EP1290550A1 - Diagrammsteuerung von software in einem versionssteuerungssystem - Google Patents

Diagrammsteuerung von software in einem versionssteuerungssystem

Info

Publication number
EP1290550A1
EP1290550A1 EP01927222A EP01927222A EP1290550A1 EP 1290550 A1 EP1290550 A1 EP 1290550A1 EP 01927222 A EP01927222 A EP 01927222A EP 01927222 A EP01927222 A EP 01927222A EP 1290550 A1 EP1290550 A1 EP 1290550A1
Authority
EP
European Patent Office
Prior art keywords
diagram
version control
file
control system
source code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01927222A
Other languages
English (en)
French (fr)
Inventor
Alexander Aptus
Dietrich Charisius
Peter Coad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borland Software Corp
Original Assignee
TogetherSoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2000/027412 external-priority patent/WO2001025911A1/en
Application filed by TogetherSoft Corp filed Critical TogetherSoft Corp
Publication of EP1290550A1 publication Critical patent/EP1290550A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/20Software design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/70Software maintenance or management
    • G06F8/71Version control; Configuration management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/70Software maintenance or management
    • G06F8/73Program documentation

Definitions

  • the present invention relates to methods and systems for developing software. More particularly, the invention relates to an improved software development tool that includes a version control system that may be invoked via a diagram element associated with a software project.
  • UML Unified Modeling Language
  • Web-based distributed systems ranging from business information systems to Web-based distributed systems, to real-time embedded systems.
  • UML formalizes the notion that real-world objects are best modeled as self-contained entities that contain both data and functionality.
  • conventional software development tools 100 allow a programmer to view UML 102 while viewing source code 104.
  • the source code 104 is stored in a file, and a reverse engineering module 106 converts the source code 104 into a representation of the software project in a database or repository 108.
  • the software project comprises source code 104 in at least one file which, when compiled, forms a sequence of instructions to be run by the data processing system.
  • the repository 108 generates the UML 102. If any changes are made to the UML 102, they are automatically reflected in the repository 108, and a code generator 110 converts the representation in the repository 108 into source code 104.
  • Such software development tools 100 do not synchronize the displays of the UML 102 and the source code 104.
  • the repository 108 stores the representation of the software project while the file stores the source code 104.
  • a modification in the UML 102 does not appear in the source code 104 unless the code generator 110 re-generates the source code 104 from the data in the repository 108. When this occurs, the portion of source code 104 that is not protected from being overwritten is rewritten. Similarly, any modifications made to the source code 104 do not appear in the UML 102 unless the reverse engineering module 106 updates the repository 108. As a result, redundant information is stored in the repository 108 and the source code 104.
  • conventional software development tools 100 rewrite the overall source code 104 when modifications are made to the UML 102, resulting in wasted processing time.
  • This type of manual, large-grained synchronization requires either human intervention, or a "batch" style process to try to keep the two views (the UML 102 and the source code 104) in sync.
  • this approach, adopted by many tools leads to many undesirable side-effects; such as desired changes to the source code being overwritten by the tool.
  • a further disadvantage with conventional software development tools 100 is that they are designed to only work in a single programming language. Thus, a tool 100 that is designed for JavaTM programs cannot be utilized to develop a program in C++. There is a need in the art for a tool that avoids the limitations of these conventional software development tools.
  • the improved software development tool of the present invention allows a developer to simultaneously view a graphical and a textual display of source code.
  • the graphical and textual views are synchronized so that a modification in one view is automatically reflected in the other view.
  • the software development tool is designed for use with more than one programming language.
  • the software development tool also includes a version control system that permits multiple programmers to work simultaneously on a single software project by maintaining a central repository containing a master copy of a software project and by managing versions of the software project that the programmers develop during the development process.
  • the software development tool enables programmers to interact with the version control system by manipulating a diagram that corresponds to the software project, thus facilitating the use of the version control system.
  • a method in a data processing system for managing versions of source code with a version control system.
