EP1294857A2 - Genetically modified t-cells, method for producing them and use thereof - Google Patents

Genetically modified t-cells, method for producing them and use thereof

Info

Publication number
EP1294857A2
EP1294857A2 EP01949257A EP01949257A EP1294857A2 EP 1294857 A2 EP1294857 A2 EP 1294857A2 EP 01949257 A EP01949257 A EP 01949257A EP 01949257 A EP01949257 A EP 01949257A EP 1294857 A2 EP1294857 A2 EP 1294857A2
Authority
EP
European Patent Office
Prior art keywords
cells
gene
vitro
genes
transplant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01949257A
Other languages
German (de)
French (fr)
Inventor
Thomas Ritter
Hans-Dieter Volk
Markus Hammer
Christine Brandt
Grit Schroeder
Manfred Lehmann
Alexander Fluegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Charite Universitaetsmedizin Berlin
Original Assignee
Universitatsklinikum Charite Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitatsklinikum Charite Berlin filed Critical Universitatsklinikum Charite Berlin
Publication of EP1294857A2 publication Critical patent/EP1294857A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/001Preparations to induce tolerance to non-self, e.g. prior to transplantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46434Antigens related to induction of tolerance to non-self
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/464838Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the invention relates to in vitro gene-modified T cells for preventing allogeneic graft rejection in vivo, methods for their production and their use.
  • T cells of the transplant recipient are stimulated in vitro by cells from the transplant donor or by cells which express dominant MHC molecules, and at the same time are transduced using gene transfer methods with immunomodulating genes. After gene transfer, the transduced T cells begin to express the immunomodulatory genes.
  • the gene transfer can be carried out with the help of retroviruses or other, non-viral gene transfer techniques, for example liposome formulations.
  • the T cells migrate specifically after the in vivo application both into the allogeneic graft and into the draining lymph nodes and can express the immunomodulating genes there.
  • the invention makes it possible to effectively prevent the rejection of allogeneic grafts (cells, tissues, organs) and thus represents an effective means both for inducing tolerance and for maintaining tolerance towards allogeneic grafts (cells, tissues, organs) in transplantation medicine
  • the success of conventional immunosuppression with cyclosporin A, FK506, glucocorticoids or OKT3 (monoclonal antibody (mAb) against CD3 does not solve the problem of graft rejection satisfactorily.
  • Th cells appear to be the initiators of the rejection. This was de shown in CD4 or CDS T cell depleted mice. While the CD8-deposed mice can reject the graft, the CD4-deputated cannot do so (Campos et al., 1995). If one starts from the Thl / Th2 paradigm (Mosmann et al., 1989), mainly Thl cells are involved in the early phase of acute rejection. An increase in characteristic Thl cytokines (IFN- ⁇ , IL-2) in the graft was also shown in rat models using semiquantitative PCR (Siegling et al., 1994a). After in vitro restimulation, the CD4 cells obtained from the organ also predominantly produce Thl cytokines.
  • Thl cytokines IFN- ⁇ , IL-2
  • IL-4 In addition to IL-4, a number of cytokines are able to modulate Thl-mediated immune reactions. IL-4 induces the differentiation of naive CD4 + T cells into Th2 cells, is produced by them and strongly inhibits the secretion of IFN- ⁇ . This suppresses the development of a Thl response (Banchereau, 1991). IL-10, which is primarily formed by monocytes / macrophages and T cells, has a whole range of anti-inflammatory properties.
  • IX-10 inhibits MHC class II expression on monocytes
  • ii) inhibits the production of inflammatory cytokines such as IFN- ⁇ , IL-1 and IL-8 and TNF- ⁇
  • iii) proliferation suppressed allogeneically activated lymphocytes de Waal Malefyt et al, 1991a; de Waal Malefyt et al., 1991b; Ralph et al., 1992; Cassatella et al, 1993; Qin et al, 1997.
  • IL-12 has been described as an additional, T cell-independent differentiation factor for Thl cells.
  • IL-12 is a heterodimeric glycoprotein consisting of a 40kDa ( ⁇ 40) and a 35kDa ( ⁇ 35) subunit.
  • the IL-12p40 subunit is able to specifically inhibit the effects of the heterodimer. According to Mattern et al. (1993) supernatants of mouse IL-12 p40 transfected COS cells inhibit various IL-12 effects in vitro. IL-12p40 inhibits the proliferation of PHA and IL-12 activated splenocytes.
  • Th2 cytokines in animal grafts could be regarded as an epiphenomenon, but could also be decisive for inhibiting the Thl response and thus be a decisive criterion for the graft reaction.
  • This assumption is confirmed by observations that a temporary Thl / Th2 cytokine imbalance of the T cell response can lead to a permanent imprint of the immune response immediately after antigen contact (Scott, 1991).
  • Initial investigations in vitro show in the transplant model that the function of transplant-inflilating cells can also be influenced. Produce the frequency of IFN- ⁇ - the cells could be reduced by 50-70% under the influence of recombinant IL-4 (Merville et al, 1993).
  • IL-10 In contrast to IL-4, the importance of IL-10 for extending graft acceptance is less controversial. It has been shown that overexpression of TGF-ßl and vIL-10, an Epstein-Barr virus-coded homolog to human or murine IL-10, leads to prolongation of graft acceptance in various allogeneic heart transplantation models (Qin et al., 1995; Josien et al., 1998). Kato et al. were able to show that the co-application of IL-4 and vIL-10 with the help of recombinant adenoviruses significantly increased the survival of allogeneic kidney transplants in a strong rejection model (Kato et al., 1999b). Interestingly, the sole application of IL-4 in this model has no effect on extending graft acceptance.
  • IL-12p40 Overexpression of IL-12p40 also appears to have positive effects on graft survival. It could be shown that the local application of IL-12p40 inhibited the Thl-mediated immune response and prevented the rejection of allogeneic myoblasts that were transfected with the cDNA for IL-12p40 (Kato et al, 1997). Similar results were obtained in the islet cell transplantation model in diabetic mice, where overexpression of IL-12p40 prevented Thl-mediated autoaggression (Rothe et al., 1997; Kato et al., 1998). The co-application of IL-4 and IL-12p40 with the help of recombi- adenoviruses significantly named the prolonged survival of allogeneic kidney transplants in a strong rejection model (Kato et al., 1999b).
  • cytokine transfer The problem of many works on cytokine transfer is still the application of the cytokine.
  • the systemic administration of a cyto ins can never create a local environment that corresponds to the physiological situation.
  • cytokines in the serum have a very short half-life, so that the therapeutic protein would have to be supplied continuously in order to achieve a desired serum level (H.-D. Volk, personal communication).
  • Adenovirus-mediated gene transfer from the donor organ can increase cytokine expression in the transplant, but it is usually only brief and in no way dependent on activation.
  • retrovirally transfected T cells are able to stably and permanently express a protein (Blaese et al., 1995). Particularly activated T cells increasingly express their transgene (Quinn et al., 1998; Hammer et al., 2000). Bromberg et al. describe in Transplantation, Vol. 59, 6, 809-816, 1995 a method for retroviral or adenoviral gene transfer directly into the graft. However, exposure of the patient to viruses cannot be avoided.
  • the invention has for its object to provide new ways to prevent allogeneic graft rejection, which eliminates the disadvantages of the known means and methods.
  • the task was solved by providing in vitro gene-modified, alloreactive T cells that express a therapeutic gene.
  • the task of opening a new possibility for preventing allogeneic graft rejection was achieved in particular by stimulating T cells of the graft recipient in vitro by cells of the graft donor or by cells which express dominant MHC molecules and simultaneously or later by means of gene transfer of immunomodulating (therapeutic, for example viral IL-10, for example from EBV or CMV, IL-4, IL-12p40) genes are transduced. After the gene transfer, the transduced T cells begin to express the immunomodulatory genes. The gene transfer can take place either with the help of retroviruses or with non-viral methods (liposomes, gene cannons). The chosen test conditions lead to the generation and expansion of the allo-specific, transduced T cells in vitro.
  • immunomodulating therapeutic, for example viral IL-10, for example from EBV or CMV, IL-4, IL-12p40
  • the modified T cells Because of their allo-specificity, the modified T cells have the property, after the in vivo application of the cells at the time of an allogeneic organ transplant, specifically in both the allogeneic graft and the drainage. immigrate to the lymph node and express the immunomodulating (therapeutic) genes there.
  • the invention makes it possible to effectively prevent the rejection of allogeneic grafts (cells, tissues, organs).
  • the modified cells according to the invention therefore migrate into the transplant on account of their allo-specificity. It has been found that the production of IL-4, IL-10 and IL-12p40, depending on the degree of activation of the cells according to the invention, creates a local environment of Th2 cytokines or Thl antagonists directly at the point of Ag contact , It was thus possible to generate all-reactive T cells producing IL-4, EL-10 or IL-12p40 by retroviral gene transfer in vitro.
  • T cells tumor-specific T cells
  • pro-inflammatory cytokines such as TNF-alpha
  • grafts stressed by ischemia / reperfusion, infection or rejection crises also express autologous stress proteins against which an immune response can be generated (e.g. heat shock protein HSP 70, specific autoreactive T cells). These cells can also be generated in vitro and used as a biological “drag delivery” system. Instead of directly alloreactive T cells (against donor MHC molecules), indirectly alloreactive (against donor MHC peptides presented by recipient MHC) can also be generated and used. Both approaches have the advantage of less reactivity to the graft compared to directly alloreactive T cells.
  • HSP 70 specific autoreactive T cells
  • the in vitro transduced, gene-modified T cells are obtained by co-culture or by co-incubation with cell culture supernatants from so-called amphotrophic cell lines, which e.g. which produce recombinant retroviruses with the therapeutic transgenes.
  • the method according to the invention for producing the in vitro transduced, gene-modified T cells consists of the following steps:
  • the cell line that produces the retrovirus capable of gene transfer with the therapeutic transgene is grown in culture taken.
  • the lymphocytes donor T cells or cells that express dominant MHC molecules and recipient T cells
  • the donor T cells or the cell lines which express dominant MHC molecules must be irradiated in order to prevent proliferation of these cells).
  • cocultivation consisting of the mixed lymphocyte culture (primary MLC) and the retrovirus-producing packaging cell line is carried out.
  • the retroviral gene transfer can also take place in that only the virus supernatant of the packaging cell line is added to the culture of the lymphocytes (donor T cells or cells which express dominant MHC molecules and recipient T cells), so that cocultivation with the packaging cell line is given can be dispensed with.
  • the mixed lymphocyte culture donor T cells or cells that express dominant MHC molecules and recipient T cells
  • the resulting or originated alloreactive T cells are transduced directly in vitro using non-viral gene transfer methods with plasmids which code for the therapeutic genes.
  • the alloreactive T cells serve as "universal" carriers of therapeutic genes. Above all, these are:
  • cytokines IL-13, cytokines that are homologous to the IL-10 gene, e.g. the CMV IL-10
  • Gene products that are expressed intracellularly and, due to their cell-protective effect, impart an extended survival time to the regulatory T cells e.g. anti-apoptotic genes such as bcl-2, bcl-xl, bag-1)
  • IL-4, IL-10, vIL-10 and IL-2p40 are preferably used as therapeutic genes (transgenes). Hemoxygenase-1 can also be used.
  • the transduced, gene-modified T cells can be used in different applications (iv, ip), different combinations thereof and / or different dosages at different times.
  • the in vitro transduced, gene-modified T cells are suitable for preventing allogeneic graft rejection in vivo and can be used in the transplantation of allogeneic cells, tissues and organs. Examples include the transplantation of stem cells, bone marrow, skin, kidney, heart, liver, lungs, cells of the central nervous system, or Langerhans islands.
  • T cells of the transplant recipient are stimulated in vitro by cells from the transplant donor or by cells which express dominant MHC molecules and simultaneously transduced by means of gene transfer, with immunomodulating genes being transferred. The result is the generation of T cells that can induce tolerance induction or maintenance of tolerance to allogeneic grafts.
  • the essence of the invention consists in a combination of known - amphotrophic Zeil lines, retroviral vectors, mixed lymphocyte culture - and new elements - co-culture from the mixed lymphocyte culture (primary MLC) and the therapeutic retrovirus-producing Zeil line - which leads to that gene-modified T cells are created that can express therapeutic genes and, due to the allo-specificity, can migrate into both the allograft and the draining lymph nodes.
  • the success of the method is that the rejection of allogeneic grafts (cells, tissues, organs) is effectively prevented and thus an effective means in transplant medicine is made available.
  • the use of therapeutic T cells according to the invention consists in the prevention of allogeneic graft rejection.
  • the (in vitro) transduced, gene-modified T cells are used as agents for inducing tolerance and for maintaining tolerance to allogeneic grafts (cells, tissues, organs) and for stimulating the T cells of the transplant recipient.
  • Example 1 Production of the therapeutic T cell lines Generation of the Zeil lines
  • the NIH / 3T3-derived Zeil line PT67 (Retropack TM, Clontech) serves as the starting point for the production of infectious, replication-incompetent retrovirus.
  • PT 67 contains the genes gag, pol and env (10A1 strain) of the Moloney Murine Leukemia Virus (MoMuLV).
  • the cells are grown in DMEM 10% FCS, 4mM L-glutamine, 100U / ml penicillin and 100 ⁇ g / ml streptomycin at 37 ° C in a 5% CO 2 atmosphere.
  • This Zeil line with a retroviral vector, which does not contain the above-mentioned genes, but contains a therapeutic gene and a packaging signal, allows the production of replication-deficient retrovirus (ie the virus can infect its target cells, but cannot replicate in them and others) Infect cells) (Coffin et al., 1996; Ausubel et al, 1996).
  • the PT67 cells are transfected by means of calcium phosphate transfection according to standard protocols (Maniatis). By selection with G 418 (0.5 mg / ml) clones and, in turn, derived from them Zeil lines are established which produce both the replication-deficient retrovirus and the therapeutic gene.
  • ELISA tests can be used to determine the Zeil lines with the highest production of the therapeutic gene, which is then used in all further experiments.
  • IL-12p40 no ELISA test is available.
  • the biological activity is determined directly in the bioassay (inhibition of IFN- ⁇ production by activated spleen cells).
  • the Zeil line which produces the recombinant retrovirus with the therapeutic transgene is taken in culture (DMEM + 10% FCS + Selection antibiotic G 418 0.5 mg / ml final concentration).
  • the coculture consisting of the mixed lymphocyte culture (primary MLC) and the retrovirus-producing Zeil line, is carried out: the cells of the Zeil line trypsinized, centrifuged for 5 minutes at 1200 rpm and taken up in T-cell medium (TCM) without FCS. Then the cells are counted and seeded to a density of 2xl0 5 -2xl0 6 cells / per 96 plate.
  • the cells are allowed to grow in a CO 2 incubator (5% CO) at 37 ° C. for 3-4 hours before the T cells are added.
  • the T cells of the transplant recipient are previously isolated from the peripheral blood using a Fikoll gradient according to standard protocols.
  • the cells of the transplant donor are also isolated according to the standard protocol. If Zeil lines expressing dominant MHC epitopes are used, these are thawed 1-2 days beforehand and cultivated in the CO incubator until use.
  • the cells used for antigen presentation (as stimulator cells for the T cells of the transplant recipient) must be irradiated at 30 gy for 10 minutes before addition to the mixed lymphocyte culture in order to inhibit this from the undesired proliferation.
  • the antigen presenting cells After irradiation of the antigen presenting cells, they are centrifuged and taken up in 20 ml TCM without FCS. Then the cell number is determined and 50 ⁇ l TCM with 3.5 x 10 5 - 4 x 10 5 cells of the transplant recipient and the antigen-presenting cells in 3% autologous serum and 4 ⁇ g / ml polybrene in 96well round-bottom plates (total volume 100 ⁇ l) and plated Incubated 37 ° C in the CO 2 incubator with complete rest. Day 4: On day five, the MLC is implemented from round floor slabs in flat floor slabs.
  • the G 418 selection takes place on day 6, i.e. all cells in the course of which the retroviral gene transfer was not transduced perish within the scope of the G 418 selection. Conversely, only the cells which have been transduced by the retrovirus survive the G 418 selection. From this stage on, the cells should always be cultivated under G 418 (0.4 mg / ml G-418 final concentration). The cells are cultivated in this medium for a further 48 hours. Day 8: Restimulation 2 "
  • the cells are restimulated on day eight after the first stimulation. As already described for the first stimulation, either the transplant donor's PBMC is used for this or Zeil lines expressing dominant MHC epitopes.
  • the cells are again irradiated (10 min, 30 Gy), then centrifuged (1,200 rpm, 5 min) and then taken up in 20 ml TCM without FCS and the cell number is determined.
  • lOO ⁇ l are first removed from the 96well microtiter plate, which contains the MLC cells, and 6x10 5 stimulator cells are added. It is also adjusted to 3% autologous serum and a G 418 concentration of 0.4 mg / ml. The cells are then incubated for a further two days.
  • Proliferating cells should be located in the cell culture plates, which can be expanded by further restimulation steps in order to have a sufficiently large number of cells available for application in the clinic.
  • PBMC cells of the transplant donor or Zeil lines which express dominant MHC molecules or Zeil lines which are transfected with the genes for these molecules and these can be constitutive express (K. Wood) can be used.
  • the cell culture supernatant containing the retrovirus should be used for the transduction of the T cells.
  • Example 4 The bioassay: detection of the therapeutic gene in the supernatant can be carried out by:
  • IL-4 IL-4
  • ELISA MHC-II upregulation on spleen cells vIL-10
  • ELISA inhibition of TNF- ⁇ production by macrophages, reduction of MHC-II expression on monocytes
  • IL-12p40 no ELISA, inhibition of IFN- ⁇ production after stimulation of spleen cells.
  • Example 5 Immunoregulatory potential of the allospecific T VIL - IO lymphocytes
  • MLC mixed lymphocyte culture
  • the stained recipient cells were then sown with irradiated stimulator cells (supposed to imitate the transplant-specific cells) in a ratio of 1: 1 (3.5 x 10 5 cells each) in 96-well flat soil.
  • T VJL - IO T cells were added in a ratio of 1:20 (5%).
  • a syngeneic control and allospecific T EGFP lymphocytes (with an irrelevant control gene, enhanced green fluorescent protein, as a so-called therapeutic gene) were used as the control approach, which were used in the same ratio.
  • the fluorescence intensity and decrease were measured by fluorescence flow cytometry (FACS) on days 1-4. In comparison with the allogeneic control without therapeutic T cells, an inhibition of the proliferation to approximately 70-80% on days 3 and 4 could be demonstrated in the batches with T VIL - IO lymphocytes (FIGS. 1 and 2).
  • Example 6 Inhibition of interferon- ⁇ production in naive T-lymphocytes by T VIL - IO cells
  • a comparison of the transgenic T V IL-IO cells with T EGFP cells and non-transgenic allospecific lymphocytes at the protein and RNA level provides information as to whether the therapeutic cells differ in their cytokine expression patterns (rIL-2, rlFN- ⁇ , rIL -10 etc.) from the other cells.
  • cytokine expression patterns rIL-2, rlFN- ⁇ , rIL -10 etc.
  • Activation markers rCD25
  • apoptotic FasL
  • Bag-1 antiapoptotic gene expression patterns
  • Example 7 Gene transfer to alloreactive T cells using non-viral methods: In addition to viral gene transfer, non-viral gene transfer to generate the alloreactive, gene-modified T cells is also to be investigated. For this purpose, the allospecific T cells produced using the mixed lymphocyte culture are e.g. incubated with certain liposome formulations containing the plasmid with the therapeutic gene or bombarded with a gene gun. Co-culture with the virus-producing packaging cell line is not necessary for this approach.
  • Example 8 Gene transfer to alloreactive T cells with other viral vector systems: In addition to retroviral gene transfer based on the murine Moloney Leukemia Virus (MoMuLV), the production of the alloreactive, gene-modified T cells is also to be protected with the aid of other viral vector systems. This is supposed to be gene transfer with lentiviral contracts (these are also retroviruses, but based on the human immunodeficiency virus (HIV), with contracts based on adeno-associated viruses (AAV) and constructs based on cytomegaloviruses (CMV) include.
  • lentiviral contracts these are also retroviruses, but based on the human immunodeficiency virus (HIV), with contracts based on adeno-associated viruses (AAV) and constructs based on cytomegaloviruses (CMV) include.
  • IL-10 Human Herpes Virus 4 Cellular IL-10 Homologue, Induces Local Anergy to Allogenic and Syngenic Tumors. J.Exp.Med. 1995, 182: 477-486
  • B7 molecules surface marker on APC important for the activation of T-cells bag-1 Bcl-2 associated athanogenic, anti-apoptosis gene, interacts with Bcl-2 bcl-2 B cell leukemia-2, anti-apoptosis gene bcl-xl Bcl- 2 Homolog, antiapoptosis gene cDNA complementary DNA, copy DNA
  • CD cluster of differentiation nomenclature for surface molecules CD4 specific surface markers on T helper cells
  • antibody CD8 T-specific surface marker on cytotoxic T cells CMV IL-10 cytomegalovirus IL-10, homologous to human IL-10 or vIL-10 CTLA-4 cytotoxic T-cell late antigen CTLA4-Ig fusion protein, consisting of CTLA-4 ( cytotoxic T-cell late antigen) and the Fc part of the IgG antibody
  • hSerrate-1 Homo sapiens serrate 1 (from the Notch ligand family) FKS fetal calf serum
  • Notchl-4 Homo sapiens Notch (Drosophila) homolog 1-4 (Notch receptor)
  • TCR signal T cell receptor TGF transforming growth factor
  • T lymphocytes Thymus-dependent or stemmed lymphocytes
  • Thl cells T cells with T helper phenotype Thl cells T cells with T helper phenotype
  • TNF tumor necrosis factor vIL-10 viral interleukin-10 derived from Epstein-Barr virus, has high AS-

