EP1292533A1 - Process for the production of hydrogen peroxide and composition for use therein - Google Patents

Process for the production of hydrogen peroxide and composition for use therein

Info

Publication number
EP1292533A1
EP1292533A1 EP01941352A EP01941352A EP1292533A1 EP 1292533 A1 EP1292533 A1 EP 1292533A1 EP 01941352 A EP01941352 A EP 01941352A EP 01941352 A EP01941352 A EP 01941352A EP 1292533 A1 EP1292533 A1 EP 1292533A1
Authority
EP
European Patent Office
Prior art keywords
anthraquinones
working solution
quinone
solvent
isodurene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01941352A
Other languages
German (de)
French (fr)
Other versions
EP1292533B1 (en
Inventor
Mats Nyström
Christina Järnvik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Priority to EP01941352A priority Critical patent/EP1292533B1/en
Publication of EP1292533A1 publication Critical patent/EP1292533A1/en
Application granted granted Critical
Publication of EP1292533B1 publication Critical patent/EP1292533B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process

Definitions

  • the present invention relates to a process for production of hydrogen peroxide according to the anthraquinone process, wherein the working solution comprises a certain mixture of solvents.
  • the invention also concerns a composition comprising such a mixture of solvents that is useful as a working solution at production of hydrogen peroxide.
  • the most common process for production of hydrogen peroxide is the anthraquinone process.
  • quinones selected from optionally substituted anthraquinones and/or tetrahydro anthraquinones dissolved in a suitable organic solvent mixture, a so called working solution, are hydrogenated to form the corresponding hydroquinones.
  • the hydroquinones are then oxidised back to quinones with oxygen (usually air) with simultaneous formation of hydrogen peroxide, which then can be extracted with water while the quinones are returned with the working solution to the hydrogenation step.
  • the solvent mixture in the working solution normally comprises one or more quinone solvents and one or more hydroquinone solvents.
  • the production capacity in a plant is limited by the amount of quinones available for hydrogenation in the working solution or the amount of hydroquinones that can be formed without precipitation thereof. This problem has been found to be of particular importance when the amount of tetrahydro anthraquinones in the working solution is high.
  • the invention concerns a process for production of hydrogen peroxide according to the anthraquinone process including alternate hydrogenation and oxidation of one or more quinones selected from anthraquinones and/or tetrahydro anthraquinones in a working solution comprising at least one quinone solvent and at least one hydroquinone solvent, wherein said at least one quinone solvent comprises isodurene (1,2,3,5-tetramethylbenzene) in an amount from 15 to 100 wt%, preferably from about 20 to about 80 wt%, most preferably from about 25 to about 70 wt%.
  • the at least one quinone solvent referred to above substantially consists of one or more essentially non-polar organic solvents, preferably hydrocarbons, while the at least one hydroquinone solvent referred to above most preferably substantially consists of one or more polar organic solvents, suitably essentially non-soluble in water and preferably selected from alcohols, ureas, amides, caprolactams, esters, phosphorus containing substances and pyrrolidones.
  • the at least one quinone solvent suitably comprises durene (1,2,4,5-tetramethylbenzene), wherein the total amount of isodurene and durene suitably constitutes from about 30 to about 100 wt%, preferably from about 35 to about 80 wt% of the total amount of quinone solvents.
  • the content thereof should not be too high, preferably not exceeding about 25 wt%, most preferably not exceeding about 20 wt% of the total amount of quinone solvents.
  • the weight ratio isodurene to durene in the working solution is preferably from about 1.5:1 to about 5:1, most preferably from about 2:1 to about 4:1.
  • the at least one quinone solvent may also comprise other suitably essentially non-polar hydrocarbons, preferably selected from one or more aromatic, aliphatic or naphthenic hydrocarbons, of which aromatic hydrocarbons are most preferred.
  • Particularly suitable quinone solvents include benzene, alkylated or polyalkylated benzenes such as tert- butylbenzene or trimethyl benzene, alkylated toluene or naphthalene such as tert- butyltoluene or methylnaphthaiene.