  • the method comprises the steps of generating a language-neutral representation of the source code; displaying a diagram representing the source code using the language-neutral representation such that the source code and the diagram are synchronized, the diagram having elements, each element having an associated file containing a portion of the source code; receiving an indication of a selection of one of the elements; determining which files are associated with the selected element; receiving an indication of a selection of a command performable by the version control system; and invoking the version control system to perform the selected command on the determined files.
  • a computer-readable medium containing instructions for controlling a data processing system to perform a method.
  • the method comprises the steps of receiving an indication of a selection of an element of a diagram having corresponding source code; receiving an indication of a version control command to be performed on the corresponding source code; and, responsive to the receipt of the indication of the selected element and the receipt of the indication of the version control command, performing the version control command on the corresponding source code by a version control system.
  • a data processing system includes a secondary storage device containing a software project, the software project comprising source code; a memory containing a software development tool that displays a diagram with diagram elements corresponding to the software project, that receives an indication of a selection of one of the diagram elements that corresponds to a portion of the software project, that receives a selection of a command performable by the version control system, and that invokes the version control system to perform the selected command on the portion of the software project; and a processor for running the software development tool.
  • a method in a data processing system. The method comprises the steps of receiving an indication of a selection of an element of a diagram having corresponding source code; receiving an indication of a version control command to be performed on the corresponding source code; and, responsive to the receipt of the indication of the selected element and the receipt of the indication of the version control command, performing the version control command on the corresponding source code by a version control system.
  • a data processing system is provided for managing files in a software project with a version control system.
  • the data processing system comprises a first computer including a memory containing a software development tool, which displays a diagram with diagram elements, and a client component of the version control system; a secondary storage containing a working directory; and a processor for running the software development tool; a second computer including a memory containing a software development tool and a server component of the version control system, a secondary storage containing a central repository, and a processor for running the software development tool; and a network connecting the first and second computer; wherein the software development tool on the first computer receives an indication of a selection of one of the diagram elements that corresponds to a portion of the software project, receives an indication of a command performable by the version control system, and invokes the version control system to perform the selected command on the portion of the software project.
  • Fig. 1 depicts a conventional software development tool
  • FIG. 2 depicts an overview of a software development tool in accordance with the present invention
  • Fig. 3 depicts a data structure of the language-neutral representation created by the software development tool of Fig. 2;
  • Fig. 4 depicts representative source code
  • Fig. 5 depicts the data structure of the language-neutral representation of the source code of Fig. 4;
  • Fig. 6 depicts a data processing system suitable for practicing the present invention
  • Fig. 7 depicts an architectural overview of the software development tool of Fig. 2;
  • Fig. 8A depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a list of predefined criteria which the software development tool checks in the source code;
  • Fig. 8B depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays the definition of the criteria which the software development tool checks in the source code, and an example of source code which does not conform to the criteria;
  • Fig. 8C depicts a user interface displayed by the software development tool depicted in
  • Fig. 2 where the user interface displays an example of source code which conforms to the criteria which the software development tool checks in the source code;
  • Fig. 9 depicts a flow diagram of the steps performed by the software development tool depicted in Fig. 2;
  • Figs. 10A and 10B depict a flow diagram illustrating the update model step of Fig. 9;
  • Fig. 11 depicts a flow diagram of the steps performed by the software development tool in Fig. 2 when creating a class
  • Fig. 12 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a use case diagram of source code;
  • Fig. 13 depicts a user interface displayed by the software development tool depicted in
