EP1287362A2 - Compositions and methods for modulating tumor specific expression - Google Patents
Compositions and methods for modulating tumor specific expressionInfo
- Publication number
- EP1287362A2 EP1287362A2 EP01945989A EP01945989A EP1287362A2 EP 1287362 A2 EP1287362 A2 EP 1287362A2 EP 01945989 A EP01945989 A EP 01945989A EP 01945989 A EP01945989 A EP 01945989A EP 1287362 A2 EP1287362 A2 EP 1287362A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- gene
- expression
- cells
- cell
- regulatory region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 118
- 230000014509 gene expression Effects 0.000 title claims abstract description 110
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 98
- 239000000203 mixture Substances 0.000 title abstract description 28
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 210
- 230000001105 regulatory effect Effects 0.000 claims abstract description 119
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 239000013598 vector Substances 0.000 claims abstract description 65
- 239000012634 fragment Substances 0.000 claims abstract description 60
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 44
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 40
- 201000011510 cancer Diseases 0.000 claims abstract description 31
- 208000006265 Renal cell carcinoma Diseases 0.000 claims abstract description 26
- 230000009261 transgenic effect Effects 0.000 claims abstract description 21
- 239000013604 expression vector Substances 0.000 claims abstract description 14
- 239000003112 inhibitor Substances 0.000 claims abstract description 7
- 230000001276 controlling effect Effects 0.000 claims abstract description 4
- 108700008625 Reporter Genes Proteins 0.000 claims description 49
- 150000007523 nucleic acids Chemical class 0.000 claims description 34
- 239000003814 drug Substances 0.000 claims description 33
- 239000002773 nucleotide Substances 0.000 claims description 33
- 125000003729 nucleotide group Chemical group 0.000 claims description 33
- 108091033319 polynucleotide Proteins 0.000 claims description 32
- 102000040430 polynucleotide Human genes 0.000 claims description 32
- 239000002157 polynucleotide Substances 0.000 claims description 32
- 102000039446 nucleic acids Human genes 0.000 claims description 31
- 108020004707 nucleic acids Proteins 0.000 claims description 31
- 108091026890 Coding region Proteins 0.000 claims description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 22
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 22
- 108700019146 Transgenes Proteins 0.000 claims description 20
- 229940124597 therapeutic agent Drugs 0.000 claims description 20
- 231100000331 toxic Toxicity 0.000 claims description 20
- 230000002588 toxic effect Effects 0.000 claims description 20
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 19
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 19
- 201000010881 cervical cancer Diseases 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 19
- 239000005089 Luciferase Substances 0.000 claims description 17
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 17
- 208000029742 colonic neoplasm Diseases 0.000 claims description 17
- 230000000295 complement effect Effects 0.000 claims description 17
- 108060001084 Luciferase Proteins 0.000 claims description 16
- 239000013603 viral vector Substances 0.000 claims description 11
- 102000006601 Thymidine Kinase Human genes 0.000 claims description 9
- 108020004440 Thymidine kinase Proteins 0.000 claims description 9
- 239000002502 liposome Substances 0.000 claims description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 102000004127 Cytokines Human genes 0.000 claims description 5
- 108090000695 Cytokines Proteins 0.000 claims description 5
- 239000003102 growth factor Substances 0.000 claims description 5
- 230000002062 proliferating effect Effects 0.000 claims description 5
- 229960004150 aciclovir Drugs 0.000 claims description 4
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 claims description 4
- 238000001990 intravenous administration Methods 0.000 claims description 4
- 229940002612 prodrug Drugs 0.000 claims description 4
- 239000000651 prodrug Substances 0.000 claims description 4
- 229940088597 hormone Drugs 0.000 claims description 3
- 239000005556 hormone Substances 0.000 claims description 3
- 108010012236 Chemokines Proteins 0.000 claims description 2
- 102000019034 Chemokines Human genes 0.000 claims description 2
- 102000014150 Interferons Human genes 0.000 claims description 2
- 108010050904 Interferons Proteins 0.000 claims description 2
- 102000015696 Interleukins Human genes 0.000 claims description 2
- 108010063738 Interleukins Proteins 0.000 claims description 2
- 229940047124 interferons Drugs 0.000 claims description 2
- 229940047122 interleukins Drugs 0.000 claims description 2