  • the preferred total content of quinone solvents and consequently also the content of isodurene used in the entire working solution depends on which hydroquinone solvent(s) that are used.
  • the suitable content of quinone solvents is from about 25 to about 65 wt%, preferably from about 40 to about 60 wt% of the entire working solution.
  • the weight ratio quinone solvents to hydroquinone solvents suitably is from about 0.6 to about 4, preferably from about 1.5 to about 3.
  • the suitable content of isodurene normally is from about 8 to about 52 wt%, preferably from about 11 to about 42 wt% of the entire working solution.
  • the working solution comprises at least one and preferably at least two hydroquinone solvents, suitably selected from polar organic solvents, which, however, preferably should be essentially non-soluble in water.
  • Suitable hydroquinone solvents may be selected from alcohols, ureas, amides, caprolactams, esters, phosphorus containing substances and pyrrolidones, and include alkyl phosphates (e.g. trioctyl phosphate), alkyl phosphonates, alkylcyclohexanol esters, N,N-dialkyl carbonamides, tetraalkyl ureas (e.g.
  • tetrabutyl urea N-alkyl-2-pyrrolidones and high boiling alcohols, preferably with 8-9 carbon atoms (e.g. di-isobutyl carbinol).
  • Preferred hydroquinone solvents are selected from alkyl phosphates, tetraalkyl ureas, cyclic urea derivatives and alkyl-substituted caprolactams.
  • hydroquinone solvents include alkyl-substituted caprolactams such as octyl caprolactam and cyclic urea derivatives such as N,N'-dialkyl-substituted alkylenurea.
  • alkyl-substituted caprolactams such as octyl caprolactam
  • cyclic urea derivatives such as N,N'-dialkyl-substituted alkylenurea.
  • Other preferred hydroquinone solvents include di-isobutyl carbinol and tetrabutyl urea, which are advantageous in the sense that they have low density.
  • the content of hydroquinone solvents in the working solution is preferably from about 15 to about 48 wt%, most preferably from about 18 to about 35 wt%.
  • the anthraquinones and tetrahydro anthraquinones in the working solution to be hydrogenated are preferably alkyl substituted, most preferably with only one alkyl group, suitably at the 2-position.
  • Preferred alkyl substituents include amyl such as 2-tert-amyl or 2-iso-sec-amyl, ethyl, tert-butyl and 2-hexenyl, and it is particularly preferred that at least ethyl substituted anthraquinones and/or tetrahydro anthraquinones are included.
  • the working solution to be hydrogenated include a mixture of different alkyl substituted anthraquinones and tetrahydro anthraquinones, more preferably a mixture of ethyl and at least one . other alkyl substituted, most preferably amyl substituted anthraquinone and/or tetrahydro anthraquinone.
  • a mixture of different alkyl substituted anthraquinones and tetrahydro anthraquinones more preferably a mixture of ethyl and at least one .
  • other alkyl substituted most preferably amyl substituted anthraquinone and/or tetrahydro anthraquinone.
  • the anthraquinones and the tetrahydro anthraquinones are substituted with one amyl group. It has been found favourable to operate at high amounts of tetrahydro anthraquinones compared to anthraquinones, as it then is possible to achieve high degree of hydrogenation and low losses of active quinones to degradation products.
  • the molar ratio of tetrahydro anthraquinones to anthraquinones in the working solution to be hydrogenated exceeds 1:1 and is preferably from about 2:1 to about 50:1, most preferably from about 3:1 to about 20:1. In some cases it may be appropriate to operate at a molar ratio only up to about 9:1, but it is also possible to use working solutions almost free from anthraquinones.
  • the molar ratio of tetrahydro anthraquinones to alkyl anthraquinones in a mature working solution is suitably in the same magnitude for the anthraquinones substituted with different groups.
  • the molar ratio for each group differ preferably less than with a factor of about 2.5, most preferably less than with a factor of about 1.7.
  • the tetrahydro anthraquinones are normally mainly made up of ⁇ -tetrahydro anthraquinones, but also some ⁇ -tetrahydro anthraquinones may be present.
  • many secondary reactions take place.
  • the anthrahydroquinones can react further to tetrahydro anthrahydroquinones, which in the oxidation step is converted to tetrahydro anthraquinones, the content of which thus will increase in the working solution.
