EP1303349A1 - Method and device for producing biopolymer arrays - Google Patents

Method and device for producing biopolymer arrays

Info

Publication number
EP1303349A1
EP1303349A1 EP01940302A EP01940302A EP1303349A1 EP 1303349 A1 EP1303349 A1 EP 1303349A1 EP 01940302 A EP01940302 A EP 01940302A EP 01940302 A EP01940302 A EP 01940302A EP 1303349 A1 EP1303349 A1 EP 1303349A1
Authority
EP
European Patent Office
Prior art keywords
capillary
liquid
capillary tube
capillary tubes
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01940302A
Other languages
German (de)
French (fr)
Inventor
Heinz Eipel
Stefan Matysiak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Krebsforschungszentrum DKFZ
BASF SE
Original Assignee
Deutsches Krebsforschungszentrum DKFZ
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum DKFZ, BASF SE filed Critical Deutsches Krebsforschungszentrum DKFZ
Publication of EP1303349A1 publication Critical patent/EP1303349A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0265Drop counters; Drop formers using valves to interrupt or meter fluid flow, e.g. using solenoids or metering valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00367Pipettes capillary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00367Pipettes capillary
    • B01J2219/00369Pipettes capillary in multiple or parallel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • B01J2219/004Pinch valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • B01J2219/004Pinch valves
    • B01J2219/00403Pinch valves in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00418Means for dispensing and evacuation of reagents using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00691Automatic using robots
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the invention relates to a method and a device for producing biopolymer fields (arrays), nucleic acids, proteins and / or polysaccharides for arranging sample quantities of these substances on a carrier or a carrier material.
  • a method is known from Science 270, 1995, pp. 467-470, M. Schena et al., which is based on the fountain pen method.
  • metal pins are provided with a molded tip. These are immersed in the liquid to be pipetted; part of the liquid to be applied remains on the surface of the pen tip; this later reaches the surface of the carrier or the carrier material to be loaded when the pen tip is lowered.
  • a disadvantage of this technique is the limited liquid absorption capacity of the deformed pen tip if, after the liquid absorption, many support surfaces are to be dabbed with the same pattern to form arrays to be analyzed.
  • the object of the present invention is to arrange biopolymer fields or arrays to be analyzed inexpensively and reliably using simple means. According to the invention, this object is achieved in that, in a method for producing biopolymer surfaces on carrier substrates, the biopolymers to be applied being taken from one or more sample stocks, a capillary tube of a capillary tube which can be moved in a multidimensional manner for transferring the smallest amounts of liquid to substrate surfaces via a miniature valve serving for filling and can be controlled by another miniature valve used for flushing.
  • the advantages of this solution can be seen primarily in the fact that the method proposed according to the invention can be used to easily load a large number of carrier substance platelets with a single filling of the capillary.
  • two rinse cycles on the capillary have proven to be sufficient so that mutual contamination of the sample stocks and the transferred samples can be sufficiently ruled out for practical use.
  • the rinsing of the capillary in each case holding the sample quantity can be repeated as often as desired by the two independently controllable miniature valves.
  • a number of capillary tubes can be connected to the miniature valves. This enables a parallel application of several smallest amounts of liquid to the surface of a substrate or a substrate material.
  • the plurality of capillary tubes can be arranged with respect to one another in such a way that their distance from one another corresponds to the distances between two sample quantities of biopolymer substances with which these are applied to the surface of the carrier substrate.
  • the one or more capillary tubes can be moved in the X or Y direction, and an immersion movement in the Z direction can also be carried out to receive a liquid supply from a substrate container. Due to the controllability of the respective capillary tubes in the three coordinate directions, a maximum utilization of the space on analysis platelets can be achieved.
  • a commercially available, computer-supported plotter that can be moved in the X and Y directions is advantageously used. By controlling a commercially available plotter by means of a personal computer (PC), inexpensive movement and reliable control of the one or more capillary tubes can be achieved.
  • a device for generating biopolymer fields on carrier substrates is also proposed, the biopolymers to be applied being able to be taken from one or more different sample stores, a multidimensionally movable glass capillary tip of a capillary tube for transferring minute amounts of liquid to substrate surfaces via a miniature valve serving for filling and via a flushing device the capillary serving miniature valve can be controlled.
  • the capillary tips are drawn out to the smallest liquid-absorbing ends with an outside diameter in the range between 10 ⁇ m and 1000 ⁇ m.
  • the capillary tips are designed with an outer diameter of 50 ⁇ m to 300 ⁇ m at the end that receives the smallest amounts of liquid.
  • the control of the one or more capillary tubes can be carried out by a computer-aided plotter, which produces a movement of the capillary tube or tubes in the X or Y direction as well as an immersion movement of the capillary tube together with the liquid supply accommodated therein in the Z direction by the smallest amounts of liquid to be applied to the surfaces of supports or support materials.
  • the miniature valves that are provided in the line system to the capillary tube can be designed as pinch valves. These can in particular be provided to support the flexible hose line by a fixed stop, in contrast to which a flexible stop is provided, with which the cross section of the flexible hose line can be closed. The original cross-section of the flexible supply line is restored automatically due to the elasticity of the hose material.
  • the single figure shows a device for carrying out the proposed method according to the invention, in which the capillary tube together with the capillary tube tip can be moved in three directions.
  • a capillary tube 2 - preferably consisting of glass - emerges, which serves to hold a biopolymer solution to be pipetted. This is immersed in a sample quantity container 3, also referred to as a microtiter plate pot.
  • the opening of the first miniature valve 5 - in the form of a pinch valve, for example - to the atmosphere 6 brings about a pressure equalization with the atmosphere 6, so that a sample quantity 13 rises into the interior of the capillary tube 2 due to the capillary action by the capillary tip 1.
  • the capillary tube 2 is made of glass, the outer diameter of the capillary tip is in the diameter range between 10 ⁇ m and 1000 ⁇ m, in particularly preferred embodiments of the capillary tube proposed according to the invention between 50 ⁇ m and 300 ⁇ m.
  • the capillary tip 1 of the capillary tube 2 is immersed in the initial solution contained in the container 3.
  • the reference solutions can be located, for example, in pots 3 of a microtiter plate, which can hold 96 or 384 or even 1536 individual samples.
  • the valve 1 which controls the supply of a gas flow into the capillary tube 2, initially remains closed.
  • the valve 5, which is received on the T-piece 11 with the flexible feed line 19 to the capillary tube 2, is opened and thus represents a pressure compensation to the surrounding atmosphere 6.
  • a liquid supply 13 moves out of the potty 3 of the microtiter plate, into which the capillary tip 1 has just been immersed, into the interior of the capillary tube 2.
  • the capillary tip 1 is then pulled out of the stock solution, then positioned in the X and Y directions and moved over the surface 14 of a carrier 4, to which the individual liquid samples to be analyzed are then applied in a biopolymer pattern 15 while maintaining precisely defined distances 16 from one another.
  • the capillary tip 1 is lowered in the direction 12 (Z direction) toward the surface 14 of the carrier 4, the position of the first valve 5 and the position of the second valve 7 are not changed.
  • a control device 20 which causes the capillary tube 2 to move in the X direction, Y direction and Z direction; With the interposition of a commercially available plotter, the capillary tips 1 can be lifted off the surface 14 of the carrier material 4 again in a very simple and cost-effective manner, a small spot of biopolymer solution remaining on the surface 14 of the carrier material 4.
  • a suitable control 20 of a plotter used, for example, allows the capillary tube 2 and the liquid supply 13 contained therein to be moved in the X and Y directions according to the control of the plotter, so that successively further carrier surfaces 14 of carrier material 4 are provided with biopolymer stains in the same way can be.
  • the biopolymer stains are preferably applied in a regular pattern 15, the biopolymer patterns preferably being characterized in that the individual sample stains are at a uniform distance 16 from one another.
  • the capillary 1 must be cleaned thoroughly to avoid sample carry-over.
  • the capillary tip 1 is first moved over a waste container 9; then the first valve 5, one Representing the connection to the atmosphere 6, closed and through the second miniature valve 7 a gas stream, preferably filtered air or nitrogen, let into the interior of the capillary tube 2 via the flexible feed line 19.
  • the capillary tip 1 is now moved over a washing vessel 10, whereby after closing the second miniature valve 7, i.e. the gas valve and opening the first miniature valve 5, i.e. of the outside air valve, the capillary tip 1 is lowered into the washing liquid. Due to the onset of capillary force, the washing liquid now flows into the interior of the capillary tube 2. The capillary tip 1 of the capillary tube 2 is then moved again over the waste container 9 and the washing liquid is expelled to the atmosphere 6 by opening the second miniature valve 7 and closing the first miniature valve 5. Alternatively, this can also be done while in the immersed state in the washing liquid if it is ensured that the washing liquid in the washing vessel 10 is continuously renewed, for example by continuous pumping.
  • a pump circuit 17 for the washing fluid can be assigned to the washing vessel 10, in which, on the one hand, new, unused washing fluid can be fed to the washing vessel 10, and on the other hand, already used washing fluid or deposited particles on the bottom of the washing vessel are continuously removed.
  • the absorption and ejection of washing fluid from the inside of the capillary tube 2 can be carried out as often as desired by appropriately actuating the two miniature valves 5 and 1, which are preferably designed as pinch valves, until the inside of the capillary tube 2 and its outside are sufficiently cleaned and then a continuation of the application of biopolymer arrays to the top side 14 of the carrier substrates 4 to be loaded can take place.
  • the structure of the apparatus shown in FIG. 1 will be described in more detail below with reference to a sample.
  • On the cart of a standard plotter that can be driven in the X and Y directions for example ROLAND DXY 1150A
  • a glass micropipette 2 for example a borosilicate glass capillary from Hilgenberg, outer diameter 1.0 mm, inner diameter 0.8 mm, a tip 1 with an outer diameter of approximately 200 ⁇ m was drawn out in a gas flame.
  • the outer diameter of the glass pipette 2 (1 mm) fits commonly, but with a sufficiently small amount of play into the stainless steel cannula of a 1.5 x 100 syringe.
  • This cannula can be easily moved as a guide element on the spring holder of an X or Y direction attach commercially available plotters.
  • the glass micropipette 2 is easily movable in the vertical direction in this guide cannula and is not pressed down by the flexible tube 19. Alternatively, this force can be supported by a small spring.
  • the filling element which holds the capillary tube 2
  • the connection to the capillary tube 2 is established via the T-connector 11 provided in the supply line from the valves 5, 7 to the flexible hose 19.
  • Washing fluid is wetted, which can be expelled again from the interior of the glass capillary via the gas flow to be applied, controllable through the second mechanical valve 1.

