EP1295074A1 - Dispositif de stabilisation thermique d'un objet a refroidir - Google Patents

Dispositif de stabilisation thermique d'un objet a refroidir

Info

Publication number
EP1295074A1
EP1295074A1 EP01949542A EP01949542A EP1295074A1 EP 1295074 A1 EP1295074 A1 EP 1295074A1 EP 01949542 A EP01949542 A EP 01949542A EP 01949542 A EP01949542 A EP 01949542A EP 1295074 A1 EP1295074 A1 EP 1295074A1
Authority
EP
European Patent Office
Prior art keywords
gas
siphon
temperature
cooled
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01949542A
Other languages
German (de)
English (en)
Inventor
Jean-Paul Perin
Olivier Chanal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1295074A1 publication Critical patent/EP1295074A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0341Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • F17C2223/045Localisation of the removal point in the gas with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • F17C2225/045Localisation of the filling point in the gas with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/02Applications for medical applications

Definitions

  • the invention relates to a device for thermal stabilization of an object to be cooled, in particular in a temperature range from 5 to 50 K, by circulation of fluid.
  • the invention finds applications in numerous fields, where it is important to cool an object of small dimensions (a few cubic centimeters) and to maintain this object at a stable temperature.
  • the invention finds applications in the field of infrared detectors, the accuracy of which may depend on its temperature stability or also in the field of X-rays for keeping samples to be analyzed at low temperature by X-rays.
  • FIG. 1 shows an example of a phase separation box, as conventionally used; this one carries the reference 1.
  • the siphon bringing the two-phase fluid (F) into the box 1, is referenced 2.
  • This two-phase fluid is generally helium: this separates, on the one hand, into liquid helium , contained in zone Zl, and, on the other hand, in gaseous helium, contained in zone Z2 of the phase separation box 1.
  • the helium in gaseous form (G) is taken above the liquid bath of the zone Z1 and evacuated, by an outlet orifice 3, out of the phase separation box.
  • a heating device 4 is installed which ensures the heating of the box 1 and, consequently, the maintenance of the constant liquid level.
  • a thermometer 5 makes it possible to check the temperature of the gas leaving outlet 3 of box 1.
  • the object of the invention is precisely to remedy the drawbacks of the device described above.
  • the invention relates to a device for thermal stabilization of an object to be cooled to a temperature of the order of 5 to 50 K by circulation of fluid, characterized in that it comprises:
  • this siphon for transporting the gas from the Dewar vessel to the cryostat, this siphon comprising, within it, at least one screen ensuring thermal filtering of the gas; and - a variable-flow outlet orifice ensuring the evacuation of the gas.
  • the screen consists of lead or rare earth beads.
  • the balls preferably have a diameter of the order of 200 to 500 ⁇ .
  • the device comprises two screens located in the siphon: one is at the outlet of the exchanger, and the other is upstream of the object to be cooled.
  • the siphon of the device of the invention advantageously comprises a thin wall of stainless steel.
  • the gas is helium
  • FIGS. 3A and 3B show two curves of evolution of the temperature of an object, when the device of the invention comprises, respectively, no sieve or a sieve at the outlet of the siphon;
  • the invention relates to a device for thermal stabilization of an object cooled to a temperature of the order of 5 to 30 Kelvin.
  • This device of the fluid circulation type, makes it possible to cool a small object to a temperature of the order of 5 to
  • FIG. 2 there is shown schematically the device of the invention.
  • This device comprises a Dewar vase 10, pressurized by means of a pressurization device 12.
  • This Dewar vase contains, in a zone Zl, a fluid in liquid form.
  • the fluid used depends on the temperature to which the object is to be cooled. For a very low temperature, that is to say between 5 and 30 K, the fluid can be helium. Under the effect of the pressurization of the vase
  • the liquid helium is transformed, at least in part, into a gas contained in the zone Zg of the vase 10.
  • the gas thus obtained is precooled by means of a coaxial exchanger 11 immersed in the bath of liquid helium.
  • the siphon 13 is of the coaxial type, which ensures the collection of the gas in the dewar. It has a thin stainless steel wall to promote heat exchange.
  • the siphon 13 includes, within it, a screen 14 ensuring a first stabilization of the gas temperature. This screen 14 constitutes an exchanger which makes it possible to thermally filter the gas.
  • the sieve 14 can be produced from grids or balls made of lead or rare earths, such as Er 3 Ni, ErNi, GdRh, HoCu 2 , etc., or in any other material having a very high specific heat at the temperature of the gas.