  • the initial working solution may contain no or only small amounts of tetrahydro anthraquinones, as they will form automatically during the course of operation.
  • the high amounts of isodurene in the working solution renders it possible to dissolve high amounts of ethyl substituted tetrahydro anthraquinone, which has lower density than, for example, the highly soluble amyl substituted tetrahydro anthraquinone. It is then possible to combine high concentration of quinones available for hydrogenation in the working solution with low density, thus increasing the production capacity of hydrogen peroxide per volume working solution.
  • the total amount of anthraquinones and tetrahydro anthraquinones in the working solution to be hydrogenated is preferably from about 15 to about 28 wt%, most preferably from about 17 to about 25 wt%, while the density , measured at 20°C, preferably is from about 910 to about 980 kg/m 3 , most preferably from about 930 to about 970 kg/m 3 .
  • the hydrogenation step is normally performed by contacting the working solution with hydrogen gas in the presence of a catalyst at a temperature from about 0 to about 100°C, preferably from about 40 to about 75°C, and at an absolute pressure from about 100 to about 1500 kPa, preferably from about 200 to about 600 kPa.
  • the degree of hydrogenation is suitably from about 350 to about 800, preferably from about 400 to about 650.
  • the active catalyst may, for example, be a metal selected from any of nickel, palladium, platinum, rhodium, ruthenium, gold, silver, or mixtures thereof.
  • Preferred metals are palladium, platinum and gold, of which palladium or mixtures comprising at least 50 wt% palladium are particularly preferred.
  • the active catalyst may be in free form, e.g. palladium black suspended in the working solution, or be deposited on a solid support such as particles used in the form of a slurry or a fixed bed.
  • it is particularly preferred to use a catalyst in the form of an active metal on a monolithic support for example, as described in US patents 4552748 and 5063043.
  • Preferred support materials are selected from silica or aluminium oxide.
  • At least a portion of the working solution is preferably regenerated in one or several steps to remove water, to keep the desired ratio of tetrahydro anthraquinones to anthraquinones, to convert some undesired by-products from the hydrogenation or the oxidation steps back to active components, and to remove other undesired by-products.
  • the regeneration may include filtration, evaporation of water, and treatment with a porous adsorbent and catalyst based on aluminium oxide.
  • the invention further concerns a composition useful as a working solution at production of hydrogen peroxide with the anthraquinone process.
  • the composition comprises one or more anthraquinones and/or one or more tetrahydro anthraquinones dissolved in at least one quinone solvent, and at least one hydroquinone solvent, wherein said at least one quinone solvent comprises isodurene in an amount from 15 to 100 wt%, preferably from about 20 to about 80 wt%, most preferably from about 25 to about 70 wt%.
  • the above description of the process is referred to.
  • Example 1 The solubility of ⁇ -tetrahydro ethyl anthraquinone was measured in two different pure quinone solvents:
  • Example 2 Two different mature working solutions, A (comparative) and B (the invention), were tested in an anthraquinone process, the solutions thus also containing normal degradation products. Both solutions comprised tetrabutyl urea as hydroquinone solvent and 2-ethyl and 2-amyl substituted anthraquinones and tetrahydro anthraquinones (the molar ratio 2-ethyl to 2-amyl exceeded 1:1 and was maintained constant). The molar ratio tetrahydro anthraquinones to anthraquinones exceeded 3:1.
  • Solution A the quinone solvent was made up of ShellsolTM AB, a regular mixture of aromatic hydrocarbon with mainly C 10 and C 9 alkyl-benzene (about 85%), while in Solution B the quinone solvent instead was made up of 40 wt% ShellsolTM AB mixed with 60 wt% of isodurene (Technical grade comprising about 69% isodurene, about 22% durene and about 9 wt% other C 10 aromatic hydrocarbons).
  • ShellsolTM AB a regular mixture of aromatic hydrocarbon with mainly C 10 and C 9 alkyl-benzene (about 85%)
  • Solution B the quinone solvent instead was made up of 40 wt% ShellsolTM AB mixed with 60 wt% of isodurene (Technical grade comprising about 69% isodurene, about 22% durene and about 9 wt% other C 10 aromatic hydrocarbons).