  • Fig. 2 where the user interface displays both a class diagram and a textual view of source code
  • Fig. 14 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a sequence diagram of source code;
  • Fig. 15 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a collaboration diagram of source code;
  • Fig. 16 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a statechart diagram of source code;
  • Fig. 17 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays an activity diagram of source code
  • Fig. 18 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a component diagram of source code
  • Fig. 19 depicts a user interface displayed by the software development tool depicted in Fig. 2, where the user interface displays a deployment diagram of source code;
  • Fig. 20 depicts an exemplary data processing system in which the improved software development tool depicted in Fig. 2 may operate;
  • Fig. 21 depicts a user interface displayed by the improved software development tool, where the user interface displays a diagram and corresponding source code
  • Fig. 22 depicts a user interface displayed by the improved software development tool that is used to invoke the version control system depicted in Fig. 20;
  • Fig. 23 depicts a user interface displayed by the improved software development tool.
  • Figs. 24 A & 24B depict a flow diagram of exemplary steps performed by the improved software development tool.
  • Methods and systems consistent with the present invention provide an improved software development tool that creates a graphical representation of source code regardless of the programming language in which the code is written.
  • the software development tool simultaneously reflects any modifications to the source code to both the display of the graphical representation as well as the textual display of the source code.
  • source code 202 is being displayed in both a graphical form 204 and a textual form 206.
  • the improved software development tool generates a transient meta model (TMM) 200 which stores a language-neutral representation of the source code 202.
  • TMM transient meta model
  • the graphical 204 and textual 206 representations of the source code 202 are generated from the language-neutral representation in the TMM 200.
  • the textual view 206 of the source code may be obtained directly from the source code file.
  • the improved software development tool provides simultaneous round-trip engineering, i.e., the graphical representation 204 is synchronized with the textual representation 206.
  • the textual representation 206 is updated automatically.
  • the graphical representation 204 is updated to remain synchronized. There is no repository, no batch code generation, and no risk of losing code.
  • the data structure 300 of the language-neutral representation is depicted in Fig. 3.
  • the data structure 300 comprises a Source Code Interface (SCI) model 302, an SCI package 304, an SCI class 306, and an SCI member 308.
  • the SCI model 302 is the source code organized into packages.
  • the SCI model 302 corresponds to a directory for a software project being developed by the user, and the SCI package 304 corresponds to a subdirectory.
  • the software project comprises the source code in at least one file that is compiled to form a sequence of instructions to be run by a data processing system. The data processing system is discussed in detail below.
  • the class 306 is a category of objects which describes a group of objects with similar properties (attributes), common behavior (operations or methods), common relationships to other objects, and common semantics.
  • the members 308 comprise attributes and/or operations.
  • the data structure 500 for the source code 400 depicted in Fig. 4 is depicted in Fig. 5.
  • Userlnterface 402 is defined as a package 404. Accordingly, Userlnterface 402 is contained in SCI package 502.
  • Bank 406 which is defined as a class 408, is contained in SCI class 504, and Name 410 and Assets 412, which are defined as attributes (strings 414), are contained in SCI members 506. Since these elements are in the same project, all are linked.
  • the data structure 500 also identifies the language in which the source code is written 508, e.g., the JavaTM language.
  • Fig. 6 depicts a data processing system 600 suitable for practicing methods and systems consistent with the present invention.
  • Data processing system 600 comprises a memory 602, a secondary storage device 604, an I/O device 606, and a processor 608.
  • Memory 602 includes the improved software development tool 610.
  • the software development tool 610 is used to develop a software project 612, and create the TMM 200 in the memory 602.
  • the project 612 is stored in the secondary storage device 604 of the data processing system 600.
  • data processing system 600 may contain additional or different components.
  • Fig. 7 illustrates an architectural overview of the improved software development tool 610.
  • the tool 610 comprises a core 700, an open application program interface (API) 702, and modules 704.
  • the core 700 includes a parser 706 and an ICE 208.
  • the parser 706 converts the source code into the language-neutral representation in the TMM, and the ICE 208 converts the text from the displays into source code.
  • IDE Integrated Development Environment