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The invention relates to in-vitro genetically modified T-cells for preventing allogenic transplant rejection in vivo, to methods for producing them and to their use. T-cells of the transplant recipient are stimulated in vitro with cells of the transplant donor or with cells which express dominant MHC molecules and at the same time, transduced with immunomodulating genes by means of gene transfer. After the gene transfer, the transduced T-cells begin to express the immunomodulatory genes. The gene transfer can be carried out using retro viruses, other viral vector systems or liposomes. The conditions selected for the experiment, which result in the generation and expansion of allo-specific T-cells, ensure that the T-cells migrate into the allogenic transplant and into the draining lymph nodes specifically according to the in vivo application and can express the immunomodulating genes there. The invention provides an effective means of preventing the rejection of allogenic transplants (cells, tissues, organs) and is therefore an effective means of inducing and maintaining tolerance of allogenic transplants (cells, tissues, organs) in transplant medicine.

Description

Gen-modifϊzierte T-Zellen, Verfahren zu ihrer Herstellung und ihre VerwendungGene-modified T cells, processes for their production and their use
Beschreibungdescription
Die Erfindung betrifft in vitro gen-modifϊzierte T-Zellen zur Verhinderung der allogenen Transplantatrejektion in vivo, Verfahren zu ihrer Herstellung und ihre Verwendung. Hierbei werden T-Zellen des Transplantatempfangers in vitro durch Zellen des Transplantatspenders oder durch Zellen, die dominante MHC-Moleküle exprimieren, stimuliert und gleichzeitig mit Gentransfermethoden mit immunmodulierenden Genen transduziert. Nach dem Gentransfer beginnen die transduzierten T-Zellen, die immunmodulatorischen Gene zu exprimieren. Der Gentransfer kann mit Hilfe von Retroviren oder anderen, nicht-viralen Gentransfertechniken, z.B. Liposomenformulationen erfolgen. Aufgrund der gewählten Versuchsbedingungen, die zur Generierung und Expansion von allo-spezifischen T-Zellen führt, wandern die T-Zellen nach der in vivo Applikation spezifisch sowohl in das allogene Transplantat als auch in die drainierenden Lymphknoten ein und können dort die immunmodulierenden Gene exprimieren. Die Erfindung erlaubt es, die Abstoßung allogener Transplantate (Zellen, Gewebe, Organe) effektiv zu verhindern und stellt damit ein wirksames Mittel sowohl zur Toleranzinduktion als auch zur Erhaltung von Toleranz gegenüber allogenen Transplantaten (Zellen, Gewebe, Organe) in der Transplantationsmedizin dar. Trotz der Erfolge der konventionellen Immunsuppression mit Cyclosporin A, FK506, Gluko- kortikoiden oder OKT3 (monoklonaler Antikörper (mAk) gegen CD3) ist das Problem der Transplantatabstoßung noch lange nicht zufriedenstellend gelöst. Eine lebenslange medikamentöse Immunsuppression führt fast immer zu gravierenden Nebenwirkungen und kann die chronische Rejektion nur selten komplett inhibieren. Ziel der Transplantationsforschung ist es, mit einer Kurzzeittherapie die lebenslange Akzeptanz eines fremden Organs zu erreichen. In Tiermodellen gibt es bereits einige Ansätze, die dieser Forderung nahe kommen. Die Basis zum Verständnis dieser Ansätze stellt die genaue Analyse des abgestoßenen oder tolerierten Gewebes dar. Sie zeigt während der akuten Rejektion immer eine massive Infiltration des Gewebes mit Granulozyten, Monozyten und Lymphozyten. Die Tatsache, dass die Depletion der CD3-positiven Zellen durch OKT3 das Transplantat vor Abstoßung schützt, zeigt die kritische Rolle der T-Lymphozyten (Ode-Hakim et al, 1996). Ebenso sind immundefiziente SCID-Mäuse (ohne B- und T-Zellen) nicht in der Lage, ein fremdes Organ abzustoßen. Innerhalb der T-Zellpopulation scheinen Th-Zellen die Initiatoren der Rejektion zu sein. Dies wur- de in CD4 bzw. CDS T-Zell-depletierten Mäusen gezeigt. Während die CD8 deputierten Mäuse das Transplantat abstoßen können, ist dies den CD4 deputierten nicht möglich (Campos et al., 1995). Geht man vom Thl/Th2 Paradigma aus (Mosmann et al., 1989), sind in der frühen Phase der akuten Abstoßung hauptsächlich Thl -Zellen beteiligt. Auch in Rattenmodel- len konnte mit semiquantitativer PCR ein Anstieg charakteristischer Thl-Zytokine (IFN-γ, IL- 2) im Transplantat gezeigt werden (Siegling et al., 1994a). Die aus dem Organ gewonnen CD4-Zellen produzieren nach in vitro Restimulation ebenfalls vorwiegend Thl-Zytokine. Allen Behandlungsprotokollen gemeinsam ist das Ziel, die potentiell schädigenden Thl- Zellen in ihrer Entstehung oder Funktion zu hemmen. Während die konventionellen Metho- den dies mit einer globalen Depletion oder Inliibition der Lymphozyten versuchen, greifen neuere Ansätze in den T-Zellaktivierungsprozess ein. Monoklonale Antikörper gegen den CD4-Rezeptor modifizieren das TCR-Signal (Lehmann et al, 1992; Siegling et al., 1994b). CTLA4-Ig bindet an die B7-Moleküle der antigen-präsentierenden Zellen (APC's) und blockt somit kostimulatorische Signale (Sayegh et al, 1995). Am Ende dieser kurzen Behandlung (ca. 2 Wochen) entsteht in vielen Modellen eine stabile Toleranz (Cobbold & Waldmann, 1998). Vermittler dieser Toleranz sind wahrscheinlich regulatorische CD4-Zellen. Es konnte gezeigt werden, dass eine Übertragung dieser Zellen auf syngene Tiere ebenfalls eine Toleranz erzeugt. Dieses Phänomen wurde erstmals 1993 als "infektiöse Toleranz" beschrieben (Qin et al., 1993). Allerdings gelang der Versuch nur in einem schwachen "Abstoßungsmodell". Mit Hilfe eines nicht-depletierenden Ak gegen CD4 (RIB 5/2) gelang es, dieses auch in einem starken Rejektionsmodell zu zeigen (Onodera et al, 1996a). Mit Hilfe der semiquantitativen PCR konnte ein stark erhöhter Interleukin-4 (IL-4) mRNA-Spiegel in den transplantierten Organen (auch nach mehreren Übertragungen) nachgewiesen werden. Dies weist auf die Bedeutung von Th-2 Zytokinen, vor allem Interleukin-4, hin. Neben IL-4 sind eine Reihe von Zytokinen in der Lage, Thl -vermittelte Immunreaktionen zu modulieren. IL-4 induziert die Differenzierung von naiven CD4+ T-Zellen in Th2-Zellen, wird von diesen gebildet und hemmt in hohem Maße die Sekretion von IFN-γ. Damit wird die Entwicklung einer Thl-Antwort supprimiert (Banchereau, 1991). IL-10, welches vor allem von Monozyten/Makrophagen und T-Zellen gebildet wird, hat eine ganze Reihe von anti- inflammatorischen Eigenschaften. So wurde unter anderem gezeigt, dass i) IX- 10 die MHC- Klasse II Expression auf Monozyten inhibiert, ii) die Produktion inflammatorischer Zytokine wie IFN-γ, IL-1 und IL-8 und TNF-α hemmt und iii) die Proliferation allogen aktivierter Lymphozyten unterdrückt (de Waal Malefyt et al, 1991a; de Waal Malefyt et al., 1991b; Ralph et al., 1992; Cassatella et al, 1993; Qin et al, 1997). Als ein zusätzlicher, T- zellunabhängiger Differenzierungsfaktor für Thl Zellen wurde IL-12 beschrieben. Dieses Zy- tokin wird von Makrophagen und B-Zellen sezerniert, führt zur Erhöhung der IFN-γ Produktion von NK-Zellen, CD4+ T-Zellen und CD8+ T-Zellen und induziert damit die Differenzie- rung naiver CD4+ T-Zellen zu Thl-Zellen (Hsieh et al, 1993: Germann et al., 1993; Kennedy et al 1994). IL-12 ist ein heterodimeres Glykoprotein, das aus einer 40kDa (ρ40) und einer 35kDa (ρ35) Untereinheit besteht. Die IL-12p40 Untereinheit ist in der Lage, die Effekte des Heterodimers spezifisch zu inhibieren. Nach Mattern et al. (1993) hemmen Überstände von mit Maus IL-12 p40 transfizierten COS Zellen in vitro verschiedene IL-12 Effekte. IL-12p40 inhibiert die Proliferation von PHA und IL-12 aktivierten Splenozyten.The invention relates to in vitro gene-modified T cells for preventing allogeneic graft rejection in vivo, methods for their production and their use. Here, T cells of the transplant recipient are stimulated in vitro by cells from the transplant donor or by cells which express dominant MHC molecules, and at the same time are transduced using gene transfer methods with immunomodulating genes. After gene transfer, the transduced T cells begin to express the immunomodulatory genes. The gene transfer can be carried out with the help of retroviruses or other, non-viral gene transfer techniques, for example liposome formulations. Due to the chosen experimental conditions, which lead to the generation and expansion of allo-specific T cells, the T cells migrate specifically after the in vivo application both into the allogeneic graft and into the draining lymph nodes and can express the immunomodulating genes there. The invention makes it possible to effectively prevent the rejection of allogeneic grafts (cells, tissues, organs) and thus represents an effective means both for inducing tolerance and for maintaining tolerance towards allogeneic grafts (cells, tissues, organs) in transplantation medicine The success of conventional immunosuppression with cyclosporin A, FK506, glucocorticoids or OKT3 (monoclonal antibody (mAb) against CD3) does not solve the problem of graft rejection satisfactorily. A lifelong drug immunosuppression almost always leads to serious side effects and can rarely completely inhibit chronic rejection. The goal of transplant research is to achieve lifelong acceptance of a foreign organ with short-term therapy. There are already some approaches in animal models that come close to this requirement. The basis for understanding these approaches is the precise analysis of the rejected or tolerated tissue. It always shows a massive infiltration of the tissue with granulocytes, monocytes and lymphocytes during the acute rejection. The fact that the depletion of CD3-positive cells by OKT3 protects the graft against rejection shows the critical role of the T lymphocytes (Ode-Hakim et al, 1996). Similarly, immunodeficient SCID mice (without B and T cells) are unable to reject a foreign organ. Within the T cell population, Th cells appear to be the initiators of the rejection. This was de shown in CD4 or CDS T cell depleted mice. While the CD8-deposed mice can reject the graft, the CD4-deputated cannot do so (Campos et al., 1995). If one starts from the Thl / Th2 paradigm (Mosmann et al., 1989), mainly Thl cells are involved in the early phase of acute rejection. An increase in characteristic Thl cytokines (IFN-γ, IL-2) in the graft was also shown in rat models using semiquantitative PCR (Siegling et al., 1994a). After in vitro restimulation, the CD4 cells obtained from the organ also predominantly produce Thl cytokines. The common goal of all treatment protocols is to inhibit the potentially damaging Thl cells in their formation or function. While conventional methods try to do this with global depletion or lymphocyte insertion, newer approaches intervene in the T cell activation process. Monoclonal antibodies against the CD4 receptor modify the TCR signal (Lehmann et al, 1992; Siegling et al., 1994b). CTLA4-Ig binds to the B7 molecules of the antigen-presenting cells (APC's) and thus blocks costimulatory signals (Sayegh et al, 1995). At the end of this short treatment (approx. 2 weeks), a stable tolerance develops in many models (Cobbold & Waldmann, 1998). Regulatory CD4 cells are likely to mediate this tolerance. It could be shown that transfer of these cells to syngeneic animals also creates tolerance. This phenomenon was first described in 1993 as "infectious tolerance" (Qin et al., 1993). However, the attempt was only successful in a weak "rejection model". With the help of a non-depleting AK against CD4 (RIB 5/2), this was also shown in a strong rejection model (Onodera et al, 1996a). With the help of semi-quantitative PCR, a greatly increased interleukin-4 (IL-4) mRNA level in the transplanted organs (even after several transfers) was detected. This indicates the importance of Th-2 cytokines, especially interleukin-4. In addition to IL-4, a number of cytokines are able to modulate Thl-mediated immune reactions. IL-4 induces the differentiation of naive CD4 + T cells into Th2 cells, is produced by them and strongly inhibits the secretion of IFN-γ. This suppresses the development of a Thl response (Banchereau, 1991). IL-10, which is primarily formed by monocytes / macrophages and T cells, has a whole range of anti-inflammatory properties. Among other things, it was shown that i) IX-10 inhibits MHC class II expression on monocytes, ii) inhibits the production of inflammatory cytokines such as IFN-γ, IL-1 and IL-8 and TNF-α and iii) proliferation suppressed allogeneically activated lymphocytes (de Waal Malefyt et al, 1991a; de Waal Malefyt et al., 1991b; Ralph et al., 1992; Cassatella et al, 1993; Qin et al, 1997). IL-12 has been described as an additional, T cell-independent differentiation factor for Thl cells. This cytokine is secreted by macrophages and B cells, leads to an increase in IFN-γ production by NK cells, CD4 + T cells and CD8 + T cells and thus induces the differentiation of naive CD4 + T cells to Thl cells (Hsieh et al, 1993: Germann et al., 1993; Kennedy et al 1994). IL-12 is a heterodimeric glycoprotein consisting of a 40kDa (ρ40) and a 35kDa (ρ35) subunit. The IL-12p40 subunit is able to specifically inhibit the effects of the heterodimer. According to Mattern et al. (1993) supernatants of mouse IL-12 p40 transfected COS cells inhibit various IL-12 effects in vitro. IL-12p40 inhibits the proliferation of PHA and IL-12 activated splenocytes.