Abstract

The invention relates to a process for production of hydrogen peroxide according to the anthraquinone process including alternate hydrogenation and oxidation of one or more quinones selected from anthraquinones and/or tetrahydro anthraquinones in a working solution comprising at least one quinone solvent and at least one hydroquinone solvent, wherein said at least one quinone solvent comprises isodurene in an amount from 15 to 100 wt%. The invention also relates to a composition useful as a working solution at production of hydrogen peroxide.

Description

PROCESS FOR THE PRODUCTION OF HYDROGEN PEROXIDE AND COMPOSITION FOR USE THEREIN
The present invention relates to a process for production of hydrogen peroxide according to the anthraquinone process, wherein the working solution comprises a certain mixture of solvents. The invention also concerns a composition comprising such a mixture of solvents that is useful as a working solution at production of hydrogen peroxide.
The most common process for production of hydrogen peroxide is the anthraquinone process. In this process quinones selected from optionally substituted anthraquinones and/or tetrahydro anthraquinones dissolved in a suitable organic solvent mixture, a so called working solution, are hydrogenated to form the corresponding hydroquinones. The hydroquinones are then oxidised back to quinones with oxygen (usually air) with simultaneous formation of hydrogen peroxide, which then can be extracted with water while the quinones are returned with the working solution to the hydrogenation step.
The anthraquinone process is described extensively in the literature, for example in Kirk-Othmer, "Encyclopedia of Chemical Technology", 4th Ed., 1993, Vol. 13, pp. 961-995.
For the process to work properly, it is necessary to use a solvent mixture for the working solution in which both quinones and hydroquinones are soluble. Therefore, the solvent mixture in the working solution normally comprises one or more quinone solvents and one or more hydroquinone solvents. The problem of finding suitable solvents for the working solution has been addressed in, for example, US patents 3328128, 4800073 and 4800074, and GB patent 1524883.
In many cases, the production capacity in a plant is limited by the amount of quinones available for hydrogenation in the working solution or the amount of hydroquinones that can be formed without precipitation thereof. This problem has been found to be of particular importance when the amount of tetrahydro anthraquinones in the working solution is high.
Thus, there is a demand for a working solution based on a solvent combination with improved solubility of both quinones and hydroquinones, particularly of tetrahydro anthraquinones. Furthermore, it is desirable to provide a working solution with comparatively low density, which facilitates the phase separation at an extraction step performed after the hydrogenation and oxidation steps.
It has now been found possible to provide a working solution fulfilling these demands by selecting a certain combination of solvents. Thus, the invention concerns a process for production of hydrogen peroxide according to the anthraquinone process including alternate hydrogenation and oxidation of one or more quinones selected from anthraquinones and/or tetrahydro anthraquinones in a working solution comprising at least one quinone solvent and at least one hydroquinone solvent, wherein said at least one quinone solvent comprises isodurene (1,2,3,5-tetramethylbenzene) in an amount from 15 to 100 wt%, preferably from about 20 to about 80 wt%, most preferably from about 25 to about 70 wt%.
Most preferably the at least one quinone solvent referred to above substantially consists of one or more essentially non-polar organic solvents, preferably hydrocarbons, while the at least one hydroquinone solvent referred to above most preferably substantially consists of one or more polar organic solvents, suitably essentially non-soluble in water and preferably selected from alcohols, ureas, amides, caprolactams, esters, phosphorus containing substances and pyrrolidones.
It has been found that when the proportion of isodurene compared to other optional quinone solvents is high, the solubility of quinones is improved to such an extent that it is possible to decrease the total amount of quinone solvents in the working solution and instead increase the amount of hydroquinone solvents, and thereby increase the solubility of both quinones and hydroquinones.
In addition to isodurene, the at least one quinone solvent suitably comprises durene (1,2,4,5-tetramethylbenzene), wherein the total amount of isodurene and durene suitably constitutes from about 30 to about 100 wt%, preferably from about 35 to about 80 wt% of the total amount of quinone solvents. In order to avoid precipitation of durene the content thereof should not be too high, preferably not exceeding about 25 wt%, most preferably not exceeding about 20 wt% of the total amount of quinone solvents. The weight ratio isodurene to durene in the working solution is preferably from about 1.5:1 to about 5:1, most preferably from about 2:1 to about 4:1.
The at least one quinone solvent may also comprise other suitably essentially non-polar hydrocarbons, preferably selected from one or more aromatic, aliphatic or naphthenic hydrocarbons, of which aromatic hydrocarbons are most preferred. Particularly suitable quinone solvents include benzene, alkylated or polyalkylated benzenes such as tert- butylbenzene or trimethyl benzene, alkylated toluene or naphthalene such as tert- butyltoluene or methylnaphthaiene.
