are alternately formed from the plane of the plates come into contact with each other when the plates are stacked and thus, on the one hand, determine the formation of the flow paths between the plates and, on the other hand, simultaneously serve to seal adjacent flow paths.
  • Due to a particularly relatively large-area design of the alternately shaped regions a large support surface between the adjacent plates is obtained at the same time, so that a heat exchanger having these plates has a high stability.
  • the dense joining of the adjacent plates is simplified. In particular, manufacturing tolerances and / or assembly tolerances can thus not lead to a gap formation between adjacent plates.
  • the plates are cup-shaped with a base extending from a bottom.
  • the edge is preferably conical to the ground.
  • the regions having the apertures pass over steps into the heat transfer region.
  • the steps are substantially perpendicular to the heat transfer area.
  • Such heat exchanger resulting plates can be particularly easily manufactured in one piece by the simple geometry.
  • the height of the steps makes it possible to determine the desired spacing between the adjacent plates relative to each other.
  • diametrically opposite openings of the plates are the same size, wherein preferably an upper breakthrough to twice the material thickness is formed larger than a lower breakthrough in superimposed plates.
  • the openings are each surrounded by a peripheral bead. This makes it very advantageous to add the plates to form sealed against each other flow paths pressure-tight. Due to the peripheral beads a minimum gap geometry between adjacent plates is obtained, which can be closed pressure-tight in a simple manner.
  • FIG. 1 shows a plan view of a total designated 10 heat exchanger.
  • FIG. 2 shows a longitudinal section along the line AA through the heat exchanger 10
  • FIG. 3 a longitudinal section along the line BB through the heat exchanger 10 shows.
  • cover plate and connection plate not drawn.
  • the heat exchanger 10 consists of plates 12 stacked on one another. According to the exemplary embodiment shown, four plates 12 are provided, it being understood that the number of plates 12 can be smaller or larger in accordance with the requirements for the heat exchanger 10.
  • the structure of the plates 12 is based on the plan view in FIG. 1 explained on the upper plate 12 of the heat exchanger 10.
  • the plate 12 is substantially disc-shaped and has a bottom 14 which is encompassed by a bevelled edge 16. This results in a, in the sectional views clearly becoming, cup-shaped shape of the plates 12.
  • the base 14 forms a heat transfer region 18, the of Areas 20, 22, 24 and 26 is encompassed.
  • the regions 20, 22, 24 and 26 are arranged in the clockwise direction around the heat transfer region 18 and thus adjoin the heat transfer region 18 and outer edges 30 on the edge 16 on the one hand via inner edges 28.
  • To better illustrate the structure of the plates still to be explained here are the areas associated with the areas 20 and 24 with 28 and outer edges with 30 and the areas 22 and 26 associated inner edges with 28 'and the outer edges with 30'.
  • the heat transfer area 18 coincides with the plane of the bottom 14 of the plate 12. According to the graphic representation in FIG. 1 It is assumed that the heat transfer area 18 is in the paper plane.
  • the opposing areas 20 and 24 are formed so that they are below the plane of the heat transfer area 18, while the opposing areas 22 and 26 are formed such that they are above the plane of the heat transfer area 18.
  • the inner edges 28, 28 'thus form a step, as it were, over which the regions 20, 22, 24, 26 merge into the heat transfer region 18. As the sectional views make clear, the inner edges 28, 28 'in this case are not formed substantially perpendicular to the plane of the heat transfer region 18.
  • the area 24 has an opening 34, while the area 20 has an opening 32.
  • the region 26 has an opening 36 and the region 22 has an opening 38.
  • the openings 32, 34, 36 and 38 have a substantially oval shape, which is flattened on the side facing the heat transfer area 18.
  • the apertures 32 and 34 are the same size and the apertures 36 and 38 are also the same size.
  • the openings 32 and 34 are in this case larger than the openings 36 and 38 and that formed according to a double thickness of the plate 12. This point of view is based on FIG. 4 discussed in more detail.
  • the openings 32, 34, 36, 38 are each surrounded by a peripheral bead 40, which - as shown in FIG FIG. 1 - Collar upwards.
  • FIG. 4 In FIG. 4 are shown in sections four stacked plates 12. It is clear that the plates 12 engage each other with their edges 16. The edges 16 are conical, so that a self-aligned stacking of the plates 12 is possible.
  • the heat exchanger 10 can be made of identical plates 12. Due to the 90 ° rotated arrangement to an imaginary center axis 42 ( FIG. 1 ) of the plates 12 it is achieved that a region 24 of the uppermost plate 12 comes to rest on a region 22 of the plate 12 arranged underneath. Similarly, the area 26 of the uppermost plate 12 comes to lie on an area 24 (not shown) of the plate 12 below. Over the circumference of the plates 12, this arrangement results analogously.
  • the regions 20, 22, 24, 26 are formed oppositely to the plane of the plates 12 in opposite directions, this results in that in superimposed regions 20, 22, 24 and 26, the heat transfer regions 18 of two adjacent plates 12 are spaced from each other and each have a flow path 44 or 46 train.
  • the flow paths 44 and 46 are sealed against each other, while the flow paths 44 with each other or the flow paths 46 with each other via the apertures 32, 34, 36 and 38 - depending on the arrangement the plates 12 - communicate with each other.
  • the flow paths 44 and 46 are arranged such that media flowing through them intersect, resulting in the formation of a cross-flow heat exchanger.
  • turbulence elements 48 for example, turbulence plates, arranged, which lead to a swirling of the medium flowing through and thus a good heat transfer via the heat transfer areas 18.
  • the arrangement and function of the turbulence elements 48 and the heat transfer between the flow paths 44 and 46 are well known, so that it should not be discussed further in the context of the present description.
  • the beads 40 of the lower plates 12 engage positively in the beads 40 of the upper plates 12.
  • the edge 16 of the upper plates 12 also engages in the edge 16 of the lower plates 12 in a form-fitting manner.
  • a joining of the superimposed plates 12 in the region of the edges 16 or in the region of the beads 40 is necessary for producing a pressure-tight arrangement. This can be done by methods known per se, such as gluing, soldering, laser welding or other suitable methods. These are selected in particular on the basis of the material properties of the plates 12.
  • the turbulence elements 48 inserted between the heat transfer areas 18 are fixed at the same time, without these having to be additionally joined to the plates 12.
  • the plates 12 in the region of the heat transfer planes 18 at least one, preferably two nubs 50 (FIG. FIGS. 5a and 5b ), in which form-fitting the profiling of the turbulence elements 48 engage.
  • FIG. 4 Furthermore, the flow direction of a medium 52 is indicated. This will - about the in FIG. 4 not shown connection plate - the heat exchanger 10 is supplied. According to the arrangement of the plates 12, this results in two separate flow paths, the each have one entry and one exit each.
  • the entrance 54 of a flow path is shown. This is formed by the superimposed openings 34 and 38 of the plates 12.
  • the medium 52 flowing into the inlet 54 thus enters the flow path or the flow paths 46.
  • the second medium is - FIG. 4 not shown - guided by the flow paths 44 in an analogous manner.
  • the leadership of the media through the heat exchanger 10 is the person skilled in the art, so that will not be discussed in detail.
  • FIGS. 5a and 5b schematically again the four stacked discs 12 are shown.
  • a very compact design of the heat exchanger 10 can be achieved.
  • FIG. 6a and 6b is shown in each case in a schematic exploded view of the heat exchanger 10.
  • a cover plate 56 and a connection plate 58 are shown here.
  • Cover plate 56 and connection plate 58 have at their respective sides facing the plates 12 a corresponding to the plates 12 structure, that is, there are the regions 20, 22, 24 and 26 in the plane corresponding offset to a heat exchanger region 18 is formed. This allows in the region of the cover plate 56, a tight closure of the openings 30, 32, 34, 36 and in the region of the connection plate 58, the supply of the media, between which the heat exchange should take place.
  • the cover plate 56 is formed closed to the outside, while the connection plate 58 has the inlets or outlets for the flow paths.
  • the inlet 54 and an outlet 60 for the medium 52 and an inlet 62 and an outlet 64 for a medium 66 is shown.
  • the discs 12 and 56 and 58 and the turbulence inserts 48 may be made of metal, for example aluminum, copper, stainless steel and / or plastic. The choice of material depends in particular on a resistance to the media 52 or 66 guided between the heat exchanger 10.
  • a wall thickness of the plates 12 is, for example, between 0.1 and 1 mm.
  • a height of the turbulence inserts 48 may be, for example, between 1 and 10 mm.
  • FIGS. 1 to 6 The representation in the FIGS. 1 to 6 is just an example. Thus, instead of a circular design, an oval or angular, for example, square design of the plates 12, 56 and 58 may be provided. Furthermore, by appropriate design of vorecard over the circumference of the plates, the openings having regions a heat exchanger with more than two entries 54 and 62 and more than two outlets 60 are formed 64 relationship 64.
  • the heat exchanger 10 can be used, for example, as a condenser to condense water out of moist air with its help, without this discharging ions from a capacitor material.
  • Another possible use of the heat exchanger 10 is in a gas generating system of a fuel cell operated Kratftfahrzueges, the heat exchanger 10 is designed for this purpose as a chemical reactor in which each second fluid path is provided as a reaction channel with a catalyst coating and the remaining fluid paths for cooling or heating of the reaction channels.
  • use as a catalytic reactor is possible.
  • a use as oil cooler or fuel cooler is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Wärmeübertrager, insbesondere in Kreuzstrom-Bauweise, der von wenigstens zwei voneinander getrennten Medien durchströmbar ist.The invention relates to a heat exchanger, in particular in cross-flow design, which can be flowed through by at least two separate media.

