EP1293854B1 - Motorgeschwindigkeitsregelsystem eines Hubschraubers - Google Patents

Motorgeschwindigkeitsregelsystem eines Hubschraubers Download PDF

Info

Publication number
EP1293854B1
EP1293854B1 EP02291687A EP02291687A EP1293854B1 EP 1293854 B1 EP1293854 B1 EP 1293854B1 EP 02291687 A EP02291687 A EP 02291687A EP 02291687 A EP02291687 A EP 02291687A EP 1293854 B1 EP1293854 B1 EP 1293854B1
Authority
EP
European Patent Office
Prior art keywords
speed
engine
ntlcons
auxiliary
regulating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02291687A
Other languages
English (en)
French (fr)
Other versions
EP1293854A3 (de
EP1293854A2 (de
Inventor
Bernard Certain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters SAS
Original Assignee
Eurocopter France SA
Eurocopter SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurocopter France SA, Eurocopter SA filed Critical Eurocopter France SA
Publication of EP1293854A2 publication Critical patent/EP1293854A2/de
Publication of EP1293854A3 publication Critical patent/EP1293854A3/de
Application granted granted Critical
Publication of EP1293854B1 publication Critical patent/EP1293854B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement

Definitions

  • the present invention relates to a system for regulating the diet at least one engine of a helicopter.
  • the pilot thus has only one direct command, the debit lever, which is only used during the implementation phases. road, stopping and when accelerating the engine up to the regulated speed (flow knob on the "flight" position). On helicopters equipped with a engine, these phases are automatically controlled by the calculator: the flow controller becomes useless.
  • the object of the present invention is to remedy these drawbacks and to perfect this system of regulation in order to obtain a speed / speed curve meeting particular criteria of safety, noise and performance, without changing the basics of said control system.
  • the present invention can be implemented in a simple and low cost, simply by adding said calculating means auxiliary and said third means for determining the position of the rudder.
  • this third means is a copying potentiometer of the position of the rudder which, generally, already exists on a helicopter, to help the autopilot. This further facilitates the realization of the invention.
  • the present invention is applicable to any type of regulation system, whether electromechanical, hydromechanical or digital, and this for proportional control as well (which, as we know, is developing a set value NGcons of engine gas engine speed, which is proportional to the gap between said NTL regime and said NTLcons value) that for a integral type control (whose setpoint NGcons evolves up to that the NTL regime is equal to the set value NTLcons).
  • this function A may take other forms and in particular all other forms possible, for example, to meet specific needs.
  • said device also includes at least one auxiliary means for determining the value of at least one parameter auxiliary, and said auxiliary calculation means uses the value of said auxiliary parameter for calculating said setpoint value NTLcons.
  • said auxiliary calculation means performs a filtering of the value of the position D ⁇ of the rudder, with a transfer function of 1/1 + ⁇ 1p1, ⁇ 1 being a predetermined parameter, before using this filtered value for calculate said setpoint value NTLcons.
  • the movements (D ⁇ ) have an impact on the NG regime, and therefore on the torque delivered by the motor.
  • the torque variations induced by the rudder controls may be too abrupt in some flight configurations and penalize, in particular, mechanical assemblies and structural.
  • said calculating means auxiliary performs a filtering of the value of the derivative d / dt (D ⁇ ) of the position D ⁇ of the rudder, with a transfer function of kp / 1 + ⁇ 2p, k and ⁇ 2 being predetermined parameters, before using this filtered value to calculate said set value NTLcons.
  • said means of calculation and said auxiliary calculating means are grouped together in a single calculator, preferably of the FADEC type ("Full Authority Digital Engine Computer "). This makes the introduction particularly easy of electrical signals, different parameters and in particular the position D ⁇ , as well as the realization of the various calculation functions.
  • Figure 1 is the block diagram of a control system according to the invention.
  • Figures 2 and 3 illustrate graphs allowing for good to highlight the effects obtained thanks to the invention on the regulation of the scheme.
  • Figure 4 is a graph illustrating a particular law of evolution taking into account the position of the rudder of the helicopter.
  • FIGS 5 and 6 schematically illustrate embodiments particular filters that are likely to be used in the implementation of the present invention.