Bei experimentellen und klinischen Untersuchungen konnte bei Allotransplantationen gezeigt werden, dass, in der Phase der akuten Abstoßung, die Expression unterschiedlichster Zytokine erfolgt, deren zelluläre Herkunft Thl-Zellen, Th2 -Zellen, zytotoxische CD8+ T-Zellen, aber auch nicht-lymphozytäre Zellen (Makrophagen, Endothelzellen, Mastzellen) zuzuordnen ist (Dallman et al., 1991). Es liegen Hinweise vor, dass Thl-Zytokine eine Schlüsselrolle in der Pathogenese der akuten Transplantatabstoßung spielen. Dies beruht auf Untersuchungen der Zytokingenexpressionsmuster in Transplantaten von toleranten Tieren. Hinweise hierfür bieten Untersuchungen zur wirkungsvollen Toleranzinduktion mit anti-CD4 monoklonalen Antikörpern (Benjamin and Waldmann, 1988; Takeuchi, 1992; Siegling et al., 1994a). Der Me- chanismus ist nicht völlig klar, zumal eine Depletion von CD4+ T-Zellen für die Toleranzinduktion nicht notwendig ist. Eine Toleranzinduktion durch anti-CD4 Behandlung ist mit einer deutlichen Suppression der Thl-Zytokinexpression im Transplantat assoziiert. Dies führte zu der Schlussfolgerung, dass Thl-Zytokine eine wesentliche Rolle bei der Allograftabstoßung einnehmen (Siegling et al., 1994a, Lehmann et al., 1997). Die Bedeutung von Th2-Zytokinen ist dagegen weniger klar. Bei toleranten Tieren fährte die alleinige Th2-Antwort nicht zur Transplantatabstoßung. Die Persistenz von Th2- Zytokinen in Transplantaten der Tiere könnte als Epiphänomen gewertet werden, jedoch auch entscheidend für eine Hemmung der Thl -Antwort sein und damit für die Transplantatreaktion ein entscheidendes Kriterium bedeuten. Bestätigt wird diese Vermutung durch Beobachtun- gen, dass eine temporäre Thl/Th2-Zytokinimbalance der T-Zellantwort unmittelbar nach An- tigenkontakt zur dauerhaften Prägung der Immunantwort fuhren kann (Scott, 1991). Erste Untersuchungen in vitro zeigen im Transplantationsmodell, dass sich auch die Funktion von Transplantat-infliltrierenden Zellen beeinflussen lässt. Die Frequenz von IFN-γ produzieren- den Zellen konnte unter dem Einfluss von rekombinantem IL-4 um 50-70% gesenkt werden (Merville et al, 1993). Daraus kann die Hypothese abgeleitet werden, dass eine temporäre Überexpression von IL-4 am Ort der Alloantwort zur Transplantatakzeptanz führen kann. Die Überexpression von IL-4 nach ex-vivo Gentransfer mit Hilfe von rekombinanten Adenoviren führte zu einer deutlichen Verlängerung der Transplantatakzeptanz im allogenen Nierentransplantationsmodell der Ratte im Vergleich zu unbehandelten oder mit einem Reporterkonstrukt behandelten Transplantaten (Kato et al., 1999a). Die Rolle von IL-4 in der Induktion von Toleranz gegenüber allogenen Transplantaten wird jedoch in der Literatur kontrovers diskutiert. So wurde gezeigt, dass die lokale Überproduktion von IL-4 entweder durch adenoviral trans- fizierte oder IL-4 transgene Transplantate nicht zu einer Verlängerung der Transplantatakzeptanz führt (Smith et al., 1997; Mueller et al., 1997). Auf der anderen Seite ist gezeigt worden, dass transgene, IL-4 produzierende Transplantate oder die systemische Applikation von IL-4 in Kombination mit Cyclosporin A die Überlebenszeit allogener Transplantate verlängern kann (Takeuchi et al., 1997; Rabinovitch et al., 1997). Dabei muss bemerkt werden, dass die Arbeiten methodisch oft unzulänglich dargestellt sind, so dass nicht entschieden werden kann, ob methodische Probleme einen Einfluss auf das Ergebnis haben.In experimental and clinical studies, it was possible to show in allotransplantations that, in the phase of acute rejection, the expression of various cytokines takes place, the cellular origin of which is Thl cells, Th2 cells, cytotoxic CD8 + T cells, but also non-lymphocytic cells (Macrophages, endothelial cells, mast cells) can be assigned (Dallman et al., 1991). There is evidence that Thl cytokines play a key role in the pathogenesis of acute graft rejection. This is based on studies of the cytokine expression patterns in grafts from tolerant animals. Investigations on the effective tolerance induction with anti-CD4 monoclonal antibodies offer hints for this (Benjamin and Waldmann, 1988; Takeuchi, 1992; Siegling et al., 1994a). The mechanism is not entirely clear, especially since depletion of CD4 + T cells is not necessary for tolerance induction. Tolerance induction by anti-CD4 treatment is associated with a clear suppression of Thl cytokine expression in the graft. This led to the conclusion that Thl cytokines play an essential role in allograft rejection (Siegling et al., 1994a, Lehmann et al., 1997). The importance of Th2 cytokines is less clear. In tolerant animals, the Th2 response alone did not lead to graft rejection. The persistence of Th2 cytokines in animal grafts could be regarded as an epiphenomenon, but could also be decisive for inhibiting the Thl response and thus be a decisive criterion for the graft reaction. This assumption is confirmed by observations that a temporary Thl / Th2 cytokine imbalance of the T cell response can lead to a permanent imprint of the immune response immediately after antigen contact (Scott, 1991). Initial investigations in vitro show in the transplant model that the function of transplant-inflilating cells can also be influenced. Produce the frequency of IFN-γ- the cells could be reduced by 50-70% under the influence of recombinant IL-4 (Merville et al, 1993). From this, the hypothesis can be derived that temporary overexpression of IL-4 at the site of the allo response can lead to graft acceptance. The overexpression of IL-4 after ex vivo gene transfer with the help of recombinant adenoviruses led to a significant extension of the graft acceptance in the allogeneic kidney transplant model of the rat compared to untreated or treated with a reporter construct (Kato et al., 1999a). The role of IL-4 in the induction of tolerance to allogeneic grafts is controversial in the literature. It has been shown that local overproduction of IL-4 either by adenoviral transfected or IL-4 transgenic grafts does not lead to prolongation of graft acceptance (Smith et al., 1997; Mueller et al., 1997). On the other hand, it has been shown that transgenic, IL-4 producing grafts or the systemic application of IL-4 in combination with cyclosporin A can extend the survival time of allogeneic grafts (Takeuchi et al., 1997; Rabinovitch et al., 1997) , It should be noted that the work is often methodologically inadequate, so that it cannot be decided whether methodological problems have an impact on the result.
Im Gegensatz zu IL-4 ist die Bedeutung von IL-10 für die Verlängerung der Transplantatakzeptanz weniger umstritten. So konnte gezeigt werden, dass die Überexpression von TGF-ßl und vIL-10, einem Epstein-Barr- Virus kodierten Homolog zu humanem oder murinem IL-10, zur Verlängerung der Transplantatakzeptanz in verschiedenen allogenen Herztransplantations- Modellen führt (Qin et al., 1995; Josien et al., 1998). Kato et al. konnten zeigen, dass die Ko- applikation von IL-4 und vIL-10 mit Hilfe von rekombinanten Adenoviren das Überleben allogener Nierentransplantate in einem starken Abstoßungsmodell signifikant verlängerte (Kato et al., 1999b). Interessanterweise hat die alleinige Applikation von IL-4 in diesem Modell keinen Einfluss auf eine Verlängerung der Transplantatakzeptanz.In contrast to IL-4, the importance of IL-10 for extending graft acceptance is less controversial. It has been shown that overexpression of TGF-ßl and vIL-10, an Epstein-Barr virus-coded homolog to human or murine IL-10, leads to prolongation of graft acceptance in various allogeneic heart transplantation models (Qin et al., 1995; Josien et al., 1998). Kato et al. were able to show that the co-application of IL-4 and vIL-10 with the help of recombinant adenoviruses significantly increased the survival of allogeneic kidney transplants in a strong rejection model (Kato et al., 1999b). Interestingly, the sole application of IL-4 in this model has no effect on extending graft acceptance.
Auch die Überexpression von IL-12p40 scheint positive Effekte auf das Transplantatüberleben zu haben. So konnte gezeigt werden, dass die lokale Applikation von IL-12p40 die Thl- vermittelte Immunantwort inhibierte und die Abstoßung von allogenen Myoblasten, die mit der cDNA für IL-12p40 transfiziert waren, verhinderte (Kato et al, 1997). Ähnliche Ergebnis- se wurden im Modell der Inselzell-Transplantation in diabetische Mäuse erhalten, wo die Ü- berexpression von IL-12p40 die Thl -vermittelte Autoaggression verhinderte (Rothe et al., 1997; Kato et al., 1998). Die Ko-applikation von IL-4 und IL-12p40 mit Hilfe von rekombi- nanten Adenoviren das verlängerte Überleben allogener Nierentransplantate in einem starken Abstoßungsmodell signifikant (Kato et al., 1999b).Overexpression of IL-12p40 also appears to have positive effects on graft survival. It could be shown that the local application of IL-12p40 inhibited the Thl-mediated immune response and prevented the rejection of allogeneic myoblasts that were transfected with the cDNA for IL-12p40 (Kato et al, 1997). Similar results were obtained in the islet cell transplantation model in diabetic mice, where overexpression of IL-12p40 prevented Thl-mediated autoaggression (Rothe et al., 1997; Kato et al., 1998). The co-application of IL-4 and IL-12p40 with the help of recombi- adenoviruses significantly named the prolonged survival of allogeneic kidney transplants in a strong rejection model (Kato et al., 1999b).
Das Problem vieler Arbeiten zum Zytokingen-Transfer ist immer noch die Applikation des Zytokins. Die systemische Gabe eines Zyto ins kann niemals ein lokales Milieu schaffen, welches der physiologischen Situation entspricht. Außerdem haben Zytokine im Serum eine sehr kurze Halbwertszeit, so dass das therapeutische Protein ständig nachgeliefert werden üsste, um einen gewünschten Serumspiegel zu erreichen (H.-D. Volk, pers. Mitteilung). Durch adenovirus-vermittelten Gentransfer des Spenderorgans kann die Zytokinexpression im Transplantat gesteigert werden, sie ist aber meistens nur kurzzeitig und keinesfalls aktivie- rungsabhängig.The problem of many works on cytokine transfer is still the application of the cytokine. The systemic administration of a cyto ins can never create a local environment that corresponds to the physiological situation. In addition, cytokines in the serum have a very short half-life, so that the therapeutic protein would have to be supplied continuously in order to achieve a desired serum level (H.-D. Volk, personal communication). Adenovirus-mediated gene transfer from the donor organ can increase cytokine expression in the transplant, but it is usually only brief and in no way dependent on activation.
Retroviral transfizierte T-Zellen sind jedoch in der Lage, stabil und dauerhaft ein Protein zu exprimieren (Blaese et al., 1995). Besonders aktivierte T-Zellen exprimieren vermehrt ihr Transgen (Quinn et al., 1998; Hammer et al., 2000). Bromberg et al. beschreiben in Transplantation, Vol. 59, 6, 809-816, 1995 eine Methode zum retroviralen bzw. adenoviralen Gentransfer direkt in das Transplantat. Eine Belastung des Patienten mit Viren kann dabei allerdings nicht vermieden werden.However, retrovirally transfected T cells are able to stably and permanently express a protein (Blaese et al., 1995). Particularly activated T cells increasingly express their transgene (Quinn et al., 1998; Hammer et al., 2000). Bromberg et al. describe in Transplantation, Vol. 59, 6, 809-816, 1995 a method for retroviral or adenoviral gene transfer directly into the graft. However, exposure of the patient to viruses cannot be avoided.
Der Erfindung liegt die Aufgabe zugrunde, neue Möglichkeiten zur Verhinderung der allogenen Transplantatrejektion bereitzustellen, welche die Nachteile der bekannten Mittel und Methoden beseitigt. Die Aufgabe wurde durch die Bereitstellung in vitro gen-modifizierter, allo- reaktiver T-Zellen, die ein therapeutisches Gen exprimieren, gelöst.The invention has for its object to provide new ways to prevent allogeneic graft rejection, which eliminates the disadvantages of the known means and methods. The task was solved by providing in vitro gene-modified, alloreactive T cells that express a therapeutic gene.