  • the specific heat of these rare earths is published in the article entitled “A two-stageactue tube cooler operating below 4 K”, by C. WANG et al., Cryogos 1997, vol. 37, no. 3, p. 159-164.
  • the materials used are advantageously lead or Erbium 3 Nickel which have a high specific heat at these temperatures and therefore play the role of thermal filter .
  • the screen 14 is produced from balls, made of lead or Erbiu 3 Nickel, the diameter of which is around 200 to 500 ⁇ .
  • the siphon 13 conducts the gas at low temperature, stabilized by a first screen 14, in a cryostat 16, inside which is placed an object 20 to be cooled.
  • the object to be cooled is placed at the outlet of the siphon 13, inside the cryostat.
  • a second screen 15 is placed in the siphon, upstream of the object to be cooled; this second screen 15 makes it possible to further improve the temperature stability of the gas.
  • This second screen 15, identical to the first screen 14, makes it possible to precisely stabilize the temperature of the gas at the inlet of the cryostat 16, that is to say before reaching the object to be cooled 20.
  • the siphon 13 ends in an orifice 17 with variable flow. This orifice
  • the temperature of the gas, and therefore the average temperature of the object can be adjusted by means of orifice 17.
  • the coaxial siphon can, for example, have a diameter of 11 to 12 mm for the outer tube and 3 to 4 mm for the inner tube, a length immersed in the liquid of between 200 mm and 700 mm and a diameter of the outlet port of
  • the stainless steel tube forming the siphon contains a 80 mm long ball sieve with a diameter of
  • This siphon like the siphons generally used in cryogenics, is protected by a vacuum guard, in order to limit thermal losses.
  • helium is used as cryogenic fluid (for a temperature of 5 to 50 K).
  • other gases can be used such as hydrogen or neon (for a temperature of 50 to 60 K).
  • the device of the invention can also be used with butane, methane, nitrogen or oxygen, in applications where the cooling temperature must be higher than that proposed in the embodiments described above; with such gases the cooling temperatures are rather of the order of 200 to 300 K, for butane and methane, and of the order of 100 to 200 K for nitrogen and oxygen.
  • the device of the invention has the advantage of being able to be sized, depending on the chosen application. Its dimensioning is carried out:
  • the sieves are dimensioned by calculations, which use the equations of thermohydraulics describing the flows of fluid and the heat exchanges; these calculations are known to those skilled in the art and given in the work "Initiation to thermal transfers" by JF SACADURA of the Center for Scientific and Technical Updating of the INSA of Lyon, from pages 185 to 229.
  • the curves for the evolution of the temperature of the object have been represented, in two embodiments: for FIG. 3A, the device of the invention does not has no sieve at the outlet of the Dewar vessel and for FIG. 3B, the device of the invention comprises a sieve 15 at the inlet of the cryostat.
  • At least one resistor 25 is added. Its function is to provide heat to regulate the temperature of the object 20. We do not play on the gas flow but we heat the object 20 when it is too cold. The advantage is that with a stabilized gas flow, better cooling stability can be obtained in a chosen temperature range.
  • the resistance 25 is chosen as a function of the mass of the object 20 and the temperature at which we want to regulate it. Its shape will be adapted to the shape of the object. For example, for a round object, we could surround it with resistors. For a long object, a strong wire will be wound around it. For a plate, we will use a wire resistance which will describe coils and will be arranged on the surface. The power of the resistance is chosen according to the enthalpy of the object.
  • a temperature probe 24 continuously measures the temperature of the object 20 and regulates the power expended in the resistor 25 by controlling its control means.
  • a spiral 26 forms the siphon at the bottom of the Dawar vessel 10. Its function is to decrease the gas inlet temperature by better exchange with the cryogenic liquid, thus allowing better use of the Dewar vase 10. In fact, all the heat exchange being carried out in the spiral 26 immersed in the liquid, the heat exchange becomes independent of the filling of the Dewar vase 10. The latter is better used. In fact, this embodiment solves the problem that by continuously withdrawing gas which comes from the evaporation of the cryogenic liquid, the level of liquid in the Dewar vessel 10 decreases and the length of heat exchange in the exchanger 11 is decreased accordingly: the more the liquid evaporates, the hotter the gas comes out.
  • the dimensions of the spiral 26 are chosen as a function of the minimum desired gas flow rate and the size of the Dewar vessel 10.
  • the spiral 26 therefore extends below the bottom of the exchanger 11: the gas descends into the exchanger 11, enters the siphon 13, continues to descend when leaving the exchanger 11, travels through the spiral 26 and goes up towards object 20.
  • the exchanger 11 may cease to be essential and be deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