Abstract

The invention relates to a method and device for producing biopolymer arrays (15) on supporting substrates (4, 14), whereby the biopolymers to be applied can be withdrawn from one or more different biopolymer stores. According to the invention, a capillary tip (1) of a capillary tube (2) that can be multidimensionally displaced is controlled for transferring the smallest amounts of liquid to substrate surfaces (14) via a miniature valve (5) provided for filling and via a miniature valve (7) provided for rinsing the capillary tube (2).

Description

Verfahren und Vorrichtung zur Herstellung von Biopolymer-Fel ern Method and device for producing biopolymer fel
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Herstellung von Biopolymer-Feldern (-Arrays), von Nukleinsäuren, Proteinen und/oder Polysacchariden zur Anordnung von Probenmengen dieser Substanzen auf einem Träger oder einem Trägermaterial.The invention relates to a method and a device for producing biopolymer fields (arrays), nucleic acids, proteins and / or polysaccharides for arranging sample quantities of these substances on a carrier or a carrier material.
Zur hochparallel erfolgenden Analyse von Biopolymeren - beispielhaft seien Nukleinsäuren, Proteine und/oder Polysaccharide genannt - werden in der Regel Anordnungen vieler kleiner Probenmengen in Tropfenform auf ebene Träger oder Trägersubstanzen aufgebracht. Als Träger für die aufzubringenden Probemengen werden Kunststoff - Folien eingesetzt, oder Membranen oder auch Objektträger, wie sie in der Mikroskopie häufig eingesetzt werden. Bei typischerweise erfolgenden Analyse- Anwendungen werden einige hundert bis einige tausend Analyseflecke auf einen Träger aufgebracht.For the highly parallel analysis of biopolymers - for example nucleic acids, proteins and / or polysaccharides - arrangements of many small sample quantities in drop form are generally applied to flat carriers or carrier substances. Plastic foils are used as carriers for the sample quantities to be applied, or membranes or specimen slides, as are often used in microscopy. In typical analysis applications, several hundred to several thousand analysis spots are applied to a carrier.
Zum Aufbringen der extrem geringen Flüssigkeitsmengen der zu analysierenden Proben im Bereich von wenigen Picolitern bis zu einigen Nanolitern auf Träger oder Trägermaterialien, bedient man sich beispielsweise der Tintenstrahl- Dracktecrmik. Bei der Tintensfrahl-Dracktecrmik sind die aufzubringenden Probemengen der zu analysierenden Flüssigkeiten größeren mechanischen und/oder thermischen Belastungen ausgesetzt, die die empfindlichen Biopolymere beeinträchtigen können. Bei dieser Applikationstechnik kann es ferner des öfteren zu unerwünschten Bildung von Gasblasen kommen, welche das exakte Ausbringen der Flüssigkeitstropfen und damit ein regelmäßig angeordnetes Analysefeld behindern. Ferner können häufig Störungen dadurch auftreten, daß die Viskositäten der aufzubringenden Flüssigkeitsmengen sehr unterschiedlich sind.To apply the extremely small amounts of liquid of the samples to be analyzed in the range from a few picoliters to a few nanoliters on supports or carrier materials, use is made, for example, of the inkjet printing technique. In the case of the ink-spray Drackcrmik, the sample quantities of the liquids to be analyzed are exposed to greater mechanical and / or thermal loads, which can impair the sensitive biopolymers. With this application technique, undesired formation of gas bubbles can also frequently occur, which result in the exact discharge of the liquid drops and thus a regularly arranged one Hinder analysis field. Furthermore, disturbances can often occur due to the fact that the viscosities of the quantities of liquid to be applied are very different.
Aus Science 270, 1995 S. 467 - 470, M. Schena et al., ist ein Verfahren bekannt, welches auf dem Füllfederhalterverfahren basiert. Bei dieser aus dem Stande der Technik bekannten Lösung werden Metallstifte mit einer Anformung der Stiftspitze versehen, eingesetzt. Diese werden in die zu pipettierende Flüssigkeit eingetaucht; ein Teil der zu applizierenden Flüssigkeit bleibt an der Oberfläche der Stiftspitze hängen; diese gelangt später beim Absenken der Stiftspitze auf die zu beschickende Oberfläche des Trägers oder des Trägermaterials. Nachteilig bei dieser Technik ist die beschränkte Flüssigkeitsaufnahmekapazität der verformten Stiftspitze, wenn nach der Flüssigkeitsaufhahme viele Trägeroberflächen zur Bildung jeweils zu analysierenden Arrays mit jeweils gleichem Muster zu betupfen sind.A method is known from Science 270, 1995, pp. 467-470, M. Schena et al., Which is based on the fountain pen method. In this solution known from the prior art, metal pins are provided with a molded tip. These are immersed in the liquid to be pipetted; part of the liquid to be applied remains on the surface of the pen tip; this later reaches the surface of the carrier or the carrier material to be loaded when the pen tip is lowered. A disadvantage of this technique is the limited liquid absorption capacity of the deformed pen tip if, after the liquid absorption, many support surfaces are to be dabbed with the same pattern to form arrays to be analyzed.
Sind an den in die Probenbehältnisse eintauchenden Metallstiftspitzen Furchen oder Schlitze zur Vergrößerung der Aufhahmekapazität der zu applizierenden Flüssigkeit vorgesehen, so haben diese den Nachteil einer erschwerten und langwierigen Reinigung. Die Reinigung ist jedoch zwingend erforderlich, um eine Probensubstanzverschleppung zu vermeiden, wenn die Metallstiftspitze sich jeweils in ein Behältnis mit einer neuen Probenart absenkt und an der Spitze noch Reste des vorhergehend applizierten Substrates anhaften, so daß der neue Probenfleck auf dem Substrat nicht mit Substanzen aus dem vorher übertragenen Fleck kontaminiert wird.If furrows or slots are provided on the metal pin tips dipping into the sample containers in order to increase the absorption capacity of the liquid to be applied, then these have the disadvantage of difficult and lengthy cleaning. However, cleaning is imperative in order to avoid carryover of sample substances if the metal pen tip sinks into a container with a new type of sample and remnants of the previously applied substrate still adhere to the tip, so that the new sample spot on the substrate does not contain substances the previously transferred stain is contaminated.
Angesichts der aufgezeigten Nachteile der aus dem Stand der Technik bekannten Lösungen liegt der vorliegenden Erfindung die Aufgabe zugrunde, zu analysierende Biopolymerfelder oder Arrays mit einfachen Mitteln preiswert und zuverlässig anzuordnen. Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß bei einem Verfahren zur Erzeugung von Biopolymeren - Flächen auf Trägersubstraten, wobei die aufzubringenden Biopolymeren einem oder mehreren Probenvorräten zu entnehmen sind, eine mehrdimensional verfahrbare Kapillarspitze eines Kapillarrohres zur Übertragung kleinster Flüssigkeitsmengen auf Substratflächen über ein zur BefuIIung dienendes Miniaturventil und über ein zur Spülung dienendes weiteres Miniaturventil angesteuert werden.In view of the disadvantages of the solutions known from the prior art, the object of the present invention is to arrange biopolymer fields or arrays to be analyzed inexpensively and reliably using simple means. According to the invention, this object is achieved in that, in a method for producing biopolymer surfaces on carrier substrates, the biopolymers to be applied being taken from one or more sample stocks, a capillary tube of a capillary tube which can be moved in a multidimensional manner for transferring the smallest amounts of liquid to substrate surfaces via a miniature valve serving for filling and can be controlled by another miniature valve used for flushing.