The preferred total content of quinone solvents and consequently also the content of isodurene used in the entire working solution depends on which hydroquinone solvent(s) that are used. In most cases, the suitable content of quinone solvents is from about 25 to about 65 wt%, preferably from about 40 to about 60 wt% of the entire working solution. In most cases, the weight ratio quinone solvents to hydroquinone solvents suitably is from about 0.6 to about 4, preferably from about 1.5 to about 3. The suitable content of isodurene normally is from about 8 to about 52 wt%, preferably from about 11 to about 42 wt% of the entire working solution.
The working solution comprises at least one and preferably at least two hydroquinone solvents, suitably selected from polar organic solvents, which, however, preferably should be essentially non-soluble in water. Suitable hydroquinone solvents may be selected from alcohols, ureas, amides, caprolactams, esters, phosphorus containing substances and pyrrolidones, and include alkyl phosphates (e.g. trioctyl phosphate), alkyl phosphonates, alkylcyclohexanol esters, N,N-dialkyl carbonamides, tetraalkyl ureas (e.g. tetrabutyl urea), N-alkyl-2-pyrrolidones and high boiling alcohols, preferably with 8-9 carbon atoms (e.g. di-isobutyl carbinol). Preferred hydroquinone solvents are selected from alkyl phosphates, tetraalkyl ureas, cyclic urea derivatives and alkyl-substituted caprolactams. One group of preferred hydroquinone solvents are described in the US patents 4800073 and 4800074 and include alkyl-substituted caprolactams such as octyl caprolactam and cyclic urea derivatives such as N,N'-dialkyl-substituted alkylenurea. Other preferred hydroquinone solvents include di-isobutyl carbinol and tetrabutyl urea, which are advantageous in the sense that they have low density. The content of hydroquinone solvents in the working solution is preferably from about 15 to about 48 wt%, most preferably from about 18 to about 35 wt%.
The anthraquinones and tetrahydro anthraquinones in the working solution to be hydrogenated are preferably alkyl substituted, most preferably with only one alkyl group, suitably at the 2-position. Preferred alkyl substituents include amyl such as 2-tert-amyl or 2-iso-sec-amyl, ethyl, tert-butyl and 2-hexenyl, and it is particularly preferred that at least ethyl substituted anthraquinones and/or tetrahydro anthraquinones are included. Preferably the working solution to be hydrogenated include a mixture of different alkyl substituted anthraquinones and tetrahydro anthraquinones, more preferably a mixture of ethyl and at least one . other alkyl substituted, most preferably amyl substituted anthraquinone and/or tetrahydro anthraquinone. Preferably from about 50 to about 100 mole %, most preferably from about 60 to about 90 mole % of the anthraquinones and the tetrahydro anthraquinones are substituted with one ethyl group. It is also preferred that up to about 50 mole %, most preferably from about 10 to about 40 mole % of the anthraquinones and the tetrahydro anthraquinones are substituted with one amyl group. It has been found favourable to operate at high amounts of tetrahydro anthraquinones compared to anthraquinones, as it then is possible to achieve high degree of hydrogenation and low losses of active quinones to degradation products. Suitably the molar ratio of tetrahydro anthraquinones to anthraquinones in the working solution to be hydrogenated exceeds 1:1 and is preferably from about 2:1 to about 50:1, most preferably from about 3:1 to about 20:1. In some cases it may be appropriate to operate at a molar ratio only up to about 9:1, but it is also possible to use working solutions almost free from anthraquinones.
The molar ratio of tetrahydro anthraquinones to alkyl anthraquinones in a mature working solution (a working solution used for hydrogen peroxide production during at least six months) is suitably in the same magnitude for the anthraquinones substituted with different groups. The molar ratio for each group differ preferably less than with a factor of about 2.5, most preferably less than with a factor of about 1.7.
The tetrahydro anthraquinones are normally mainly made up of β-tetrahydro anthraquinones, but also some α-tetrahydro anthraquinones may be present. Besides the direct or indirect hydrogenation to hydroquinones, many secondary reactions take place. For example, the anthrahydroquinones can react further to tetrahydro anthrahydroquinones, which in the oxidation step is converted to tetrahydro anthraquinones, the content of which thus will increase in the working solution. This means that when the process of the invention is started up, the initial working solution may contain no or only small amounts of tetrahydro anthraquinones, as they will form automatically during the course of operation. As soon as the desirable concentrations of anthraquinones and tetrahydro anthraquinones have been reached, at least a portion of the working solution is then normally treated to dehydrogenate tetrahydro anthraquinones back to anthraquinones.