Die Aufgabe, eine neue Möglichkeit zur Verhinderung der allogenen Transplantatrejektion zu eröffnen, wurde im einzelnen dadurch gelöst, dass T-Zellen des Transplantatempfangers in vitro durch Zellen des Transplantatspenders oder durch Zellen, die dominante MHC-Moleküle exprimieren, stimuliert und gleichzeitig oder später mittels Gentransfer von immunmodulie- renden (therapeutischen, z.B. virales IL-10, z.B. aus EBV oder CMV, IL-4, IL-12p40) Genen transduziert werden. Nach dem Gentransfer beginnen die transduzierten T-Zellen, die im- munmodulatorischen Gene zu exprimieren. Der Gentransfer kann entweder mit Hilfe von Ret- roviren oder mit nicht-viralen Methoden (Liposomen, Genkanonen) erfolgen. Die gewählten Versuchsbedingungen führen zur Generierung und Expansion der allo-spezifischen, transdu- zierten T-Zellen in vitro. Aufgrund ihrer Allo-Spezifität besitzen die modifizierten T-Zellen die Eigenschaft, nach der in vivo Applikation der Zellen zum Zeitpunkt einer allogenen Organtransplantation spezifisch sowohl in das allogene Transplantat als auch in die drainieren- den Lymphknoten einzuwandern und dort die immunmodulierenden (therapeutischen) Gene zu exprimieren.The task of opening a new possibility for preventing allogeneic graft rejection was achieved in particular by stimulating T cells of the graft recipient in vitro by cells of the graft donor or by cells which express dominant MHC molecules and simultaneously or later by means of gene transfer of immunomodulating (therapeutic, for example viral IL-10, for example from EBV or CMV, IL-4, IL-12p40) genes are transduced. After the gene transfer, the transduced T cells begin to express the immunomodulatory genes. The gene transfer can take place either with the help of retroviruses or with non-viral methods (liposomes, gene cannons). The chosen test conditions lead to the generation and expansion of the allo-specific, transduced T cells in vitro. Because of their allo-specificity, the modified T cells have the property, after the in vivo application of the cells at the time of an allogeneic organ transplant, specifically in both the allogeneic graft and the drainage. immigrate to the lymph node and express the immunomodulating (therapeutic) genes there.
Die Erfindung erlaubt es, die Abstoßung allogener Transplantate (Zellen, Gewebe, Organe) effektiv zu verhindern. Die erfindungsgemäßen modifizierten Zellen wandern also auf Grund ihrer Allo-Spezifität in das Transplantat ein. Es hat sich herausgestellt, dass durch die Produktion von IL-4, IL-10 und IL-12p40 in Abhängigkeit des Aktivierungsgrads der erfindungsgemäßen Zellen, direkt am Ort des Ag-Kontaktes ein lokales Milieu von Th2 -Zytokinen bzw. Thl-Antagonisten geschaffen wird. Damit ist es gelungen, IL-4, EL- 10 oder IL-12p40 produzierende, alloreaktive T- Zellen durch retroviralen Gentransfer in vitro zu generieren.The invention makes it possible to effectively prevent the rejection of allogeneic grafts (cells, tissues, organs). The modified cells according to the invention therefore migrate into the transplant on account of their allo-specificity. It has been found that the production of IL-4, IL-10 and IL-12p40, depending on the degree of activation of the cells according to the invention, creates a local environment of Th2 cytokines or Thl antagonists directly at the point of Ag contact , It was thus possible to generate all-reactive T cells producing IL-4, EL-10 or IL-12p40 by retroviral gene transfer in vitro.
Dabei wird auf die Expression des Transgens im transplantierten Gewebe selbst fokussiert. Bisher sind solche (generierte T-Zellen) Zellen hauptsächlich zur Tumorbekämpfung eingesetzt worden. Hierbei wurden ex vivo generierte tumorspezifische T-Zellen mit proinflamma- torischen Zytokinen (wie beispielsweise TNF-alpha) transfiziert, die bei späterer Infiltration den Tumor und seine Metastasen "bekämpfen".The focus is on the expression of the transgene in the transplanted tissue itself. So far, such (generated T cells) cells have mainly been used to fight tumors. Here, ex vivo generated tumor-specific T cells were transfected with pro-inflammatory cytokines (such as TNF-alpha), which "fight" the tumor and its metastases in the event of later infiltration.
Durch Ischämie/Reperfusion, Infektion oder Rejektionskrisen gestresste Transplantate exprimieren auch autologe Stressproteine, gegen die eine Immunantwort generiert werden kann (z.B. Hitzeschockprotein-HSP 70, spezifische autoreaktive T-Zellen). Diese Zellen können ebenfalls in vitro generiert werden und als biologisches "drag delivery" System benutzt wer- den. Auch können anstelle der direkt alloreaktiven T-Zellen (gegen Spender-MHC Moleküle) auch indirekt alloreaktive (gegen Spender-MHC Peptide, die von Empfänger-MHC präsentiert werden) generiert und eingesetzt werden. Beide Ansätze haben den Vorteil einer geringeren Reaktivität gegen das Transplantat im Vergleich zu direkt alloreaktiven T-Zellen. Die erfindungsgemäßen in vitro transduzierten, gen-modifizierten T-Zellen werden durch die Kokultur bzw. durch Koinkubation mit Zellkulturüberständen von sog. amphotrophen Zeil- Linien gewonnen, welche z.B. die rekombinanten Retroviren mit den therapeutischen Transgenen produzieren. Das erfindungsgemäße Verfahren zur Herstellung der in vitro transduzierten, gen-modifizierten T-Zellen besteht aus folgenden Schritten:Grafts stressed by ischemia / reperfusion, infection or rejection crises also express autologous stress proteins against which an immune response can be generated (e.g. heat shock protein HSP 70, specific autoreactive T cells). These cells can also be generated in vitro and used as a biological “drag delivery” system. Instead of directly alloreactive T cells (against donor MHC molecules), indirectly alloreactive (against donor MHC peptides presented by recipient MHC) can also be generated and used. Both approaches have the advantage of less reactivity to the graft compared to directly alloreactive T cells. The in vitro transduced, gene-modified T cells are obtained by co-culture or by co-incubation with cell culture supernatants from so-called amphotrophic cell lines, which e.g. which produce recombinant retroviruses with the therapeutic transgenes. The method according to the invention for producing the in vitro transduced, gene-modified T cells consists of the following steps:
- Herstellung der entsprechenden Verpackungs-Zelllinien, welche die zum Gentransfer fä- higen rekombinanten Retroviren die für therapeutischen Transgene kodieren, produzierenProduction of the corresponding packaging cell lines which produce the recombinant retroviruses which are capable of gene transfer and which code for therapeutic transgenes
(durch Transfektion).(by transfection).
- Generierung der alloreaktiven T-Zellen in vitro. Dabei wird die Zelllinie, welche das zum Gentransfer fähige Retrovirus mit dem therapeutischen Transgen produziert, in Kultur genommen. Außerdem werden die Lymphozyten (Spender T-Zellen oder Zellen, die dominante MHC-Moleküle exprimieren und Empfänger T-Zellen) aus dem Vollblut isoliert. Die Spender T-Zellen bzw. die Zelllinien, die dominante MHC-Moleküle exprimieren, müssen bestrahlt werden, um eine Proliferation dieser Zellen zu verhindern). Danach wird eine Kokultivierung, bestehend aus der gemischten Lymphozytenkultur (Primär-MLC) und der retrovirus-produzierenden Verpackungs-Zelllinie durchgeführt. Der retrovirale Gentransfer kann auch dadurch erfolgen, dass ausschließlich der Virusüberstand der Verpackungszelllinie zu der Kultur der Lymphozyten (Spender T-Zellen oder Zellen, die dominante MHC-Moleküle exprimieren und Empfänger T-Zellen) gegeben wird, so dass auf eine Kokultivierung mit der Verpackungszelllinie verzichtet werden kann.- Generation of the alloreactive T cells in vitro. The cell line that produces the retrovirus capable of gene transfer with the therapeutic transgene is grown in culture taken. In addition, the lymphocytes (donor T cells or cells that express dominant MHC molecules and recipient T cells) are isolated from whole blood. The donor T cells or the cell lines which express dominant MHC molecules must be irradiated in order to prevent proliferation of these cells). Afterwards, cocultivation consisting of the mixed lymphocyte culture (primary MLC) and the retrovirus-producing packaging cell line is carried out. The retroviral gene transfer can also take place in that only the virus supernatant of the packaging cell line is added to the culture of the lymphocytes (donor T cells or cells which express dominant MHC molecules and recipient T cells), so that cocultivation with the packaging cell line is given can be dispensed with.
- Im Falle der Anwendung nicht-viraler Gentransfermethoden entfällt ebenfalls die Kokultur der gemischten Lymphozytenkultur (Spender T-Zellen oder Zellen, die dominante MHC-Moleküle exprimieren und Empfänger T-Zellen) mit der Verpackungszelllinie. Die entstehenden oder entstandenen alloreaktiven T-Zellen werden direkt mit nicht-viralen Gentransfermethoden mit Plasmiden, die für die therapeutischen Gene kodieren, in vitro transduziert. Die alloreaktiven T-Zellen dienen als "universeller" Träger von therapeutischen Genen. Dabei handelt es sich vor allem um:- If non-viral gene transfer methods are used, there is also no co-culture of the mixed lymphocyte culture (donor T cells or cells that express dominant MHC molecules and recipient T cells) with the packaging cell line. The resulting or originated alloreactive T cells are transduced directly in vitro using non-viral gene transfer methods with plasmids which code for the therapeutic genes. The alloreactive T cells serve as "universal" carriers of therapeutic genes. Above all, these are:
Genprodukte, die aus der Zelle ausgeschleust werden und ihren immuno- regulatorischen Einfluss auf andere Zellen, z.B. alloreaktive oder Transplantatinfiltrierende Zellen, ausüben (z.B. Zytokine (IL-13, Zytokine, die homolog zum IL-10 Gen, z.B. das CMV IL-10, sind)Gene products that are removed from the cell and their immunoregulatory influence on other cells, e.g. exercise alloreactive or transplant-infiltrating cells (e.g. cytokines (IL-13, cytokines that are homologous to the IL-10 gene, e.g. the CMV IL-10)
- Genprodukte, die an der Zelloberfläche der regulatorischen T-Zellen exprimiert werden und durch die Wechselwirkung mit anderen Zellen (alloreaktive oder Transplan- tat-infiltrierende Zellen) ihre immuno-regulatorische Wirkung entfalten (z.B. CTLA-4 oder Gene, die zur Familie der Notch-Liganden/Rezeptoren gehören, wie hSerrate-1, hDeltal bzw. Notchl-4)- Gene products which are expressed on the cell surface of the regulatory T cells and which develop their immuno-regulatory action through interaction with other cells (alloreactive or transplant-infiltrating cells) (for example CTLA-4 or genes which belong to the family of the Notch -Ligands / receptors belong, such as hSerrate-1, hDeltal or Notchl-4)
Genprodukte, die intrazellulär exprimiert werden und durch ihre zellprotektive Wirkung den regulatorischen T-Zellen eine verlängerte Überlebenszeit vermitteln (z.B. an- tiapoptotische Gene wie bcl-2, bcl-xl, bag-1)Gene products that are expressed intracellularly and, due to their cell-protective effect, impart an extended survival time to the regulatory T cells (e.g. anti-apoptotic genes such as bcl-2, bcl-xl, bag-1)
- Zellprotektive Gene (z.B. antiapoptotische Gene, Hitzeschockgene) Vorzugsweise werden als therapeutische Gene (Transgene) IL-4, IL-10, vIL-10 und IL-2p40 eingesetzt. Es kann auch Hämoxygenase-1 eingesetzt werden. Die transduzierten, gen-modifizierten T-Zellen können in verschiedenen Applikationen (iv, ip), verschiedenen Kombinationen davon und/oder verschiedenen Dosierungen zu verschiedenen Zeitpunkten eingesetzt werden.- Cell-protective genes (eg anti-apoptotic genes, heat shock genes) IL-4, IL-10, vIL-10 and IL-2p40 are preferably used as therapeutic genes (transgenes). Hemoxygenase-1 can also be used. The transduced, gene-modified T cells can be used in different applications (iv, ip), different combinations thereof and / or different dosages at different times.
Die erfindungsgemäßen in vitro transduzierten, gen-modifizierten T-Zellen eignen sich zur Verhinderung der allogenen Transplantatrejektion in vivo und können bei der Transplantation von allogenen Zellen, Geweben und Organen verwendet werden. Als Beispiele seien die Transplantation von Stammzellen, Knochenmark, Haut, Niere, Herz, Leber, Lunge, Zellen des zentralen Nervensystems, oder Langerhanssche Inseln genannt. Hierbei werden T-Zellen des Transplantatempfängers in vitro durch Zellen des Transplantatspenders oder durch Zellen, die dominante MHC-Moleküle exprimieren, stimuliert und gleichzeitig mittels Gentransfer, wobei immunmodulierende Gene transferiert werden, transduziert. Das Ergebnis ist die Generierung von T-Zellen, die eine Toleranzinduktion bzw. eine Toleranzerhaltung gegenüber allogenen Transplantaten induzieren können.The in vitro transduced, gene-modified T cells are suitable for preventing allogeneic graft rejection in vivo and can be used in the transplantation of allogeneic cells, tissues and organs. Examples include the transplantation of stem cells, bone marrow, skin, kidney, heart, liver, lungs, cells of the central nervous system, or Langerhans islands. Here, T cells of the transplant recipient are stimulated in vitro by cells from the transplant donor or by cells which express dominant MHC molecules and simultaneously transduced by means of gene transfer, with immunomodulating genes being transferred. The result is the generation of T cells that can induce tolerance induction or maintenance of tolerance to allogeneic grafts.