L'invention concerne un dispositif de stabilisation thermique d'un objet (20) à refroidir à une température de l'ordre de 6 à 25 K par circulation de fluide, caractérisé en ce qu'il comporte: un vase Dewar (10) pressurisé pour fournir un gaz; un échangeur coaxial (11) pour pré-refroidir le gaz; un cryostat (16) dans lequel est placé l'objet à refroidir; un siphon coaxial (13) pour transporter le gaz du vase Dewar jusqu'au cryostat, ce siphon comportant, en son sein, au moins un tamis (14) assurant le filtrage thermique du gaz; et un orifice de sortie (17) à débit variable assurant l'évacuation du gaz.

Description

DISPOSITIF DE STABILISATION THERMIQUE DUH OBJET A REFROIDIR
DESCRIPTION
Domaine de l' invention
L' invention concerne un dispositif de stabilisation thermique d'un objet à refroidir, en particulier dans une gamme de températures de 5 à 50 K, par circulation de fluide.
L' invention trouve des applications dans de nombreux domaines, où il est important de refroidir un objet de petites dimensions (quelques centimètres cubes) et de maintenir cet objet à une température stable. En particulier, l'invention trouve des applications dans le domaine des détecteurs infrarouges dont la précision peut dépendre de sa stabilité en température ou encore dans le domaine des rayonnements X pour maintenir à basse température des échantillons à analyser par rayons X.
Etat de la technique
Actuellement, pour refroidir un objet à une température de 5 à 30 K par circulation de fluide, on utilise des écoulements gazeux obtenus en prélevant du liquide dans un vase pressurisé, au moyen d'un siphon. A la sortie du siphon, le fluide obtenu est sous forme diphasique ; il est alors injecté dans une boîte à séparation de phases, afin de ne conserver que le gaz. Sur la figure 1, on a représenté un exemple de boîte à séparation de phases, telle qu'utilisée classiquement ; celle-ci porte la référence 1. Le siphon amenant le fluide diphasique (F) dans la boîte 1, est référencé 2. Ce fluide diphasique est généralement de l'hélium : celui-ci se sépare, d'une part, en hélium liquide, contenu dans la zone Zl, et, d'autre part, en hélium gazeux, contenu dans la zone Z2 de la boîte de séparation de phases 1.
L'hélium sous forme gazeuse (G) est prélevé au-dessus du bain liquide de la zone Zl et évacué, par un orifice de sortie 3, hors de la boîte à séparation de phases. Sur la boîte à séparation de phases 1, est installé un dispositif de chauffage 4 qui assure le chauffage de la boîte 1 et, par conséquent, le maintien du niveau liquide constant. Un thermomètre 5 permet de vérifier la température du gaz en sortie 3 de la boîte 1.
De tels systèmes sont décrits, notamment dans l'article intitulé « Phase separator for liquid nitrogen supply Unes », de B. V. ELKONIN, Cryogénies 1995, vol. 35, no. 5, p. 347 - 348. Cependant, ces systèmes présentent des fluctuations de température, au niveau du gaz prélevé, qui peuvent être relativement importantes, c'est-à-dire de l'ordre de quelques centaines de milliKelvin. Exposé de l'invention
L'invention a justement pour but de remédier aux inconvénients du dispositif décrit précédemment.
A cette fin, elle propose un dispositif de refroidissement par circulation de fluide permettant dr obtenir une température de 5 à 50 K avec des fluctuations stables, de l'ordre de quelques milliKevin.
De façon plus précise, l'invention concerne un dispositif de stabilisation thermique d'un objet à refroidir à une température de l'ordre de 5 à 50 K par circulation de fluide, caractérisé en ce qu'il comporte :
- un vase Dewar régulé en pression pour fournir un gaz ;
- un moyen pour pré-refroidir le gaz ;
- un cryostat dans lequel est placé l'objet à refroidir ;
- un siphon coaxial pour transporter le gaz du vase Dewar jusqu'au cryostat, ce siphon comportant, en son sein, au moins un tamis assurant un filtrage thermique du gaz ; et - un orifice de sortie à débit variable assurant l'évacuation du gaz.
Avantageusement, le tamis est constitué de billes en plomb ou en terres rares. Les billes ont, de préférence, un diamètre de l'ordre de 200 à 500 μ . Selon un mode de réalisation de l'invention, le dispositif comporte deux tamis situés dans le siphon : l'un est à la sortie de l' échangeur, et l'autre est en amont de l'objet à refroidir.
Le siphon du dispositif de l'invention comporte, avantageusement, une paroi mince en acier inoxydable.
Dans le mode de réalisation préféré de l'invention, le gaz est de l'hélium.
Brève description des figures
- La figure 1, déjà décrite, représente un dispositif de refroidissement par circulation de fluide, classique ;
- la figure 2 représente schématiquement le dispositif de l'invention ;