Wärmeübertrager der gattungsgemäßen Art sind beispielsweise aus der DE 199 09 881 A1 bekannt. Dieser bekannte Wärmeübertrager besitzt aufeinander gestapelte Platten, die bereichsweise voneinander beabstandet sind und bereichsweise in Kontakt stehen. Hierdurch wird zwischen jeweils benachbarten Platten in einem Wärmeübertragungsbereich jeweils ein Strömungspfad für ein Medium, beispielsweise ein Fluid, gebildet. Damit die Platten beabstandet zueinander angeordnet werden können, sind an diesen Noppen und Sicken ausgeformt.Heat exchangers of the generic type are for example from the DE 199 09 881 A1 known. This known heat exchanger has stacked plates which are partially spaced from each other and are partially in contact. In this way, in each case a flow path for a medium, for example a fluid, is formed between respectively adjacent plates in a heat transfer area. So that the plates can be arranged spaced from each other, are formed on these knobs and beads.

Die Platten umfassen ferner den Wärmeübertragungsbereichen benachbarte Eintrittskanal-Durchbrüche und Austrittskanal-Durchbrüche. Durch schichtweise, sandwichartige Anordnung der Platten wird der Wärmetauscher gebildet. Die Platten werden hierbei um 90° zueinander verdreht - in Bezug auf eine Mittelachse der Platten - angeordnet, so dass es zu voneinander abgedichteten Strömungskanälen kommt. Um eine Abdichtung der Strömungskanäle zu erzielen, sind die Platten an den aneinander aufliegenden Noppen und/oder Sicken verlötet. Hierbei ist nachteilig, dass ein erheblicher Herstellungsaufwand gegeben ist. Ferner führen schon geringfügige Höhentoleranzen bei den Sicken und/oder Noppen zu einer Spaltbildung, die durch Verlöten nur mit einem erheblichen Zusatzaufwand oder im Extremfall gar nicht ausgeglichen werden kann.The plates further include inlet passage apertures and exit passage apertures adjacent the heat transfer areas. By layered, sandwich-like arrangement of the plates, the heat exchanger is formed. The plates are in this case rotated 90 ° to each other - with respect to a central axis of the plates - arranged so that it comes to sealed flow channels. In order to achieve a sealing of the flow channels, the plates are soldered to the adjacent knobs and / or beads. It is disadvantageous that a considerable production cost is given. Furthermore, even minor Height tolerances in the beads and / or knobs to a gap, which can be compensated by soldering only with a considerable additional effort or in extreme cases.

Aus der EP 0 623 798 B1 ist ein Plattenwärmetauscher bekannt, bei dem wannenförmige Wärmetauscherplatten ineinander gestapelt werden. Zwischen den Wärmetauscherplaten sind zur Ausbildung von Strömungskanälen Turbulenzeinlagen anordbar. Die Wärmetauscherplatten untereinander sind in ihren Umfangs-Randbereichen miteinander verlötbar. Zur Ausbildung der gegeneinander abgedichteten Strömungspfade ist die Anordnung zusätzlicher Dichtscheiben vorgesehen. Hierdurch ergibt sich neben einem erhöhten Materialaufwand ein hoher Herstellungsaufwand.From the EP 0 623 798 B1 a plate heat exchanger is known in which trough-shaped heat exchanger plates are stacked in one another. Between the heat exchanger plates turbulence inserts can be arranged to form flow channels. The heat exchanger plates with each other are soldered together in their peripheral edge regions. To form the mutually sealed flow paths, the arrangement of additional sealing washers is provided. This results in addition to an increased cost of materials a high production cost.

Weitere Plattenwärmetauscher sind aus der DE 195 17 174 C1 , der JP 83 27 275 A oder der US 6,182,748 B1 bekannt.Further plate heat exchangers are from the DE 195 17 174 C1 , of the JP 83 27 275 A or the US 6,182,748 B1 known.

