EP1301937A1 - Faceplate provided with electrodes made of conductive material - Google Patents

Faceplate provided with electrodes made of conductive material

Info

Publication number
EP1301937A1
EP1301937A1 EP01945408A EP01945408A EP1301937A1 EP 1301937 A1 EP1301937 A1 EP 1301937A1 EP 01945408 A EP01945408 A EP 01945408A EP 01945408 A EP01945408 A EP 01945408A EP 1301937 A1 EP1301937 A1 EP 1301937A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
dielectric layer
electrode
alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01945408A
Other languages
German (de)
French (fr)
Other versions
EP1301937B1 (en
Inventor
Agide Moi
Luc Berthier
Jean-Pierre Creusot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Plasma SAS
Original Assignee
Thomson Plasma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Plasma SAS filed Critical Thomson Plasma SAS
Publication of EP1301937A1 publication Critical patent/EP1301937A1/en
Application granted granted Critical
Publication of EP1301937B1 publication Critical patent/EP1301937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/225Material of electrodes

Definitions

  • the present invention relates to a slab comprising a glass substrate on which is made at least one electrode made of a conductive material. It relates more particularly to the material for producing the electrodes, in particular when the panel is used in the manufacture of display panels such as plasma panels.
  • the present invention will be described with reference to the manufacture of plasma panels.
  • the present invention is not limited to the process for manufacturing plasma panels, but can be used in all types of processes requiring materials of the same type under analogous conditions.
  • PDP Plasma panels generally called PDP for "Plasma Display Panel” in English are display screens of the flat screen type.
  • PDPs There are several types of PDP which all work on the same principle of an electric discharge in a gas, accompanied by an emission of light.
  • PDPs consist of two insulating glass tiles, conventionally made of soda-lime type glass, each supporting at least one network of conductive electrodes and delimiting between them a gas space. The slabs are joined together so that the electrode arrays are orthogonal, each intersection of electrodes defining an elementary light cell to which a gas space corresponds.
  • the electrodes of a plasma panel must have a certain number of characteristics. Thus, they must have a low electrical resistivity. In fact, since the electrodes supply several thousand cells, a high current flows inside the electrode which can go up to 500 mA at 1 A instantaneous. On the other hand, since plasma panels have a large size of up to 60 "diagonal, the length of the electrodes is large. Under these conditions, too high a resistance may lead to a significant loss of light output due to the voltage drop linked to the flow of current through the electrodes.
  • the electrode array is covered with a thick layer of a dielectric material, generally a borosilicate glass. Therefore, the electrodes must have a high resistance to corrosion, in particular when the dielectric layer is fired; indeed, during this phase of the process, the reactions between the dielectric layer and the electrode, or even between the glass of the slab and the electrode, lead to an increase in the electrical resistance of the electrode and the products of this reaction lead a degradation of the optical transmission, of the dielectric constant and of the breakdown voltage of the dielectric layer.
  • a dielectric material generally a borosilicate glass.
  • a first technique consists in depositing a paste or ink based on silver, gold or a similar material.
  • This conductive paste is deposited in a thickness generally greater than or equal to 5 ⁇ m, by screen printing, vaporization, various coating processes.
  • the electrodes are obtained directly during deposition or by a photoengraving process.
  • this technique requires specific annealing at a temperature above 500 ° C. to obtain conduction as well as the use of several specific dielectric layers to minimize the diffusion of the electrode materials in the dielectric, this diffusion being liable to degrade the electrical and optical characteristics of the panel.
  • the second technique consists of a metallic deposit in thin layers.
  • the thickness of the layers is from a few hundred angstroms to a few microns.
  • this technique has a number of drawbacks. It requires the implementation of a more complex chemical etching process, with the use of at least two different etching solutions. Then, after the chemical etching, the width of each of the layers of the stack can be different, giving very irregular electrode sides, which favors the trapping of the bubbles during the firing of the dielectric layer.
  • the present invention therefore aims to remedy the drawbacks mentioned above of the thin film deposition technique by proposing a new material for producing an array of electrodes on a glass substrate.
  • the subject of the present invention is a slab comprising a glass substrate on which at least one electrode made of a conductive material is produced, characterized in that, at least at the interface between said electrodes and the glass and / or at least at the interface between said electrodes and the dielectric layer, the conductive material of the electrodes consists of a metal alloy based on aluminum and / or zinc having a melting point above 700 ° C.
  • the metal alloy based on aluminum and / or zinc comprises at least 0.01% by weight of at least one dopant whose nature and proportions in the alloy are suitable for obtaining a point melting said alloy above 700 ° C; preferably, the nature of the dopant is adapted so that the corresponding alloy does not have a eutectic point; preferably, this dopant is chosen from the group comprising titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron (zinc-based alloy) and antimony.
  • the dopant is preferably chosen to obtain an alloy having an electrical resistivity as close as possible to that of the pure conductive material.