Das Wesen der Erfindung besteht in einer Kombination bekannter - amphotrophe Zeil-Linien, retrovirale Vektoren, gemischte Lymphozytenkultur - und neuen Elementen - Kokultur aus der gemischten Lymphozytenkultur (Primär-MLC) und der den therapeutischen Retrovirus- produzierenden Zeil-Linie -was dazu führt, dass gen-modifizierte T-Zellen entstehen, die the- rapeutische Gene exprimieren können und aufgrund der allo-Spezifität sowohl in das AlloTransplantat als auch in die drainierenden Lymphknoten einwandern können. Der Erfolg der Methode liegt darin, dass die Abstoßung allogener Transplantate (Zellen, Gewebe, Organe) effektiv verhindert wird und somit ein wirksames Mittel in der Transplantationsmedizin zur Verfügung gestellt wird. Die erfindungsgemäße Verwendung von therapeutischen T-Zellen besteht in der Verhinderung der allogenen Transplantatrejektion. Die (in vitro) transduzierten, gen-modifizierten T- Zellen finden als Mittel zur Toleranzinduktion und zur Erhaltung von Toleranz gegenüber allogenen Transplantaten (Zellen, Gewebe, Organe) und zur Stimulierung der T-Zellen des Transplantatempfängers Verwendung.The essence of the invention consists in a combination of known - amphotrophic Zeil lines, retroviral vectors, mixed lymphocyte culture - and new elements - co-culture from the mixed lymphocyte culture (primary MLC) and the therapeutic retrovirus-producing Zeil line - which leads to that gene-modified T cells are created that can express therapeutic genes and, due to the allo-specificity, can migrate into both the allograft and the draining lymph nodes. The success of the method is that the rejection of allogeneic grafts (cells, tissues, organs) is effectively prevented and thus an effective means in transplant medicine is made available. The use of therapeutic T cells according to the invention consists in the prevention of allogeneic graft rejection. The (in vitro) transduced, gene-modified T cells are used as agents for inducing tolerance and for maintaining tolerance to allogeneic grafts (cells, tissues, organs) and for stimulating the T cells of the transplant recipient.
Die Erfindung soll anhand von Ausführungsbeispielen näher erläutert werden, ohne auf diese Beispiele begrenzt zu sein. AusführungsbeispieleThe invention is to be explained in more detail on the basis of exemplary embodiments, without being limited to these examples. embodiments
Beispiel 1 : Herstellung der therapeutischen T-Zell-Linien Generierung der Zeil-LinienExample 1: Production of the therapeutic T cell lines Generation of the Zeil lines
Zunächst werden die entsprechenden Zeil-Linien, welche die rekombinanten Retroviren mit den therapeutischen Transgenen produzieren hergestellt. Als Ausgangspunkt für die Produktion von infektiösem, replikations-inkompetenten Retrovirus dient die von NIH/3T3 abgeleitete Zeil-Linie PT67 (Retropack™, Clontech). PT 67 enthält die Gene gag, pol und env (10A1- Stamm) des Moloney Murine Leukemia Virus (MoMuLV). Die Zellen werden in DMEM 10%FKS, 4mM L-Glutamin, lOOU/ml Penicillin und lOOμg/ml Streptomycin bei 37°C in 5% C02-Atmosphäre gezüchtet. Die Transfektion dieser Zeil-Linie mit einem retroviralem Vektor, der nicht die o.g. Gene, jedoch ein therapeutisches Gen und ein Verpackungssignal beinhaltet, erlaubt die Produktion von replikations-defizientem Retrovirus (d.h. das Virus kann seine Zielzellen infizieren, aber nicht in diesen replizieren und weitere Zellen infizieren) (Cof- fin et al., 1996; Ausubel et al, 1996). Die Transfektion der PT67-Zellen erfolgt mittels Calci- umphosphat-Transfektion nach Standardprotokollen (Maniatis). Durch Selektion mit G 418 (0,5 mg/ml) werden Klone und davon abgeleitet wiederum Zeil-Linien etabliert, die sowohl das replikations-defiziente Retrovirus als auch das therapeutische Gen produzieren. Im Falle von IL-4 und IL-10 können ELISA-Teste dazu herangezogen werden, die Zeil-Linien mit der höchsten Produktion des therapeutischen Gens bestimmen, die dann in allen weiteren Experimenten verwendet wird. Im Falle von IL-12p40 ist kein ELISA-Test zur Verfügung. Hier wird direkt die biologische Aktivität im Bioassay bestimmt (Hemmung der IFN-γ Produktion durch aktivierte Milzzellen).First, the corresponding Zeil lines are produced, which the recombinant retroviruses produce with the therapeutic transgenes. The NIH / 3T3-derived Zeil line PT67 (Retropack ™, Clontech) serves as the starting point for the production of infectious, replication-incompetent retrovirus. PT 67 contains the genes gag, pol and env (10A1 strain) of the Moloney Murine Leukemia Virus (MoMuLV). The cells are grown in DMEM 10% FCS, 4mM L-glutamine, 100U / ml penicillin and 100μg / ml streptomycin at 37 ° C in a 5% CO 2 atmosphere. The transfection of this Zeil line with a retroviral vector, which does not contain the above-mentioned genes, but contains a therapeutic gene and a packaging signal, allows the production of replication-deficient retrovirus (ie the virus can infect its target cells, but cannot replicate in them and others) Infect cells) (Coffin et al., 1996; Ausubel et al, 1996). The PT67 cells are transfected by means of calcium phosphate transfection according to standard protocols (Maniatis). By selection with G 418 (0.5 mg / ml) clones and, in turn, derived from them Zeil lines are established which produce both the replication-deficient retrovirus and the therapeutic gene. In the case of IL-4 and IL-10, ELISA tests can be used to determine the Zeil lines with the highest production of the therapeutic gene, which is then used in all further experiments. In the case of IL-12p40, no ELISA test is available. Here the biological activity is determined directly in the bioassay (inhibition of IFN-γ production by activated spleen cells).
Beispiel 2: Generierung der alloreaktiven T-Zellen in vitroExample 2: Generation of the alloreactive T cells in vitro
Ein bis zwei Tage, bevor die gemischte Lymphozytenkultur (bestrahlte Spender T-Zellen mit Empfänger T-Zellen kultivieren) angesetzt wird, wird die Zeil-Linie, die das rekombinante Retrovirus mit dem therapeutischen Transgen produziert, in Kultur genommen (DMEM+10%FKS + Selektionsantibiotikum G 418 0,5mg/ml Endkonzentration). Am Tag 1 wird die Kokultur, bestehend aus der gemischten Lymphozytenkultur (Primär- MLC) und der retrovirus-produzierenden Zeil-Linie durchgeführt: Dazu werden die Zellen der Zeil-Linie trypsiniert, für 5 Minuten bei 1.200 U/min zentrifugiert und in T-Zell Medium (TCM) ohne FKS aufgenommen. Danach werden die Zellen gezählt und auf einen Dichte von 2xl05-2xl06 Zellen/pro 96er Platte ausgesät. Zunächst lässt man die Zellen für 3-4 Stunden in CO2-Inkubator (5%CO ) bei 37°C anwachsen, bevor die T-Zellen zugegeben werden. Die T-Zellen des Transplantatempfängers werden zuvor aus dem peripheren Blut mit Hilfe eines Fikollgradienten nach Standardprotokollen isoliert. Zur Antigenpräsentation werden die Zellen des Transplantatspenders (T-Zellen) ebenfalls nach Standardprotokoll isoliert. Im Falle der Verwendung von Zeil-Linien, die dominante MHC-Epitope exprimieren, werden diese 1-2 Tage vorher aufgetaut und im CO -Inkubator bis zur Verwendung kultiviert. Die Zellen, die zur Antigen-Präsentation dienen (als Stimulatorzellen für die T-Zellen des Transplantatempfangers), müssen vor der Zugabe zur gemischten Lymphozytenkultur für 10 Minuten bei 30 gy bestrahlt werden, um diese an der unerwünschten Proliferation zu hemmen. Nach der Bestrahlung der antigen-präsentierenden Zellen werden diese zentrifugiert und in 20 ml TCM ohne FKS aufgenommen. Danach wird die Zellzahl bestimmt und 50μl TCM mit je 3,5 x 105 - 4 x 105 Zellen des Transplantatempfängers und der antigen-präsentierenden Zellen in 3% autologem Serum und 4μg/ml Polybren in 96well Rundbodenplatten ausplattiert (Gesamtvolumen lOOμl) und bei 37°C im CO2-Inkubator bei völliger Ruhe inkubiert. Tag 4: Am Tag fünf erfolgt die Umsetzung der MLC aus Rundbodenplatten in Flachbodenplatten. Hierzu werden ca. 50μl des Kulturüberstandes abpipettiert (wird verworfen) und die T-Zellen werden durch 2-3maliges Resuspendieren ohne Luftblasen in eine 96well Flachbodenplatte überführt. Außerdem werden lOOμl Medium (+hrιL-2, 25U/ml), welches frisch angesetzt werden sollte, hinzugegeben werden. Die Zellen werden für weitere 48 Stunden bei 37°C unter CO2- Atmosphäre (5%) kultiviert. Tag 6:One to two days before the mixed lymphocyte culture (cultivate irradiated donor T cells with recipient T cells), the Zeil line which produces the recombinant retrovirus with the therapeutic transgene is taken in culture (DMEM + 10% FCS + Selection antibiotic G 418 0.5 mg / ml final concentration). On day 1, the coculture, consisting of the mixed lymphocyte culture (primary MLC) and the retrovirus-producing Zeil line, is carried out: the cells of the Zeil line trypsinized, centrifuged for 5 minutes at 1200 rpm and taken up in T-cell medium (TCM) without FCS. Then the cells are counted and seeded to a density of 2xl0 5 -2xl0 6 cells / per 96 plate. First, the cells are allowed to grow in a CO 2 incubator (5% CO) at 37 ° C. for 3-4 hours before the T cells are added. The T cells of the transplant recipient are previously isolated from the peripheral blood using a Fikoll gradient according to standard protocols. For antigen presentation, the cells of the transplant donor (T cells) are also isolated according to the standard protocol. If Zeil lines expressing dominant MHC epitopes are used, these are thawed 1-2 days beforehand and cultivated in the CO incubator until use. The cells used for antigen presentation (as stimulator cells for the T cells of the transplant recipient) must be irradiated at 30 gy for 10 minutes before addition to the mixed lymphocyte culture in order to inhibit this from the undesired proliferation. After irradiation of the antigen presenting cells, they are centrifuged and taken up in 20 ml TCM without FCS. Then the cell number is determined and 50μl TCM with 3.5 x 10 5 - 4 x 10 5 cells of the transplant recipient and the antigen-presenting cells in 3% autologous serum and 4μg / ml polybrene in 96well round-bottom plates (total volume 100μl) and plated Incubated 37 ° C in the CO 2 incubator with complete rest. Day 4: On day five, the MLC is implemented from round floor slabs in flat floor slabs. For this purpose, about 50μl of the culture supernatant is pipetted off (is discarded) and the T cells are transferred into a 96-well flat-bottom plate by resuspending 2-3 times without air bubbles. In addition, 100 μl medium (+ hrιL-2, 25U / ml), which should be freshly prepared, will be added. The cells are cultivated for a further 48 hours at 37 ° C. under a CO 2 atmosphere (5%). Day 6:
Am Tag 6 erfolgt die G 418 Selektion, d.h. alle Zellen, im die Zuge des retroviralen Gentransfers nicht transduziert wurden, gehen im Rahmen der G 418-Selektion zugrunde Umgekehrt überleben nur die Zellen die G 418-Selektion, die durch das Retrovirus transduziert wurden. Von dieser Stufe an sind die Zellen immer unter G 418 zu kultivieren (0,4mg/ml G-418 End- konzentration). In diesem Medium werden die Zellen für weitere 48 Stunden kultiviert. Tag 8: Restimulation 2"The G 418 selection takes place on day 6, i.e. all cells in the course of which the retroviral gene transfer was not transduced perish within the scope of the G 418 selection. Conversely, only the cells which have been transduced by the retrovirus survive the G 418 selection. From this stage on, the cells should always be cultivated under G 418 (0.4 mg / ml G-418 final concentration). The cells are cultivated in this medium for a further 48 hours. Day 8: Restimulation 2 "
Am Tag acht nach der ersten Stimlation erfolgt die Restimulation der Zellen. Hierfür werden, wie schon für die erste Stimulation beschrieben, entweder PBMC des Transplantatspenders oder Zeil-Linien, die dominante MHC-Epitope exprimieren, eingesetzt. Die Zellen werden wiederum bestrahlt (10 min, 30 Gy), danach zentrifugiert (1.200 Upm, 5 min) und danach in 20 ml TCM ohne FKS aufgenommen und die Zellzahl bestimmt. Für die Restimulation werden zunächst lOOμl aus der 96well Mikrotiterplatte, welche die MLC-Zellen enthält, entnom- men und mit 6x105 Stimulatorzellen versetzt. Außerdem wird auf 3% autologem Serum und einer G 418 Konzentration von 0.4 mg/ml eingestellt. Danach werden die Zellen für weitere zwei Tage inkubiert. Tag 10: Am Tag 10 erfolgt die Zugabe von frischem TCM-Medium (+hrIL-2, 25U/ml) (lOOμl abzie- hen und Zugabe von lOOμl TCM-Medium (+hιTL-2, 25U/ml) + G 418, 0.4mg/ml). Danach werden die Zellen für weitere zwei Tage inkubiert. Tag 12:The cells are restimulated on day eight after the first stimulation. As already described for the first stimulation, either the transplant donor's PBMC is used for this or Zeil lines expressing dominant MHC epitopes. The cells are again irradiated (10 min, 30 Gy), then centrifuged (1,200 rpm, 5 min) and then taken up in 20 ml TCM without FCS and the cell number is determined. For the restimulation, lOOμl are first removed from the 96well microtiter plate, which contains the MLC cells, and 6x10 5 stimulator cells are added. It is also adjusted to 3% autologous serum and a G 418 concentration of 0.4 mg / ml. The cells are then incubated for a further two days. Day 10: On day 10, fresh TCM medium (+ hrIL-2, 25U / ml) is added (remove lOOμl and lOOμl TCM medium (+ hιTL-2, 25U / ml) + G 418, 0.4mg / ml). The cells are then incubated for a further two days. Day 12:
In den Zellkulturplatten sollten sich proliferierende Zellen (Blasten) befinden, die durch weitere Restimulationsschritte vermehrt werden können, um eine genügend große Anzahl an Zel- len für die Applikation in der Klinik verfügbar zu haben. Am Tag 14 besteht zusätzlich die Möglichkeit, die generierten Blasten über einen Fikollgradienten zu reinigen und zu isolieren (Ficoll 3000). 24 Stunden nach dem Gradienten erfolgt die nächste Restimulation (3"). Zur Stimulation können PBMC-Zellen des Transplantatspenders oder Zeil-Linien, die dominante MHC-Moleküle exprimieren oder Zeil-Linien, die mit den Genen für diese Moleküle transfiziert sind und diese konstitutiv exprimieren (K. Wood) eingesetzt werden.Proliferating cells (blasts) should be located in the cell culture plates, which can be expanded by further restimulation steps in order to have a sufficiently large number of cells available for application in the clinic. On day 14 there is also the option of cleaning and isolating the generated blasts using a Fikoll gradient (Ficoll 3000). The next restimulation (3 ") takes place 24 hours after the gradient. For stimulation, PBMC cells of the transplant donor or Zeil lines which express dominant MHC molecules or Zeil lines which are transfected with the genes for these molecules and these can be constitutive express (K. Wood) can be used.
Beispiel 3 : Alternativen zur KokulturExample 3: Alternatives to coculture
Anstelle der Kokultur mit der amphotrophen Zeil-Linie soll nur der retrovirus-haltige Zellkul- turüberstand der amphotrophen Zelllinie zur Transduktion der T-Zellen herangezogen werden.Instead of the coculture with the amphotrophic cell line, only the cell culture supernatant containing the retrovirus should be used for the transduction of the T cells.
Beispiel 4: Der Bioassay: Nachweis des therapeutischen Gens im Überstand kann erfolgen durch:Example 4: The bioassay: detection of the therapeutic gene in the supernatant can be carried out by:
IL-4, ELISA, MHC-II Hochregulation auf Milzzellen vIL-10, ELISA, Inhibition der TNF-α Produktion durch Makrophagen, Verringerung der MHC-II Expression auf MonozytenIL-4, ELISA, MHC-II upregulation on spleen cells vIL-10, ELISA, inhibition of TNF-α production by macrophages, reduction of MHC-II expression on monocytes
IL-12p40, kein ELISA, Inhibition der Produktion von IFN-γ nach Stimulation von Milzzellen.IL-12p40, no ELISA, inhibition of IFN-γ production after stimulation of spleen cells.
Beispiel 5: Immunoregulatorisches Potential der allospezifischen TVIL-IO Lymphozyten Die Proliferationshemmung naiver T-Zellen durch für vIL-10 transgene Lymphozyten konnte zunächst in vitro in der gemischten Lymphozytenkultur (MLC) nachgewiesen werden. Dieses in vitro System soll die Situation der T-Zellreaktivität nach einer allogenen Organtransplantation imitieren. Hierzu wurden die naiven Empfängerzellen (sollen die T-Zellen des Transplan- tatempfängers imitieren) mit dem Farbstoff SNARF™ am Tag 0 angefärbt. Dieser Farbstoff hat die Eigenschaft, dass er bei einer Zellteilung zu gleichen Teilen an die beiden Tochterzellen weitergegeben wird, so dass die Fluoreszenzintensität abnimmt. Anschließend wurden die angefärbten Empfangerzellen mit bestrahlten Stimulatorzellen (sollen die transplantatspezifischen Zellen imitieren) im Verhältnis 1 :1 (je 3,5 x 105 Zellen) in 96well Flachboden ausgesät. Um den Einfluss der therapeutischen TVJL-IO T-Zellen auf die antigen-induzierte Proliferation der naiven Lymphozyten zu untersuchen, wurden diese im Verhältnis 1 :20 (5%) zu den Ansätzen dazugegeben. Als Kontrollansatz diente eine syngene Kontrolle und weiterhin allospezifische TEGFP Lymphozyten (mit einem irrelevanten Kontrollgen, Enhanced Green Fluorescent Protein, als sog. therapeutisches Gen), die im selben Verhältnis eingesetzt wur- den. Die Messung der Fluoreszenzintensität und -abnähme erfolgte mittels Fluoreszenz- durchflusszytometrie (FACS) an den Tagen 1-4. Im Vergleich zur allogenen Kontrolle ohne therapeutische T-Zellen konnte in den Ansätzen mit TVIL-IO Lymphozyten eine Inhibierung der Proliferation auf ca.70-80% am Tag 3 und 4 nachgewiesen werden (Figuren 1 und 2).Example 5: Immunoregulatory potential of the allospecific T VIL - IO lymphocytes The inhibition of naive T cell proliferation by vIL-10 transgenic lymphocytes was initially demonstrated in vitro in the mixed lymphocyte culture (MLC). This in vitro system is designed to mimic the situation of T cell reactivity after an allogeneic organ transplant. For this purpose, the naive recipient cells (supposed to imitate the T cells of the transplant recipient) were stained with the dye SNARF ™ on day 0. This dye has the property that it is passed on to the two daughter cells in equal parts during cell division, so that the fluorescence intensity decreases. The stained recipient cells were then sown with irradiated stimulator cells (supposed to imitate the transplant-specific cells) in a ratio of 1: 1 (3.5 x 10 5 cells each) in 96-well flat soil. In order to investigate the influence of the therapeutic T VJL - IO T cells on the antigen-induced proliferation of the naive lymphocytes, these were added in a ratio of 1:20 (5%). A syngeneic control and allospecific T EGFP lymphocytes (with an irrelevant control gene, enhanced green fluorescent protein, as a so-called therapeutic gene) were used as the control approach, which were used in the same ratio. The fluorescence intensity and decrease were measured by fluorescence flow cytometry (FACS) on days 1-4. In comparison with the allogeneic control without therapeutic T cells, an inhibition of the proliferation to approximately 70-80% on days 3 and 4 could be demonstrated in the batches with T VIL - IO lymphocytes (FIGS. 1 and 2).
Beispiel 6: Inhibierung der Interferon-γ Produlction in naiven T-Lymphozyten durch TVIL-IO ZellenExample 6: Inhibition of interferon-γ production in naive T-lymphocytes by T VIL - IO cells
Die Inhibierung der Interferon-γ Produktion in naiven T-Lymphozyten durch TVIMO Zellen wurde ebenfalls in der MLC nachgewiesen. Es wurde derselbe Versuchsansatz verwendet. Als Membranfarbstoff wurde in diesen Fall ein anderes Agens (CFSE) verwendet, welches im Fluoreszenzkanal 1 des Durchflusszytometers leuchtet. Die Detektion von IFN-γ erfolgte mittels eines PE markierten monoklonalen intrazellulären Antikörpers gegen IFN-γ im FACS am Tag 4. Die Abnahme der IFN-γ Produktion in naiven T-Lymphozyten nach Kultivierung mit allospezifischen TvIL-10 Lymphozyten beträgt 50% am Tag 4 (Figur 3). Ein Vergleich der transgenen TVIL-IO Zellen mit TEGFP Zellen und nicht transgenen allospezifi- sehen Lymphozyten auf Protein- und RNA-Ebene gibt Aufschluss darüber, ob sich die therapeutischen Zellen in ihren Zytokinexpressionsmustern (rIL-2, rlFN-γ, rIL-10 usw.) von den anderen Zellen unterscheiden. Des weiteren werden auch Aktivierungsmarker (rCD25), apop- totische (FasL) und antiapoptotische (Bag-1) Genexpressionsmuster analysiert. Diese Versu- ehe tragen dazu bei, die therapeutischen Zellen eindeutig zu charakterisieren und mögliche Wirkungsmechanismen dieser Lymphozyten zu analysieren.The inhibition of interferon-γ production in naive T lymphocytes by T VIMO cells was also demonstrated in the MLC. The same experimental approach was used. In this case, another agent (CFSE) was used as membrane dye, which glows in fluorescence channel 1 of the flow cytometer. IFN-γ was detected by means of a PE-labeled monoclonal intracellular antibody against IFN-γ in FACS on day 4. The decrease in IFN-γ production in naive T lymphocytes after cultivation with allospecific TvIL-10 lymphocytes is 50% on day 4 (Figure 3). A comparison of the transgenic T V IL-IO cells with T EGFP cells and non-transgenic allospecific lymphocytes at the protein and RNA level provides information as to whether the therapeutic cells differ in their cytokine expression patterns (rIL-2, rlFN-γ, rIL -10 etc.) from the other cells. Activation markers (rCD25), apoptotic (FasL) and antiapoptotic (Bag-1) gene expression patterns are also analyzed. These attempts Before they help to clearly characterize the therapeutic cells and to analyze possible mechanisms of action of these lymphocytes.
Beispiel 7: Gentransfer in alloreaktive T-Zellen mit nicht- viralen Methoden: Neben dem viralen Gentransfer soll auch der nicht-virale Gentransfer zur Generierung der alloreaktiven, gen-modifizierten T-Zellen untersucht werden. Hierfür werden die mit Hilfe der gemischten Lymphozytenkultur hergestellten allospezifischen T-Zellen z.B. mit bestimmten Liposomenformulationen, die das Plasmid mit dem therapeutischen Gen enthält, inkubiert oder mit einer Genkanone beschossen. Die Kokultur mit der virus-produzierenden Verpa- ckungszelllinie ist für diesen Ansatz nicht notwendig.Example 7: Gene transfer to alloreactive T cells using non-viral methods: In addition to viral gene transfer, non-viral gene transfer to generate the alloreactive, gene-modified T cells is also to be investigated. For this purpose, the allospecific T cells produced using the mixed lymphocyte culture are e.g. incubated with certain liposome formulations containing the plasmid with the therapeutic gene or bombarded with a gene gun. Co-culture with the virus-producing packaging cell line is not necessary for this approach.
Beispiel 8: Gentransfer in alloreaktive T-Zellen mit anderen viralen Vektorsystemen: Neben dem retroviralen Gentransfer auf der Basis des murinen Moloney Leukemia Virus (MoMuLV) soll auch die Herstellung der alloreaktiven, gen-modifizierten T-Zellen mit Hilfe anderer viralen Vektorsysteme geschützt werden. Das soll den Gentransfer mit lentiviralen Konstrakten (dabei handelt es sich auch um Retroviren, aber auf der Basis des Humanen Im- mundefizienz Virus (HIV), mit Konstrakten auf der Basis von adeno-assoziierten Viren (AAV) und Konstrukten auf der Basis von Cytomegalieviren (CMV) beinhalten.Example 8: Gene transfer to alloreactive T cells with other viral vector systems: In addition to retroviral gene transfer based on the murine Moloney Leukemia Virus (MoMuLV), the production of the alloreactive, gene-modified T cells is also to be protected with the aid of other viral vector systems. This is supposed to be gene transfer with lentiviral contracts (these are also retroviruses, but based on the human immunodeficiency virus (HIV), with contracts based on adeno-associated viruses (AAV) and constructs based on cytomegaloviruses (CMV) include.
Literaturliterature
Bagley, J., Aboody-Guterman, K., Breakefield, X., Iacomini, J. Long-term expression of the gene encoding green fluorescent protein in murine hematopoetic cells using retroviral gene transfer. Transplantation 1998, 65, 1233-1240.Bagley, J., Aboody-Guterman, K., Breakefield, X., Iacomini, J. Long-term expression of the gene encoding green fluorescent protein in murine hematopoetic cells using retroviral gene transfer. Transplantation 1998, 65, 1233-1240.
Blaese, R.M., Culver, K.W., Miller, D., Carter, C, Fleisher, T., Clerici, M., Shearer G., Chang, L., Chiang, Y., Tolsthev, P., Grennblatt, J.J., Rosenberg, S.A., Klein, H., Berger, M., Müllen, CA., Ramsey, W.J., Muul, L., Morgan, R.A., Anderson, W.F., T-Lymphocyte- Directed Gene Therapie for ADA- SCID: Initial Trial Results After 4 Years. Science 1995, 270:475-477Blaese, RM, Culver, KW, Miller, D., Carter, C, Fleisher, T., Clerici, M., Shearer G., Chang, L., Chiang, Y., Tolsthev, P., Grennblatt, JJ, Rosenberg, SA, Klein, H., Berger, M., Müllen, CA., Ramsey, WJ, Muul, L., Morgan, RA, Anderson, WF, T-Lymphocyte-Directed Gene Therapy for ADASCID: Initial Trial Results After 4 Years. Science 1995, 270: 475-477
Cobbold, S. & Waldmann, H., How do monoclonal antibodies induce tolerance? A role for Infectious Tolerance? Annual Reviews Immunology 1998,16:619-644 Campos, L., Naji, A., Deli, B.C., Kern, J.H., Kim, J.I., Barker, C.F., Markmann J.F., Survival of MHC-Deficient Mouse Heterotropic Cardiac Allografts. Transplantation 1995, 59:187-191Cobbold, S. & Waldmann, H., How do monoclonal antibodies induce tolerance? A role for Infectious Tolerance? Annual Reviews Immunology 1998, 16: 619-644 Campos, L., Naji, A., Deli, BC, Kern, JH, Kim, JI, Barker, CF, Markmann JF, Survival of MHC-Deficient Mouse Heterotropic Cardiac Allografts. Transplantation 1995, 59: 187-191