Der Erfindung liegt die Aufgabe zugrunde, einen Wärmeübertrager der gattungsgemäßen Art zu schaffen, der sich durch einen einfachen Aufbau und damit verbundene einfache Herstellungsmöglichkeit auszeichnetThe invention has for its object to provide a heat exchanger of the generic type, which is characterized by a simple construction and associated simple production possibility

Erfindungsgemäß wird diese Aufgabe durch einen Wärmeübertrager mit den Im Anspruch 1 genannten Merkmalen gelöst Dadurch, dass über den Umfang der Platten aufeinander folgende Bereiche, die Jeweils Durchbrüche aufweisen, alternierend aus der Ebene der Platten entgegengesetzt ausgeformt sind, lassen sich in einfacher Weise durch Stapeln derartiger Platten Wärmeübertrager mit benachbarten, gegeneinander abgedichteten Strömungspfaden ausbilden. Die aus der Ebene der Platten alternierend ausgeformten Bereiche benachbarter Platten kommen bei Stapelung der Platten in Anlagekontakt und bestimmen somit einerseits die Ausbildung der Strömungspfade zwischen den Platten und dienen andererseits gleichzeitig der Abdichtung benachbarter Strömungspfade. Durch eine insbesondere relativ großflächige Ausbildung der alternierend ausgeformten Bereiche wird gleichzeitig eine große Abstützfläche zwischen den benachbarten Platten erhalten, so dass ein diese Platten aufweisender Wärmeübertrager eine große Stabilität besitzt. Gleichzeitig wird hierdurch das dichte Fügen der benachbarten Platten vereinfacht. Insbesondere können so Fertigungstoleranzen und/oder Montagetoleranzen nicht zu einer Spaltbildung zwischen benachbarten Platten führen.According to the invention this object is achieved by a heat exchanger with the features mentioned in claim 1 characterized in that over the circumference of the plates successive areas, each having breakthroughs are formed alternately from the plane of the plates opposite, can be in a simple manner by stacking such Form plates heat exchanger with adjacent, mutually sealed flow paths. The regions of adjacent plates which are alternately formed from the plane of the plates come into contact with each other when the plates are stacked and thus, on the one hand, determine the formation of the flow paths between the plates and, on the other hand, simultaneously serve to seal adjacent flow paths. Due to a particularly relatively large-area design of the alternately shaped regions, a large support surface between the adjacent plates is obtained at the same time, so that a heat exchanger having these plates has a high stability. At the same time thereby the dense joining of the adjacent plates is simplified. In particular, manufacturing tolerances and / or assembly tolerances can thus not lead to a gap formation between adjacent plates.

Gemäß der Erfindung ist vorgesehen, dass die Platten topfförmig mit einem sich von einem Grund erstreckenden Rand ausgebildet sind. Dabei verläuft der Rand vorzugsweise konisch zu dem Grund. Hierdurch wird vorteilhaft möglich, die Platten zur Komplettierung des Wärmeübertragers selbstjustierend übereinander anzuordnen. Ferner wird hierdurch eine minimale Spaltgeometrie zwischen benachbarten Platten erhalten, so dass diese besonders einfach und sicher druckdicht gefügt werden können.According to the invention it is provided that the plates are cup-shaped with a base extending from a bottom. The edge is preferably conical to the ground. This advantageously makes it possible to arrange the plates to complete the heat exchanger self-aligning one above the other. Furthermore, this results in a minimum gap geometry between adjacent plates, so that they can be joined in a particularly pressure-tight manner in a particularly simple and secure manner.

Gemäß der Erfindung ist vorgesehen, dass die die Durchbrüche aufweisenden Bereiche über Stufen in den Wärmeübertragungsbereich übergehen. Dabei verlaufen die Stufen im Wesentlichen senkrecht zum Wärmeübertragungsbereich. Derartige den Wärmeübertrager ergebenden Platten lassen sich durch die einfache Geometrie besonders einfach einstückig herstellen. Durch die Höhe der Stufen lässt sich darüber hinaus der gewünschte Abstand der benachbarten Platten zueinander festlegen.According to the invention, it is provided that the regions having the apertures pass over steps into the heat transfer region. The steps are substantially perpendicular to the heat transfer area. Such heat exchanger resulting plates can be particularly easily manufactured in one piece by the simple geometry. In addition, the height of the steps makes it possible to determine the desired spacing between the adjacent plates relative to each other.

Darüber hinaus ist in bevorzugter Ausgestaltung der Erfindung vorgesehen, dass diametral gegenüberliegende Durchbrüche der Platten gleich groß sind, wobei vorzugsweise bei übereinander angeordneten Platten ein oberer Durchbruch um die doppelte Materialstärke größer ausgebildet ist als ein unterer Durchbruch. Bevorzugt ist ferner vorgesehen, dass die Durchbrüche jeweils von einer Umfangssicke umgeben werden. Hierdurch lassen sich sehr vorteilhaft die Platten zur Ausbildung gegeneinander abgedichtete Strömungspfade druckdicht fügen. Durch die Umfangssicken wird eine minimale Spaltgeometrie zwischen benachbarten Platten erhalten, die sich in einfacher Weise druckdicht verschließen lässt.In addition, it is provided in a preferred embodiment of the invention that diametrically opposite openings of the plates are the same size, wherein preferably an upper breakthrough to twice the material thickness is formed larger than a lower breakthrough in superimposed plates. Preferably, it is further provided that the openings are each surrounded by a peripheral bead. This makes it very advantageous to add the plates to form sealed against each other flow paths pressure-tight. Due to the peripheral beads a minimum gap geometry between adjacent plates is obtained, which can be closed pressure-tight in a simple manner.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Draufsicht auf eine Platte eines Wärmeübertragers;
Figur 2
eine Schnittdarstellung durch eine Anordnung von vier übereinander gestapelten Platten gemäß Linie A-A aus Figur 1;
Figur 3
eine Schnittdarstellung durch vier übereinander gestapelte Platten gemäß Schnittlinie B-B gemäß Figur 1;
Figur 4
eine Detailvergrößerung;
Figur 5a
Perspektivansichten gestapelter Platten
und 5b und Figur 6a und 6b
Perspektivansichten in Explosionsdarstellung eines Wärmetauschers.
The invention will be explained in more detail in an embodiment with reference to the accompanying drawings. Show it:
FIG. 1
a plan view of a plate of a heat exchanger;
FIG. 2
a sectional view through an arrangement of four stacked plates according to line AA FIG. 1 ;
FIG. 3
a sectional view through four stacked plates according to section line BB according to FIG. 1 ;
FIG. 4
an enlarged detail;
FIG. 5a
Perspective views of stacked plates
and Figure 5b and Figures 6a and 6b
Perspective views in exploded view of a heat exchanger.