  • Figures 1a to 1d show in section the different stages of production of a panel for plasma panel.
  • the implementation of the present invention is carried out on a substrate 10 which can consist, for example, of a glass called FLOAT GLASS.
  • the glass substrate can be optionally annealed or shaped.
  • Other types of flat glass can be used, in particular glasses of the borosilicate or alumino-silicate type.
  • a thin layer 20 of a conductive material is deposited on the substrate 10. This layer 20 typically has a thickness of between 0.01 ⁇ m and 10 ⁇ m.
  • this layer consists of a metal alloy based on aluminum or zinc, which has a melting point higher than that of aluminum or pure zinc, in this case greater than 700 ° C. .
  • This metal alloy comprises between 0.01% and 49% by weight of at least one dopant; the nature and the proportions of the dopants are adapted in a manner known per se to obtain a melting point of the alloy greater than 700 ° C; preferably, these dopants are chosen so as to form alloys without eutectic point; preferably, these dopants are chosen so as to have expansion coefficients much lower than that of the conductive material in order to reduce the expansion coefficient of the alloy and to bring it closer to that of the substrate and also of the dielectric, as explained below.
  • this dopant is chosen from the group comprising manganese, vanadium, titanium, zirconium, chromium, molybdenum, tungsten, iron (zinc-based alloy) and antimony; preferably, the proportions of dopant are of the order of 2% by weight in the alloy.
  • a conventional method of the prior art is used; preferably using a vacuum deposition method such as sputtering under vacuum, vacuum evaporation, CVD vacuum deposition for “Chemical Vapor Deposition” in English.
  • the vacuum deposition can be carried out in the form of a multilayer, using for example several targets in the case of spraying under vacuum.
  • FIGS. 1b and 1c there is shown schematically the embodiment of the network of electrodes following the deposition of a metal layer 20, which in the present case is an aluminum-based alloy having a melting point greater than 700 ° C.
  • the electrode patterns 21 are produced using known methods of the “lift off” or photogravure type.
  • the layer 20 is covered with a resin 30 and then is etched.
  • the pattern of the electrodes 21 is determined using a mask 30 lit by UV, depending on the type of resin used, namely a positive or negative resin. Then, the electrodes themselves are etched with a single etching bath having a composition identical to or close to that used for pure aluminum.
  • the method of manufacturing the network of electrodes which has just been described makes it possible to obtain, for the different layers of the electrode, identical widths; an electrode geometry comparable to that obtained by manufacturing pure aluminum electrodes is then obtained; more precise flanks are obtained more precisely than in the case of multilayers such as the Al-Cr or Cr-AI-Cu or Cr-Cu multilayers known and previously mentioned; only one etching bath is used, which is more economical.
  • the electrodes 21 are then covered by a thick layer 22 of a dielectric material in using a conventional method such as screen printing, roller deposition or spraying of a suspension or dry powder.
  • the dielectric layer consists of a glass or an enamel based on lead oxide, silica and boron, based on bismuth oxide, silica and boron unleaded, based on oxide bismuth, lead, silica and boron as a mixture.
  • a conductive layer of a metal alloy based on aluminum having a melting point above 700 ° C. and comprising as dopant an element chosen from titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese and antimony has a number of advantages. Titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese and antimony are alloys with no eutectic point.
  • An aluminum alloy comprising 2% by mass of vanadium or titanium has a melting point of around 900 ° C, compared to 660 ° C for pure aluminum.
  • the melting point of an aluminum alloy with 2% manganese is 700 C and it has a resistivity of around 4 ⁇ Cm against 2.67 ⁇ Cm for pure aluminum.
  • the above materials have coefficients of expansion much lower than that of aluminum, which makes it possible to reduce the coefficient of expansion of the alloy and to bring it closer to that of the substrate and the dielectric layer.
  • the risks of cracks appearing in the dielectric layer as well as in the magnesia layer are therefore reduced, during the various baking stages.
  • Electrodes 3 ⁇ m thick in aluminum alloy containing 2% of titanium have an RD of 25 m ⁇ D after baking the dielectric layer at 585 ° C for 1 hour, a value close to that obtained before baking.
  • the electrode / glass interface has a uniform metallic appearance and the electrode / dielectric interface does not have a string of bubbles.
  • the 3 ⁇ m thick pure aluminum electrodes have an RD which goes from 10m ⁇ D before baking the dielectric layer to 25 ⁇ D after baking the dielectric layer at a temperature above 550 ° C for 1 hour.
  • the appearance of the metal / glass interface is greyish and not uniform and numerous strings of bubbles are present at the electrode / dielectric layer interface.
  • said alloy comprises, in addition to said base metal, at least 0.01% by weight of at least one dopant whose nature and proportions in the alloy are suitable for obtaining a melting point of said alloy greater than 700 ° C.
  • the at least one dopant is chosen from the group comprising titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese , iron and antimony.
  • the at least one dopant is chosen from the group comprising vanadium, titanium and manganese.
  • Electrodes are constituted by a stack of thin layers comprising:
  • the dielectric layer consists of a glass or an enamel based on lead oxide, silica and boron, based on oxide of bismuth, silica and boron unleaded or based on bismuth oxide, lead, silica and boron as a mixture.