  • RWI Read- Write Interface
  • SCI Source Code Interface
  • Each package includes corresponding subpackages.
  • a package is a collection of classes, interfaces, attributes, notifications, operations, or behaviors that are treated as a single module or program unit.
  • IDE 708 is the API 702 needed to generate custom outputs based on information contained in a model. It is a read-only interface, i.e., the user can extract information from the model, but not change the model. IDE 708 provides the functionality related to the model's representation in IDE 708 and interaction with the user. Each package composing the IDE group has a description highlighting the areas of applicability of this concrete package.
  • RWI 710 enables the user to go deeper into the architecture. Using RWI 710, information can be extracted from and written to the models. RWI not only represents packages, classes and members, but it may also represent different diagrams (class diagrams, use case diagrams, sequence diagrams and others), links, notes, use cases, actors, states, etc.
  • SCI 712 is at the source code level, and allows the user to work with the source code almost independently of the language being used.
  • modules 704 in the software development tool 610 of the present invention. Some of the modules 704 access information to generate graphical and code documentation in custom formats, export to different file formats, or develop patterns.
  • the software development tool also includes a quality assurance (QA) module which monitors the modifications to the source code and calculates various complexity metrics, i.e., various measurements of the program's performance or efficiency, to support quality assurance.
  • QA quality assurance
  • the types of metrics calculated by the software development tool include basic metrics, cohesion metrics, complexity metrics, coupling metrics, Halstead metrics, inheritance metrics, maximum metrics, polymorphism metrics, and ratio metrics. Examples of these metrics with their respective definitions are identified in Tables 1-9 below.
  • the QA module also provides audits, i.e., the module checks for conformance to predefined or user-defined styles.
  • the types of audits provided by the module include coding style, critical errors, declaration style, documentation, naming style, performance, possible errors and superfluous content. Examples of these audits with their respective definitions are identified in Tables 10-17 below.
  • an error message is provided to the developer. For example, as depicted in Fig. 8A, the software development tool checks for a variety of coding styles 800. If the software development tool were to check for
  • the improved software development tool of the present invention is used to develop source code in a project.
  • the project comprises a plurality of files and the source code of a chosen one of the plurality of files is written in a given language.
  • the software development tool determines the language of the source code of the chosen file, converts the source code from the language into a language-neutral representation, uses the language-neutral representation to textually display the source code of the chosen file in the language, and uses the language-neutral representation to display a graphical representation of at least a portion of the project.
  • the textual display may be obtained directly from the source code file.
  • the source code and the graphical representation are displayed simultaneously.
  • the improved software development tool of the present invention is also used to develop source code.
  • the software development tool receives an indication of a selected language for the source code, creates a file to store the source code in the selected language, converts the source code from the selected language into a language-neutral representation, uses the language-neutral representation to display the source code of the file, and uses the language-neutral representation to display a graphical representation of the file. Again, the source code and the graphical representation are displayed simultaneously. Moreover, if the source code in the file is modified, the modified source code and a graphical representation of at least a portion of the modified source code are displayed simultaneously.
  • the QA module of the software development tool provides an error message if the modification does not conform to predefined or user-defined styles, as described above.
  • the modification to the source code may be received by the software development tool via the programmer editing the source code in the textual pane or the graphical pane, or via some other independent software tool that the programmer uses to modify the code.
  • the graphical representation of the project may be in Unified Modeling Language; however, one skilled in the art will recognize that other graphical representations of the source code may be displayed. Further, although the present invention is described and shown using the various views of the UML, one of ordinary skill in the art will recognize that other views may be displayed.
  • Fig. 9 depicts a flow diagram of the steps performed by the software development tool to develop a project in accordance with methods consistent with the present invention.
  • the project comprises a plurality of files.