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 claims 3
- 102000007644 Colony-Stimulating Factors Human genes 0.000 claims 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 claims 1
- 102000000311 Cytosine Deaminase Human genes 0.000 claims 1
- 108010080611 Cytosine Deaminase Proteins 0.000 claims 1
- 108010033276 Peptide Fragments Proteins 0.000 claims 1
- 102000007079 Peptide Fragments Human genes 0.000 claims 1
- 239000002870 angiogenesis inducing agent Substances 0.000 claims 1
- 229940047120 colony stimulating factors Drugs 0.000 claims 1
- 230000004069 differentiation Effects 0.000 claims 1
- 229960002963 ganciclovir Drugs 0.000 claims 1
- 238000001361 intraarterial administration Methods 0.000 claims 1
- 230000002601 intratumoral effect Effects 0.000 claims 1
- 230000010412 perfusion Effects 0.000 claims 1
- 230000009885 systemic effect Effects 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 148
- 241001465754 Metazoa Species 0.000 abstract description 35
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 26
- 210000004881 tumor cell Anatomy 0.000 abstract description 14
- 238000011161 development Methods 0.000 abstract description 13
- 238000012216 screening Methods 0.000 abstract description 13
- 238000011282 treatment Methods 0.000 abstract description 13
- 239000003623 enhancer Substances 0.000 abstract description 11
- 238000007423 screening assay Methods 0.000 abstract description 10
- 239000000556 agonist Substances 0.000 abstract description 8
- 239000005557 antagonist Substances 0.000 abstract description 8
- 208000037273 Pathologic Processes Diseases 0.000 abstract description 3
- 230000009054 pathological process Effects 0.000 abstract description 3
- 108020004414 DNA Proteins 0.000 description 55
- 230000000694 effects Effects 0.000 description 49
- 108091034117 Oligonucleotide Proteins 0.000 description 31
- 108090000994 Catalytic RNA Proteins 0.000 description 28
- 102000053642 Catalytic RNA Human genes 0.000 description 28
- 108091092562 ribozyme Proteins 0.000 description 28
- 210000001519 tissue Anatomy 0.000 description 27
- 230000000692 anti-sense effect Effects 0.000 description 26
- 238000001415 gene therapy Methods 0.000 description 24
- 108020004999 messenger RNA Proteins 0.000 description 22
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 19
- 238000013518 transcription Methods 0.000 description 19
- 230000035897 transcription Effects 0.000 description 19
- 230000002496 gastric effect Effects 0.000 description 17
- 238000001727 in vivo Methods 0.000 description 17
- 102000004196 processed proteins & peptides Human genes 0.000 description 17
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 15
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 15
- 239000005090 green fluorescent protein Substances 0.000 description 15
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 14
- 230000014616 translation Effects 0.000 description 14
- 238000003556 assay Methods 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 238000013519 translation Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 238000003752 polymerase chain reaction Methods 0.000 description 12
- 238000013459 approach Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 238000009396 hybridization Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 10
- 108020004511 Recombinant DNA Proteins 0.000 description 9
- 238000003776 cleavage reaction Methods 0.000 description 9
- 239000003184 complementary RNA Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 230000007017 scission Effects 0.000 description 9
- 230000002103 transcriptional effect Effects 0.000 description 9
- 108020005544 Antisense RNA Proteins 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 8
- 108091023040 Transcription factor Proteins 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 239000000074 antisense oligonucleotide Substances 0.000 description 8
- 238000012230 antisense oligonucleotides Methods 0.000 description 8
- 238000010367 cloning Methods 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 238000011830 transgenic mouse model Methods 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 241000699660 Mus musculus Species 0.000 description 7
- 108010067902 Peptide Library Proteins 0.000 description 7
- 150000001413 amino acids Chemical group 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 239000013615 primer Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000008685 targeting Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- -1 e.g. Proteins 0.000 description 6
- 238000002744 homologous recombination Methods 0.000 description 6
- 230000006801 homologous recombination Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000010369 molecular cloning Methods 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 5
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 5