- les figure 3A et 3B représentent deux courbes d'évolution de la température d'un objet, lorsque le dispositif de l'invention comporte, respectivement, aucun tamis ou un tamis en sortie du siphon ;
- et les figures 4 et 5 illustrent deux perfectionnements qu'on peut adapter séparément ou ensemble .
Description détaillée des modes de réalisation de l'invention
L'invention concerne un dispositif de stabilisation thermique d'un objet refroidi à une température de l'ordre de 5 à 30 Kelvin. Ce dispositif, de type à circulation de fluide, permet de refroidir un objet de petite dimension à une température de l'ordre de 5 à
30 Kelvin, avec une fluctuation de la température très faible.
Sur la figure 2, on a représenté schématiquement le dispositif de l'invention. Ce dispositif comporte un vase Dewar 10, pressurisé au moyen d'un dispositif de pressurisation 12. Ce vase Dewar contient, dans une zone Zl, un fluide sous forme liquide. Le fluide utilisé dépend de la température à laquelle on veut refroidir l'objet. Pour une très basse température, c'est-à-dire entre 5 et 30 K, le fluide peut être de l'hélium. Sous l'effet de la pressurisation du vase
Dewar, l'hélium liquide se transforme, au moins en partie, en un gaz contenu dans la zone Zg du vase 10.
Le gaz ainsi obtenu est pré-refroidi au moyen d'un échangeur coaxial 11 plongé dans le bain d'hélium liquide.
Sur cette figure 2, on a représenté, par des flèches, le trajet suivi par le gaz, dans le vase Dewar 10, depuis la zone Zg jusqu'à la sortie 10' du vase Dewar. A cette sortie 10', un siphon 13 assure le prélèvement du gaz, dans le ciel du vase Dewar.
Selon l'invention, le siphon 13 est de type coaxial, ce qui assure la collecte du gaz dans le dewar. Il comporte une paroi mince en acier inoxydable permettant de favoriser les échanges thermiques. Au niveau de la sortie 10' du vase Dewar, le siphon 13 comporte, en son sein, un tamis 14 assurant une première stabilisation de la température du gaz. Ce tamis 14 constitue un échangeur qui permet de filtrer thermiquement le gaz.
Le tamis 14 peut être réalisé à partir de grilles ou de billes en plomb ou en terres rares, comme le Er3Ni, ErNi, GdRh, HoCu2, etc, ou dans tout autre matériau possédant une très grande chaleur spécifique à la température du gaz. La chaleur spécifique de ces terres rares est publiée dans l'article intitulé « A two-stage puise tube cooler operating below 4 K », de C. WANG et al., Cryogénies 1997, vol. 37, no. 3, p. 159-164. Aussi, pour un gaz dont la température est située entre 5 K et 50 K, les matériaux employés sont avantageusement le plomb ou l'Erbium 3 Nickel qui présentent une forte chaleur spécifique à ces températures et jouent, par conséquent, le rôle de filtre thermique.
Dans le mode de réalisation préféré de l'invention, le tamis 14 est réalisé à partir de billes, en plomb ou en Erbiu 3 Nickel, dont le diamètre est de l'ordre de 200 à 500 μ .
Le siphon 13 conduit le gaz à basse température, stabilisé par un premier tamis 14, dans un cryostat 16, à l'intérieur duquel est placé un objet 20 à refroidir. De préférence, l'objet à refroidir est placé à la sortie du siphon 13, à l'intérieur du cryostat .
Selon un mode de réalisation de l'invention, un second tamis 15 est placé dans le siphon, en amont de l'objet à refroidir ; ce second tamis 15 permet d'améliorer encore la stabilité en température du gaz.
Ce second tamis 15, identique au premier tamis 14, permet de stabiliser, de façon précise, la température du gaz, à l'entrée du cryostat 16, c'est-à-dire avant d'atteindre l'objet à refroidir 20. A la sortie du cryostat 16, le siphon 13 se termine par un orifice 17 à débit variable. Cet orifice
17 est calibré ou bien réglé de façon à permettre un ajustement du débit de gaz, en sortie du dispositif.
Autrement dit, la température du gaz, et donc la température moyenne de l'objet, peut être ajustée au moyen de l'orifice 17.
Le siphon coaxial peut, par exemple, présenter un diamètre de 11 à 12 mm pour le tube extérieur et de 3 à 4 mm pour le tube intérieur, une longueur immergée dans le liquide comprise entre 200 mm et 700 mm et un diamètre de l'orifice de sortie de
3 mm. Dans cet exemple, le tube en acier inoxydable formant le siphon contient un tamis de billes d'une longueur de 80 mm avec un diamètre de
10 mm, et d'une masse de 28,5 g environ.
Ce siphon, comme les siphons utilisés généralement en cryogénie, est protégé par une garde de vide, afin de limiter les pertes thermiques.