  • the developer either uses the software development tool to open a file that contains existing source code, or to create a file in which the source code will be developed. If the software development tool is used to open the file, determined in step 900, the software development tool initially determines the programming language in which the code is written (step 902).
  • the language is identified by the extension of the file, e.g., ".Java” identifies source code written in the JavaTM language, while ".cpp" identifies source code written in C++.
  • the software development tool then obtains a template for the current programming language, i.e., a collection of generalized definitions for the particular language that can be used to build the data structure (step 904).
  • a template for the current programming language i.e., a collection of generalized definitions for the particular language that can be used to build the data structure (step 904).
  • the templates used to define a new JavaTM class contains a default name, e.g., "Classl,” and the default code, "public class Classl ⁇ .”
  • Such templates are well known in the art.
  • the "Microsoft Foundation Class Library” and the "Microsoft Word Template For Business Use Case Modeling" are examples of standard template libraries from which programmers can choose individual template classes.
  • the software development tool uses the template to parse the source code (step 906), and create the data structure (step 908).
  • the software development tool After creating the data structure or if there is no existing code, the software development tool awaits an event, i.e., a modification or addition to the source code by the developer (step 910). If an event is received and the event is to close the file (step 912), the file is saved (step 914) and closed (step 916). Otherwise, the software development tool performs the event (step 918), i.e., the tool makes the modification. The software development tool then updates the TMM or model (step 920), as discussed in detail below, and updates both the graphical and the textual views (step 922).
  • an event i.e., a modification or addition to the source code by the developer. If an event is received and the event is to close the file (step 912), the file is saved (step 914) and closed (step 916). Otherwise, the software development tool performs the event (step 918), i.e., the tool makes the modification.
  • the software development tool updates the TMM or model (step 920), as discussed in detail
  • Figs. 10A and 10B depict a flow diagram illustrating the update model step of Fig. 9.
  • the software development tool selects a file from the project (step 1000), and determines whether the file is new (step 1002), whether the file has been updated (step 1004), or whether the file has been deleted (step 1006). If the file is new, the software development tool adds the additional symbols from the file to the TMM (step 1008). To add the symbol to the TMM, the software development tool uses the template to parse the symbol to the TMM. If the file has been updated, the software development tool updates the symbols in the TMM (step 1010). Similar to the addition of a symbol to the TMM, the software development tool uses the template to parse the symbol to the TMM.
  • the software development tool deletes the symbols in the TMM (step 1012).
  • the software development tool continues this analysis for all files in the project. After all files are analyzed (step 1014), any obsolete symbols in the TMM (step 1016) are deleted (step 1018).
  • Fig. 11 depicts a flow diagram illustrating the performance of an event, specifically the creation of a class, in accordance with methods consistent with the present invention.
  • the software development tool obtains a template for the language (step 1102), creates a source code file in the project directory (step 1104), and pastes the template into the file (step 1106).
  • the project directory corresponds to the SCI model 302 of Fig. 3. Additional events which a developer may perform using the software development tool include the creation, modification or deletion of packages, projects, attributes, interfaces, links, operations, and the closing of a file.
  • a use case diagram 1200 depicted in Fig. 12, shows the relationship among actors 1202 and use cases 1204 within the system 1206.
  • a class diagram 1300 depicted in Fig. 13 with its associated source code 1302, on the other hand, includes classes 1304, interfaces, packages and their relationships connected as a graph to each other and to their contents.
  • a sequence diagram 1400 represents an interaction, which is a set of messages 1402 exchanged among objects 1404 within a collaboration to effect a desired operation or result.
  • the vertical dimension represents time and the horizontal dimension represents different objects.
  • a collaboration diagram 1500, depicted in Fig. 15, is also an interaction with messages 1502 exchanged among objects 1504, but it is also a collaboration, which is a set of objects 1504 related in a particular context. Contrary to sequence diagrams 1400 (Fig. 14), which emphasize the time ordering of messages along the vertical axis, collaboration diagrams 1500 (Fig. 15) emphasize the structural organization of objects.
  • a statechart diagram 1600 is depicted in Fig. 16.