Die Vorteile dieser Lösung sind vor allem darin zu erblicken, daß sich mit dem erfindungsgemäß vorgeschlagenen Verfahren auf einfache Weise eine Vielzahl Trägersubstanzplättchen mit einer einzigen Füllung der Kapillare beschicken lassen. Zur Vermeidung von Probenverschleppung haben sich zwei Spülgänge an der Kapillare als ausreichend erwiesen, so daß ein gegenseitiges Kontaminieren der Probenvorräte und der übertragenen Proben für die Praxis ausreichend ausgeschlossen werden kann. Andererseits kann das Spülen der den Probenmengenvorrat jeweils aufnehmenden Kapillare durch die beiden unabhängig voneinander ansteuerbaren Miniaturventile beliebig oft wiederholt werden.The advantages of this solution can be seen primarily in the fact that the method proposed according to the invention can be used to easily load a large number of carrier substance platelets with a single filling of the capillary. To avoid sample carry-over, two rinse cycles on the capillary have proven to be sufficient so that mutual contamination of the sample stocks and the transferred samples can be sufficiently ruled out for practical use. On the other hand, the rinsing of the capillary in each case holding the sample quantity can be repeated as often as desired by the two independently controllable miniature valves.
In weiterer Ausgestaltung des der Erfindung zugrundeliegenden Verfahrens können mehrere Kapillarröhrchen mit den Miniaturventilen verbunden sein. Dadurch läßt sich ein paralleles Aufbringen mehrerer kleinster Flüssigkeitsmengen auf die Oberfläche eines Substrates oder eines Substratmaterials erzielen.In a further embodiment of the method on which the invention is based, a number of capillary tubes can be connected to the miniature valves. This enables a parallel application of several smallest amounts of liquid to the surface of a substrate or a substrate material.
Werden mehrere Kapillarröhren im Abstand der Vorlagengefäße zueinander eingesetzt, so lassen sich durch paralleles Bearbeiten mehrerer Trägeroberflächen eine größere Anzahl von zu analysierenden Flüssigkeitsproben gleichzeitig aufbringen. Gemäß einer weiteren vorteilhaften Weiterbildung des der Erfindung zugrundeliegenden Gedankens können die mehreren Kapillarröhrchen derart zueinander angeordnet werden, daß deren Abstand voneinander den Abständen zweier Probenmengen von Biopolymersubstanzen entspricht, mit der dieser auf der Oberfläche des Trägersubstrats aufgebracht werden.If several capillary tubes are used at a distance from one another, a larger number of liquid samples to be analyzed can be applied simultaneously by processing several carrier surfaces in parallel. According to a further advantageous development of the idea on which the invention is based, the plurality of capillary tubes can be arranged with respect to one another in such a way that their distance from one another corresponds to the distances between two sample quantities of biopolymer substances with which these are applied to the surface of the carrier substrate.
Je regelmäßiger die Anordnung der zu analysierenden kleinsten Flüssigkeitsmengen auf der Oberfläche der Substratträger ist, desto genauer läßt sich eine Auswertung der aufgebrachten Flüssigkeitsproben durcMühren und desto eher ist ein nachgeschaltetes Analyseverfahren automatisierbar.The more regular the arrangement of the smallest amounts of liquid to be analyzed is on the surface of the substrate carrier, the more precisely an evaluation of the applied liquid samples can be carried out and the sooner a downstream analysis method can be automated.
In bevorzugter Ausgestaltung des erfindungsgemäß vorgeschlagenen Verfahrens lassen sich das eine oder die mehreren Kapillarröhrchen in X- oder Y-Richtung bewegen, wobei ferner eine Eintauchbewegung in Z-Richtung zur Aufnahme eines Flüssigkeitsvorrates aus einem Substratbehälter ausgeführt werden kann. Durch die in die drei Koordinatenrichtungen erfolgende Ansteuerbarkeit der jeweiligen Kapillarröhrchen läßt sich eine maximale Ausnutzung des Raumes auf Analysen Plättchen erzielen. Zur Ansteuerung und zur Verfahrbarkeit der ein oder mehreren Kapillarröhrchen, die die zu analysierenden kleinsten Flüssigkeitsmengen auf die jeweiligen Trägeroberflächen aufbringen, wird in vorteilhafter Weise ein in X-Richtung und Y-Richtung verfahrbarer handelsüblicher rechnergestützter Plotter eingesetzt. Durch die Ansteuerung eines handelsüblichen Plotters mittels eines Personal-Computers (PC) läßt sich eine preiswerte Verfahrbarkeit sowie zuverlässige Ansteuerbarkeit der einen oder mehreren Kapillarröhrchen erzielen.In a preferred embodiment of the method proposed according to the invention, the one or more capillary tubes can be moved in the X or Y direction, and an immersion movement in the Z direction can also be carried out to receive a liquid supply from a substrate container. Due to the controllability of the respective capillary tubes in the three coordinate directions, a maximum utilization of the space on analysis platelets can be achieved. To control and move the one or more capillary tubes that apply the smallest amounts of liquid to be analyzed to the respective carrier surfaces, a commercially available, computer-supported plotter that can be moved in the X and Y directions is advantageously used. By controlling a commercially available plotter by means of a personal computer (PC), inexpensive movement and reliable control of the one or more capillary tubes can be achieved.
Anstelle eines handelsüblichen Plotters, mit dem eine Verfahrbarkeit des einen oder der mehreren Kapillarröhrchen in X-Richtung oder Y-Richtung erzielbar ist, lassen sich auch rechnergestützte Positioniertische einsetzen. Erfindungsgemäß wird weiterhin eine Vorrichtung zur Erzeugung von Biopolymerfeldern auf Trägersubstraten vorgeschlagen, wobei die aufzubringenden Biopolymere einem oder mehreren verschiedenen Probenvorräten entnommen werden können, wobei eine mehrdimensional verfahrbare Glaskapillarspitze einer Kapillarröhre zur Übertragung kleinster Flüssigkeitsmengen auf Substratoberflächen über ein zur BefuIIung dienendes Miniaturventil sowie über ein zur Spülung der Kapillare dienendes Miniaturventil ansteuerbar ist. In weiterer Ausgestaltung der erfindungsgemäß vorgeschlagenen Vorrichtung zur Erzeugung von Biopolymerfeldern sind die Kapillarspitzen an die kleinsten Flüssigkeitsmengen aufnehmenden Enden mit einem Außendurchmesser im Bereich zwischen 10 μm und 1000 μm ausgezogen. In besonders bevorzugter Ausfuhrungsform sind die Kapillarspitzen an dem die kleinsten Flüssigkeitsmengen jeweils aufnehmenden Ende in einem Außendurchmesser von 50 μm bis 300 μm ausgeführt.Instead of a commercially available plotter with which the one or more capillary tubes can be moved in the X direction or the Y direction, computer-assisted positioning tables can also be used. According to the invention, a device for generating biopolymer fields on carrier substrates is also proposed, the biopolymers to be applied being able to be taken from one or more different sample stores, a multidimensionally movable glass capillary tip of a capillary tube for transferring minute amounts of liquid to substrate surfaces via a miniature valve serving for filling and via a flushing device the capillary serving miniature valve can be controlled. In a further embodiment of the device for producing biopolymer fields proposed according to the invention, the capillary tips are drawn out to the smallest liquid-absorbing ends with an outside diameter in the range between 10 μm and 1000 μm. In a particularly preferred embodiment, the capillary tips are designed with an outer diameter of 50 μm to 300 μm at the end that receives the smallest amounts of liquid.