  • the system 1 according to the invention and shown schematically in FIG. 1 is intended to regulate the speed of at least one motor 2 helicopter (single-engine or multi-engine) and thus regulate the the main rotor of advance and lift of this helicopter, which is driven by this engine 2.
  • helicopter single-engine or multi-engine
  • Said calculation means 9 and 10 calculate orders of command to enslave, knowing said measured NG scheme, the speed of the gas generator of said engine to a set point NGcons of said regime of the gas generator, which depends on said NTL regime measured and said set value NTLcons determined.
  • said calculation means 9 also includes a calculation element 17 which implements a law anticipation C known, using the value D ⁇ of the collective pitch, measured by means 18 of the usual type and received by a link 19.
  • An adder 20 adds the results [C (D ⁇ )] resulting from the treatment implemented by this computing element 17 to the results from the multiplier 14.
  • the present invention can be implemented in a simple and low cost, simply by adding said calculating means 22 and said third means 21 for determining the position of the spreader.
  • this third means 21 is a potentiometer for copying the position of the rudder which, generally, already exists on a helicopter and is associated with the autopilot.
  • the auxiliary calculating means 22 must be specially provided, in a basic embodiment.
  • the present invention is applicable to any type of regulation system, whether electromechanical, hydromechanical or digital, and this for proportional control as well (which, as we know, is developing a set value NGcons of engine 2 gas generator speed, which is proportional to the gap between said NTL regime and said NTLcons value) that for a integral type control (whose setpoint NGcons evolves up to that the NTL regime is equal to the set value NTLcons).
  • the position D ⁇ measured by the means 21 and transmitted by a link 23 is subjected, possibly after filtering (F and G) as specified below, to a law A so as to obtain a curve A (D ⁇ ).
  • auxiliary calculating means 22 also comprises an advisor 28 to allow simultaneous consideration of all the aforementioned parameters.
  • NTLcons A (D ⁇ ) + B (Zp) + TrimNTLcons.
  • NTLcons parameters can of course also be used for the calculation of NTLcons, especially the helicopter speed Vi and the ambient temperature. These parameters can be measured or determined by optional means 29 connected by a link 30 by means of the 22.
  • the introduction of these additional parameters requires a mechanical or electrical interface (depending on whether the is electromechanical, hydromechanical, analog or digital).
  • the additional laws may be made within the means of calculation auxiliary 22 or be made by external interfaces.
  • said means of auxiliary computation 22 performs a filtering F of the value of the position D ⁇ of the beam, with a transfer function of 1/1 + ⁇ 1p, where ⁇ 1 is a parameter predetermined, before using this filtered value to calculate the setpoint NTLcons.
  • the filter F which is connected to links 23 and 31 may comprise the usual arrangement shown in FIG. 5, which comprises an operational amplifier 32, a capacitor C1 and resistors R1 and R2 (or any other means equivalents).
  • the transfer function is: Moreover, given the couplings between the D ⁇ position and the NR regime on the one hand, and the NR and NG regimes on the other hand, the D5 rudder movements have an impact on the NG regime, and therefore on the delivered torque. 2.
  • the torque variations induced by the rudder controls may be too abrupt in certain flight configurations and penalize, in particular, the mechanical and structural assemblies.
  • the appropriate values of the parameters k and ⁇ 2 are determined by flight tests (they can be previously estimated by a theoretical approach).
  • said auxiliary calculating means 22 performs a filtering G of the value of the position D ⁇ of the rudder, with a transfer function of kp / 1 + ⁇ 2p, before using this filtered value to calculate said set value NTLcons.
  • the filter G which is connected to links 23 and 33 may comprise the usual assembly shown in FIG. FIG. 6, which comprises an operational amplifier 34, whose input inverter 35 may be connected to a measuring means, not shown, of a particular parameter relating to the NR rotor speed, capacitors C2 and C3 and resistors R3 and R4 (or any equivalent means).
  • said calculating means 9 and 10 and said auxiliary calculating means 22 are grouped together in one and the same calculator, preferably FADEC type ("Full Authority Digital Engine Computer").
  • FADEC Full Authority Digital Engine Computer

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Turbines (AREA)
  • Feedback Control In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (11)