Abstract

The invention concerns faceplate, more particularly for plasma display, comprising a substrate (10) whereon is provided at least one electrode (21) made of conductive material consisting of a metal alloy based on aluminium and/or zinc having a melting point higher than 700 °C; the electrode (21) is designed to be coated with a dielectric layer (22). Thus the harmful effects derived from reactions of the electrode material with those of the dielectric layer (22) are limited, in particular when said layer is being cured.

Description

DALLE EN VERRE MUNIE D'ELECTRODES EN UN MATERIAU CONDUCTEUR GLASS SLAB WITH ELECTRODES IN A CONDUCTIVE MATERIAL
La présente invention concerne une dalle comportant un substrat en verre sur lequel est réalisée au moins une électrode en un matériau conducteur. Elle concerne plus particulièrement le matériau de réalisation des électrodes, notamment lorsque la dalle est utilisée dans la fabrication de panneaux de visualisation tels que des panneaux à plasma.The present invention relates to a slab comprising a glass substrate on which is made at least one electrode made of a conductive material. It relates more particularly to the material for producing the electrodes, in particular when the panel is used in the manufacture of display panels such as plasma panels.
Afin de simplifier la description et de mieux comprendre le problème posé, la présente invention sera décrite en se référant à la fabrication de panneaux à plasma. Toutefois, il est évident pour l'homme de l'art que la présente invention ne se limite pas au procédé de fabrication de panneaux à plasma, mais peut être utilisée dans tous types de procédés nécessitant des matériaux de même type dans des conditions analogues.In order to simplify the description and better understand the problem posed, the present invention will be described with reference to the manufacture of plasma panels. However, it is obvious to a person skilled in the art that the present invention is not limited to the process for manufacturing plasma panels, but can be used in all types of processes requiring materials of the same type under analogous conditions.
Comme connu par l'état de la technique, les panneaux à plasma généralement appelés PDP pour « Plasma Display Panel » en langue anglaise sont des écrans de visualisation du type écran plat. Il existe plusieurs types de PDP qui fonctionnent tous sur le même principe d'une décharge électrique dans un gaz, accompagnée d'une émission de lumière. Généralement, les PDP sont constitués de deux dalles isolantes en verre, classiquement en verre de type sodocalcique, supportant chacune au moins un réseau d'électrodes conductrices et délimitant entre elles un espace gazeux. Les dalles sont assemblées l'une à l'autre de manière à ce que les réseaux d'électrodes soient orthogonaux, chaque intersection d'électrodes définissant une cellule lumineuse élémentaire à laquelle correspond un espace gazeux.As known from the state of the art, plasma panels generally called PDP for "Plasma Display Panel" in English are display screens of the flat screen type. There are several types of PDP which all work on the same principle of an electric discharge in a gas, accompanied by an emission of light. Generally, PDPs consist of two insulating glass tiles, conventionally made of soda-lime type glass, each supporting at least one network of conductive electrodes and delimiting between them a gas space. The slabs are joined together so that the electrode arrays are orthogonal, each intersection of electrodes defining an elementary light cell to which a gas space corresponds.
Les électrodes d'un panneau à plasma doivent présenter un certain nombre de caractéristiques. Ainsi, elles doivent avoir une résistivité électrique faible. En effet, les électrodes alimentant plusieurs milliers de cellules, il circule un courant élevé à l'intérieur de l'électrode qui peut aller jusqu'à 500 mA à 1 A instantané. D'autre part, les panneaux à plasma ayant une taille importante pouvant aller jusqu'à 60" de diagonale, la longueur des électrodes est grande. Dans ces conditions, une résistance trop élevée peut entraîner une perte de rendement lumineux significative due à la chute de tension liée au passage du courant dans les électrodes.The electrodes of a plasma panel must have a certain number of characteristics. Thus, they must have a low electrical resistivity. In fact, since the electrodes supply several thousand cells, a high current flows inside the electrode which can go up to 500 mA at 1 A instantaneous. On the other hand, since plasma panels have a large size of up to 60 "diagonal, the length of the electrodes is large. Under these conditions, too high a resistance may lead to a significant loss of light output due to the voltage drop linked to the flow of current through the electrodes.
Le plus souvent dans les panneaux à plasma, le réseau d'électrodes est recouvert d'une couche épaisse d'un matériau diélectrique, en général un verre en borosilicate. De ce fait, les électrodes doivent présenter une résistance élevée à la corrosion, en particulier lors de la cuisson de la couche diélectrique ; en effet, pendant cette phase du procédé, les réactions entre la couche diélectrique et l'électrode, voire entre le verre de la dalle et l'électrode, entraînent une augmentation de la résistance électrique de l'électrode et les produits de cette réaction conduisent à une dégradation de la transmission optique, de la constante diélectrique et de la tension de claquage de la couche diélectrique.Most often in plasma panels, the electrode array is covered with a thick layer of a dielectric material, generally a borosilicate glass. Therefore, the electrodes must have a high resistance to corrosion, in particular when the dielectric layer is fired; indeed, during this phase of the process, the reactions between the dielectric layer and the electrode, or even between the glass of the slab and the electrode, lead to an increase in the electrical resistance of the electrode and the products of this reaction lead a degradation of the optical transmission, of the dielectric constant and of the breakdown voltage of the dielectric layer.