Die Ansteuerung des einen oder der mehreren Kapillarröhrchen kann durch einen rechnergestützten Plotter erfolgen, der ein Verfahren des oder der Kapillarröhrchen jeweils in X- oder Y-Richung erzeugt sowie eine Eintauchbewegung der Kapillarröhre samt des darin aufgenommenen Flüssigkeitsvorrates in Z-Richtung erzeugt, um kleinste Flüssigkeitsmengen auf die Oberflächen von Träger oder Trägermaterialien aufzubringen. In einer erfindungsgemäß vorgeschlagenen Ausführungsvariante lassen sich die Miniaturventile, die im Leitungssystem zum Kapillarröhrchen vorgesehen sind als Schlauchquetschventile ausbilden. Bei diesen kann insbesondere vorgesehen werden, die flexible Schlauchleitung von einem festen Anschlag zu unterstützen, dem gegenüber ein flexibler Anschlag vorgesehen ist, mit welchem der Querschnitt der flexiblen Schlauchleitung verschlossen werden kann. Der ursprüngliche Querschnitt der flexiblen Zuleitung stellt sich aufgrund der Elastizität des Schlauchmaterials von alleine wieder ein. Anhand der Zeichnung, die eine einzige Figur umfaßt, wird die Erfindung nachstehend näher erläutert.The control of the one or more capillary tubes can be carried out by a computer-aided plotter, which produces a movement of the capillary tube or tubes in the X or Y direction as well as an immersion movement of the capillary tube together with the liquid supply accommodated therein in the Z direction by the smallest amounts of liquid to be applied to the surfaces of supports or support materials. In an embodiment variant proposed according to the invention, the miniature valves that are provided in the line system to the capillary tube can be designed as pinch valves. These can in particular be provided to support the flexible hose line by a fixed stop, in contrast to which a flexible stop is provided, with which the cross section of the flexible hose line can be closed. The original cross-section of the flexible supply line is restored automatically due to the elasticity of the hose material. The invention is explained in more detail below with reference to the drawing, which comprises a single figure.
Die einzige Figur zeigt eine Vorrichtung zur Durchführung des erfindungsgemäßen vorgeschlagenen Verfahrens, bei dem das Kapillarröhrchen samt der Kapillarröhrchenspitze in drei Richtungen verfahren werden kann.The single figure shows a device for carrying out the proposed method according to the invention, in which the capillary tube together with the capillary tube tip can be moved in three directions.
Aus der Darstellung gemäß der einzigen Figur geht ein Kapillarröhrchen 2 - vorzugsweise aus Glas bestehend - hervor, welches zur Aufnahme einer zur pipettierenden Biopolymerlösung dient. Diese wird in einem Probemengenbehälter 3, auch als Mikrotiterplatten-Topf bezeichnet, eingetaucht. Das Öffnen des ersten Miniaturventils 5 - in Gestalt eines Schlauchquetschventils beispielsweise - zur Atmosphäre 6, bewirkt einen Druckausgleich mit der Atmosphäre 6, so daß aufgrund der Kapillarwirkung durch die Kapillarspitze 1 ein Probemengenvorrat 13 in das Innere des KapiUarröhrchens 2 hochsteigt.From the illustration according to the single figure, a capillary tube 2 - preferably consisting of glass - emerges, which serves to hold a biopolymer solution to be pipetted. This is immersed in a sample quantity container 3, also referred to as a microtiter plate pot. The opening of the first miniature valve 5 - in the form of a pinch valve, for example - to the atmosphere 6 brings about a pressure equalization with the atmosphere 6, so that a sample quantity 13 rises into the interior of the capillary tube 2 due to the capillary action by the capillary tip 1.
Das Kapillarröhrchen 2 besteht in bevorzugter Ausführungsform aus Glas, der Außendurchmesser der Kapillarspitze liegt im Durchmesserbereich zwischen 10 μm und 1000 μm, in besonders bevorzugten Ausfu irungsformen des erfindungsgemäß vorgeschlagenen KapiUarröhrchens zwischen 50 μm und 300 μm. Zum Aufnehmen der auf die Oberflächen 14 von Trägermaterial 4 aufzubringenden Biopolymerlösungsproben wird die Kapillarspitze 1 des KapiUarröhrchens 2 in die Vorlagelösung, die im Behälter 3 enthalten ist, eingetaucht. Die Vorlagelösungen können sich beispielsweise in den Töpfchen 3 einer Mikrotiterplatte befinden, welche 96 oder 384 oder auch 1536 einzelne Proben aufnehmen kann. Beim Eintauchen der Kapillarspitze 1 in die Vorlagenlösung bleibt das Ventil 1, welches die Zuleitung eines Gasstromes in das KapiUarröhrchens 2 steuert, zunächst geschlossen. Das Ventil 5 hingegen, welches am T-Stück 11 mit der flexiblen Zuleitung 19 zum Kapillarröhrchen 2 aufgenommen ist, wird geöffnet und stellt somit einen Druckausgleich zur umgebenden Atmosphäre 6 dar. Aufgrund der sich einstellenden Kapillarkraft, bewegt sich aus dem Töpfchen 3 der Mikrotiterplatte, in welches die Kapillarspitze 1 gerade eingetaucht ist, ein Flüssigkeitsvorrat 13 in das Innere des Kapillarröhrchens 2.In a preferred embodiment, the capillary tube 2 is made of glass, the outer diameter of the capillary tip is in the diameter range between 10 μm and 1000 μm, in particularly preferred embodiments of the capillary tube proposed according to the invention between 50 μm and 300 μm. In order to take up the biopolymer solution samples to be applied to the surfaces 14 of carrier material 4, the capillary tip 1 of the capillary tube 2 is immersed in the initial solution contained in the container 3. The reference solutions can be located, for example, in pots 3 of a microtiter plate, which can hold 96 or 384 or even 1536 individual samples. When the capillary tip 1 is immersed in the template solution, the valve 1, which controls the supply of a gas flow into the capillary tube 2, initially remains closed. The valve 5, on the other hand, which is received on the T-piece 11 with the flexible feed line 19 to the capillary tube 2, is opened and thus represents a pressure compensation to the surrounding atmosphere 6. a liquid supply 13 moves out of the potty 3 of the microtiter plate, into which the capillary tip 1 has just been immersed, into the interior of the capillary tube 2.