Flügel, A., Willem, M., Berkowicz, T., Wekerle, H. Gene transfer into CD4+ T lymphocytes: Green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nature Med. 1999,7: 843-847Flügel, A., Willem, M., Berkowicz, T., Wekerle, H. Gene transfer into CD4 + T lymphocytes: Green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nature Med. 1999.7: 843-847
Hammer, M., Flügel, A., Seifert, M., Lehmann, M., Brandt, C, Volk, H.-D., Ritter, T. Poten- tial of allspecific gene-engineered T cells in transplantation gene therapy: specific T-cell acti- vation determines transgene expression in vitro and in vivo. 1999. Human Gene Therapy, submittedHammer, M., Flügel, A., Seifert, M., Lehmann, M., Brandt, C, Volk, H.-D., Ritter, T. Potential of allspecific gene-engineered T cells in transplantation gene therapy : specific T-cell activation determines transgenic expression in vitro and in vivo. 1999. Human Gene Therapy, submitted
Lehmann, M., F. Sternkopf, F. Metz, J.Brock, W.-D. Docke, A. Plantikow, B. Kuttler, H.J.Hahn, B. Ringel, H.-D. Volk. A novel high-efficient anti-CD4 monoclonal antibody indu- ces long-term survival of rat skin allografts. Transplantation 1992, 54: 959-962Lehmann, M., F. Sternkopf, F. Metz, J.Brock, W.-D. Docke, A. Plantikow, B. Kuttler, H.J. Hahn, B. Ringel, H.-D. People. A novel high-efficient anti-CD4 monoclonal antibody induces long-term survival of rat skin allografts. Transplantation 1992, 54: 959-962
Lehmann, M., Kuttler, B., Siegling, A., Fordalla, A., Riedel, H., Lacha, J., Hahn, H.-J., Brock, J., Volk, H.-D. Characterization of the anti-CD4-induced permanent acceptance of rat renal allografts. Transplantation Proc. 1993, 25: 2859.Lehmann, M., Kuttler, B., Siegling, A., Fordalla, A., Riedel, H., Lacha, J., Hahn, H.-J., Brock, J., Volk, H.-D. Characterization of the anti-CD4-induced permanent acceptance of rat renal allografts. Transplant Proc. 1993, 25: 2859.
Lehmann M, Graser E, Risch K, Hancock WW, Muller A, Kuttler B, Hahn HJ, Kupiec- Weglinski JW, Brock J, Volk HD. Anti-CD4 monoclonal antibody-induced allograft tolerance in rats despite persistence of donor-reactive T cells. Transplantation 1997 Oct 27; 64(8):1181- 7Lehmann M, Graser E, Risch K, Hancock WW, Muller A, Kuttler B, Hahn HJ, Kupiec-Weglinski JW, Brock J, Volk HD. Anti-CD4 monoclonal antibody-induced allograft tolerance in rats despite persistence of donor-reactive T cells. Transplantation 1997 Oct 27; 64 (8): 1181-7
Mosmann, T.R. & Coffmann, R.L., Thl and Th2 cells: different pattems of lymphokine secre- tion lead to a diffrent functional properties. Annual Reviews Immunology 1989,7:145-173Mosmann, T.R. & Coffmann, R.L., Thl and Th2 cells: different pattems of lymphokine secretion lead to a diffrent functional properties. Annual Reviews Immunology 1989.7: 145-173
Ode-Hakim, S., Docke, W.D., Kern, F., Volk, H.D., Reinke, P. DTH-like mechanisms in late acute rejection - role of CD 4+ T lymphocytes. Transplantation 1996, 61: 1233-1340 Onodera, K., Lehmann, M., Al<alin, E., Volk, H.-D., Sayegh, M.H., Kupiec-Weglinski, J.W. Induction of „infectious,, tolerance to MHC-incompatible cardiac allografts in CD4 monoclonal antibody-treated sensitized rat recipients. J. Immunol. 1996a, 157: 1944-1950Ode-Hakim, S., Docke, WD, Kern, F., Volk, HD, Reinke, P. DTH-like mechanisms in late acute rejection - role of CD 4+ T lymphocytes. Transplantation 1996, 61: 1233-1340 Onodera, K., Lehmann, M., Al <alin, E., Volk, H.-D., Sayegh, MH, Kupiec-Weglinski, JW Induction of "infectious ,, tolerance to MHC-incompatible cardiac allografts in CD4 monoclonal antibody-treated sensitized rat recipients. J. Immunol. 1996a, 157: 1944-1950
Onodera, K., Hanckock, W.W., Graser, E., Lehmann, M., Volk, H.-D. Sayegh, M.H., Strom, T. B., Kupiec-Weglinski, J.W. Th2-cytokines and the development of „infectious,, tolerance in rat cardiac allograft recipients. J. Immunol, 1997, 159: 1572-1581Onodera, K., Hanckock, W.W., Graser, E., Lehmann, M., Volk, H.-D. Sayegh, M.H., Strom, T. B., Kupiec-Weglinski, J.W. Th2-cytokines and the development of "infectious ,, tolerance in rat cardiac allograft recipients. J. Immunol, 1997, 159: 1572-1581
Qin, S., Cobbold., S.P., Pope, H., Elliott, J., Kioussis, D., Davies, J., Waldmann, H. „Infecti- ous„ transplantation tolerance. Science, 1993, 259: 974-977Qin, S., Cobbold., S.P., Pope, H., Elliott, J., Kioussis, D., Davies, J., Waldmann, H. "Infectious" transplantation tolerance. Science, 1993, 259: 974-977
Qin, L., Chavin, K., Ding, Y., Favaro, J. P., Woodward, J. E., Lin, J., Tahara, H., Robbins, P., Shaked, A., Ho, D. Y., Sapolsky, R. M. ,Lotze, M. T., Bromberg, J. S. Multiple vectors effec- tively achieve gene transfer in a murine cardiac transplantation model. Transplantation 1995, 59: 809-816Qin, L., Chavin, K., Ding, Y., Favaro, JP, Woodward, JE, Lin, J., Tahara, H., Robbins, P., Shaked, A., Ho, DY, Sapolsky, RM , Lotze, MT, Bromberg, JS Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model. Transplantation 1995, 59: 809-816
Quinn, E.R., Lum, L.G., Trevor, K.T., T cell activation modulates retrovirus-mediated gene expression. Human Gene Therapie 1998, 9:1457-1467Quinn, E.R., Lum, L.G., Trevor, K.T., T cell activation modulates retrovirus-mediated gene expression. Human Gene Therapy 1998, 9: 1457-1467
Ritter, T., Risch, K., Schroeder, G., Kolls, J., Siegling, A., Graser, E., Reinke, P., Brock, J., Lehmann, M., Volk, H.D. Intragraft overexpression of IL-4 neither sufficient nor essential for tolerance induction to cardiac allografts in high-reponder strain combinations. Transplantation 1999, 15: 1427-1430.Ritter, T., Risch, K., Schroeder, G., Kolls, J., Siegling, A., Graser, E., Reinke, P., Brock, J., Lehmann, M., Volk, H.D. Intragraft overexpression of IL-4 neither sufficient nor essential for tolerance induction to cardiac allografts in high-reponder strain combinations. Transplantation 1999, 15: 1427-1430.
Sayegh, M.H., Akalin, E., Hanckock, W.W., Rüssel, M.E., Carpenter, C.B., Turka, L.A. CD28/B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. 1995. J. Exp. Med. 178: 1801-06Sayegh, M.H., Akalin, E., Hanckock, W.W., Rüssel, M.E., Carpenter, C.B., Turka, L.A. CD28 / B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. 1995. J. Exp. Med. 178: 1801-06
Siegling, A., M. Lehmann, H. Riedel, C. Platzer, J. Brock, F. Emmrich, H.-D. Volk. A non- depleting anti-rat monoclonal antibody which suppresses T helper 1-like but not T helper 2- like intragraft lymphokine secretion induces long-term survival of renal allografts. Transplantation! 994a, 57: 464-467 Siegling, A., M. Lehmann, C. Platzer, F. Emmrich, H.-D. Volk. A novel multispecific compe- titor fragment for quantitative PCR analysis of cytokine gene expression in rats. 1994b. J. Immunol. Meth. 177: 23-28Siegling, A., M. Lehmann, H. Riedel, C. Platzer, J. Brock, F. Emmrich, H.-D. People. A non-depleting anti-rat monoclonal antibody which suppresses T helper 1-like but not T helper 2- like intragraft lymphokine secretion induces long-term survival of renal allografts. Transplantation! 994a, 57: 464-467 Siegling, A., M. Lehmann, C. Platzer, F. Emmrich, H.-D. People. A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rats. 1994b. J. Immunol. Meth. 177: 23-28
Suzuki, T., Taghara, H., Narula, S., Moore, K.W., Robbins, P.D., Lotze, M.T. Viral Interleukin 10 (IL-10), the Human Herpes Virus 4 Cellular IL-10 Homologue, Induces Local Anergy to Allogenic and Syngenic Tumors. J.Exp.Med. 1995, 182:477-486Suzuki, T., Taghara, H., Narula, S., Moore, K.W., Robbins, P.D., Lotze, M.T. Viral Interleukin 10 (IL-10), the Human Herpes Virus 4 Cellular IL-10 Homologue, Induces Local Anergy to Allogenic and Syngenic Tumors. J.Exp.Med. 1995, 182: 477-486
Takeuchi T., Ueki, T., Sunaga S., Ikuta K, Sasaki Y., Li B., Moriyama N., Miyazaki J., Kawa- be K. Murine interleukin 4 transgenic heart allograft survival prolonged with down-regulation of the Thl cytokine mRNA in grafts. Transplantation 1997 Jul 15;64(l):152-7Takeuchi T., Ueki, T., Sunaga S., Ikuta K, Sasaki Y., Li B., Moriyama N., Miyazaki J., Kawabe K. Murine interleukin 4 transgenic heart allograft survival prolonged with down-regulation of the Thl cytokine mRNA in grafts. Transplantation 1997 Jul 15; 64 (l): 152-7
VanBuskirk, A.M., Wakely, M.E., Orosz, CG Transfusion of polarized TH2-like cell popula- tions into SCID mouse cardiac allograft recipients results in acute allograft rejection. Trans- plantation 1996 Jul 27;62(2):229-38VanBuskirk, A.M., Wakely, M.E., Orosz, CG Transfusion of polarized TH2-like cell populations into SCID mouse cardiac allograft recipients results in acute allograft rejection. Transplantation 1996 Jul 27; 62 (2): 229-38
AbkürzungsverzeichnisList of abbreviations
AAV Adeno-Assoziiertes Virus Ag AntigenAAV Adeno-Associated Virus Ag Antigen
Ak AntikörperAk antibody
APC Antigen-präsentierende ZellenAPC antigen presenting cells
B-Zellen B-ZellenB cells B cells
B7-Moleküle Oberflächenmarker auf APC, wichtig für die Aktivierung von T-Zellen bag-1 Bcl-2 associated athanogene, Antiapoptose-Gen, interagiert mit Bcl-2 bcl-2 B cell leukemia-2, Antiapoptose-Gen bcl-xl Bcl-2 Homolog, Antiapoptose-Gen cDNA complementary DNA, copy DNAB7 molecules surface marker on APC, important for the activation of T-cells bag-1 Bcl-2 associated athanogenic, anti-apoptosis gene, interacts with Bcl-2 bcl-2 B cell leukemia-2, anti-apoptosis gene bcl-xl Bcl- 2 Homolog, antiapoptosis gene cDNA complementary DNA, copy DNA
CD cluster of differentiation, Nomenklatur für Oberflächenmoleküle CD4 spezifischer Oberflächenmarker aud T-Helfer-ZellenCD cluster of differentiation, nomenclature for surface molecules CD4 specific surface markers on T helper cells
CMN CytomegalievirusCMN cytomegalovirus
(RIB 5/2) Bezeichung für einen gegen das CD4-Molekül gerichteten monokl. Antikörper CD8 T- spezifischer Oberflächenmarker auf zytotoxischen T-Zellen CMV IL-10 Cytomegalovirus IL-10, homolog zum humanen IL-10 bzw. vIL-10 CTLA-4 cytotoxic T-cell late antigen CTLA4-Ig Fusionsprotein, bestehend aus CTLA-4 (cytotoxic T-cell late antigen) und dem Fc-Teil des IgG- Antikörpers(RIB 5/2) Term for a monocl against the CD4 molecule. antibody CD8 T-specific surface marker on cytotoxic T cells CMV IL-10 cytomegalovirus IL-10, homologous to human IL-10 or vIL-10 CTLA-4 cytotoxic T-cell late antigen CTLA4-Ig fusion protein, consisting of CTLA-4 ( cytotoxic T-cell late antigen) and the Fc part of the IgG antibody
DMEM Dulbeccos' modifiziertes Eagle's Medium DNA desoxyribonucleic acid (Desoxyribonucleinsäure) EBV Epstein-Barr Virus EGFP Enhanced Green Fluorescent Protein, grün leuchtendes Reportergen ELISA Enzyme Linked Immunosorbent Assay gy Gray (Gy) hDeltal Homo sapiens delta (Drosophila)-like 1 (aus der Familie der Notch-DMEM Dulbeccos' modified Eagle's Medium DNA deoxyribonucleic acid (Deoxyribonucleic acid) EBV Epstein-Barr Virus EGFP Enhanced Green Fluorescent Protein, green glowing reporter gene ELISA Enzyme Linked Immunosorbent Assay gy Gray (Gy) hDeltal Homo sapiens delta (Drosophila der -family-like 1 ( the notch
Liganden) hSerrate-1 Homo sapiens serrate 1 (aus der Familie der Notch-Liganden) FKS Fetales KälberserumLigands) hSerrate-1 Homo sapiens serrate 1 (from the Notch ligand family) FKS fetal calf serum
IFN InterferonIFN interferon
Ig ImmunglobulinIg immunoglobulin
IL Interleukin kDa Kilo-Dalton mAk monoklonale(r) AntikörperIL Interleukin kDa Kilo-Dalton mAb monoclonal antibody
MHC Major Histocompatibility ComplexMHC Major Histocompatibility Complex
MLC Mixed Lymphocyte Culture mRNA Messenger-RibonucleinsäureMLC Mixed Lymphocyte Culture mRNA Messenger Ribonucleic Acid
NIH/3T3 Maus-Fibroblasten NK-Zellen Natüiliche KillerzellenNIH / 3T3 mouse fibroblasts NK cells Natural killer cells
Notchl-4 Homo sapiens Notch (Drosophila) homolog 1-4 (Notch-Rezeptor)Notchl-4 Homo sapiens Notch (Drosophila) homolog 1-4 (Notch receptor)
OKT3 mAk gegen CD3OKT3 mAb against CD3
PBMC peripheral blood mononuclear cellsPBMC peripheral blood mononuclear cells
PCR polymerase chain reaction (Polymerase Kettenreaktion) PHA PhytohämagglutininPCR polymerase chain reaction PHA phytohaemagglutinin
SCID-Mäuse immundefiziente Mäuse, die keine B- und T-Zellen besitzenSCID mice immunodeficient mice that do not have B and T cells
TCM T-Zell MediumTCM T cell medium
TCR-Signal T-Zell-Rezeptor TGF transforming growth factorTCR signal T cell receptor TGF transforming growth factor
T-Lymphozyten Thymusabhängige oder -stämmige LymphozytenT lymphocytes Thymus-dependent or stemmed lymphocytes
T-Zellen dem Thymus entstammende T-LymphozytenT-cells derived from thymus T-lymphocytes
Thl-Zellen T-Zellen mit T-helferl-PhänotypThl cells T cells with T helper phenotype
Th2 T-Zellen mit T-helfer2-PhänotypTh2 T cells with T helper2 phenotype
TNF Tumornekrosefaktor vIL-10 virales Interleukin- 10, entstammt aus Epstein-Barr- Virus, hat hohe AS-TNF tumor necrosis factor vIL-10 viral interleukin-10, derived from Epstein-Barr virus, has high AS-
Homologie zum humanen IL-10 Homology to human IL-10