Figur 1 zeigt eine Draufsicht auf einen insgesamt mit 10 bezeichneten Wärmeübertrager. Figur 2 zeigt einen Längsschnitt entlang der Linie A-A durch den Wärmeübertrager 10, während Figur 3 einen Längsschnitt entlang der Linie B-B durch den Wärmeübertrager 10 zeigt. Bei den Darstellungen in den Figuren 1, 2 und 3 sind die später noch zu erläuternde Abdeckplatte und Anschlussplatte nicht mitgezeichnet. FIG. 1 shows a plan view of a total designated 10 heat exchanger. FIG. 2 shows a longitudinal section along the line AA through the heat exchanger 10, while FIG. 3 a longitudinal section along the line BB through the heat exchanger 10 shows. In the representations in the FIGS. 1, 2 and 3 are the later still to be explained cover plate and connection plate not drawn.

Der Wärmeübertrager 10 besteht aus aufeinander gestapelten Platten 12. Gemäß dem gezeigten Ausführungsbeispiel sind vier Platten 12 vorgesehen, wobei klar ist, dass die Anzahl der Platten 12 entsprechend den Anforderungen an den Wärmeübertrager 10 kleiner oder größer sein kann.The heat exchanger 10 consists of plates 12 stacked on one another. According to the exemplary embodiment shown, four plates 12 are provided, it being understood that the number of plates 12 can be smaller or larger in accordance with the requirements for the heat exchanger 10.

Der Aufbau der Platten 12 wird anhand der Draufsicht in Figur 1 auf die obere Platte 12 des Wärmeübertragers 10 erläutert. Die Platte 12 ist im Wesentlichen scheibenförmig ausgebildet und besitzt einen Grund 14, der von einem abkragenden Rand 16 umgriffen wird. Hierdurch entsteht eine, in den Schnittansichten deutlich werdende, topfförmige Gestalt der Platten 12. Der Grund 14 bildet einen Wärmeübertragungsbereich 18 aus, der von Bereichen 20, 22, 24 und 26 umgriffen wird. Die Bereiche 20, 22, 24 und 26 sind in Uhrzeigerrichtung um den Wärmeübertragungsbereich 18 angeordnet und grenzen somit einerseits über Innenkanten 28 an den Wärmeübertragungsbereich 18 und Außenkanten 30 an den Rand 16 an. Zur besseren Verdeutlichung des noch zu erläuternden Aufbaus der Platten sind hierbei die den Bereichen 20 und 24 zugeordneten Innenkanten mit 28 und Außenkanten mit 30 und die den Bereichen 22 und 26 zugeordneten Innenkanten mit 28' beziehungsweise die Außenkanten mit 30' bezeichnet.The structure of the plates 12 is based on the plan view in FIG. 1 explained on the upper plate 12 of the heat exchanger 10. The plate 12 is substantially disc-shaped and has a bottom 14 which is encompassed by a bevelled edge 16. This results in a, in the sectional views clearly becoming, cup-shaped shape of the plates 12. The base 14 forms a heat transfer region 18, the of Areas 20, 22, 24 and 26 is encompassed. The regions 20, 22, 24 and 26 are arranged in the clockwise direction around the heat transfer region 18 and thus adjoin the heat transfer region 18 and outer edges 30 on the edge 16 on the one hand via inner edges 28. To better illustrate the structure of the plates still to be explained here are the areas associated with the areas 20 and 24 with 28 and outer edges with 30 and the areas 22 and 26 associated inner edges with 28 'and the outer edges with 30'.

Der Wärmeübertragungsbereich 18 fällt mit der Ebene des Grundes 14 der Platte 12 zusammen. Gemäß der zeichnerischen Darstellung in Figur 1 wird angenommen, dass der Wärmeübertragungsbereich 18 in der Papierebene liegt. Die gegenüberliegenden Bereiche 20 und 24 sind derart ausgeformt, dass diese unterhalb der Ebene des Wärmeübertragungsbereiches 18 liegen, während die gegenüberliegenden Bereiche 22 und 26 derart ausgeformt sind, dass diese oberhalb der Ebene des Wärmeübertragungsbereiches 18 liegen. Die Innenkanten 28, 28' bilden somit quasi eine Stufe, über die die Bereiche 20, 22, 24, 26 in den Wärmeübertragungsbereich 18 übergehen. Wie die Schnittdarstellungen verdeutlichen, sind die Innenkanten 28, 28' hierbei im Wesentlichen nicht senkrecht zur Ebene des Wärmeübertragungsbereiches 18 ausgebildet. Der Bereich 24 besitzt einen Durchbruch 34, während der Bereich 20 einen Durchbruch 32 besitzt. Analog besitzt der Bereich 26 einen Durchbruch 36 und der Bereich 22 einen Durchbruch 38. Die Durchbrüche 32, 34, 36 und 38 besitzen eine im Wesentlichen ovale Form, die auf der jeweils dem Wärmeübertragungsbereich 18 zugewandten Seite abgeflacht ist. Die Durchbrüche 32 und 34 besitzen die gleiche Größe und die Durchbrüche 36 und 38 besitzen ebenfalls die gleiche Größe. Die Durchbrüche 32 und 34 sind hierbei größer als die Durchbrüche 36 und 38 und zwar entsprechend einer doppelten Materialstärke der Platte 12 ausgebildet. Auf diesen Gesichtspunkt wird anhand von Figur 4 noch näher eingegangen.The heat transfer area 18 coincides with the plane of the bottom 14 of the plate 12. According to the graphic representation in FIG. 1 It is assumed that the heat transfer area 18 is in the paper plane. The opposing areas 20 and 24 are formed so that they are below the plane of the heat transfer area 18, while the opposing areas 22 and 26 are formed such that they are above the plane of the heat transfer area 18. The inner edges 28, 28 'thus form a step, as it were, over which the regions 20, 22, 24, 26 merge into the heat transfer region 18. As the sectional views make clear, the inner edges 28, 28 'in this case are not formed substantially perpendicular to the plane of the heat transfer region 18. The area 24 has an opening 34, while the area 20 has an opening 32. Analogously, the region 26 has an opening 36 and the region 22 has an opening 38. The openings 32, 34, 36 and 38 have a substantially oval shape, which is flattened on the side facing the heat transfer area 18. The apertures 32 and 34 are the same size and the apertures 36 and 38 are also the same size. The openings 32 and 34 are in this case larger than the openings 36 and 38 and that formed according to a double thickness of the plate 12. This point of view is based on FIG. 4 discussed in more detail.

Die Durchbrüche 32, 34, 36, 38 werden jeweils von einer Umfangssicke 40 umgriffen, die - entsprechend der Darstellung in Figur 1- jeweils nach oben abkragen.The openings 32, 34, 36, 38 are each surrounded by a peripheral bead 40, which - as shown in FIG FIG. 1 - Collar upwards.

Aufbau, Funktion und Montage des Wärmeübertragers 10 sollen anhand der Detailvergrößerung in Figur 4 näher erläutert werden.Structure, function and installation of the heat exchanger 10 are based on the detail magnification in FIG. 4 be explained in more detail.