It also occurs direct or indirect formation of unwanted by-products, such as epoxides, octahydro anthraquinones, oxanthrones, anthrones and dianthrones. Some of these compounds, like epoxides can be converted back to anthraquinones, while others, like dianthrones, constitute an irreversible loss of active working solution. It has been found that the formation of undesired by-products can be minimised if the molar ratio of tetrahydro anthraquinones to anthraquinones is maintained within the above specified range.
The high amounts of isodurene in the working solution renders it possible to dissolve high amounts of ethyl substituted tetrahydro anthraquinone, which has lower density than, for example, the highly soluble amyl substituted tetrahydro anthraquinone. It is then possible to combine high concentration of quinones available for hydrogenation in the working solution with low density, thus increasing the production capacity of hydrogen peroxide per volume working solution. The total amount of anthraquinones and tetrahydro anthraquinones in the working solution to be hydrogenated is preferably from about 15 to about 28 wt%, most preferably from about 17 to about 25 wt%, while the density , measured at 20°C, preferably is from about 910 to about 980 kg/m3, most preferably from about 930 to about 970 kg/m3.
The hydrogenation step is normally performed by contacting the working solution with hydrogen gas in the presence of a catalyst at a temperature from about 0 to about 100°C, preferably from about 40 to about 75°C, and at an absolute pressure from about 100 to about 1500 kPa, preferably from about 200 to about 600 kPa. The degree of hydrogenation (as moles hydroquinones per m3 working solution) is suitably from about 350 to about 800, preferably from about 400 to about 650.
The active catalyst may, for example, be a metal selected from any of nickel, palladium, platinum, rhodium, ruthenium, gold, silver, or mixtures thereof. Preferred metals are palladium, platinum and gold, of which palladium or mixtures comprising at least 50 wt% palladium are particularly preferred. The active catalyst may be in free form, e.g. palladium black suspended in the working solution, or be deposited on a solid support such as particles used in the form of a slurry or a fixed bed. However, it is particularly preferred to use a catalyst in the form of an active metal on a monolithic support, for example, as described in US patents 4552748 and 5063043. Preferred support materials are selected from silica or aluminium oxide.
Before or after the hydrogenation step, at least a portion of the working solution is preferably regenerated in one or several steps to remove water, to keep the desired ratio of tetrahydro anthraquinones to anthraquinones, to convert some undesired by-products from the hydrogenation or the oxidation steps back to active components, and to remove other undesired by-products. The regeneration may include filtration, evaporation of water, and treatment with a porous adsorbent and catalyst based on aluminium oxide.
Other steps in the overall process of producing hydrogen peroxide, such as oxidation with oxygen or air and extraction with water, may be performed in conventional manner as described in the literature.
The invention further concerns a composition useful as a working solution at production of hydrogen peroxide with the anthraquinone process. The composition comprises one or more anthraquinones and/or one or more tetrahydro anthraquinones dissolved in at least one quinone solvent, and at least one hydroquinone solvent, wherein said at least one quinone solvent comprises isodurene in an amount from 15 to 100 wt%, preferably from about 20 to about 80 wt%, most preferably from about 25 to about 70 wt%. Regarding optional and preferred features of the composition, the above description of the process is referred to. The invention will now further be described in connection with the following
Examples, which, however, not should be interpreted as limiting the scope of the invention.
Example 1: The solubility of β-tetrahydro ethyl anthraquinone was measured in two different pure quinone solvents:
Example 2: Two different mature working solutions, A (comparative) and B (the invention), were tested in an anthraquinone process, the solutions thus also containing normal degradation products. Both solutions comprised tetrabutyl urea as hydroquinone solvent and 2-ethyl and 2-amyl substituted anthraquinones and tetrahydro anthraquinones (the molar ratio 2-ethyl to 2-amyl exceeded 1:1 and was maintained constant). The molar ratio tetrahydro anthraquinones to anthraquinones exceeded 3:1.
The main difference between the working solutions was that in Solution A the quinone solvent was made up of Shellsol™ AB, a regular mixture of aromatic hydrocarbon with mainly C10 and C9 alkyl-benzene (about 85%), while in Solution B the quinone solvent instead was made up of 40 wt% Shellsol™ AB mixed with 60 wt% of isodurene (Technical grade comprising about 69% isodurene, about 22% durene and about 9 wt% other C10 aromatic hydrocarbons).
In both cases the total content of tetrahydro anthraquinones and anthraquinones were kept as high as possible to reach high concentrations of hydrogen peroxide in the working solution. However, precipitation β-tetrahydro ethyl anthraquinone and/or its hydroquinone form in the working solution was a limiting factor.
More data are shown in the table below:
It was thus possible to operate working solution B with a higher production capacity than solution A.