  • the statechart diagram 1600 includes the sequences of states 1602 that an object or interaction goes through during its life in response to stimuli, together with its responses and actions. It uses a graphic notation that shows states of an object, the events that cause a transition from one state to another, and the actions that result from the transition.
  • the functional view can be represented by activity diagrams 1700 and more traditional descriptive narratives such as pseudocode and minispecifications.
  • An activity diagram 1700 is depicted in Fig. 17, and is a special case of a state diagram where most, if not all, of the states are action states 1702 and where most, if not all, of the transitions are triggered by completion of the actions in the source states. Activity diagrams 1700 are used in situations where all or most of the events represent the completion of internally generated actions.
  • FIG. 18 There is also a fourth view mingled with the static view called the architectural view.
  • This view is modeled using package, component and deployment diagrams.
  • Package diagrams show packages of classes and the dependencies among them.
  • Component diagrams 1800 depicted in Fig. 18, are graphical representations of a system or its component parts.
  • Component diagrams 1800 show the dependencies among software components, including source code components, binary code components and executable components.
  • deployment diagrams 1900 are used to show the distribution strategy for a distributed object system. Deployment diagrams 1900 show the configuration of run-time processing elements and the software components, processes and objects that live on them.
  • the improved software development tool integrates a version control system that permits programmers using different computers to work simultaneously on a software project by managing the various versions of the source code associated with the software project.
  • the improved software development tool also enables programmers to interact with the version control system by manipulating a diagram or diagram element associated with a software project, thus facilitating the use of the version control system through a more intuitive interface and a more natural grouping of files.
  • Fig. 20 depicts data processing system 2000, which includes a number of computers 2002-2008 com ected via a network 2010, where the users of the computers are using the version control system of the improved software development tool 610.
  • software development tool 610 includes a client component 2012 of the version control system.
  • the software development tool 610 contains a server component 2014 of the version control system.
  • Computer 2008 is pre-designated as containing a central repository 2016.
  • Central repository 2016 is a shared directory for storing a master copy of project 612.
  • Project 612 comprises all of the source files in a particular software project.
  • Each of the computers 2002-2006 also includes a working directory 2007 that contains working copies of source files that programmers can make changes to without affecting the master copy in the central repository 2016.
  • Fig. 21 depicts a user interface 2102 displayed by improved software development tool
  • User interface 2102 includes a graphical representation 204 and a textual representation 206 of source code of a software project.
  • graphical representation or diagram 204 is a diagram such as a class diagram, use case diagram, sequence diagram, collaboration diagram, statechart diagram, activity diagram, component diagram, or deployment diagram.
  • Diagram 204 is made up of diagram elements. The diagram elements are the individual graphical symbols that combine to form diagram 204 and that serve to visually represent the source code and its structure and/or operation. For example, in the diagram depicted in Fig. 21, which is a class diagram, the rectangular box labeled "Hello" is a diagram element that represents the class named "Hello.” An example of a typical user interaction with the version control system via a diagram element will now be described.
  • diagram element 2104 which corresponds to the class "Hello.”
  • the selection is accomplished when the user right clicks within the rectangular area of the diagram element 2104.
  • the selection of diagram element 2104 informs the version control system that the command that will soon be invoked should be performed on the file containing the class "Hello.”
  • the user next selects the "Update" command from speedmenu 2202, depicted in Fig. 22, thus providing improved sof ware development tool 610 with an indication of the desired version control command.
  • the improved software development tool In response to the selection of the "Update" command, the improved software development tool displays a dialog box 2302, like the one depicted in Fig. 23. The user then selects any desired options associated with the "Update" command via dialog box 2302. For example, if the diagram element that a user selects represents a directory that includes multiple subdirectories, the user may select the "Recurse subdirectories” option and the "Update" command would be executed with respect to the directory and all of its subdirectories. Alternatively, the user might choose to execute a command with respect to an entire project, a package, a diagram, or a class. After options are selected, the improved software development tool 610 invokes the version control system to perform the operation corresponding to the "Update" command.