  1. Geschwindigkeitsregelsystem für mindestens einen Motor (2) eines Hubschraubers, welches Regelsystem (1) geeignet ist, den Treibstoff, der diesem Motor (2) zugeführt, automatisch zu dosieren, und das umfasst:
    mindestens eine Dosiereinrichtung (4) zur dosierten Zuführung des Treibstoffs zum Motor (2), abhängig von Steuerbefehlen;
    ein erstes Mittel (6) zum Messen eines NTL-Bereichs, der dem Drehbereich der freien Turbine des Motors (2) entspricht;
    ein zweites Mittel (7) zum Messen eines NG-Bereichs, der dem Drehbereich des Gasgenerators des Motors (2) entspricht;
    eine Vorrichtung (8) zur Bestimmung eines NTLcons-Sollwerts, der dem Sollwert des Drehbereichs der freien Turbine des Motors (2) entspricht; und
    Berechnungsmittel (9, 10) zur automatischen Berechnung der Steuerbefehle, die an die Dosiereinrichtung (4) angelegt werden, welche Berechnungsmittel (9, 10), die Steuerbefehle berechnen, es ermöglichen, den Drehbereich des Gasgenerators des Motors, nachdem sie den gemessenen NG-Drehbereich kennen, an einem Sollwert Ngcons des Drehbereichs des Gasgenerators auszurichten, der von dem gemessenen NTL-Drehbereich und dem bestimmten Sollwert NTLcons abhängt,
    dadurch gekennzeichnet, dass die Vorrichtung (8) mindestens umfasst:
    ein drittes Mittel (21) zur Bestimmung der Position (Dδ) eines Steuerknüppels des Hubschraubers; und
    ein Hilfsberechnungsmittel (22), das den genannten Sollwert NTLcons abhängig von der Position (Dδ) des Steuerknüppels berechnet.
  2. Regelsystem nach Anspruch 1,
    dadurch gekennzeichnet, dass die Mittel zum Berechnen (9, 10) die Steuerbefehle berechnen, um eine Proportional-Regelung zu schaffen.
  3. Regelsystem nach Anspruch 1,
    dadurch gekennzeichnet, dass die Mittel zum Berechnen (9, 10) die Steuerbefehle berechnen, um eine Integral-Regelung zu schaffen.
  4. Regelsystem nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass das dritte Mittel (21) ein Rückkopplungs-Potentiometer der Position (D8) des Steuerknüppels ist.
  5. Regelsystem nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass das Hilfsberechnungsmittel (22)
    folgenden Ausdruck A(Dδ) berechnet: A(Dδ) = aDδ + b, in dem :
    Dδ die Position des Steuerknüppels ist; und
    a und b vorbestimmte Parameter sind, die konstante Werte in aufeinanderfolgenden Intervallwerten (S1, S2, S3, S4) von Dδ annehmen; und
    diesen Ausdruck A(Dδ) zur Berechnung des genannten Sollwerts NTLcons verwendet.
  6. Regelsystem nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    ein Berechnungselement (17) des Berechnungsmittels (9), das zur Berechnung des Sollwerts NGcons bestimmt ist, folgenden Ausdruck A0(Dδ) berechnet: A0(Dδ) = 1Kp [aDδ + b] , in dem:
    Dδ die Position des Steuerknüppels ist;
    Kp ein vorbestimmter Koeffizient ist; und
    a und b vorbestimmte Parameter sind, die konstante Werte in aufeinanderfolgenden Intervallwerten von Dδ annehmen; und
    das Berechnungsmittel (9) diesen Ausdruck AO(Dδ) zur Berechnung des Sollwerts NGcons nutzt.
  7. Regelsystem nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Vorrichtung (8) ferner mindestens ein Hilfsmittel (24, 26, 29) zur Bestimmung des Wertes mindestens eines Hilfsparameters umfasst, sowie dadurch, dass das Hilfsberechnungsmittel (22) diesen Wert des Hilfsparameters zur Berechnung des Sollwerts NTLcons nutzt.
  8. Regelsystem nach Anspruch 7,
    dadurch gekennzeichnet, dass das Hilfsberechnungsmittel (22) als Hilfsparameter mindestens einen der folgenden Parameter verwendet:
    die Höhe des Hubschraubers;
    die Geschwindigkeit des Hubschraubers;
    die Umgebungstemperatur; und
    einen von einem regulierbaren Potentiometer gelieferten Sollwert.
  9. Regelsystem nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass das Hilfsberechnungsmittel (22) eine Filterung (F) des Wertes der Position (Dδ) des Steuerknüppels vornimmt, mit einer Übergangsfunktion 11 + τ1p , wobei τ1 ein vorbestimmter Parameter ist, bevor dieser gefilterte Wert zur Berechnung des Sollwerts NTLcons verwendet wird.
  10. Regelsystem nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass das Hilfsberechnungsmittel (22) eine Filterung (G) des Differenzialquotienten der Position (Dδ) des Steuerknüppels vornimmt, mit einer Übergangsfunktion kp1+τ2p , wobei k und τ2 vorbestimmte Parameter sind, bevor dieser gefilterte Wert zur Berechnung des Sollwerts NTLcons verwendet wird.
  11. Regelsystem nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass die Berechnungsmittel (9, 10) und das Hilfsberechnungsmittel (22) in einem einzigen Rechner zusammengefasst sind.
EP02291687A 2001-07-19 2002-07-05 Motorgeschwindigkeitsregelsystem eines Hubschraubers Expired - Lifetime EP1293854B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0109644A FR2827636B1 (fr) 2001-07-19 2001-07-19 Systeme de regulation du regime d'un moteur d'un helicoptere
FR0109644 2001-07-19