Deux techniques sont actuellement utilisées pour réaliser les électrodes d'un panneau à plasma. Une première technique consiste à déposer une pâte ou encre à base d'argent, d'or ou d'un matériau similaire. Cette pâte conductrice est déposée sous une épaisseur généralement supérieure ou égale à 5 μm, par des procédés de sérigraphie, vaporisation, enduction divers. Dans ce cas, les électrodes sont obtenues directement lors du dépôt ou par un procédé de photogravure. Cette technologie de couche épaisse permet d'obtenir des résistances d'électrodes faibles qui ne sont pas affectées par les recuits de la couche diélectrique, à savoir 1RD = 4 à 6 mΩD pour des électrodes en pâte d'argent de 4 à 6 μm d'épaisseur, déposées par sérigraphie. Toutefois, cette technique nécessite un recuit spécifique à une température supérieure à 500° C pour obtenir la conduction ainsi que l'emploi de plusieurs couches diélectriques spécifiques pour minimiser la diffusion des matériaux d'électrodes dans le diélectrique, cette diffusion étant susceptible de dégrader les caractéristiques électriques et optiques du panneau.Two techniques are currently used to make the electrodes of a plasma panel. A first technique consists in depositing a paste or ink based on silver, gold or a similar material. This conductive paste is deposited in a thickness generally greater than or equal to 5 μm, by screen printing, vaporization, various coating processes. In this case, the electrodes are obtained directly during deposition or by a photoengraving process. This thick layer technology makes it possible to obtain weak electrode resistances which are not affected by the annealing of the dielectric layer, namely 1RD = 4 to 6 mΩD for silver paste electrodes of 4 to 6 μm d 'thickness, deposited by screen printing. However, this technique requires specific annealing at a temperature above 500 ° C. to obtain conduction as well as the use of several specific dielectric layers to minimize the diffusion of the electrode materials in the dielectric, this diffusion being liable to degrade the electrical and optical characteristics of the panel.
La deuxième technique consiste en un dépôt métallique en couches minces. Dans ce cas, l'épaisseur des couches est de quelques centaines d'angstrόm à quelques microns. Les électrodes sont obtenues généralement par photolithographie ou « lift-off » d'une couche mince de cuivre ou d'aluminium déposée par évaporation sous vide ou par pulvérisation cathodique. Cette technologie de couches minces ne nécessite pas de recuit pour obtenir la conduction des électrodes. Elle permet d'obtenir des résistances d'électrodes RD = 5 à 12 mΩ D suivant les matériaux utilisés pour des électrodes ayant une épaisseur de 2 à 5 μm. Toutefois, les matériaux utilisés dans ce cas bien qu'ayant une conductibilité élevée réagissent avec le substrat en verre et la couche diélectrique lors de sa cuisson, ce qui conduit à une augmentation de la résistance des électrodes et à une altération des performances de la couche diélectrique due à la diffusion dans le diélectrique des produits de réaction entre le matériau de l'électrode et la couche diélectrique. On observe la formation de chapelets de bulles qui dégradent la transparence de la couche diélectrique, sa constante diélectrique et sa tension de claquage. Pour remédier à cet inconvénient, on a proposé des dépôts multicouches constitués, par exemple, par des empilements de couches Al-Cr, Cr-AI-Cr, Cr-Cu-Cr. Ces multicouches permettent de limiter la dégradation de la couche diélectrique et l'augmentation de la résistance de l'électrode lors de la cuisson de ladite couche diélectrique. Toutefois, cette technique présente un certain nombre d'inconvénients. Elle nécessite la mise en œuvre d'un procédé de gravure chimique plus complexe, avec l'emploi d'au moins deux solutions de gravure différentes. Ensuite, après la gravure chimique, la largeur de chacune des couches de l'empilement peut être différente, donnant des flancs d'électrodes très irréguliers, ce qui favorise le piégeage des bulles lors de la cuisson de la couche diélectrique.The second technique consists of a metallic deposit in thin layers. In this case, the thickness of the layers is from a few hundred angstroms to a few microns. The electrodes are obtained generally by photolithography or "lift-off" of a thin layer of copper or aluminum deposited by vacuum evaporation or by sputtering. This thin film technology does not require annealing to obtain the conduction of the electrodes. It makes it possible to obtain electrode resistances RD = 5 to 12 mΩ D depending on the materials used for electrodes having a thickness of 2 to 5 μm. However, the materials used in this case, although having a high conductivity, react with the glass substrate and the dielectric layer during its curing, which leads to an increase in the resistance of the electrodes and to an alteration in the performance of the layer. dielectric due to the diffusion in the dielectric of the reaction products between the material of the electrode and the dielectric layer. We observe the formation of strings of bubbles which degrade the transparency of the dielectric layer, its dielectric constant and its breakdown voltage. To overcome this drawback, multilayer deposits have been proposed, constituted, for example, by stacks of Al-Cr, Cr-AI-Cr, Cr-Cu-Cr layers. These multilayers make it possible to limit the degradation of the dielectric layer and the increase in the resistance of the electrode during the firing of said dielectric layer. However, this technique has a number of drawbacks. It requires the implementation of a more complex chemical etching process, with the use of at least two different etching solutions. Then, after the chemical etching, the width of each of the layers of the stack can be different, giving very irregular electrode sides, which favors the trapping of the bubbles during the firing of the dielectric layer.
La présente invention a donc pour but de remédier aux inconvénients mentionnés ci-dessus de la technique de dépôt en couches minces en proposant un nouveau matériau pour réaliser un réseau d'électrodes sur un substrat en verre. Ainsi, la présente invention a pour objet une dalle comportant un substrat en verre sur lequel est réalisée au moins une électrode en un matériau conducteur, caractérisée en ce que, au moins au niveau de l'interface entre lesdites électrodes et le verre et/ou au moins au niveau de l'interface entre lesdites électrodes et la couche diélectrique, le matériau conducteur des électrodes est constitué par un alliage métallique à base d'aluminium et/ou de zinc présentant un point de fusion supérieur à 700°C.The present invention therefore aims to remedy the drawbacks mentioned above of the thin film deposition technique by proposing a new material for producing an array of electrodes on a glass substrate. Thus, the subject of the present invention is a slab comprising a glass substrate on which at least one electrode made of a conductive material is produced, characterized in that, at least at the interface between said electrodes and the glass and / or at least at the interface between said electrodes and the dielectric layer, the conductive material of the electrodes consists of a metal alloy based on aluminum and / or zinc having a melting point above 700 ° C.