In Figur 4 sind ausschnittsweise vier übereinander gestapelte Platten 12 dargestellt. Es wird deutlich, dass die Platten 12 jeweils mit ihren Rändern 16 ineinander greifen. Die Ränder 16 sind konisch ausgebildet, so dass eine selbstjustierte Stapelung der Platten 12 möglich ist. Beim Stapeln der Platten 12 wird jede zweite Platte - gegenüber der Darstellung in Figur 1 - um 90° gedreht angeordnet. Hierdurch lässt sich der Wärmeübertrager 10 aus baugleichen Platten 12 erzielen. Durch die um 90° gedrehte Anordnung zu einer gedachten Mittelachse 42 (Figur 1) der Platten 12 wird erreicht, dass ein Bereich 24 der obersten Platte 12 auf einen Bereich 22 der darunter angeordneten Platte 12 zu liegen kommt. Analog gilt, dass der Bereich 26 der obersten Platte 12 auf einen Bereich 24 (nicht dargestellt) der darunter folgenden Platte 12 zu liegen kommt. Über den Umfang der Platten 12 ergibt sich diese Anordnung analog.In FIG. 4 are shown in sections four stacked plates 12. It is clear that the plates 12 engage each other with their edges 16. The edges 16 are conical, so that a self-aligned stacking of the plates 12 is possible. When stacking the plates 12 every other plate - compared to the representation in FIG. 1 - arranged rotated by 90 °. As a result, the heat exchanger 10 can be made of identical plates 12. Due to the 90 ° rotated arrangement to an imaginary center axis 42 ( FIG. 1 ) of the plates 12 it is achieved that a region 24 of the uppermost plate 12 comes to rest on a region 22 of the plate 12 arranged underneath. Similarly, the area 26 of the uppermost plate 12 comes to lie on an area 24 (not shown) of the plate 12 below. Over the circumference of the plates 12, this arrangement results analogously.

Da die Bereiche 20, 22, 24, 26 alternierend zur Ebene der Platten 12 entgegengesetzt ausgeformt sind, ergibt sich hierdurch, dass bei aufeinander liegenden Bereichen 20, 22, 24 beziehungsweise 26 die Wärmeübertragungsbereiche 18 zweier benachbarter Platten 12 beabstandet zueinander sind und jeweils einen Strömungspfad 44 beziehungsweise 46 ausbilden. Entsprechend der Anzahl der Platten 12 ergibt sich hierbei eine Vielzahl von Strömungspfaden 44 beziehungsweise 46. Die Strömungspfade 44 und 46 sind gegeneinander abgedichtet, während die Strömungspfade 44 untereinander beziehungsweise die Strömungspfade 46 untereinander über die Durchbrüche 32, 34, 36 beziehungsweise 38 - je nach Anordnung der Platten 12 - miteinander in Verbindung stehen. Hierdurch sind die Strömungspfade 44 und 46 mit getrennten Medien, beispielsweise Fluiden, beaufschlagbar. Bei dem gezeigten Ausführungsbeispiel sind die Strömungspfade 44 und 46 derart angeordet, dass durch sie strömende Medien sich kreuzen, so dass es zur Ausbildung eines Kreuzstrom-Wärmeübertragers kommt. Innerhalb der Strömungspfade 44 beziehungsweise 46 sind hier angedeutete Turbulenzelemente 48, beispielsweise Turbulenzbleche, angeordnet, die für eine Verwirbelung des durchströmenden Mediums und damit einen guten Wärmeübergang über die Wärmeübertragungsbereiche 18 führen. Die Anordnung und Funktion der Turbulenzelemente 48 sowie der Wärmeübertragung zwischen den Strömungspfaden 44 und 46 sind allgemein bekannt, so dass hierauf im Rahmen der vorliegenden Beschreibung nicht näher eingegangen werden soll.Since the regions 20, 22, 24, 26 are formed oppositely to the plane of the plates 12 in opposite directions, this results in that in superimposed regions 20, 22, 24 and 26, the heat transfer regions 18 of two adjacent plates 12 are spaced from each other and each have a flow path 44 or 46 train. The flow paths 44 and 46 are sealed against each other, while the flow paths 44 with each other or the flow paths 46 with each other via the apertures 32, 34, 36 and 38 - depending on the arrangement the plates 12 - communicate with each other. As a result, the flow paths 44 and 46 with separate media, such as fluids, acted upon. In the embodiment shown, the flow paths 44 and 46 are arranged such that media flowing through them intersect, resulting in the formation of a cross-flow heat exchanger. Within the flow paths 44 and 46 are here indicated turbulence elements 48, for example, turbulence plates, arranged, which lead to a swirling of the medium flowing through and thus a good heat transfer via the heat transfer areas 18. The arrangement and function of the turbulence elements 48 and the heat transfer between the flow paths 44 and 46 are well known, so that it should not be discussed further in the context of the present description.

Anhand der Darstellung in Figur 4 wird deutlich, dass beim Aufeinanderstapeln der Platten 12 die Umfangssicken 40 der Durchbrüche 32, 34, 36 beziehungsweise 38 entsprechend der Anordnung der Platten 12 ineinander greifen. Dieses wird dadurch möglich, da die Durchbrüche 32 und 34 um die doppelte Materialstärke der Platten 12 größer ausgebildet sind als die Durchbrüche 36 und 38.Based on the illustration in FIG. 4 It is clear that when stacking the plates 12, the peripheral beads 40 of the apertures 32, 34, 36 and 38 engage in accordance with the arrangement of the plates 12 in one another. This is possible because the openings 32 and 34 are formed by the double thickness of the plates 12 larger than the openings 36 and 38th

Hierdurch greifen die Sicken 40 der unteren Platten 12 formschlüssig in die Sicken 40 der oberen Platten 12 ein. Analog greift der Rand 16 der oberen Platten 12 in den Rand 16 der unteren Platten 12 ebenfalls formschlüssig ein. Somit wird zum Herstellen einer druckdichten Anordnung lediglich ein Fügen der aufeinander liegenden Platten 12 im Bereich der Ränder 16 beziehungsweise im Bereich der Sicken 40 notwendig. Dies kann durch an sich bekannte Verfahren, wie Kleben, Löten, Laserschweißen oder andere geeignete Verfahren erfolgen. Diese werden insbesondere anhand der Materialeigenschaften der Platten 12 ausgewählt. Durch dieses Fügen der Platten 12 werden gleichzeitig die zwischen den Wärmeübertragungsbereichen 18 eingelegten Turbulenzelemente 48 fixiert, ohne dass diese zusätzlich mit den Platten 12 gefügt werden müssen. Zur Justierung während der Montage kann vorgesehen sein, dass die Platten 12 im Bereich der Wärmeübertragungsebenen 18 wenigstens eine, vorzugsweise zwei Noppen 50 (Figuren 5a und 5b) aufweisen, in die formschlüssig die Profilierung der Turbulenzelemente 48 eingreifen.As a result, the beads 40 of the lower plates 12 engage positively in the beads 40 of the upper plates 12. Similarly, the edge 16 of the upper plates 12 also engages in the edge 16 of the lower plates 12 in a form-fitting manner. Thus, only a joining of the superimposed plates 12 in the region of the edges 16 or in the region of the beads 40 is necessary for producing a pressure-tight arrangement. This can be done by methods known per se, such as gluing, soldering, laser welding or other suitable methods. These are selected in particular on the basis of the material properties of the plates 12. As a result of this joining of the plates 12, the turbulence elements 48 inserted between the heat transfer areas 18 are fixed at the same time, without these having to be additionally joined to the plates 12. For adjustment during assembly it can be provided that the plates 12 in the region of the heat transfer planes 18 at least one, preferably two nubs 50 (FIG. FIGS. 5a and 5b ), in which form-fitting the profiling of the turbulence elements 48 engage.