  • the version control system synchronizes the working copy of "Hello.java” on the requesting computer with the most recent version of that file in the central repository. This assures that the user's working copy of "Hello.java” is the most up-to-date version of that file.
  • Figs. 24A and 24B of the steps involved in diagrammatic control of the version control system.
  • the user selects the diagram element that visually represents the desired file by right clicking within the rectangular boundary of the diagram element.
  • the relationship between diagram elements and files will be discussed further below.
  • the selection of a diagram element by the user provides the improved software development tool with an indication of the selection of the specific diagram element (step 2404).
  • the improved software development tool determines the file that corresponds to the selected diagram element (step 2406), by referring to a cross-reference table maintained by the improved software development tool, which correlates the source files in the software project with the diagram elements that visually represent them.
  • the cross-reference table contains an entry for each diagram element (e.g., the entry may be an arbitrary designation to identify each diagram element) and, for each diagram element, contains entries regarding the location and bounds of the diagram element (i.e., information regarding the position at which the diagram element is displayed on the user's screen and the area the diagram encompasses) and the source file or files that the diagram visually represents (e.g., the source code associated with the diagram element 2104 associated with the "Hello" class is located in the source file "Hello.java").
  • a user selects a desired version control command from a menu of commands via a speed menu like the one depicted in Fig. 22 and further selects desired command options via a dialog box like the one depicted in Fig. 23 (step 2408).
  • These selections provide improved software development tool 610 with an indication of the desired version control command and options.
  • Improved software development tool 610 determines which version control command has been selected based on the user selection and invokes the version control system to perform the corresponding operation on the file or set of files associated with the selected diagram element.
  • the version control system would acquire a copy of one of the versions of a selected file (i.e., the most current version of the file may be acquired or an earlier version may be acquired) from the central repository and place a read-only copy of the file in the working directory of the requesting computer (step 2412). If the "Check Out” command were selected (step 2414), the version control system would acquire a copy of one of the versions of a selected file from the central repository, place a copy of the file in the working directory of the requesting computer, and prevent others from checking the file out from the repository (step 2416).
  • step 2418 the version control system would transfer a copy of the selected file from the working directory of the requesting computer to the central repository (step 2420). If the "Update" command were selected (step 2422), the version control system would synchronize the working copy of a file with the most current version of the corresponding file in the central repository (step 2424). If the "Check In” command were selected (step 2426), the version control system would commit changes that have been made to a working copy of a file on the requesting computer to the corresponding file on the central repository (step 2428).
  • the improved software development tool determines if any files remain on which the selected version control command is to be executed (step 2430). If files remain, the version control system proceeds to step 2410. If not, processing ends. While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. For example, the diagrammatic control techniques described above may be applied whenever a diagram element can be associated with a source file. In addition, one skilled in the art would understand that the diagrammatic control techniques described herein are equally applicable to quality assurance systems such as the metrics and audit systems of the improved software tool 610 described above. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Stored Programmes (AREA)
EP01927222A 2000-04-21 2001-04-20 Diagrammsteuerung von software in einem versionssteuerungssystem Withdrawn EP1290550A1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US19904600P 2000-04-21 2000-04-21
US199046P 2000-04-21
US680063 2000-10-04
WOPCT/US00/27412 2000-10-04
PCT/US2000/027412 WO2001025911A1 (en) 1999-10-05 2000-10-04 Method and system for developing software
US09/680,063 US6851107B1 (en) 1999-10-05 2000-10-04 Software development tool with instant updating and simultaneous view of graphical and a textual display of source code
PCT/US2001/012783 WO2001082066A1 (en) 2000-04-21 2001-04-20 Diagrammatic control of software in a version control system