D'autre part, l'alliage métallique à base d'aluminium et/ou de zinc comporte au moins 0,01% en poids d'au moins un dopant dont la nature et les proportions dans l'alliage sont adaptés pour obtenir un point de fusion dudit alliage supérieur à 700°C ; de préférence, la nature du dopant est adaptée pour que l'alliage correspondant ne comporte pas de point eutectique ; de préférence, ce dopant est choisi dans le groupe comprenant le titane, le zirconium, le vanadium, le chrome, le molybdène, le tungstène, le manganèse, le fer (alliage à base de zinc) et l'antimoine. L'utilisation d'un tel alliage pour la réalisation des électrodes permet d'augmenter la différence de température entre le point de fusion du matériau pour réaliser le réseau d'électrodes et la température de cuisson de la couche diélectrique déposée sur les électrodes, qui est généralement comprise entre 500° C et 600° C ; de ce fait, notamment lors de l'étape de cuisson de la couche diélectrique, on limite considérablement les effets néfastes provenant des réactions du matériau de l'électrode avec ceux de la couche diélectrique, voire avec le verre du substrat.On the other hand, the metal alloy based on aluminum and / or zinc comprises at least 0.01% by weight of at least one dopant whose nature and proportions in the alloy are suitable for obtaining a point melting said alloy above 700 ° C; preferably, the nature of the dopant is adapted so that the corresponding alloy does not have a eutectic point; preferably, this dopant is chosen from the group comprising titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron (zinc-based alloy) and antimony. The use of such an alloy for the production of the electrodes makes it possible to increase the temperature difference between the melting point of the material for producing the network of electrodes and the firing temperature of the dielectric layer deposited on the electrodes, which is generally between 500 ° C and 600 ° C; therefore, especially during the baking step of the dielectric layer, the harmful effects resulting from the reactions of the electrode material with those of the dielectric layer, or even with the glass of the substrate, are considerably limited.
Le dopant est de préférence choisi pour obtenir un alliage ayant une résistivité électrique aussi proche que possible de celle du matériau conducteur pur.The dopant is preferably chosen to obtain an alloy having an electrical resistivity as close as possible to that of the pure conductive material.
D'autres caractéristiques et avantages de la présente invention apparaîtront à la description faite ci-après d'un mode de réalisation de la présente invention, cette description étant faite avec référence au dessin ci- annexé, dans lequel : Les figures 1a à 1d représentent en coupe les différentes étapes de réalisation d'une dalle pour panneau à plasma.Other characteristics and advantages of the present invention will appear on reading the description given below of an embodiment of the present invention, this description being made with reference to the attached drawing, in which: Figures 1a to 1d show in section the different stages of production of a panel for plasma panel.
Pour une meilleure clarté, sur les figures les échelles ne sont pas respectées. Comme représenté sur la figure 1a, la mise en œuvre de la présente invention, est réalisée sur un substrat 10 qui peut être constitué par exemple, par un verre dénommé FLOAT GLASS. Le substrat en verre peut être éventuellement recuit ou façonné. D'autres types de verre plat peuvent être utilisés, notamment des verres du type borosilicate ou alumino-silicate. Comme représenté sur la figure 1a, pour former un réseau d'électrodes, on dépose sur le substrat 10 une fine couche 20 d'un matériau conducteur. Cette couche 20 a, de manière typique, une épaisseur comprise entre 0,01 μm et 10 μm. Conformément à la présente invention, cette couche est constituée par un alliage métallique à base d'aluminium ou de zinc, qui présente un point de fusion supérieur à celui de l'aluminium ou du zinc pur, en l'occurrence supérieur à 700°C. Cet alliage métallique comporte entre 0,01 % et 49 % en poids d'au moins un dopant ; la nature et les proportions du dopants sont adaptés d'une manière connue en elle-même pour obtenir un point de fusion de l'alliage supérieur à 700°C ; de préférence, ces dopants sont choisis de manière à former des alliages sans point eutectique ; de préférence, ces dopants sont choisis de manière à présenter des coefficients de dilatation très inférieurs à celui du matériau conducteur pour diminuer le coefficient de dilatation de l'alliage et à le rapprocher de celui du substrat et aussi du diélectrique, comme expliqué ci- après ; de préférence, ce dopant est choisi dans le groupe comprenant le manganèse, le vanadium, le titane, le zirconium, le chrome, le molybdène, le tungstène, le fer (alliage à base de zinc) et l'antimoine ; de préférence, les proportions de dopant sont de l'ordre de 2 % en poids dans l'alliage.For better clarity, in the figures the scales are not respected. As shown in FIG. 1a, the implementation of the present invention is carried out on a substrate 10 which can consist, for example, of a glass called FLOAT GLASS. The glass substrate can be optionally annealed or shaped. Other types of flat glass can be used, in particular glasses of the borosilicate or alumino-silicate type. As shown in FIG. 1a, to form an array of electrodes, a thin layer 20 of a conductive material is deposited on the substrate 10. This layer 20 typically has a thickness of between 0.01 μm and 10 μm. According to the present invention, this layer consists of a metal alloy based on aluminum or zinc, which has a melting point higher than that of aluminum or pure zinc, in this case greater than 700 ° C. . This metal alloy comprises between 0.01% and 49% by weight of at least one dopant; the nature and the proportions of the dopants are adapted in a manner known per se to obtain a melting point of the alloy greater than 700 ° C; preferably, these dopants are chosen so as to form alloys without eutectic point; preferably, these dopants are chosen so as to have expansion coefficients much lower than that of the conductive material in order to reduce the expansion coefficient of the alloy and to bring it closer to that of the substrate and also of the dielectric, as explained below. ; preferably, this dopant is chosen from the group comprising manganese, vanadium, titanium, zirconium, chromium, molybdenum, tungsten, iron (zinc-based alloy) and antimony; preferably, the proportions of dopant are of the order of 2% by weight in the alloy.
Pour le dépôt de la couche de matériau conducteur 20, on utilise une méthode classique de l'art antérieur ; on utilise de préférence une méthode de dépôt sous vide comme la pulvérisation cathodique sous vide, l'évaporation sous vide, le dépôt CVD sous vide pour « Chemical Vapor Déposition » en langue anglaise.For the deposition of the layer of conductive material 20, a conventional method of the prior art is used; preferably using a vacuum deposition method such as sputtering under vacuum, vacuum evaporation, CVD vacuum deposition for “Chemical Vapor Deposition” in English.