In Figur 4 ist ferner die Strömungsrichtung eines Mediums 52 angedeutet. Dieses wird - über die in Figur 4 nicht dargestellte Anschlussplatte - dem Wärmeübertrager 10 zugeführt. Entsprechend der Anordnung der Platten 12 ergeben sich hierbei zwei voneinander getrennte Strömungspfade, die jeweils einen Eintritt und jeweils einen Austritt besitzen. In Figur 4 ist der Eintritt 54 eines Strömungspfades dargestellt. Dieser wird durch die übereinander angeordneten Durchbrüche 34 und 38 der Platten 12 gebildet. Das in den Eintritt 54 einströmende Medium 52 gelangt somit in den Strömungspfad beziehungsweise die Strömungspfade 46. Das zweite Medium wird - in Figur 4 nicht dargestellt - durch die Strömungspfade 44 in analoger Weise geführt. Die Führung der Medien durch den Wärmeübertrager 10 ist dem Fachmann allgemein geläufig, so dass hierauf nicht näher eingegangen wird.In FIG. 4 Furthermore, the flow direction of a medium 52 is indicated. This will - about the in FIG. 4 not shown connection plate - the heat exchanger 10 is supplied. According to the arrangement of the plates 12, this results in two separate flow paths, the each have one entry and one exit each. In FIG. 4 the entrance 54 of a flow path is shown. This is formed by the superimposed openings 34 and 38 of the plates 12. The medium 52 flowing into the inlet 54 thus enters the flow path or the flow paths 46. The second medium is - FIG. 4 not shown - guided by the flow paths 44 in an analogous manner. The leadership of the media through the heat exchanger 10 is the person skilled in the art, so that will not be discussed in detail.

Anhand der Figur 4 wird somit deutlich, dass zur Erzielung der voneinander druckdicht geführten Strömungspfade 44 und 46 lediglich die baugleichen Platten 12 jeweils um 90° verdreht zueinander übereinander geschichtet und an den Rändern 16 und den Umfangssicken 40 gefügt werden. Durch das zumindest teilweise Ineinandergreifen der Ränder 16 beziehungsweise der Umfangssicken 40 der Scheiben 12 ergeben sich minimale Spalte zwischen den Platten 12, so dass auch bei Fertigungstoleranzen des Wärmeübertragers 10, beispielsweise durch schwankende Höhen der Turbulenzeinlagen 48, jeweils eine minimale Spaltgeometrie gewährleistet ist. Diese kann mittels bekannter Fügeverfahren in einfacher Weise geschlossen werden.Based on FIG. 4 Thus, it becomes clear that in order to obtain flow paths 44 and 46 which are guided in a pressure-tight manner, only the identically constructed plates 12 are stacked one above the other by 90 ° and joined at the edges 16 and peripheral beads 40. The at least partial meshing of the edges 16 or the peripheral beads 40 of the discs 12 results in minimal gaps between the plates 12, so that even with manufacturing tolerances of the heat exchanger 10, for example by fluctuating heights of the turbulence inserts 48, a minimum gap geometry is guaranteed. This can be closed in a simple manner by means of known joining methods.

In den Figuren 5a und 5b sind schematisch nochmals die vier übereinander gestapelten Scheiben 12 dargestellt. Anhand dieser Perspektivansicht wird deutlich, dass mittels des Stapelns der Scheiben 12 eine sehr kompakte Bauform der Wärmeübertrager 10 erzielbar ist.In the FIGS. 5a and 5b schematically again the four stacked discs 12 are shown. On the basis of this perspective view it is clear that by means of the stacking of the disks 12, a very compact design of the heat exchanger 10 can be achieved.

In den Figuren 6a und 6b ist jeweils in einer schematischen Explosionsdarstellung der Wärmeübertrager 10 gezeigt. Zusätzlich zu den Platten 12 ist hier eine Abdeckplatte 56 und eine Anschlussplatte 58 dargestellt. Abdeckplatte 56 und Anschlussplatte 58 besitzen an ihren jeweils den Platten 12 zugewandten Seiten einen zu den Platten 12 korrespondierenden Aufbau, das heißt, auch dort sind die Bereiche 20, 22, 24 und 26 in der Ebene entsprechend versetzt zu einem Wärmeübertragerbereich 18 ausgebildet. Dies ermöglicht im Bereich der Abdeckplatte 56 ein dichtes Verschließen der Durchbrüche 30, 32, 34, 36 und im Bereich der Anschlussplatte 58 die Zuführung der Medien, zwischen denen der Wärmeaustausch stattfinden soll.In the Figures 6a and 6b is shown in each case in a schematic exploded view of the heat exchanger 10. In addition to the plates 12, a cover plate 56 and a connection plate 58 are shown here. Cover plate 56 and connection plate 58 have at their respective sides facing the plates 12 a corresponding to the plates 12 structure, that is, there are the regions 20, 22, 24 and 26 in the plane corresponding offset to a heat exchanger region 18 is formed. This allows in the region of the cover plate 56, a tight closure of the openings 30, 32, 34, 36 and in the region of the connection plate 58, the supply of the media, between which the heat exchange should take place.

Die Abdeckplatte 56 ist nach außeren geschlossen ausgebildet, während die Anschlussplatte 58 die Eintritte beziehungsweise Austritte für die Strömungspfade besitzt. Hierbei ist der Eintritt 54 und ein Austritt 60 für das Medium 52 sowie ein Eintritt 62 und ein Austritt 64 für ein Medium 66 dargestellt.The cover plate 56 is formed closed to the outside, while the connection plate 58 has the inlets or outlets for the flow paths. Here, the inlet 54 and an outlet 60 for the medium 52 and an inlet 62 and an outlet 64 for a medium 66 is shown.