Publications (3)

Publication Number Publication Date
EP1293854A2 EP1293854A2 (de) 2003-03-19
EP1293854A3 EP1293854A3 (de) 2003-12-17
EP1293854B1 true EP1293854B1 (de) 2005-12-21

Family

ID=8865693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02291687A Expired - Lifetime EP1293854B1 (de) 2001-07-19 2002-07-05 Motorgeschwindigkeitsregelsystem eines Hubschraubers

Country Status (4)

Country Link
US (1) US6698181B2 (de)
EP (1) EP1293854B1 (de)
CA (1) CA2394066C (de)
FR (1) FR2827636B1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU777970C (en) 1999-05-07 2006-08-17 F. Hoffman-La Roche Ag Treatment of autoimmune diseases with antagonists which bind to B cell surface markers
CA2422076A1 (en) * 2000-09-18 2002-03-21 Idec Pharmaceutical Corporation Combination therapy for treatment of autoimmune diseases using b cell depleting/immunoregulatory antibody combination
FR2878288B1 (fr) 2004-11-25 2007-01-19 Eurocopter France Procede et dispositif pour optimiser l'enveloppe de performances d'un turbomoteur
US8275500B2 (en) * 2008-03-11 2012-09-25 Honeywell International Inc. Gas turbine engine fixed collective takeoff compensation control system and method
EP2356327B1 (de) * 2008-11-13 2014-12-31 Sikorsky Aircraft Corporation Adaptives system mit integrierter sicherheit für fadec-gesteuerte gasturbinentriebwerke
FR3000465B1 (fr) * 2012-12-27 2015-02-13 Eurocopter France Procede d'entrainement en rotation d'un rotor principal de giravion, selon une consigne de vitesse de rotation a valeur variable
US10066547B2 (en) 2014-07-01 2018-09-04 United Technologies Corporation Combined two engine cycle with at least one recuperated cycle engine for rotor drive
FR3031500B1 (fr) * 2015-01-12 2017-01-13 Turbomeca Dispositif et procede de regulation d'un moteur auxiliaire adapte pour fournir une puissance propulsive au rotor d'un helicoptere
FR3082225B1 (fr) * 2018-06-07 2020-06-05 Safran Helicopter Engines Systeme propulsif asymetrique a recuperation de chaleur
US11479348B2 (en) 2019-08-31 2022-10-25 Textron Innovations Inc. Power management systems for multi engine rotorcraft

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969890A (en) * 1974-07-17 1976-07-20 General Motors Corporation Helicopter power plant control
US4423593A (en) * 1982-04-16 1984-01-03 Chandler Evans Inc. Fuel control for controlling helicopter rotor/turbine acceleration
US4998202A (en) * 1989-05-19 1991-03-05 United Technologies Corporation Helicopter, high rotor load speed enhancement
US5231823A (en) * 1991-08-22 1993-08-03 General Electric Company Supervisory control system
FR2803051B1 (fr) * 1999-12-23 2002-05-03 Turbomeca Dispositif et procede de regulation de la puissance d'un groupe motopropulseur d'entrainement de rotor d'helicoptere
FR2824804B1 (fr) * 2001-05-16 2003-09-26 Eurocopter France Dispositif et procede de regulation de la puissance des moteurs d'un aeronef multimoteur a voilure tournante