Danach wird die Kapillarspitze 1 aus der Vorlagelösung herausgezogen, anschließend in X- und Y-Richtung positioniert über die Oberfläche 14 eines Trägers 4 gefahren, auf welche dann die einzelnen zu analysierenden Flüssigkeitsproben in einem Biopolymermuster 15 unter Einhaltung genau definierter Abstände 16 voneinander aufgebracht werden. Beim Absenken der Kapillarspitze 1 in Richtung 12 (Z-Richtung) auf die Oberfläche 14 des Trägers 4 hin, wird die Stellung des ersten Ventils 5 und die Stellung des zweiten Ventils 7 nicht geändert. Durch eine Ansteuervorrichtung 20, welche ein Verfahren des Kapillarröhrchens 2 in X-Richtung, Y-Richtung und Z-Richtung bewirkt; lassen sich unter Zwischenschaltung eines handelsüblichen Plotters auf eine sehr einfache und kostengünstige Weise die Kapillarspitzen 1 wieder von der Oberfläche 14 des Trägermaterials 4 abheben, wobei ein kleiner Fleck von Biopolymerlösung an der Oberfläche 14 des Trägermaterials 4 zurückbleibt. Durch eine geeignete Ansteuerung 20 eines beispielsweise eingesetzten Plotters kann ein Verfahren des Kapillarröhrchens 2 samt darin aufgenommenen Flüssigkeitsvorrat 13 in X- und Y-Richtung gemäß der Ansteuerung des Plotters erfolgen, so daß sukzessive weitere Trägeroberflächen 14 von Trägermaterial 4 in der gleichen Weise mit Biopolymerflecken versehen werden können. Die Biopolymerflecken werden dabei vorzugsweise in einem regelmäßigen Muster 15 ausgebracht, wobei sich die Biopolymermuster vorzugsweise dadurch auszeichnen, daß die einzelnen Probenflecken einen gleichmäßigen Abstand 16 voneinander aufweisen.The capillary tip 1 is then pulled out of the stock solution, then positioned in the X and Y directions and moved over the surface 14 of a carrier 4, to which the individual liquid samples to be analyzed are then applied in a biopolymer pattern 15 while maintaining precisely defined distances 16 from one another. When the capillary tip 1 is lowered in the direction 12 (Z direction) toward the surface 14 of the carrier 4, the position of the first valve 5 and the position of the second valve 7 are not changed. By a control device 20, which causes the capillary tube 2 to move in the X direction, Y direction and Z direction; With the interposition of a commercially available plotter, the capillary tips 1 can be lifted off the surface 14 of the carrier material 4 again in a very simple and cost-effective manner, a small spot of biopolymer solution remaining on the surface 14 of the carrier material 4. A suitable control 20 of a plotter used, for example, allows the capillary tube 2 and the liquid supply 13 contained therein to be moved in the X and Y directions according to the control of the plotter, so that successively further carrier surfaces 14 of carrier material 4 are provided with biopolymer stains in the same way can be. The biopolymer stains are preferably applied in a regular pattern 15, the biopolymer patterns preferably being characterized in that the individual sample stains are at a uniform distance 16 from one another.
Vor der Aufnahme einer neuen Probe, d.h. vor dem Eintauchen in ein neuesBefore taking a new sample, i.e. before diving into a new one
Vorlagengefäß 3 muß die Kapillarspitze 1 zur Vermeidung von Probenverschleppung gründlich gereinigt werden. Dazu wird die Kapillarspitze 1 zunächst über ein Abfallgefäß 9 gefahren; danach wird das erste Ventil 5, eine Verbindung zur Atmosphäre 6 darstellend, geschlossen und durch das zweite Miniaturventil 7 ein Gasstrom, vorzugsweise gefilterte Luft oder Stickstoff, in das Innere des Kapillarröhrchens 2 über die flexible Zuleitung 19 eingelassen.The capillary 1 must be cleaned thoroughly to avoid sample carry-over. For this purpose, the capillary tip 1 is first moved over a waste container 9; then the first valve 5, one Representing the connection to the atmosphere 6, closed and through the second miniature valve 7 a gas stream, preferably filtered air or nitrogen, let into the interior of the capillary tube 2 via the flexible feed line 19.
Zum gründlichen Waschen wird nun die Kapillarspitze 1 über ein Waschgefäß 10 verfahren, wobei nach Schließen des zweiten Miniaturventils 7, d.h. des Gasventils und Öffnen des ersten Miniaturventils 5, d.h. des Außenluftventils, ein Absenken der Kapillarspitze 1 in die Waschflüssigkeit erfolgt. Durch die einsetzende Kapillarkraft strömt nun die Waschflüssigkeit in das Innere des Kapillarröhrchens 2 ein. Die Kapillarspitze 1 des Kapillarröhrchens 2 wird anschließend wieder über das Abfallgefäß 9 gefahren und die Waschflüssigkeit durch Öffnen des zweiten Miniaturventils 7 und Schließen des ersten Miniaturventils 5 zur Atmosphäre 6 ausgestoßen. Alternativ kann dies auch unter Stellung im eingetauchten Zustand in die Waschflüssigkeit geschehen, wenn dafür gesorgt ist, daß die Waschflüssigkeit im Waschgefäß 10 beispielsweise durch kontinuierliches Pumpen laufend erneuert wird. Dazu kann dem Waschgefäß 10 ein Pumpenkreislauf 17 für das Waschfluid zugeordnet sein, in welchem einerseits neues, unverbrauchtes Waschfluid dem Waschgefäß 10 zuführbar ist, andererseits bereits verbrauchtes Waschfluid oder abgelagerte Partikel am Boden des Waschgefäßes kontinuierlich entfernt werden.For thorough washing, the capillary tip 1 is now moved over a washing vessel 10, whereby after closing the second miniature valve 7, i.e. the gas valve and opening the first miniature valve 5, i.e. of the outside air valve, the capillary tip 1 is lowered into the washing liquid. Due to the onset of capillary force, the washing liquid now flows into the interior of the capillary tube 2. The capillary tip 1 of the capillary tube 2 is then moved again over the waste container 9 and the washing liquid is expelled to the atmosphere 6 by opening the second miniature valve 7 and closing the first miniature valve 5. Alternatively, this can also be done while in the immersed state in the washing liquid if it is ensured that the washing liquid in the washing vessel 10 is continuously renewed, for example by continuous pumping. For this purpose, a pump circuit 17 for the washing fluid can be assigned to the washing vessel 10, in which, on the one hand, new, unused washing fluid can be fed to the washing vessel 10, and on the other hand, already used washing fluid or deposited particles on the bottom of the washing vessel are continuously removed.
Das Aufnehmen und Ausstoßen von Waschfluid aus dem Inneren des Kapillarröhrchens 2 kann durch entsprechendes Betätigen der beiden Miniaturventile 5 bzw. 1, die vorzugsweise als Schlauchquetschventile ausgebildet sind, beliebig oft durchgeführt werden, bis das Innere des Kapillarröhrchens 2 und dessen Außenseite ausreichend gereinigt sind und daraufhin eine Fortsetzung eines Aufbringens von Biopolymer-Arrays auf zu beschickende Oberseite 14 von Trägersubstraten 4 erfolgen kann. Anhand eines Ausfülirungsbeispiels sei der Aufbau der in Figur 1 dargestellten Apparatur naclifolgend näher beschrieben. Auf dem Wagen eines handelsüblichen in X- und Y- Richtung befahrbaren Plotters (beispielsweise ROLAND DXY 1150A) ist ein kleiner Träger für zwei Miniatur-Schlauchquetschventile befestigt. Aus einer Glasmikropipette 2, beispielsweise einer Borosilikat-Glaskapillare der Firma Hilgenberg, Außendurchmesser 1,0 mm, Innendurchmesser 0,8 mm wurde in einer Gasflamme eine Spitze 1 mit einem Außendurchmesser von etwa 200 μm ausgezogen. Der Außendurchmesser der Glaspipette 2 (1 mm) paßt gängig, jedoch mit ausreichend kleinem Spiel in die Edelstahlkanüle einer Spritze 1,5 x 100. Diese Kanüle läßt sich in einfacher Weise als Führungselement am Federhalter eines in X- bzw. in