Selon une variante de la présente invention non représentée, on peut réaliser le dépôt sous vide sous forme d'une multicouche, en utilisant par exemple plusieurs cibles dans le cas de la pulvérisation sous vide. Selon cette variante, on déposera tout d'abord une première couche d'alliage pour la partie en contact avec le substrat puis une couche conductrice du métal de base sans dopant en aluminium ou en zinc, puis à nouveau une couche d'alliage destinée à être en contact avec la couche diélectrique, qui peut être de composition différente de la première couche d'alliage.According to a variant of the present invention not shown, the vacuum deposition can be carried out in the form of a multilayer, using for example several targets in the case of spraying under vacuum. According to this variant, firstly deposit a first alloy layer for the part in contact with the substrate, then a conductive layer of the base metal without dopant in aluminum or zinc, then again an alloy layer intended for be in contact with the dielectric layer, which may be of different composition from the first alloy layer.
Sur les figures 1b et 1c, on a représenté schématiquement la réalisation du réseau d'électrodes suite au dépôt d'une couche métallique 20, qui dans le présent cas, est un alliage à base d'aluminium présentant un point de fusion supérieur à 700°C. Les motifs d'électrodes 21 sont réalisés en utilisant des procédés connus de type « lift off » ou photogravure. Comme représenté sur la figure 1 b, la couche 20 est recouverte d'une résine 30 puis est gravée. Le motif des électrodes 21 est déterminé à l'aide d'un masque 30 éclairé par des UV, en fonction du type de résine utilisée, à savoir une résine positive ou négative. Ensuite, les électrodes elles-mêmes sont gravées avec un seul bain de gravure présentant une composition identique ou voisine de celle utilisée pour l'aluminium pur.In FIGS. 1b and 1c, there is shown schematically the embodiment of the network of electrodes following the deposition of a metal layer 20, which in the present case is an aluminum-based alloy having a melting point greater than 700 ° C. The electrode patterns 21 are produced using known methods of the “lift off” or photogravure type. As shown in FIG. 1b, the layer 20 is covered with a resin 30 and then is etched. The pattern of the electrodes 21 is determined using a mask 30 lit by UV, depending on the type of resin used, namely a positive or negative resin. Then, the electrodes themselves are etched with a single etching bath having a composition identical to or close to that used for pure aluminum.
La méthode de fabrication du réseau d'électrodes qui vient d'être décrite permet d'obtenir, pour les différentes couches de l'électrode, des largeurs identiques ; on obtient alors une géométrie d'électrodes comparable à celle qu'on obtient en fabricant des électrodes en aluminium pur ; on obtient plus précisément des flancs beaucoup plus réguliers que dans le cas de multicouches telles que les multicouches Al-Cr ou Cr-AI-Cu ou Cr-Cu connues et précédemment mentionnées ; on n'utilise par ailleurs qu'un seul bain de gravure, ce qui est plus économique. Comme représenté sur la figure 1d, les électrodes 21 sont ensuite recouvertes par une couche épaisse 22 d'un matériau diélectrique en utilisant une méthode classique telle que la sérigraphie, le dépôt au rouleau ou la pulvérisation d'une suspension ou d'une poudre sèche. De manière connue, la couche diélectrique est constituée par un verre ou un émail à base d'oxyde de plomb, de silice et de bore, à base d'oxyde de bismuth, de silice et de bore sans plomb, à base d'oxyde de bismuth, de plomb, de silice et de bore sous forme de mélange. Une fois le dépôt de la couche diélectrique réalisé, l'ensemble est soumis, de manière connue, à un recuit à une température comprise entre 500° C et 600° C.The method of manufacturing the network of electrodes which has just been described makes it possible to obtain, for the different layers of the electrode, identical widths; an electrode geometry comparable to that obtained by manufacturing pure aluminum electrodes is then obtained; more precise flanks are obtained more precisely than in the case of multilayers such as the Al-Cr or Cr-AI-Cu or Cr-Cu multilayers known and previously mentioned; only one etching bath is used, which is more economical. As shown in FIG. 1d, the electrodes 21 are then covered by a thick layer 22 of a dielectric material in using a conventional method such as screen printing, roller deposition or spraying of a suspension or dry powder. In a known manner, the dielectric layer consists of a glass or an enamel based on lead oxide, silica and boron, based on bismuth oxide, silica and boron unleaded, based on oxide bismuth, lead, silica and boron as a mixture. Once the dielectric layer has been deposited, the assembly is subjected, in a known manner, to annealing at a temperature between 500 ° C and 600 ° C.
L'utilisation comme couche conductrice d'un alliage métallique à base d'aluminium présentant un point de fusion supérieur à 700°C et comportant comme dopant un élément choisi parmi le titane, le zirconium, le vanadium, le chrome, le molybdène, le tungstène, le manganèse et l'antimoine présente un certain nombre d'avantages. Le titane, le zirconium, le vanadium, le chrome, le molybdène, le tungstène, le manganèse et l'antimoine sont des alliages sans point eutectique. Un alliage d'aluminium comportant 2 % en masse de vanadium ou de titane a un point de fusion de 900° C environ, contre 660° C pour l'aluminium pur. D'autre part, le point de fusion d'un alliage d'aluminium à 2 % de manganèse est de 700 C et il présente une résistivité d'environ 4 μΩCm contre 2,67 μΩCm pour l'aluminium pur. De plus les matériaux ci-dessus ont des coefficients de dilatation très inférieurs à celui de l'aluminium, ce qui permet de diminuer le coefficient de dilatation de l'alliage et de le rapprocher de celui du substrat et de la couche diélectrique. Ainsi, on diminue donc les risques d'apparition de fissures dans la couche diélectrique ainsi que dans la couche de magnésie, lors des différentes étapes de cuisson.The use as a conductive layer of a metal alloy based on aluminum having a melting point above 700 ° C. and comprising as dopant an element chosen from titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese and antimony has a number of advantages. Titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese and antimony are alloys with no eutectic point. An aluminum alloy comprising 2% by mass of vanadium or titanium has a melting point of around 900 ° C, compared to 660 ° C for pure aluminum. On the other hand, the melting point of an aluminum alloy with 2% manganese is 700 C and it has a resistivity of around 4 μΩCm against 2.67 μΩCm for pure aluminum. In addition, the above materials have coefficients of expansion much lower than that of aluminum, which makes it possible to reduce the coefficient of expansion of the alloy and to bring it closer to that of the substrate and the dielectric layer. Thus, the risks of cracks appearing in the dielectric layer as well as in the magnesia layer are therefore reduced, during the various baking stages.