Die Scheiben 12 sowie 56 und 58 und die Turbulenzeinlagen 48 können aus Metall, beispielweise Aluminium, Kupfer, Edelstahl und/oder aus Kunststoff bestehen. Dir Materialwahl richtet sich insbesondere nach einer Resistenz gegenüber den zwischen dem Wärmeübertrager 10 geführten Medien 52 beziehungsweise 66. Eine Wandstärke der Platten 12 beträgt beispielweise zwischen 0, 1 und 1 mm. Eine Höhe der Turbulenzeinlagen 48 kann beispielweise zwischen 1 und 10 mm betragen.The discs 12 and 56 and 58 and the turbulence inserts 48 may be made of metal, for example aluminum, copper, stainless steel and / or plastic. The choice of material depends in particular on a resistance to the media 52 or 66 guided between the heat exchanger 10. A wall thickness of the plates 12 is, for example, between 0.1 and 1 mm. A height of the turbulence inserts 48 may be, for example, between 1 and 10 mm.

Die Darstellung in den Figuren 1 bis 6 ist lediglich beispielhaft. So kann anstelle einer kreisrunden Ausführung auch eine ovale oder eckige, beispielweise quadratische Ausführung der Platten 12, 56 und 58 vorgesehen sein. Ferner kann durch entsprechende Ausbildung der über den Umfang der Platten voregesehen, die Durchbrüche aufweisenden Bereiche ein Wärmeubertrager mit mehr als zwei Eintritten 54 beziehungsweise 62 und mehr als zwei Austritten 60 beziehunsgweise 64 ausgebildet werden.The representation in the FIGS. 1 to 6 is just an example. Thus, instead of a circular design, an oval or angular, for example, square design of the plates 12, 56 and 58 may be provided. Furthermore, by appropriate design of voregesehen over the circumference of the plates, the openings having regions a heat exchanger with more than two entries 54 and 62 and more than two outlets 60 are formed 64 relationship 64.

Der Wärmeübertrager 10 kann beispielweise als Kondensator eingesetzt werden, um mit seiner Hilfe aus feuchter Luft Wasser auszukondensieren, ohne dass dieses aus einem Kondensatorwerkstoff Ionen austrägt. Eine weitere Einsatzmöglichkeit des Wärmeübertragers 10 besteht in einem Gaserzeugungssystem eines brennstoffzellenbetriebenen Kratftfahrzueges, wobei der Wärmeübertrager 10 hierzu als chemischer Reaktor ausgeführt ist, in dem jeweils jeder zweite Fluidpfad als Reaktionskanal mit einer Katalysatorbeschichtung versehen ist une die übrigen Fluidpfade zur Kühlung oder Heizung der Reaktionskanäle dienen. Ebenso ist ein Einsatz als katalytischer Reaktor möglich. Des Weiteren ist ein Einsatz als Ölkühler oder Kraftstoffkühler möglich.The heat exchanger 10 can be used, for example, as a condenser to condense water out of moist air with its help, without this discharging ions from a capacitor material. Another possible use of the heat exchanger 10 is in a gas generating system of a fuel cell operated Kratftfahrzueges, the heat exchanger 10 is designed for this purpose as a chemical reactor in which each second fluid path is provided as a reaction channel with a catalyst coating and the remaining fluid paths for cooling or heating of the reaction channels. Likewise, use as a catalytic reactor is possible. Furthermore, a use as oil cooler or fuel cooler is possible.

Claims (8)

  1. A heat exchanger, in particular of countercurrent design, through which at least two separate media can flow, comprising plates stacked on one another, which are spaced apart from one another in some regions and which are in contact with one another in some regions so that flow paths are formed between adjacent plates in a heat exchange region, wherein the plates comprises apertures adjacent to the heat exchange region, and the plates are spaced from one another by shaped-out portions thereof, wherein regions (20, 22, 24, 26) arranged in succession over the periphery of the plates (12) and which have apertures (32, 34, 36, 38) are shaped-out alternately in opposite directions from the plane of the plates (12), the plates (12) are formed in a pot-shaped manner with an edge (16) extending from a base (14) and the base (14) forms the heat exchange region (18), wherein the regions (20, 22, 24, 26) transition via steps (28, 28') into the heat exchange region (18) and the steps (28, 28') extend substantially perpendicular to the heat exchange region (18), wherein the steps (28, 28') and therefore the regions (20, 24 and 22, 26) originate in opposite directions from the heat exchange region (18), wherein the apertures (32, 34) are larger than the apertures (36, 38) by an amount corresponding to double the material thickness of the plate (12) and the apertures (32, 34, 36, 38) are substantially oval in shape.
  2. The heat exchanger according to claim 1, characterised in that the apertures (32, 34 and 36, 38) arranged diametrically opposed in relation to a central axis (42) of the plates (12) are of equal size.
  3. The heat exchanger according to one of the preceding claims, characterised in that the apertures (32, 34, 36, 38) are each surrounded by a peripheral bead (40).
  4. The heat exchanger according to one of the preceding claims, characterised in that the edges (16) of the plates (12) extend conically to the base (14).
  5. The heat exchanger according to one of the preceding claims, characterised in that turbulence elements (48) are arranged between adjacent plates (12).
  6. The heat exchanger according to claim 5, characterised in that the plates (12) have at least one knob (50) in their heat exchange region (18) to position the turbulence elements (48) with a positive fit.
  7. The heat exchanger according to one of the preceding claims, characterised in that the heat exchanger (10) comprises a cover plate (56) and a connector plate (58), between which the stacked plates (12) are arranged.
  8. The heat exchanger according to claim 7, characterised in that the cover plate (56) and the connector plate (58) have a structure corresponding to the plates (12), and in particular on one side have regions (20, 22, 24, 26) which are likewise offset vertically in relation to one another.
EP02023318A 2001-11-02 2002-10-18 Heat exchanger Expired - Lifetime EP1308685B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10153877 2001-11-02
DE10153877A DE10153877A1 (en) 2001-11-02 2001-11-02 Heat exchanger

Publications (3)

Publication Number Publication Date
EP1308685A2 EP1308685A2 (en) 2003-05-07
EP1308685A3 EP1308685A3 (en) 2006-05-03
EP1308685B1 true EP1308685B1 (en) 2012-09-12

Family

ID=7704413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02023318A Expired - Lifetime EP1308685B1 (en) 2001-11-02 2002-10-18 Heat exchanger

Country Status (3)