Claims

Patentansprüche claims
1. (In vitro) gen-modifizierte T-Zellen, erhalten dadurch, dass T-Zellen eines Transplantatempfangers in vitro durch Zellen eines Transplantatspenders oder durch Zellen, die dominante MHC-Moleküle exprimieren, stimuliert und gleichzeitig oder später mittels Gentransfer von immunmodulierenden therapeutischen Genen transduziert werden.1. (In vitro) gene-modified T cells obtained by stimulating T cells of a transplant recipient in vitro by cells from a transplant donor or by cells that express dominant MHC molecules, and simultaneously or later by means of gene transfer from immunomodulating therapeutic genes be transduced.
2. (In vitro) gen-modifizierte T-Zellen nach Anspruch 1, dadurch gekennzeichnet, dass es sich um alloreaktive T-Zellen handelt.2. (In vitro) gene-modified T cells according to claim 1, characterized in that it is alloreactive T cells.
3. (In vitro) gen-modifizierte T-Zellen nach Anspruch 1 und 2, erhalten dadurch, dass: a) Eine Zeil-Linie, die ein zum Gentransfer fähiges Retrovirus mit einem therapeutischen Gen produziert, in Kultur genommen wird (Verpackungszelllinie) und b) Lymphozyten aus dem Vollblut bzw. Milz oder Lymphknoten isoliert werden (bestrahlte Spender T-Zellen oder bestrahlte Zellen, die dominante MHC-Moleküle exprimieren und3. (In vitro) gene-modified T cells according to claims 1 and 2, obtained by: a) cultivating a cell line which produces a retrovirus capable of gene transfer with a therapeutic gene (packaging cell line) and b) lymphocytes are isolated from whole blood or spleen or lymph nodes (irradiated donor T cells or irradiated cells which express dominant MHC molecules and
Empfanger T-Zellen) und c) entweder eine Kokultivierung, bestehend aus der gemischten Lymphozytenkultur (Primär- MLC) und der Verpackungszelllinie, durchgeführt wird oder ausschließlich retrovirus- haltiger Zellkulturüberstand für die Transduktion verwendet wird, so dass auf eine Kokul- tivierung mir der Verpackungszelllinie verzichtet werden kann.Recipient T cells) and c) either cocultivation, consisting of the mixed lymphocyte culture (primary MLC) and the packaging cell line, is carried out or only retrovirus-containing cell culture supernatant is used for the transduction, so that there is cocultivation with the packaging cell line can be dispensed with.
4. (In vitro) gen-modifizierte T-Zellen nach Anspruch 3, dadurch gekennzeichnet, dass als Retrovirus ein Moloney Murine Leukemia Virus oder ein Lentivirus eingesetzt wird.4. (In vitro) gene-modified T cells according to claim 3, characterized in that a Moloney Murine leukemia virus or a lentivirus is used as the retrovirus.
5. (In vitro) gen-modifizierte T-Zellen nach Ansprach 1 und 2, erhalten dadurch, dass5. (In vitro) gene-modified T cells according to approach 1 and 2, obtained by that
Lymphozyten aus dem Vollblut bzw. Milz oder Lymphknoten isoliert werden (bestrahlte Spender T-Zellen oder bestrahlte Zellen, die dominante MHC-Moleküle exprimieren und Empfänger T-Zellen) und die mit Hilfe dieser gemischten Lymphozytenkultur hergestellten allospezifischen T-Zellen mit Liposomenformulationen, die das Plasmid mit dem therapeuti- sehen Gen enthält, inkubiert oder mit einer Genkanone beschossen werden.Lymphocytes are isolated from the whole blood or spleen or lymph nodes (irradiated donor T cells or irradiated cells that express dominant MHC molecules and recipient T cells) and the allospecific T cells with liposome formulations that are produced with the aid of this mixed lymphocyte culture Contains plasmid with the therapeutic gene, incubated or bombarded with a gene gun.
6. (In vitro) gen-modifizierte T-Zellen nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass es sich bei den therapeutischen Genen um a) Zytokine b) Interleukine c) Notch-Liganden / Rezeptoren d) Zellprotektive Gene (z.B. antiapoptotische Gene, Hitzeschockgene) handelt.6. (In vitro) gene-modified T cells according to claim 1 to 5, characterized in that it is the therapeutic genes a) cytokines b) interleukins c) Notch ligands / receptors d) cell protective genes (eg antiapoptotic genes, heat shock genes).
7. (In vitro) transduzierte T-Zellen nach Anspruch 6, dadurch gekennzeichnet, dass es sich bei den therapeutischen Genen um a) IL-4 oder b) IL-10 oder virales IL-10 (z.B. aus EBV oder CMV) c) IL-12p40 oder d) IL-13 oder e) Hämoxygenase-1 f) CTLA-4 oder g) hSerrate-1 oder h) hDelta-1 oder i) Notch 1-4 oder j) bcl-2 oder k) bcl-xl oder 1) bag-1 handelt.7. (In vitro) transduced T cells according to claim 6, characterized in that the therapeutic genes are a) IL-4 or b) IL-10 or viral IL-10 (eg from EBV or CMV) c) IL-12p40 or d) IL-13 or e) Hemoxygenase-1 f) CTLA-4 or g) hSerrate-1 or h) hDelta-1 or i) Notch 1-4 or j) bcl-2 or k) bcl- xl or 1) bag-1.
8. Verfahren zur Herstellung gen-modifizierter T-Zellen, dadurch gekennzeichnet, dass T- Zellen eines Transplantatempfängers in vitro durch Zellen eines Transplantatspenders oder durch Zellen, die dominante MHC-Moleküle exprimieren, stimuliert und gleichzeitig oder später mittels Gentransfer von immunmodulierenden therapeutischen Genen transduziert werden.8. A method for producing gene-modified T cells, characterized in that T cells of a transplant recipient are stimulated in vitro by cells from a transplant donor or by cells that express dominant MHC molecules and transduced simultaneously or later by gene transfer from immunomodulating therapeutic genes become.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass es sich um alloreaktive T-Zellen handelt.9. The method according to claim 8, characterized in that it is all-reactive T cells.
10. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, dass : a) eine Zelllinie, die ein zum Gentransfer fähiges Retrovirus mit einem therapeutischen Gen produziert, in Kultur genommen wird (Verpackungszelllinie) und b) Lymphozyten aus dem Vollblut isoliert werden (bestrahlte Spender T-Zellen oder bestrahlte Zellen, die dominante MHC-Moleküle exprimieren und Empfänger T-Zellen und c) entweder eine Kokultivierung, bestehend aus der gemischten Lymphozytenkultur (Pri- mär-MLC) und der Verpackungszelllinie, durchgeführt wird oder ausschließlich retrovi- rus-haltiger Zellkulturüberstand für die Transduktion verwendet wird, so dass auf eine Kokultivierung mir der Verpackungszelllinie verzichtet werden kann.10. The method according to claim 8 and 9, characterized in that: a) a cell line that produces a gene capable of transferring a retrovirus with a therapeutic gene is taken in culture (packaging cell line) and b) lymphocytes are isolated from whole blood (irradiated donor T cells or irradiated cells that express dominant MHC molecules and Recipient T cells and c) either a cocultivation consisting of the mixed lymphocyte culture (primary MLC) and the packaging cell line is carried out or only retrovirus-containing cell culture supernatant is used for the transduction, so that cocultivation with the Packaging cell line can be dispensed with.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Retrovirus ein Moloney Murine Leukemia Virus oder ein Lentivirus eingesetzt wird.11. The method according to claim 10, characterized in that a Moloney Murine leukemia virus or a lentivirus is used as the retrovirus.
12. Verfahren nach Anspruch 8 und 9, dadurch gekennzeichnet, dass Lymphozyten aus dem Vollblut bzw. Milz oder Lymphknoten isoliert werden (bestrahlte Spender T-Zellen oder be- strahlte Zellen, die dominante MHC-Moleküle exprimieren und Empfänger T-Zellen) und die mit Hilfe dieser gemischten Lymphozytenkultur hergestellten allospezifischen T-Zellen mit Liposomenformulationen, die das Plasmid mit dem therapeutischen Gen enthält, inkubiert oder mit einer Genkanone beschossen werden.12. The method according to claim 8 and 9, characterized in that lymphocytes are isolated from whole blood or spleen or lymph nodes (irradiated donor T cells or irradiated cells which express dominant MHC molecules and recipient T cells) and incubated with this mixed lymphocyte culture, allospecific T cells with liposome formulations containing the plasmid with the therapeutic gene, or bombarded with a gene gun.
13. Verfahren nach Ansprach 8 bis 12, dadurch gekennzeichnet, dass es sich bei den therapeutischen Genen um a) Zytokine b) Interleukine c) Notch-Liganden / Rezeptoren d) Zellprotektive Gene (z.B. antiapoptotische Gene, Hitzeschockgene) handelt.13. The method according to spoke 8 to 12, characterized in that the therapeutic genes are a) cytokines b) interleukins c) Notch ligands / receptors d) cell-protective genes (e.g. antiapoptotic genes, heat shock genes).
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass es sich bei den therapeutischen Genen um a) IL-4 oder b) IX- 10 oder virales EL- 10 (z.B. aus EBV oder CMV) c) IL-12p40 oder d) IL-13 oder e) Hämoxygenase-1 f) CTLA-4 oder g) hSerrate-1 oder h) hDelta-l oder i) Notch 1-4 oder j) bcl-2 oder k) bcl-xl oder l) bag-l handelt.14. The method according to claim 13, characterized in that the therapeutic genes are a) IL-4 or b) IX-10 or viral EL-10 (eg from EBV or CMV) c) IL-12p40 or d) IL -13 or e) Hemoxygenase-1 f) CTLA-4 or g) hSerrate-1 or h) hDelta-l or i) Notch 1-4 or j) bcl-2 or k) bcl-xl or l) bag-l.
15. Verwendung der (in vitro) gen-modifizierten T-Zellen nach Anspruch 1 bis 7 in der Transplantationsmedizin.15. Use of the (in vitro) gene-modified T cells according to claims 1 to 7 in transplant medicine.
16. Verwendung nach Anspruch 15 zur Verhinderung der allogenen Transplantatrejektion in vivo.16. Use according to claim 15 for preventing allogeneic graft rejection in vivo.
17. Verwendung nach Anspruch 15 und 16 als Mittel zur Toleranzinduktion und zur Erhaltung von Toleranz gegenüber allogenen Transplantaten (Zellen, Gewebe, Organe).17. Use according to claim 15 and 16 as a means for inducing tolerance and for maintaining tolerance to allogeneic grafts (cells, tissues, organs).
18. Verwendung nach Anspruch 15 bis 17 zur Stimulierung der T-Zellen des Transplantatempfangers. 18. Use according to claim 15 to 17 for stimulating the T cells of the transplant recipient.
EP01949257A 2000-06-09 2001-06-08 Genetically modified t-cells, method for producing them and use thereof Withdrawn EP1294857A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10028833 2000-06-09
DE10028833 2000-06-09
PCT/DE2001/002184 WO2001094551A2 (en) 2000-06-09 2001-06-08 Genetically modified t-cells, method for producing them and use thereof

Publications (1)

Publication Number Publication Date
EP1294857A2 true EP1294857A2 (en) 2003-03-26

Family

ID=7645393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01949257A Withdrawn EP1294857A2 (en) 2000-06-09 2001-06-08 Genetically modified t-cells, method for producing them and use thereof

Country Status (6)

Country Link
US (1) US20020119571A1 (en)
EP (1) EP1294857A2 (en)
JP (1) JP2004523202A (en)
CA (1) CA2381459A1 (en)
DE (1) DE10128980B4 (en)
WO (1) WO2001094551A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020039A1 (en) * 2001-08-28 2003-03-13 Rush-Presbyterian-St. Luke's Medical Center Immune tolerance to predetermined antigens
AU2002360674A1 (en) * 2001-12-21 2003-07-30 The United States Of America Represented By The Secretary Of The U.S. Department Of The Navy In increasing gene transfer efficiency by pre-incubation with endothelial cells
US20050084967A1 (en) * 2002-06-28 2005-04-21 Xcyte Therapies, Inc. Compositions and methods for eliminating undesired subpopulations of T cells in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
US20040175373A1 (en) * 2002-06-28 2004-09-09 Xcyte Therapies, Inc. Compositions and methods for eliminating undesired subpopulations of T cells in patients with immunological defects related to autoimmunity and organ or hematopoietic stem cell transplantation
US7381405B2 (en) * 2002-10-15 2008-06-03 The United States Of America As Represented By The Department Of Health And Human Services Methods of preparing lymphocytes that express interleukin-2 and their use in the treatment of cancer
WO2017058752A1 (en) * 2015-09-28 2017-04-06 Trustees Of Dartmouth College Chimeric antigen receptor anti-inflammatory cells and methods of use
CN111662930A (en) * 2020-07-03 2020-09-15 广东药科大学 Preparation method and application of hIL-12p40-MSCs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980703072A (en) * 1995-03-17 1998-09-05 스티븐슨 린다 에스 Treatment of Tumors
AU5713696A (en) * 1995-04-20 1996-12-18 Diacrin, Inc. Modified cells and methods for inhibiting xenograft rejection
CA2297448A1 (en) * 2000-01-28 2001-07-28 Vasogen Inc. Improved inhibition of graft versus host disease

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0194551A2 *

Also Published As

Publication number Publication date
WO2001094551A2 (en) 2001-12-13
WO2001094551A3 (en) 2002-07-18
DE10128980A1 (en) 2002-01-10
CA2381459A1 (en) 2001-12-13
DE10128980B4 (en) 2005-12-15
US20020119571A1 (en) 2002-08-29
JP2004523202A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US20200407728A1 (en) Altering Gene Expression in CART Cells and Uses Thereof
Sommermeyer et al. Designer T cells by T cell receptor replacement
Hayashi et al. Stepwise progression of B lineage differentiation supported by interleukin 7 and other stromal cell molecules.
US20240158506A1 (en) Methods to protect transplanted tissue from rejection
DE60026166T2 (en) VETOCELLS THAT ARE EFFECTIVE IN PREVENTING TRANSPLANT DISCHARGE AND HAVING NO GRAFT VERSUS HOST POTENTIAL
CN108243607A (en) For the genetic engineering of the macrophage of immunotherapy
AU2015339106B2 (en) Compositions and methods of stimulating and expanding T cells
DE69414572T2 (en) IMMORTALIZATION OF DENDRITIC CELLS WITH THE V-MYC ONCOGEN
DE69433342T2 (en) METHOD FOR MARKING EUKARYOTIC CELLS BY USING RECEPTORS OF THE CELL SURFACE AS A MARKER
DE60106469T2 (en) Method for the production of genetically modified lymphocyte progenitor cells of vertebrates and their use for the production of heterologous binding proteins
DE10128980B4 (en) Gene-modified alloreactive T cells, processes for their preparation and their use
CN114127287A (en) Compositions and methods for acetylcholine receptor chimeric autoantibody receptor cells
DE69431715T2 (en) HYBRID GENES FOR USE IN THE PRODUCTION OF HELPER T CELL INDEPENDENT CYTOTOXIC T CELLS
DE69131577T2 (en) METHOD FOR PRODUCING TH INDEPENDENT CYTOTOXIC T-CYMPHOCYTES
EP1441758A2 (en) Allogenic vaccine that contains a costimulatory polypeptide-expressing tumor cell
CN117736300A (en) T cell receptor targeting cytomegalovirus pp65, T cell expressing same and application
Dao et al. Molecular control of cell cycle progression in primary human hematopoietic stem cells: methods to increase levels of retroviral-mediated transduction
WO2004056845A2 (en) Method for the production of a t cell receptor (tcr) consisting of a single chain tcr (sctcr) and a tcr constant region
WO2001027254A2 (en) Gene transfer vectors for treating autoimmune diseases and diseases with immunopathogenesis by therapy
WO2006116678A2 (en) Tissue targeting of stem cells
Narazaki et al. Perforin-dependent killing of tumor cells by Vγ1Vδ1-bearing T-cells
DE69615201T2 (en) GENRE REGULATORY SEQUENCES OF CD4, WHICH ARE SPECIFICALLY EXPRESSED IN TIRE T CELLS
WO1997032025A1 (en) Method for selective engraftment of drug-resistant hematopoietic stem cells
DE69731950T2 (en) Tumor vaccination using autologous or HLA-related antigen presenting cells (APC) transduced with a tumor antigen as well as a foreign antigen inducing an immune response
WO2003045428A2 (en) Use of a technically modified cell as a vaccine for treating tumoral disease

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030120

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050628

17Q First examination report despatched

Effective date: 20050628

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110103