Also Published As

Publication number Publication date
CA2394066C (fr) 2009-11-10
FR2827636B1 (fr) 2003-11-28
FR2827636A1 (fr) 2003-01-24
CA2394066A1 (fr) 2003-01-19
US6698181B2 (en) 2004-03-02
US20030051461A1 (en) 2003-03-20
EP1293854A3 (de) 2003-12-17
EP1293854A2 (de) 2003-03-19

Similar Documents

Publication Publication Date Title
EP3670339B1 (de) Verfahren zur unterstützung eines einmotorigen drehflügelflugzeuges im falle eines motorausfalls
EP3095695B1 (de) Betätigungsverfahren eines elektromotors einer hybridanlage eines mehrmotorigen luftfahrzeugs, und entsprechendes luftfahrzeug
EP3339182B1 (de) Vorrichtung zur regulierung der drehgeschwindigkeit einer gasgenerator-welle eines turbomotors eines drehflügelflugzeugs, drehflügelflugzeug, das mit einer solchen vorrichtung ausgestattet ist, und entsprechende regulierungsmethode
FR2640228A1 (fr) Dispositif et procede pour la commande de la vitesse des helices d'un avion
CA2705656C (fr) Procede et systeme de commande et de regulation motrice pour helicoptere hybride
EP1273986B1 (de) Verfahren und Einrichtung zur Steuerung mindestens einer Trimmungsklappe eines Flugzeugs während des Starts
EP2735512B1 (de) Verfahren und hubschrauber mit drei triebwerken
CA2590991C (fr) Equilibrage en puissance de deux turbomoteurs d'un aeronef
EP3109156B1 (de) Regulierverfahren für eine dreimotorige antriebsanlage für ein drehflügelflugzeug
EP1293854B1 (de) Motorgeschwindigkeitsregelsystem eines Hubschraubers
CA2856655C (fr) Installation motrice trimoteur regulee pour un aeronef a voilure tournante
WO2008142258A2 (fr) Système de commande d'un giravion
EP3123007B1 (de) Turbomotor, zweimotoriger hubschrauber mit einem derartigen turbomotor und verfahren zur optimierung der standby-leerlaufdrehzahl eines derartigen zweimotorigen hubschraubers
FR2946322A1 (fr) Dispositif d'aide au pilotage d'un helicoptere hybride, helicoptere hybride muni d'un tel dispositif et procede mis en oeuvre par ledit dispositif
EP3309642B1 (de) Hilfssteuerungsverfahren eines drehflügelflugzeugs, das mindestens eine druckschraube umfasst, hilfssteuerungsvorrichtung und luftfahrzeug
FR2465881A1 (fr) Systeme de commande pour un moteur a turbine a gaz et procede de realisation de ce systeme
EP2508735B1 (de) Verfahren und Vorrichtung für die Betriebssteuerung der Motoren eines Luftfahrzeugs während der Startphase
EP3147212B1 (de) Vorrichtung zur regelung der drehzahl des rotors eines drehflügelflugzeugs, mit einer solchen vorrichtung ausgestattetes drehflügelflugzeug und entsprechende regelungsmethode
EP0261015B1 (de) Elektrisches Flugsteuerungssystem mit Einfallsprotektion für Luftfahrzeuge
CA2437216C (fr) Procede et systeme pour deplacer une gouverne d'un aeronef
EP3733508B1 (de) Regulierungsverfahren für antriebsanlage eines drehflügelflugzeugs, und entsprechendes drehflügelflugzeug
CA2407166C (fr) Procede et dispositif pour afficher un vecteur vitesse d'un aeronef
FR2619458A1 (fr) Systeme de commande pour une approche precise d'un avion
CA2986771A1 (fr) Dispositif de regulation de la vitesse de rotation d'un arbre d'un generateur de gaz de turbomoteur de giravion, giravion equipe d'un tel dispositif et methode de regulation associee
WO2023111445A1 (fr) Procédé de régulation de la vitesse de rotation d'un propulseur d'un groupe propulsif hybride pour aéronef, en situation de panne du système de régulation principal du moteur thermique du groupe propulsif hybride

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 05D 13/62 A

Ipc: 7G 05D 7/06 B

17P Request for examination filed

Effective date: 20040419

AKX Designation fees paid

Designated state(s): GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20040930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051221

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180719

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190705