Country Link
US (1) US6681846B2 (en)
EP (1) EP1308685B1 (en)
DE (1) DE10153877A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336030A1 (en) * 2003-08-01 2005-02-24 Behr Gmbh & Co. Kg Heat exchanger and plate for a heat exchanger
US7108054B2 (en) * 2003-09-11 2006-09-19 Honeywell International, Inc. Heat exchanger
DE10352881A1 (en) 2003-11-10 2005-06-09 Behr Gmbh & Co. Kg Heat exchanger, in particular charge air / coolant radiator
DE10352880A1 (en) 2003-11-10 2005-06-09 Behr Gmbh & Co. Kg Heat exchanger, in particular charge air / coolant radiator
CA2477817C (en) * 2004-08-16 2012-07-10 Dana Canada Corporation Stacked plate heat exchangers and heat exchanger plates
DE102005031582A1 (en) * 2005-07-06 2007-01-11 Maquet Cardiopulmonary Ag Device for treating blood in an extracorporeal blood circulation
DE102005044291A1 (en) * 2005-09-16 2007-03-29 Behr Industry Gmbh & Co. Kg Stacking plate heat exchanger, in particular intercooler
DE102006024574A1 (en) * 2006-05-23 2007-11-29 J. Eberspächer GmbH & Co. KG Burner and fuel cell system equipped therewith
JP5108462B2 (en) * 2007-11-07 2012-12-26 国立大学法人 東京大学 Heat recovery equipment
US20120118546A1 (en) * 2008-12-17 2012-05-17 Swep International Ab High pressure port peninsula
DE102009020128A1 (en) * 2009-05-06 2010-11-11 Wolfgang Heinzl Modular flow system
DE102009032370A1 (en) 2009-07-08 2011-01-13 Sartorius Stedim Biotech Gmbh Plate heat exchanger
DE102010028660A1 (en) * 2010-05-06 2011-11-10 Behr Industry Gmbh & Co. Kg Stacked plate heat exchanger
JP5773353B2 (en) * 2011-02-15 2015-09-02 忠元 誠 Heat exchanger
US10591220B2 (en) 2017-08-31 2020-03-17 Dana Canada Corporation Multi-fluid heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182748B1 (en) * 1998-01-21 2001-02-06 Modine Manufacturing Company Plate heat exchanger with serpentine flow paths

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2528013A (en) * 1944-12-18 1950-10-31 Lister & Co Ltd R A Plate type heat exchanger
SE353954B (en) * 1971-02-19 1973-02-19 Alfa Laval Ab
US4407359A (en) * 1980-07-25 1983-10-04 Commissariat A L'energie Atomique Plate heat exchanger
JPS625092A (en) * 1985-06-28 1987-01-12 Tsuchiya Mfg Co Ltd Lamination type heat exchanger
DE3622316C1 (en) * 1986-07-03 1988-01-28 Schmidt W Gmbh Co Kg Plate heat exchanger
US5099912A (en) * 1990-07-30 1992-03-31 Calsonic Corporation Housingless oil cooler
AU668403B2 (en) * 1992-08-31 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha Stacked heat exchanger
DE4314808C2 (en) 1993-05-05 2003-10-30 Behr Gmbh & Co Plate heat exchanger, in particular oil / coolant cooler
GB2278430B (en) 1993-05-29 1997-04-23 E J Bowman Heat exchanger
JP3427526B2 (en) * 1994-12-21 2003-07-22 株式会社デンソー Oil cooler
DE19517174C1 (en) * 1995-05-10 1996-06-05 Laengerer & Reich Gmbh & Co Plate heat exchanger with stacked heat exchange plates
JPH08327275A (en) * 1995-06-05 1996-12-13 Toyo Radiator Co Ltd Lamination type oil cooler
DE19617396C2 (en) * 1996-05-02 1998-03-26 Dornier Gmbh Flow module
DE19709671A1 (en) * 1997-03-11 1998-09-17 Api Schmidt Bretten Gmbh & Co Plate heat exchanger
DE19815218B4 (en) * 1998-04-04 2008-02-28 Behr Gmbh & Co. Kg Bed heat exchanger
JP2000161877A (en) * 1998-11-24 2000-06-16 Atago Seisakusho:Kk Plate type heat exchanger
DE19909881A1 (en) 1999-03-06 2000-09-07 Behr Gmbh & Co Cross-flow heat exchanger of plate stack between cover plates uses knob or pleat forms of stack plates to define flow path between inlet and outlet using oval knobs and specified flow path dimensions.
DE19939264B4 (en) * 1999-08-19 2005-08-18 Behr Gmbh & Co. Kg Plate heat exchangers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182748B1 (en) * 1998-01-21 2001-02-06 Modine Manufacturing Company Plate heat exchanger with serpentine flow paths

Also Published As

Publication number Publication date
EP1308685A3 (en) 2006-05-03
EP1308685A2 (en) 2003-05-07
US6681846B2 (en) 2004-01-27
DE10153877A1 (en) 2003-05-15
US20030098146A1 (en) 2003-05-29

Similar Documents

Publication Publication Date Title
EP1308685B1 (en) Heat exchanger
DE69409647T2 (en) PLATE HEAT EXCHANGER
EP1554534B1 (en) Stacked plate heat exchanger
DE69814597T2 (en) PLATE HEAT EXCHANGER FOR THREE HEAT TRANSFER MEDIA
DE69316121T2 (en) Plate heat exchanger
DE60010227T2 (en) HOUSING-FREE HEAT EXCHANGER
DE19909881A1 (en) Cross-flow heat exchanger of plate stack between cover plates uses knob or pleat forms of stack plates to define flow path between inlet and outlet using oval knobs and specified flow path dimensions.
EP0677715B1 (en) Heat exchanger for cooling of the exhaust gas from an automotive engine
DE3017701C2 (en) Plate heat exchanger in stack design for at least three heat exchanger media
DE19528116B4 (en) Heat exchanger with plate sandwich structure
EP0992756A2 (en) Heat exchanger, more particularly for gases and liquids
EP1306638B1 (en) Plate-like heat exchanger without casing
DE112018004787T5 (en) MULTI-FLUID HEAT EXCHANGER
EP1518084B1 (en) Stacked panel-shaped heat transmitter
DE19511991A1 (en) Plate heat exchanger
WO2005071342A1 (en) Heat exchanger, especially oil/coolant cooler
EP0828980A1 (en) Heat exchanger
EP1856734A1 (en) Micro-heat exchanger
EP1522811A2 (en) Heat exchanger, more particularly oil cooler
WO2006032258A1 (en) Heat exchanger
EP1564516A2 (en) Heat exchanger, more particularly oil cooler for vehicle
DE19709601A1 (en) Plate heat convector for especially oil/coolant coolers
EP0819907A2 (en) Plate heat exchanger
DE2856678C2 (en)
DE3023197A1 (en) BAG FOR CONDUCTING A MEDIUM IN A HEAT EXCHANGER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20060610

17Q First examination report despatched

Effective date: 20060927

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AXX Extension fees paid

Extension state: AL

Payment date: 20061103

Extension state: SI

Payment date: 20061103

Extension state: MK

Payment date: 20061103

Extension state: RO

Payment date: 20061103

Extension state: LV

Payment date: 20061103

Extension state: LT

Payment date: 20061103

17Q First examination report despatched

Effective date: 20060927

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 575287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215602

Country of ref document: DE

Effective date: 20121108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121213

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

26N No opposition filed

Effective date: 20130613

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215602

Country of ref document: DE

Effective date: 20130613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 575287

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50215602

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215602

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20120912

Ref country code: DE

Ref legal event code: R082

Ref document number: 50215602

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150327

Ref country code: DE

Ref legal event code: R081

Ref document number: 50215602

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150327

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161101

Year of fee payment: 15

Ref country code: FR

Payment date: 20161022

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50215602

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031