On donnera ci-après un exemple permettant de comprendre les avantages de la présente invention. Des électrodes de 3 μm d'épaisseur en alliage d'aluminium contenant 2% de titane ont un RD de 25 mΩD après cuisson de la couche diélectrique à 585° C pendant 1 heure, valeur voisine de celle obtenue avant cuisson. Dans ce cas, l'interface électrode / verre a un aspect métallique uniforme et l'interface électrode / couche diélectrique ne présente pas de chapelet de bulles. A titre de comparaison, les électrodes de 3 μm d'épaisseur en aluminium pur ont un RD qui passe de 10mΩD avant cuisson de la couche diélectrique à 25μΩD après cuisson de la couche diélectrique à une température supérieure à 550° C pendant 1 heure. Dans ce cas, l'aspect de l'interface métal / verre est grisâtre et non uniforme et de nombreux chapelets de bulles sont présents à l'interface électrode / couche diélectrique.An example will be given below to understand the advantages of the present invention. Electrodes 3 μm thick in aluminum alloy containing 2% of titanium have an RD of 25 mΩD after baking the dielectric layer at 585 ° C for 1 hour, a value close to that obtained before baking. In this case, the electrode / glass interface has a uniform metallic appearance and the electrode / dielectric interface does not have a string of bubbles. For comparison, the 3 μm thick pure aluminum electrodes have an RD which goes from 10mΩD before baking the dielectric layer to 25μΩD after baking the dielectric layer at a temperature above 550 ° C for 1 hour. In this case, the appearance of the metal / glass interface is greyish and not uniform and numerous strings of bubbles are present at the electrode / dielectric layer interface.
Il est évident pour l'homme de l'art que la présente invention peut s'appliquer à d'autres types d'alliages d'aluminium et à des alliages de zinc. It is obvious to a person skilled in the art that the present invention can be applied to other types of aluminum alloys and to zinc alloys.
REVENDICATIONS
1 - Dalle comportant un substrat en verre, supportant un réseau d'électrodes conductrices couvertes d'une couche diélectrique, caractérisée en ce que, au moins au niveau de l'interface entre lesdites électrodes et le verre et/ou au moins au niveau de l'interface entre lesdites électrodes et la couche diélectrique, le matériau conducteur des électrodes est constitué par un alliage métallique à base d'aluminium et/ou de zinc présentant un point de fusion supérieur à 700°C.1 - Slab comprising a glass substrate, supporting a network of conductive electrodes covered with a dielectric layer, characterized in that, at least at the interface between said electrodes and the glass and / or at least at the interface between said electrodes and the dielectric layer, the conductive material of the electrodes consists of a metal alloy based on aluminum and / or zinc having a melting point higher than 700 ° C.
2 - Dalle selon la revendications 1 , caractérisée en ce que ledit alliage comprend, outre ledit métal de base, au moins 0,01 % en poids d'au moins un dopant dont la nature et les proportions dans l'alliage sont adaptés pour obtenir un point de fusion dudit alliage supérieur à 700°C.2 - Slab according to claim 1, characterized in that said alloy comprises, in addition to said base metal, at least 0.01% by weight of at least one dopant whose nature and proportions in the alloy are suitable for obtaining a melting point of said alloy greater than 700 ° C.
3.- Dalle selon la revendication 2 caractérisée en ce que la nature de l'au moins un dopant est adaptée pour que l'alliage correspondant ne comporte pas de point eutectique.3. Slab according to claim 2 characterized in that the nature of the at least one dopant is adapted so that the corresponding alloy does not have a eutectic point.
4.- Dalle selon l'une quelconque des revendications 2 à 3 caractérisé en ce que l'au moins un dopant est choisi dans le groupe comprenant le titane, le zirconium, le vanadium, le chrome, le molybdène, le tungstène, le manganèse, le fer et l'antimoine.4. Slab according to any one of claims 2 to 3 characterized in that the at least one dopant is chosen from the group comprising titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese , iron and antimony.
5 - Dalle selon la revendication 4 caractérisée en ce que, ledit métal de base étant l'aluminium, l'au moins un dopant est choisi dans le groupe comprenant le vanadium, le titane et le manganèse.5 - Slab according to claim 4 characterized in that, said base metal being aluminum, the at least one dopant is chosen from the group comprising vanadium, titanium and manganese.
6.- Dalle selon la revendication 5 caractérisée en ce que les proportions pondérales de l'au moins un dopant dans ledit alliage sont de l'ordre de 2%. 7 - Dalle selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les électrodes sont constituées par au moins une couche mince dudit alliage.6. Slab according to claim 5 characterized in that the weight proportions of the at least one dopant in said alloy are of the order of 2%. 7 - Slab according to any one of claims 1 to 7, characterized in that the electrodes consist of at least one thin layer of said alloy.
8 - Dalle selon la revendication 7, caractérisée en ce que les électrodes sont constituées par un empilement de couches minces comprenant :8 - Slab according to claim 7, characterized in that the electrodes are constituted by a stack of thin layers comprising:
- au moins une couche mince constituée dudit alliage au contact du verre du substrat et/ou au contact de la couche diélectriqueat least one thin layer made up of said alloy in contact with the glass of the substrate and / or in contact with the dielectric layer
- et une couche mince constituée dudit métal de base.- And a thin layer made up of said base metal.
9 - Dalle selon l'une quelconque des revendications précédentes 1 à 8, caractérisée en ce que la couche diélectrique est constituée par un verre ou un émail à base d'oxyde de plomb, de silice et de bore, à base d'oxyde de bismuth, de silice et de bore sans plomb ou à base d'oxyde de bismuth, de plomb, de silice et de bore sous forme de mélange.9 - Slab according to any one of the preceding claims 1 to 8, characterized in that the dielectric layer consists of a glass or an enamel based on lead oxide, silica and boron, based on oxide of bismuth, silica and boron unleaded or based on bismuth oxide, lead, silica and boron as a mixture.
10 - Dalle selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'elle est utilisée dans la fabrication de panneaux de visualisation tels que les panneaux à plasma. 10 - Slab according to any one of claims 1 to 9, characterized in that it is used in the manufacture of display panels such as plasma panels.
EP01945408A 2000-07-21 2001-06-13 Faceplate provided with electrodes made of conductive material Expired - Lifetime EP1301937B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0009570A FR2812125A1 (en) 2000-07-21 2000-07-21 Glass plate having surface electrodes for plasma display panels comprises a glass substrate having electrodes produced from a conducting metallic alloy
FR0009570 2000-07-21
PCT/FR2001/001822 WO2002009137A1 (en) 2000-07-21 2001-06-13 Faceplate provided with electrodes made of conductive material