Claims

1. A process for production of hydrogen peroxide according to the anthraquinone process including alternate hydrogenation and oxidation of one or more quinones selected from anthraquinones and/or tetrahydro anthraquinones in a working solution comprising at least one quinone solvent and at least one hydroquinone solvent, c h a r a c t e r i s e d in that said at least one quinone solvent comprises isodurene in an amount from 15 to 100 wt%.
2. A process as claimed in claim 1, wherein said at least one quinone solvent comprises from about 20 to about 80 wt% of isodurene.
3. A process as claimed in any one of the claims 1-2, wherein the working solution comprises from about 25 to about 70 wt% of isodurene.
4. A process as claimed in any one of the claims 1-3, wherein said at least one quinone solvent additionally comprises durene and the total amount of isodurene and durene constitutes from about 30 to about 100 wt% of the quinone solvents.
5. A process as claimed in any one of the claims 1-4, wherein said at least one quinone solvent additionally comprises durene and the content of durene does not exceed about 25 wt% of total amount of quinone solvents.
6. A process as claimed in any one of the claims 4-5, wherein the weight ratio isodurene to durene in the working solution is from about 1.5:1 to about 5:1.
7. A process as claimed in any one of the claims 1-6, wherein said at least one hydroquinone solvent comprises one or more of di-isobutyl carbinol or tetrabutyl urea.
8. A process as claimed in any one of the claims 1-7, wherein the molar ratio of tetrahydro anthraquinones to anthraquinones in the working solution to be hydrogenated exceeds 1:1.
9. A process as claimed in any one of the claims 1-8, wherein from about 50 to about 100 mole % of the anthraquinones and the tetrahydro anthraquinones are substituted with one ethyl group.
10. Composition useful as a working solution at production of hydrogen peroxide with the anthraquinone process comprising one or more quinones selected from anthraquinones and/or tetrahydro anthraquinones dissolved in at least one quinone solvent and at least one hydroquinone solvent, c h a r a c t e r i s e d in that said at least one quinone solvent comprises isodurene in an amount from 15 to 100 wt%.
EP01941352A 2000-06-19 2001-05-28 Process for the production of hydrogen peroxide and composition for use therein Expired - Lifetime EP1292533B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01941352A EP1292533B1 (en) 2000-06-19 2001-05-28 Process for the production of hydrogen peroxide and composition for use therein

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US21263300P 2000-06-19 2000-06-19
EP00850109 2000-06-19
EP00850109 2000-06-19
US212633P 2000-06-19
PCT/SE2001/001192 WO2001098204A1 (en) 2000-06-19 2001-05-28 Process for the production of hydrogen peroxide and composition for use therein
EP01941352A EP1292533B1 (en) 2000-06-19 2001-05-28 Process for the production of hydrogen peroxide and composition for use therein

Publications (2)

Publication Number Publication Date
EP1292533A1 true EP1292533A1 (en) 2003-03-19
EP1292533B1 EP1292533B1 (en) 2009-12-30

Family

ID=56290145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01941352A Expired - Lifetime EP1292533B1 (en) 2000-06-19 2001-05-28 Process for the production of hydrogen peroxide and composition for use therein

Country Status (14)

Country Link
EP (1) EP1292533B1 (en)
JP (1) JP3992244B2 (en)
KR (1) KR100498786B1 (en)
CN (1) CN1233547C (en)
AT (1) ATE453602T1 (en)
AU (1) AU2001274712A1 (en)
BR (1) BR0111857B1 (en)
CA (1) CA2412956C (en)
CZ (1) CZ299805B6 (en)
ES (1) ES2338298T3 (en)
PL (1) PL200150B1 (en)
PT (1) PT1292533E (en)
RU (1) RU2235680C2 (en)
WO (1) WO2001098204A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1013683A2 (en) * 2009-03-27 2016-04-26 Solvay process for the production of hydrogen peroxide
CN107539957B (en) * 2016-06-23 2020-10-27 中国石油化工股份有限公司 Solvent system for producing hydrogen peroxide by anthraquinone process, variable working solution and application
SE1651754A1 (en) * 2016-12-29 2018-03-27 Eb Nuberg Ab Aromatic solvent for hydrogen peroxide production
FR3131292A1 (en) 2021-12-23 2023-06-30 Arkema France Hydrogen peroxide production process
FR3141158A1 (en) 2022-10-25 2024-04-26 Arkema France Hydrogen peroxide production process
CN115924853B (en) * 2022-11-15 2024-01-05 黎明化工研究设计院有限责任公司 High-yield working liquid system for producing hydrogen peroxide by anthraquinone process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB834154A (en) * 1957-02-25 1960-05-04 Columbia Southern Chem Corp Improvements in the preparation of hydrogen peroxide
DE1914739A1 (en) * 1969-03-22 1970-10-01 Degussa Process for the production of hydrogen peroxide
BE756015A (en) * 1969-09-10 1971-02-15 Degussa PROCESS FOR THE PREPARATION OF HYDROGEN PEROXIDE (E)
BE756013A (en) * 1969-09-10 1971-02-15 Degussa PROCESS FOR THE EXTRACTION OF HYDROGEN PEROXIDE FROM THE WORKING SOLUTIONS OF THE ANTHRAQUINONE PROCESS
DE2532819C3 (en) * 1975-07-23 1978-10-05 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Process for the production of hydrogen peroxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0198204A1 *