Y-Richtung verfahrbaren handelsüblichen Plotters befestigen. Die Glasmikropipette 2 ist in vertikaler Richtung in dieser Führungskanüle leicht beweglich und wird durch den flexiblen Schlauch 19 nicht nach unten gedrückt. Alternativ kann diese Kraft durch eine kleine Feder unterstützt werden.The absorption and ejection of washing fluid from the inside of the capillary tube 2 can be carried out as often as desired by appropriately actuating the two miniature valves 5 and 1, which are preferably designed as pinch valves, until the inside of the capillary tube 2 and its outside are sufficiently cleaned and then a continuation of the application of biopolymer arrays to the top side 14 of the carrier substrates 4 to be loaded can take place. The structure of the apparatus shown in FIG. 1 will be described in more detail below with reference to a sample. On the cart of a standard plotter that can be driven in the X and Y directions (for example ROLAND DXY 1150A) there is a small carrier for two miniature pinch valves attached. From a glass micropipette 2, for example a borosilicate glass capillary from Hilgenberg, outer diameter 1.0 mm, inner diameter 0.8 mm, a tip 1 with an outer diameter of approximately 200 μm was drawn out in a gas flame. The outer diameter of the glass pipette 2 (1 mm) fits commonly, but with a sufficiently small amount of play into the stainless steel cannula of a 1.5 x 100 syringe. This cannula can be easily moved as a guide element on the spring holder of an X or Y direction attach commercially available plotters. The glass micropipette 2 is easily movable in the vertical direction in this guide cannula and is not pressed down by the flexible tube 19. Alternatively, this force can be supported by a small spring.
Mit den Befehlen „pen-up" und „pen-down" des Plotters, angesteuert über einen handelsüblichen PC, kann das Fülirungselement, welches das Kapillarröhrchen 2 aufnimmt, auf- und abbewegt werden. Über das in der Zuleitung von den Ventilen 5,7 zum flexiblen Schlauch 19 vorgesehene T-Verbindungsstück 11, wird die Verbindung zum Kapillarröhrchen 2 hergestellt.With the commands "pen-up" and "pen-down" of the plotter, controlled via a commercially available PC, the filling element, which holds the capillary tube 2, can be moved up and down. The connection to the capillary tube 2 is established via the T-connector 11 provided in the supply line from the valves 5, 7 to the flexible hose 19.
Es hat sich überraschenderweise gezeigt, daß sich mit dieser Anordnung so viele Trägerplättchen 4, wie auf dem DIN A 3 Arbeitsbereich des verwendeten Plotters neben der Vorlagenmikrotite latte unterbringbar sind, mit einer einzigen Füllung des Innenraumes des Kapillarröhrchens 2 mit einem Flüssigkeitsvorrat 13 beschicken lassen. Bei der Herstellung von Trägern 4, mit Biopolymermustern 15 aus Nukleinsäure hat es sich gezeigt, daß im Normalfall zwei Waschschritte in einer Lösung von 0,5% TWEEN-80 völlig ausreichen, um eine in der Praxis störende Probenverschleppung auszuschließen. Es ist beim Reinigen derIt has surprisingly been found that with this arrangement, as many carrier plates 4 as can be accommodated on the DIN A3 working area of the plotter used in addition to the master microtite latte, can be charged with a single filling of the interior of the capillary tube 2 with a liquid supply 13. In the production of carriers 4 with biopolymer patterns 15 made of nucleic acid, it has been shown that two washing steps in a solution of 0.5% TWEEN-80 are normally sufficient to rule out sample carryover which is disruptive in practice. It is when cleaning the
Glaskapillare 2 dafür zu sorgen, daß die Kapillarspitze 1 an der Innenseite vonGlass capillary 2 to ensure that the capillary tip 1 on the inside of
Waschfluid benetzt wird, welches über den aufzubringenden Gasstrom, regelbar durch das zweite Miriiaturventil 1, wieder aus dem Innenraum der Glaskapillare ausgestoßen werden kann. Durch Eintauchen der Kapillarspitze 1 aus Glas in einWashing fluid is wetted, which can be expelled again from the interior of the glass capillary via the gas flow to be applied, controllable through the second mechanical valve 1. By immersing the capillary tip 1 made of glass in a
Waschfluid enthaltendes Gefäß ist sichergestellt, daß auch die Außenseite der Kapillarspitze 1 mit dem Waschfluid in Kontakt kommt und auf diese Weise von Rückständen der vorhergehend analysierten Probe jeweils gereinigt wird. Beim Ausblasen des Waschfluides im eingetauchten Zustand des Kapillarröhrchens 2 ist festzustellen, daß durch eine Blasenbildung in der Waschlösung mit der hierbei an der Kapillare 2 aufsteigenden Blase auch die Außenseite der Kapillare des Kapillarröhrchens 2 gründlich gewaschen wird.Vessel containing washing fluid ensures that the outside of the Capillary tip 1 comes into contact with the washing fluid and is thus cleaned of residues of the previously analyzed sample. When blowing out the washing fluid in the immersed state of the capillary tube 2, it should be noted that the outside of the capillary of the capillary tube 2 is also thoroughly washed by the formation of bubbles in the washing solution with the bubble rising on the capillary 2.
Mit der vorgeschlagenen Anordnung ist im Vergleich zu bisher üblichen Beschickungsanordnungen ein enormer wirtschaftlicher Vorteil zu erblicken. Einerseits spielt die Verfügbarkeit sehr genau bezogener handelsüblicher Kapillarröhrchen 2 im Vergleich zur Herstellung genau geschliffener und speziell ausgeformter Metallstifte eine Rolle, andererseits lassen sich X- Y- Plotter als automatische ansteuerbare Positioniertische sehr preiswert beschaffen und in ein erfindungsgemäß vorgeschlagenes System zur Erzeugung von Biopolymer- Arrays auf Oberflächen von Trägern einbinden. With the proposed arrangement, an enormous economic advantage can be seen in comparison to previously customary loading arrangements. On the one hand, the availability of very precisely related commercially available capillary tubes 2 plays a role in comparison to the production of precisely ground and specially shaped metal pens, on the other hand, X-Y plotters can be procured very inexpensively as automatically controllable positioning tables and in a system according to the invention for producing biopolymer arrays Integrate on surfaces of supports.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Kapillarspitze1 capillary tip
2 Kapillarröhre2 capillary tubes
3 Substratbehälter3 substrate containers
4 Träger4 carriers
5 erstes Miniaturventil5 first miniature valve
6 Atmosphäre6 atmosphere
7 zweites Miniaturventil7 second miniature valve
8 Zuleitung Gasstrom8 Gas flow supply line
9 Abfallgefäß9 waste container
10 Waschgefäß10 washing vessel
11 T- Verbindungsstück11 T connector
12 Verfahrweg Z- Richtung Kapillarröhrchen 212 Travel Z direction towards capillary tube 2
13 aufgenommene Probe13 recorded sample
14 Trägeroberfläche14 carrier surface
15 Biopolymermuster15 biopolymer patterns
16 Abstand16 distance
17.1 Waschfluidzulauf17.1 Washing fluid supply
17.2 Waschfluidablauf17.2 Wash fluid drain
18 Waschfluidniveau18 washing fluid level
19 flexible Zuleitung19 flexible supply line
20 Ansteuervorrichtung20 control device
X-RichtungX-direction
Y-RichtungY-direction
Z-Richtung (Applikationsrichtung) Z direction (application direction)