Publications (2)

Publication Number Publication Date
EP1301937A1 true EP1301937A1 (en) 2003-04-16
EP1301937B1 EP1301937B1 (en) 2010-08-18

Family

ID=8852766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01945408A Expired - Lifetime EP1301937B1 (en) 2000-07-21 2001-06-13 Faceplate provided with electrodes made of conductive material

Country Status (10)

Country Link
US (1) US6784618B2 (en)
EP (1) EP1301937B1 (en)
JP (1) JP4915890B2 (en)
KR (1) KR100755331B1 (en)
CN (1) CN1257522C (en)
AU (1) AU2001267635A1 (en)
DE (1) DE60142835D1 (en)
FR (1) FR2812125A1 (en)
TW (1) TWI239937B (en)
WO (1) WO2002009137A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW586336B (en) * 2003-06-30 2004-05-01 Ritdisplay Corp Electrode substrate of flat panel display
US8217213B2 (en) * 2008-07-28 2012-07-10 Exxonmobil Chemical Patents Inc. Hydroalkylation of aromatic compounds using EMM-12
CN102560368A (en) * 2010-12-28 2012-07-11 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method thereof
WO2018135430A1 (en) * 2017-01-23 2018-07-26 東洋アルミニウム株式会社 Paste composition for solar battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023457B2 (en) * 1980-02-29 1985-06-07 富士通株式会社 Method for manufacturing electrodes for display panels
JPS60101839A (en) * 1983-11-07 1985-06-05 Nec Corp Plasma display panel
JPH0644892A (en) * 1992-07-22 1994-02-18 Hitachi Ltd Hot cathode structure
US5793158A (en) * 1992-08-21 1998-08-11 Wedding, Sr.; Donald K. Gas discharge (plasma) displays
JPH06139923A (en) * 1992-10-23 1994-05-20 Pioneer Electron Corp Manufacture of plasma display panel
US6150027A (en) * 1995-06-16 2000-11-21 Hitachi, Ltd Glass composition, structure, and apparatus using the same
JP3339554B2 (en) * 1995-12-15 2002-10-28 松下電器産業株式会社 Plasma display panel and method of manufacturing the same
JPH09245652A (en) * 1996-03-13 1997-09-19 Dainippon Printing Co Ltd Electrode of plasma display panel and its manufacture
JPH10188818A (en) * 1996-12-27 1998-07-21 Pioneer Electron Corp Plasma display panel
KR100268725B1 (en) * 1997-10-22 2000-10-16 김순택 Method for forming partition of plasma display pannel and plasma display pannel thereby
JPH11242935A (en) * 1997-12-03 1999-09-07 Sharp Corp Plasma information display element
JPH11329254A (en) * 1998-05-12 1999-11-30 Matsushita Electric Ind Co Ltd Plasma display panel
US6465956B1 (en) * 1998-12-28 2002-10-15 Pioneer Corporation Plasma display panel
JP2000260329A (en) * 1999-03-05 2000-09-22 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0209137A1 *

Also Published As

Publication number Publication date
JP4915890B2 (en) 2012-04-11
JP2004505411A (en) 2004-02-19
DE60142835D1 (en) 2010-09-30
KR20030015396A (en) 2003-02-20
WO2002009137A1 (en) 2002-01-31
CN1443361A (en) 2003-09-17
FR2812125A1 (en) 2002-01-25
EP1301937B1 (en) 2010-08-18
US20030151365A1 (en) 2003-08-14
AU2001267635A1 (en) 2002-02-05
CN1257522C (en) 2006-05-24
TWI239937B (en) 2005-09-21
KR100755331B1 (en) 2007-09-05
US6784618B2 (en) 2004-08-31

Similar Documents

Publication Publication Date Title
EP2369635B1 (en) Transparent substrate equipped with an electrode
EP1065179B1 (en) Process for the deposition of a tungsten and/or molybdenum based layer on a glass, ceramic or glass ceramic substrate and coated substrate according to the process
EP1047644A1 (en) Glazing provided with a low emissive stack of layers
FR2696867A1 (en) Discharge cathode device and method for its manufacture
JP2012533514A (en) Low emission glass and manufacturing method thereof
EP3671849A1 (en) Method for manufacturing a pixel of an oled micro-screen
EP0041463A1 (en) Process for making semi-reflecting metallized glass panes with an anchoring layer, and glass obtained by this process
EP1472386B1 (en) Non-stoichiometric niox ceramic target
JP4918231B2 (en) Method for producing Ag alloy film
EP0037335B1 (en) Glass sheets with selective absorption and reflexion spectrum
EP1301937B1 (en) Faceplate provided with electrodes made of conductive material
EP1252643B1 (en) Use of glass capable of recrystallization as mineral binder of an electrode paste for a plasma panel
WO2021105424A1 (en) Material comprising a stack with fine dielectric sublayer of zinc oxide and method for depositing said material
FR2919110A1 (en) PLASMA SCREEN FRONT PANEL SUBSTRATE, USE AND METHOD OF MANUFACTURE
WO2003084890A1 (en) Electronically conductive spacers, method for making same and uses in particular for display screens
FR2793949A1 (en) MIXTURE FOR PRODUCING ELECTRODES AND METHOD FOR FORMING ELECTRODES
WO2001020637A1 (en) Mixture for producing electrodes and method for forming electrodes on a transparent substrate
EP0708744B1 (en) Method of depositing a conducting coating on a glass substrate
EP4143143A1 (en) Material comprising a stack with a thin zinc-based oxide dielectric underlayer and method for depositing this material
FR2820510A1 (en) Film layer used e.g. in electromagnetic screening materials comprises a transition layer containing a first component selected from aluminum and silicon, and a second component selected from oxygen and nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030117

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20061208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60142835

Country of ref document: DE

Date of ref document: 20100930

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60142835

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: THOMSON LICENSING, FR

Effective date: 20170317

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20170404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60142835

Country of ref document: DE

Owner name: INTERDIGITAL MADISON PATENT HOLDINGS, FR

Free format text: FORMER OWNER: THOMSON PLASMA, BOULOGNE-BILLANCOURT, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 60142835

Country of ref document: DE

Representative=s name: DEHNS, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60142835

Country of ref document: DE

Representative=s name: ROSSMANITH, MANFRED, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60142835

Country of ref document: DE

Owner name: THOMSON LICENSING DTV SAS, FR

Free format text: FORMER OWNER: THOMSON PLASMA, BOULOGNE-BILLANCOURT, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 60142835

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170717 AND 20170719

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170720 AND 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60142835

Country of ref document: DE

Representative=s name: DEHNS, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60142835

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: THOMSON LICENSING DTV, FR

Effective date: 20171030

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180927 AND 20181005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60142835

Country of ref document: DE

Representative=s name: DEHNS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60142835

Country of ref document: DE

Owner name: INTERDIGITAL MADISON PATENT HOLDINGS, FR

Free format text: FORMER OWNER: THOMSON LICENSING DTV SAS, LSSY-LES-MOULINEAUX, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200630

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60142835

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210612