Dans le mode de réalisation préféré de l'invention, on utilise, comme fluide cryogénique, de l'hélium (pour une température de 5 à 50 K) . Toutefois, d'autres gaz peuvent être utilisés comme l'hydrogène ou encore le néon (pour une température de 50 à 60 K) . Le dispositif de l'invention peut également être utilisé avec du butane, du méthane, de l'azote ou de l'oxygène, dans des applications où la température de refroidissement doit être plus élevée que celle proposée dans les modes de réalisation décrits précédemment ; avec de tels gaz les températures de refroidissement sont plutôt de l'ordre de 200 à 300 K, pour le butane et le méthane, et de l'ordre de 100 à 200 K pour l'azote et l'oxygène. Le dispositif de l'invention a l'avantage de pouvoir être dimensionné, en fonction de l'application choisie. Son dimensionnement s'effectue :
- en choisissant le fluide cryogénique le plus adapté à la température souhaitée ; - en effectuant des mesures des fluctuations thermiques au niveau de l'objet à refroidir en absence du dispositif de stabilisation ;
- en choisissant le matériau pour réaliser le tamis, le mieux adapté à la température à laquelle doit être refroidi l'objet ; et
- en déterminant la taille du ou des tamis en fonction des paramètres précédents.
On notera que les tamis sont dimensionnés par des calculs, qui utilisent les équations de la thermohydraulique décrivant les écoulements de fluide et les échanges thermiques ; ces calculs sont connus de l'homme de l'art et donnés dans l'ouvrage « Initiation aux transferts thermiques » de J. F. SACADURA du Centre d'Actualisation Scientifique et Technique de l'I. N. S. A. de Lyon, des pages 185 à 229. Sur les figures 3A et 3B, on a représenté les courbes d'évolution de la température de l'objet (qui dans ce cas est une pince) , dans deux modes de réalisation : pour la figure 3A, le dispositif de l'invention ne comporte aucun tamis en sortie du vase Dewar et pour la figure 3B, le dispositif de l'invention comporte un tamis 15 à l'entrée du cryostat.
Les deux courbes ont été relevées dans des conditions identiques : même fluide cryogénique, même débit. Elles montrent toutes deux l'évolution de la température (en Kelvin) de la pince, en fonction du temps (en secondes) .
On voit sur la figure 3A, que le siphon coaxial 13, muni d'aucun tamis, permet de stabiliser la température à un écart de 40 mK.
On voit sur la figure 3B, que le siphon coaxial 13, muni du tamis 15, permet de limiter les fluctuations à un écart de 4 mK. Deux perfectionnement supplémentaires seront maintenant décrits au moyen des figures 4 et 5.
Dans le mode de réalisation de la figure 4, au moins une résistance 25 est ajoutée. Sa fonction est d'apporter de la chaleur pour réguler la température de l'objet 20. On ne joue pas sur le flux de gaz mais on réchauffe l'objet 20 quand il est trop froid. L'avantage est qu'avec un flux de gaz stabilisé, on peut obtenir une meilleure stabilité du refroidissement dans une gamme de température choisie. La résistance 25 est choisie en fonction de la masse de l'objet 20 et de la température à laquelle on veut le réguler. Sa forme sera adaptée à la forme de l'objet. Par exemple, pour un objet rond, on pourra l'entourer de résistances. Pour un objet long, un fil résistant sera bobiné autour. Pour une plaque, on utilisera une résistance à fil qui décrira des serpentins et sera disposée en surface. La puissance de la résistance est choisie en fonction de l'enthalpie de l'objet. Une sonde de température 24 mesure la température de l'objet 20 sans cesse et règle la puissance dépensée dans la résistance 25 en asservissant ses moyens de commande.
Dans le mode de réalisation de la figure 5, une spirale 26 forme le siphon au fond du vase Dawar 10. Sa fonction est de faire diminuer la température d'admission du gaz par un meilleur échange avec le liquide cryogénique, permettant ainsi une meilleure utilisation du vase Dewar 10. En effet, tout l'échange thermique étant réalisé dans la spirale 26 imergée dans le liquide, l'échange thermique devient indépendant du remplissage du vase Dewar 10. Celui-ci est mieux utilisé. En effet ce mode de réalisation résout le problème qu'en prélevant en permanence du gaz qui provient de l' évaporation du liquide cryogénique, le niveau de liquide dans le vase Dewar 10 baisse et la longueur d'échange thermique dans l' échangeur 11 est diminuée d'autant : plus le liquide s'évapore, plus le gaz sort chaud.
Les dimensions de la spirale 26 sont choisies en fonctions du débit de gaz minimal souhaité et de la dimension du vase Dewar 10. La spirale 26 s'étend donc au-dessous du fond de l' échangeur 11 : le gaz descend dans 1' échangeur 11, entre dans le siphon 13, continue de descendre en quittant l' échangeur 11, parcourt la spirale 26 et remonte vers l'objet 20. Dans une telle réalisation, l' échangeur 11 peut cesser d'être indispensable et être supprimé.