Claims

Patentansprüche claims
1. Verfahren zur Erzeugung von Biopolymer-Feldern (15) auf Oberflächen (14) von Trägersubstraten (4), wobei die aufzubringenden Biopolymere einem oder mehreren verschiedenen Probenvorräten (3) enttiommen werden, dadurch gekennzeichnet, daß eine mehrdimensional verfahrbare Kapillar spitze (1) einer Kapillarröhre (2) zur Übertragung kleinster Flüssigkeitsmengen auf1. A method for producing biopolymer fields (15) on surfaces (14) of carrier substrates (4), the biopolymers to be applied being removed from one or more different sample stocks (3), characterized in that a capillary tip which can be moved in several dimensions (1) a capillary tube (2) for transferring the smallest amounts of liquid
Substratoberflächen (14) über ein zur BefuIIung dienendes Miniaturventil (5) und über ein zur Spülung des Kapillarröhrchens (2) dienendes Miniaturventil (7) angesteuert wird.Substrate surfaces (14) are controlled via a miniature valve (5) serving for filling and via a miniature valve (7) serving for flushing the capillary tube (2).
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß mehrere Kapillarröhrchen (2) an die Miniaturventile (5), (7) angeschlossen sind.2. The method according to claim 1, characterized in that several capillary tubes (2) to the miniature valves (5), (7) are connected.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß die mehreren Kapillarröhrchen (2) parallel zueinander betrieben werden.3. The method according to claim 2, characterized in that the plurality of capillary tubes (2) are operated in parallel.
4. Verfahren gemäß Anspruch 2 dadurch gekennzeichnet, daß der Abstand, in welchem die mehreren Kapillarröhrchen (2) zueinander angeordnet sind, dem Abstand der Vorratsgefäße (3) zueinander auf einer Vorlageplatte entsprechen.4. The method according to claim 2, characterized in that the distance at which the plurality of capillary tubes (2) are arranged to each other correspond to the distance between the storage vessels (3) to each other on a template plate.
5. Verfahren gemäß der Ansprüche 1 und/oder 2, dadurch gekennzeichnet, daß die eine oder mehreren Kapillarröhren (2) in X-, Y-Richtung bewegbar sind und eine Eintauchbewegung (12) in Z-Richtung zur Aufnahme eines Flüssigkeitsvorrates (13) aus dem Probenbehälter (3) ausfuhren. 5. The method according to claims 1 and / or 2, characterized in that the one or more capillary tubes (2) are movable in the X, Y direction and an immersion movement (12) in the Z direction for receiving a liquid supply (13) export from the sample container (3).
6. Verfahren gemäß der Ansprüche 1 und/oder 2, dadurch gekeimzeichnet, daß zum Verfahren das ein oder die mehreren Kapillarröhrchen (2) in X-Richtung und Y-Richtung ein handelsüblicher rechnerstützter Plotter eingesetzt wird.6. The method according to claims 1 and / or 2, characterized in that a one or more capillary tubes (2) in the X direction and Y direction are used for the method, a commercially available computer-supported plotter.
7. Verfahren gemäß der Ansprüche 1 und/oder 2, dadurch gekennzeichnet, daß zum Verfahren der ein oder mehreren Kapillarröhren (2) in X-Richtung oder X-Richtung ein rechnergestützter Positioniertisch eingesetzt wird.7. The method according to claims 1 and / or 2, characterized in that for moving the one or more capillary tubes (2) in the X direction or X direction, a computer-assisted positioning table is used.
8. Vorrichtung zur Erzeugung von Biopolymer-Feldern (15) auf Oberflächen (14) von Trägersubstraten (4), wobei die aufzubringenden Biopolymere ein oder mehreren verschiedenen Probenvorräten (3) entnommen werden, dadurch gekennzeichnet, daß ein oder mehrere mehrdimensional verfahrbare Glaskapillarröhrchen (2) mit Kapillarspitze (1) zur Übertragung kleinster Flüssigkeitsmengen auf Substratoberflächen (14) über ein zur BefuIIung dienendes erstes Miniaturventil (5) und über ein zur Spülung des Kapillarröhrchens (2) dienendes Miniaturventil (7) angesteuert werden.8. Apparatus for producing biopolymer fields (15) on surfaces (14) of carrier substrates (4), the biopolymers to be applied being taken from one or more different sample stores (3), characterized in that one or more multi-dimensionally movable glass capillary tubes (2 ) with a capillary tip (1) for transferring the smallest amounts of liquid to substrate surfaces (14) via a first miniature valve (5) for filling and a miniature valve (7) for flushing the capillary tube (2).
9. Vorrichtung gemäß Ansprach 8, dadurch gekennzeichnet, daß die Kapillarspitzen (1) am flüssigkeitsaufnehmenden Ende in einem9. The device according spoke 8, characterized in that the capillary tips (1) at the liquid-absorbing end in one
Außendurchmesser in einem Bereich zwischen 10 μm und 1000 μm ausgezogen ist.Outside diameter is extended in a range between 10 microns and 1000 microns.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Kapillarröhrchenspitze (1) am flüssigkeitsaufhehmenden Ende einen10. The device according to claim 9, characterized in that the capillary tube tip (1) at the liquid-absorbing end
Außendurchmesser zwischen 50 μm und 300 μm aufweist.Has outside diameter between 50 microns and 300 microns.
11. Vorrichtung nach Anspruch 8 dadurch gekennzeichnet, daß die Ansteuerung einer oder mehrerer Kapillarröhrchen (2) durch einen rechnergestützten X-, Y- Plotter erfolgt, der ein Verfahren des oder der Kapillarröhrchen (2) in X-11. The device according to claim 8, characterized in that the control of one or more capillary tubes (2) is carried out by a computer-aided X-, Y-plotter, which is a method of the or the capillary tube (2) in X-
Richtung und/oder Y-Richtung bewirkt. Direction and / or Y direction effects.
12. Vorrichtung gemäß Ansprach 8 dadurch gekennzeichnet, daß die Miniaturventile (5),(7) als Schlauch-Quetschventile ausgebildet sind.12. The device according spoke 8, characterized in that the miniature valves (5), (7) are designed as hose pinch valves.
13. Vorrichtung gemäß Ansprach 12, dadurch gekennzeichnet, daß die Schlauch- Quetschventile (5),(7) als eine flexible Zuleitung (19) zur Glaskapillare (2) umgebende Anschläge ausgebildet sind, von denen einer relativ zur flexiblen Schlauchleitung (19) fest und der andere in Bezug auf den festen Anschlag zur Querschnittsverengung zur Herbeiführung eines Verschlusses in der flexiblen Schlauchleitung (19) bewegbar ist. 13. The device according spoke 12, characterized in that the hose pinch valves (5), (7) as a flexible feed line (19) to the glass capillary (2) surrounding stops, one of which is fixed relative to the flexible hose line (19) and the other is movable in relation to the fixed stop for narrowing the cross section to bring about a closure in the flexible hose line (19).
EP01940302A 2000-04-06 2001-04-06 Method and device for producing biopolymer arrays Ceased EP1303349A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10017105A DE10017105A1 (en) 2000-04-06 2000-04-06 Method and device for producing biopolymer fields
DE10017105 2000-04-06
PCT/EP2001/003999 WO2001076732A1 (en) 2000-04-06 2001-04-06 Method and device for producing biopolymer arrays