Also Published As

Publication number Publication date
PT1292533E (en) 2010-03-18
RU2235680C2 (en) 2004-09-10
ES2338298T3 (en) 2010-05-06
CZ299805B6 (en) 2008-12-03
BR0111857B1 (en) 2010-11-16
PL358135A1 (en) 2004-08-09
CA2412956A1 (en) 2001-12-27
JP3992244B2 (en) 2007-10-17
JP2003535801A (en) 2003-12-02
ATE453602T1 (en) 2010-01-15
CN1437561A (en) 2003-08-20
CN1233547C (en) 2005-12-28
AU2001274712A1 (en) 2002-01-02
PL200150B1 (en) 2008-12-31
WO2001098204A1 (en) 2001-12-27
EP1292533B1 (en) 2009-12-30
CA2412956C (en) 2008-11-25
KR100498786B1 (en) 2005-07-01
KR20030047896A (en) 2003-06-18
BR0111857A (en) 2003-05-13

Similar Documents

Publication Publication Date Title
EP1101733B1 (en) Process and composition for the production of hydrogen peroxide
US7425316B2 (en) Chemical process and composition
EP0286610B1 (en) Process for preparation of hydrogen peroxide
EP1292533B1 (en) Process for the production of hydrogen peroxide and composition for use therein
US4349526A (en) Process for the production of hydrogen peroxide
US3328128A (en) Process for the manufacture of hydrogen peroxide
EP0095822B1 (en) Hydrogen peroxide process
TWI758411B (en) Method and system for producing hydrogen peroxide by anthraquinone method
JPS60235703A (en) Hydrogenation of alkylated anthraquinone
US3041143A (en) Production of hydrogen peroxide
JPS60235704A (en) Preproduction of tetrahydroanthraquinones in supply solutionto be added into hydrogen peroxide working solution
FI74946B (en) RENING AV ALKYLERADE ANTRAKINONER.
KR980009113A (en) Method for producing hydrogen peroxide
KR100201964B1 (en) Manufacturing method of perhydrooxygen
MXPA00009913A (en) Method for producing hydrogen peroxide and reaction carriers for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040225

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60140939

Country of ref document: DE

Date of ref document: 20100211

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100310

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338298

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140526

Year of fee payment: 14

Ref country code: IT

Payment date: 20140526

Year of fee payment: 14

Ref country code: PT

Payment date: 20140506

Year of fee payment: 14

Ref country code: AT

Payment date: 20140505

Year of fee payment: 14

Ref country code: NL

Payment date: 20140526

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 453602

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150528

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150529

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60140939

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60140939

Country of ref document: DE

Owner name: AKZO NOBEL CHEMICALS INTERNATIONAL B.V., NL

Free format text: FORMER OWNER: AKZO NOBEL N.V., 6824 ARNHEIM/ARNHEM, NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180111 AND 20180117

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: AKZO NOBEL CHEMICALS INTERNATIONAL B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: AKZO NOBEL N.V.

Effective date: 20171110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: AKZO NOBEL CHEMICALS INTERNATIONAL B.V., NL

Effective date: 20180515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180529

Year of fee payment: 18

Ref country code: FI

Payment date: 20180529

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180525

Year of fee payment: 18

Ref country code: BE

Payment date: 20180528

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180529

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180529

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60140939

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190528

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190529

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190528

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531