Claims

REVENDICATIONS
1. Dispositif de stabilisation thermique d'un objet (20) à refroidir à une température prédéterminée par circulation de fluide, caractérisé en ce qu'il comporte :
- un vase Dewar (10) régulé en pression pour fournir un gaz ;
- un moyen (11, 26) pour pré-refroidir le gaz ;
- un cryostat (16) dans lequel est placé l'objet à refroidir ;
- un siphon (13) pour transporter le gaz du vase Dewar jusqu'au cryostat, ce siphon comportant, en son sein, au moins un tamis (14) assurant le filtrage thermique du gaz ; et un orifice de sortie (17) à débit variable assurant l'évacuation du gaz.
2. Dispositif selon la revendication 1, caractérisé en ce que le tamis est constitué de billes en plomb ou en terres rares.
3. Dispositif selon la revendication 2, caractérisé en ce que les billes ont un diamètre de l'ordre de 200 à 500 μ .
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte au moins deux tamis (14, 15), un tamis au moins étant placé, dans le siphon, à la sortie de l' échangeur, et un autre étant placé, dans le siphon, en amont de l'objet à refroidir.
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le gaz est de l'hélium, pour refroidir à une température comprise entre 5 et 30 K.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le siphon comporte une paroi mince en acier inoxydable.
7. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le siphon est coaxial.
8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une résistance électrique à puissance réglable avoisine l'objet (20) .
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'une spirale (26) ou un serpentin forme le siphon au fond du vase Dewar (10) .
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le moyen pour pré-refroidir le gaz comprend un échangeur coaxial (11) .
EP01949542A 2000-06-28 2001-06-27 Dispositif de stabilisation thermique d'un objet a refroidir Withdrawn EP1295074A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0008301A FR2811070B1 (fr) 2000-06-28 2000-06-28 Dispositif de stabilisation thermique d'un objet a refroidir
FR0008301 2000-06-28
PCT/FR2001/002035 WO2002001128A1 (fr) 2000-06-28 2001-06-27 Dispositif de stabilisation thermique d'un objet a refroidir

Publications (1)

Publication Number Publication Date
EP1295074A1 true EP1295074A1 (fr) 2003-03-26

Family

ID=8851787

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01949542A Withdrawn EP1295074A1 (fr) 2000-06-28 2001-06-27 Dispositif de stabilisation thermique d'un objet a refroidir