Publications (1)

Publication Number Publication Date
EP1303349A1 true EP1303349A1 (en) 2003-04-23

Family

ID=7637776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940302A Ceased EP1303349A1 (en) 2000-04-06 2001-04-06 Method and device for producing biopolymer arrays

Country Status (13)

Country Link
US (1) US20030143316A1 (en)
EP (1) EP1303349A1 (en)
JP (1) JP2003530548A (en)
KR (1) KR20020097216A (en)
CN (1) CN1301796C (en)
AU (1) AU2001273927A1 (en)
CA (1) CA2405160A1 (en)
CZ (1) CZ20023316A3 (en)
DE (1) DE10017105A1 (en)
IL (2) IL152050A0 (en)
NO (1) NO20024711L (en)
RU (1) RU2290259C2 (en)
WO (1) WO2001076732A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146345B2 (en) * 2000-08-24 2006-12-05 Weik Iii Martin Herman Parking barrier with accident event logging and self-diagnostic control system
DE10135963B4 (en) 2001-07-24 2005-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for pipetting a liquid
US20050019223A1 (en) * 2001-08-10 2005-01-27 Platt Albert Edward Liquid delivery apparatus and method
WO2003013718A1 (en) * 2001-08-10 2003-02-20 Oxford Glycosciences (Uk) Ltd Liquid delivery apparatus and method
DE10246446B4 (en) * 2002-10-04 2006-05-24 Bruker Optik Gmbh Method for applying a sample film to a sample carrier
DE102004050466A1 (en) * 2004-10-16 2006-04-20 Olympus Diagnostica Lab Automation Gmbh Device for pipetting
US9222819B2 (en) 2009-02-20 2015-12-29 University Of Southern California Tracking and controlling fluid delivery from chamber
US20110303016A1 (en) * 2009-02-24 2011-12-15 University Of Southern California Flexible polymer-based encapsulated-fluid devices
WO2016203051A1 (en) * 2015-06-19 2016-12-22 Imec Vzw Device for surface functionalization and detection
CN105170204B (en) * 2015-08-25 2017-01-18 辽宁中医药大学 Liquid continuous switching structure and micro fluidic chip comprising same
JP7332701B2 (en) 2019-02-01 2023-08-23 エックスティーピーエル エス.アー. Fluid printing device
WO2020157548A1 (en) * 2019-02-01 2020-08-06 Xtpl S.A. Method of printing fluid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920376A (en) * 1982-07-27 1984-02-02 Osaka Gas Co Ltd Sealing of pipe
JPH07103986A (en) * 1993-09-30 1995-04-21 Kayagaki Irika Kogyo Kk Method of cleaning nozzle for inspection and dilution/ dispersion device for inspection
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5958342A (en) * 1996-05-17 1999-09-28 Incyte Pharmaceuticals, Inc. Jet droplet device
ATE259068T1 (en) * 1996-05-31 2004-02-15 Packard Instrument Co Inc DEVICE FOR HANDLING MICROLIQUID QUANTITIES
CN1093782C (en) * 1996-07-26 2002-11-06 拜奥-多特公司 Dispensing apparatus having improved dynamic range
ATE259056T1 (en) * 1996-11-06 2004-02-15 Sequenom Inc METHOD FOR MASS SPECTROMETRY
AU748226B2 (en) * 1997-10-31 2002-05-30 Applera Corporation Method and apparatus for making arrays
JPH11337557A (en) * 1998-05-25 1999-12-10 Nippon Laser Denshi Kk Micro dispenser device
CN1315913A (en) * 1998-07-07 2001-10-03 笛卡尔技术公司 Tip design and random access array for microfluidic transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0176732A1 *

Also Published As

Publication number Publication date
KR20020097216A (en) 2002-12-31
RU2290259C2 (en) 2006-12-27
NO20024711D0 (en) 2002-10-01
NO20024711L (en) 2002-11-21
US20030143316A1 (en) 2003-07-31
CZ20023316A3 (en) 2003-04-16
CN1422175A (en) 2003-06-04
AU2001273927A1 (en) 2001-10-23
WO2001076732A1 (en) 2001-10-18
CA2405160A1 (en) 2001-10-18
JP2003530548A (en) 2003-10-14
IL152050A0 (en) 2003-05-29
DE10017105A1 (en) 2001-10-11
RU2002129601A (en) 2004-03-27
IL152050A (en) 2006-09-05
CN1301796C (en) 2007-02-28

Similar Documents

Publication Publication Date Title
DE60018392T2 (en) METHOD AND APPARATUS FOR DISTRIBUTING DROPLETS ON A SUBSTRATE
DE69825591T2 (en) SYSTEM AND MANUFACTURING METHOD FOR SMALL VOLUME TRANSMISSION ELEMENTS
DE2011239C3 (en) Device for transferring liquid into receptacles
DE60317305T2 (en) CONTACTLESS METHOD FOR DISTRIBUTING LOW LIQUID QUANTITIES
DE60116441T2 (en) Method and device for dispensing liquids
DE60208231T2 (en) ROBOT SYSTEM WITH MULTIPLE POSITION ADJUSTABLE PIPETTES
EP1738179B1 (en) Device for conveying or examining liquids
EP1303349A1 (en) Method and device for producing biopolymer arrays
WO2000008474A1 (en) Dosing head for parallel treatment of a plurality of fluid probes
DE19913076A1 (en) Device and method for applying microdroplets to a substrate
EP1070963B1 (en) Rinsing tray
EP0048452A1 (en) Process for the distribution of samples from a first set of containers
EP1274511B1 (en) Method and device for microdosing the smallest amounts of liquid for biopolymer arrays
DE19919135A1 (en) Method and device for applying small amounts of liquid
DE4314180A1 (en) Device for automatic transfer of esp. medical samples e.g. blood, urine etc. - has samples aspirated into disposable transfer units, which are washed for repeated use by second action of aspiration device
DE2953265A1 (en) MINIATURE REACTION VESSEL AND METHOD AND APPARATUS FOR INTRODUCING A MICROVOLUME OF LIQUID INTO SUCH VESSEL
DE10102152C1 (en) Micro-dosing device applicable in pharmaceutical and biotechnological research, comprises a media reservoir for holding a liquid to be dosed, a nozzle, and a drive unit for the liquid located in the reservoir and the nozzle
WO1998016312A1 (en) Pipette
DE4004198A1 (en) Controlling biochemical liq. injection into multiple oocytes - by automatic delivery from valve-controlled cannula
DE2330135A1 (en) METHOD FOR SUCTIONING A LIQUID AND SUCTION DEVICE FOR CARRYING OUT THE METHOD
EP3600673B1 (en) Method and a dosing device for contact dosing of liquids
DE19933838A1 (en) Needle and liquid transfer method and method of making the needle
WO2006040040A1 (en) Pipetting device
LU100772B1 (en) Method for producing at least one closed region on a carrier surface of a carrier
DE19742005A1 (en) Disposable-capillary micropipette forming part of multiple unit used in combinatorial investigations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021105

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040512

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHES KREBSFORSCHUNGSZENTRUM STIFTUNG DES OEFF

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080210