Publications (1)

Publication Number Publication Date
EP1290550A1 true EP1290550A1 (de) 2003-03-12

Family

ID=27359009

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01927227A Withdrawn EP1292917A1 (de) 2000-04-21 2001-04-20 Navigationsverkn pfungen in erzeugter dokumentation
EP01927222A Withdrawn EP1290550A1 (de) 2000-04-21 2001-04-20 Diagrammsteuerung von software in einem versionssteuerungssystem

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01927227A Withdrawn EP1292917A1 (de) 2000-04-21 2001-04-20 Navigationsverkn pfungen in erzeugter dokumentation

Country Status (3)

Country Link
EP (2) EP1292917A1 (de)
AU (2) AU2001253695A1 (de)
WO (2) WO2001082066A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7110936B2 (en) * 2001-02-23 2006-09-19 Complementsoft Llc System and method for generating and maintaining software code
US8522196B1 (en) 2001-10-25 2013-08-27 The Mathworks, Inc. Traceability in a modeling environment
US8104017B2 (en) 2001-10-25 2012-01-24 The Mathworks, Inc. Traceability in a modeling environment
DE102005011247A1 (de) * 2005-03-11 2006-09-28 Robert Bosch Gmbh Verfahren zum Erstellen einer Dokumentation
EP2002336A1 (de) 2006-03-31 2008-12-17 British Telecommunications Public Limited Company Server-computer-komponente
US8095823B2 (en) 2006-03-31 2012-01-10 British Telecommunications Public Limited Company Server computer component
EP2002334A1 (de) 2006-03-31 2008-12-17 British Telecommunications Public Limited Company Auf xml basierender transfer und lokale speicherung von java-objekten
CN111625221B (zh) * 2020-05-26 2023-09-29 艾普阳科技(深圳)有限公司 应用于集成开发环境的版本控制方法、装置及设备和介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4488258A (en) * 1982-09-20 1984-12-11 Allen-Bradley Programmable controller with control program comments
JPH0650460B2 (ja) * 1989-10-17 1994-06-29 アプライド バイオシステムズ インコーポレイテッド ロボットインターフェース
JP2634137B2 (ja) * 1993-01-27 1997-07-23 インターナショナル・ビジネス・マシーンズ・コーポレイション ユーザ・インターフェースシステム及び方法
US5526520A (en) * 1993-09-21 1996-06-11 Krause; Gary M. Method to organize and manipulate blueprint documents using hypermedia links from a primary document to recall related secondary documents
US5592600A (en) * 1994-09-27 1997-01-07 International Business Machines Corporation Animated display showing execution of object-oriented programs
US5813019A (en) * 1995-07-06 1998-09-22 Sun Microsystems, Inc. Token-based computer program editor with program comment management
GB2312973B (en) * 1996-05-08 2000-05-03 Ibm Programming aid
US5818711A (en) * 1996-09-30 1998-10-06 Allen Bradley Company, Llc Method for visually determining the status of program edits in an on-line programming environment
US5905508A (en) * 1997-04-01 1999-05-18 Microsoft Corporation Method and system for dynamically plotting an element on an image using a table
EP0913779A2 (de) * 1997-11-03 1999-05-06 Mitsubishi Denki Kabushiki Kaisha Browser für Dokumente mit zusätzlichen Informationen
CN1188796C (zh) * 1998-12-18 2005-02-09 西门子共同研究公司 编辑、分发和重放派生超媒体内容的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0182066A1 *

Also Published As

Publication number Publication date
AU2001253695A1 (en) 2001-11-07
WO2001082232A1 (en) 2001-11-01
AU2001253700A1 (en) 2001-11-07
WO2001082066A1 (en) 2001-11-01
EP1292917A1 (de) 2003-03-19

Similar Documents

Publication Publication Date Title
US6993759B2 (en) Diagrammatic control of software in a version control system
US7114149B2 (en) Navigation links in generated documentation
EP1224541A1 (de) Verfahren und system zum entwickeln von software
US7171646B2 (en) Generating source code for object oriented elements with language neutral transient meta model and correlating display of names, symbols and code
WO2001082068A1 (en) Methods and systems for identifying dependencies between object-oriented elements
US7810069B2 (en) Methods and systems for relating data structures and object-oriented elements for distributed computing
US7055131B2 (en) Methods and systems for animating the interaction of objects in an object oriented program
US6993710B1 (en) Method and system for displaying changes of source code
US9916134B2 (en) Methods and systems for accessing distributed computing components through the internet
US6976243B2 (en) Method and system for developing source code and displaying linked elements found within the source code
US7793256B2 (en) Methods and systems for supporting and deploying distributed computing components
US6983446B2 (en) Methods and systems for finding specific line of source code
WO2001082066A1 (en) Diagrammatic control of software in a version control system
WO2001025915A1 (en) Method and system for displaying changes of source code
Predoaia et al. Streamlining the Development of Hybrid Graphical-Textual Model Editors for Domain-Specific Languages
WO2001082070A1 (en) Methods and systems for finding and displaying linked objects
Rumbaugh OO CASE Marketing Research
IE20001056A1 (en) System and method for computer-aided graph-based dependency analysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051101