Country Status (5)

Country Link
US (1) US20030154728A1 (fr)
EP (1) EP1295074A1 (fr)
JP (1) JP2004502121A (fr)
FR (1) FR2811070B1 (fr)
WO (1) WO2002001128A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016135A1 (de) * 2004-04-01 2005-10-20 Bayerische Motoren Werke Ag Kryotank, insbesondere zur Speicherung von Wasserstoff in einem Kraftfahrzeug
US9447922B2 (en) * 2006-11-08 2016-09-20 GM Global Technology Operations LLC Internal heating of a fluid in a storage tank
US20150362127A1 (en) * 2014-06-12 2015-12-17 Ut-Battelle, Llc Single phase cold helium transfer line for cryogenic heat transfer applications
WO2016005463A1 (fr) * 2014-07-09 2016-01-14 Bluefors Cryogenics Oy Ltd Étage de piégeage de récupération, réfrigérateur comprenant un étage de piégeage de récupération et procédé de nettoyage d'un étage de piégeage de récupération
CN114562836B (zh) * 2022-03-21 2023-07-28 上海交通大学 压力和过冷度可控的小型过冷液氮获取装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2054054C3 (de) * 1970-11-03 1979-11-15 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Vorrichtung zur Zuführung von Kältemittel in Kryostaten
US4479367A (en) * 1981-12-28 1984-10-30 Santa Barbara Research Center Thermal filter
AU584312B2 (en) * 1984-01-17 1989-05-25 Hoxan Corporation Method of fabricating frozen fine liver pieces for artificial liver, apparatus for freezing the same, and freezing vessel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0201128A1 *

Also Published As

Publication number Publication date
FR2811070A1 (fr) 2002-01-04
US20030154728A1 (en) 2003-08-21
WO2002001128A1 (fr) 2002-01-03
JP2004502121A (ja) 2004-01-22
FR2811070B1 (fr) 2003-04-04

Similar Documents

Publication Publication Date Title
US5119637A (en) Ultra-high temperature stability Joule-Thomson cooler with capability to accommodate pressure variations
FR2533304A1 (fr) Appareil de refrigeration pour le refroidissement rapide de specimens, en particulier, biologiques
FR2460460A1 (fr) Dispositif cryogenique stable et precis
FR2849144A1 (fr) Dispositif de vanne cryogenique a actionneur pneumatique
FR2700836A1 (fr) Appareil pour produire de l&#39;azote liquide.
CA1197107A (fr) Dispositif de regulation d&#39;un refrigerateur a effet joule-thomson
EP1295074A1 (fr) Dispositif de stabilisation thermique d&#39;un objet a refroidir
FR2586793A1 (fr) Procede et appareil de refrigeration magnetique
FR2574914A1 (fr) Cryostat a dilution
EP0388277B1 (fr) Refroidisseur Joule-Thomson
FR2700834A1 (fr) Installation pour refroidisseur, notamment pour l&#39;analyse de la pureté d&#39;un gaz.
EP0968387B1 (fr) Procede et installation de remplissage d&#39;un reservoir sous pression
FR2523303A1 (fr) Cellule thermometrique unitaire scellee reunissant differents points fixes
EP2584294B1 (fr) Dispositif d&#39;alimentation en gaz froids pour une installation rmn
EP0805317B1 (fr) Réfrigérateur cryogènique pour échantillon
Gaffney et al. Liquid Helium Level‐Finder
EP1036313A1 (fr) Procede et dispositif pour l&#39;etude de l&#39;effet d&#39;un fluide supercritique sur la transition d&#39;un materiau de l&#39;une a l&#39;autre de deux phases condensees et leur application au cas d&#39;un materiau polymere
Jirmanus Introduction to laboratory cryogenics
EP0177416A1 (fr) Dispositif cryostatique pour détecteurs de rayonnements
EP0305257B1 (fr) Procédé et dispositif de refroidissement cryogénique d&#39;un objet
EP0706632A1 (fr) Procede d&#39;obtention de tres basses temperatures
Fixsen et al. Lightweight long-hold-time Dewar
Carter et al. Closed‐cycle refrigerator solution cell for low‐temperature optical spectroscopy
FR2695220A1 (fr) Régulateur d&#39;écoulement de fluide à orifice à aiguille.
Lõhmus et al. An immersion cryostat for mounting a high-pressure optical cell surrounded by nonboiling liquid nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040911