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 108700012359 toxins Proteins 0.000 description 5
- 241000701161 unidentified adenovirus Species 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 239000008049 TAE buffer Substances 0.000 description 4
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 102000005936 beta-Galactosidase Human genes 0.000 description 4
- 108010005774 beta-Galactosidase Proteins 0.000 description 4
- 230000008499 blood brain barrier function Effects 0.000 description 4
- 210000001218 blood-brain barrier Anatomy 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 206010017758 gastric cancer Diseases 0.000 description 4
- 238000001476 gene delivery Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 108020004491 Antisense DNA Proteins 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 3
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 241000251131 Sphyrna Species 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 239000003816 antisense DNA Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 208000037765 diseases and disorders Diseases 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 102000034287 fluorescent proteins Human genes 0.000 description 3
- 108091006047 fluorescent proteins Proteins 0.000 description 3
- 208000010749 gastric carcinoma Diseases 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000009256 replacement therapy Methods 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 210000001082 somatic cell Anatomy 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 201000000498 stomach carcinoma Diseases 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 229920001917 Ficoll Polymers 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000010909 Monoamine Oxidase Human genes 0.000 description 2
- 108010062431 Monoamine oxidase Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 102000004067 Osteocalcin Human genes 0.000 description 2
- 108090000573 Osteocalcin Proteins 0.000 description 2
- 108010001441 Phosphopeptides Proteins 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 102000018594 Tumour necrosis factor Human genes 0.000 description 2
- 108050007852 Tumour necrosis factor Proteins 0.000 description 2
- 102000003425 Tyrosinase Human genes 0.000 description 2
- 108060008724 Tyrosinase Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 108091005971 Wild-type GFP Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000013602 bacteriophage vector Substances 0.000 description 2
- 229940049706 benzodiazepine Drugs 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 2
- 229960001076 chlorpromazine Drugs 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000010363 gene targeting Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 238000013537 high throughput screening Methods 0.000 description 2
- 239000012145 high-salt buffer Substances 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- 238000012750 in vivo screening Methods 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229950002454 lysergide Drugs 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 2
- 238000001531 micro-dissection Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000921 morphogenic effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- MDYOLVRUBBJPFM-UHFFFAOYSA-N tropolone Chemical compound OC1=CC=CC=CC1=O MDYOLVRUBBJPFM-UHFFFAOYSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 1
- CADQNXRGRFJSQY-UOWFLXDJSA-N (2r,3r,4r)-2-fluoro-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@@H](O)[C@@](O)(F)C=O CADQNXRGRFJSQY-UOWFLXDJSA-N 0.000 description 1
- MKJIEFSOBYUXJB-HOCLYGCPSA-N (3S,11bS)-9,10-dimethoxy-3-isobutyl-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-2-one Chemical compound C1CN2C[C@H](CC(C)C)C(=O)C[C@H]2C2=C1C=C(OC)C(OC)=C2 MKJIEFSOBYUXJB-HOCLYGCPSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- NXJOFTRBTBDSHB-UHFFFAOYSA-N (4-methyl-1,4-diazepane-1-carbothioyl)sulfanyl 4-methyl-1,4-diazepane-1-carbodithioate Chemical compound C1CN(C)CCCN1C(=S)SSC(=S)N1CCN(C)CCC1 NXJOFTRBTBDSHB-UHFFFAOYSA-N 0.000 description 1
- RTHCYVBBDHJXIQ-MRXNPFEDSA-N (R)-fluoxetine Chemical compound O([C@H](CCNC)C=1C=CC=CC=1)C1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-MRXNPFEDSA-N 0.000 description 1
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 description 1
- WSPOMRSOLSGNFJ-AUWJEWJLSA-N (Z)-chlorprothixene Chemical compound C1=C(Cl)C=C2C(=C/CCN(C)C)\C3=CC=CC=C3SC2=C1 WSPOMRSOLSGNFJ-AUWJEWJLSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- GIJXKZJWITVLHI-UHFFFAOYSA-N 3-(diphenylmethyl)oxy-8-methyl-8-azabicyclo[3.2.1]octane Chemical compound CN1C(C2)CCC1CC2OC(C=1C=CC=CC=1)C1=CC=CC=C1 GIJXKZJWITVLHI-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- ARQXEQLMMNGFDU-JHZZJYKESA-N 4-methylumbelliferone beta-D-glucuronide Chemical compound C1=CC=2C(C)=CC(=O)OC=2C=C1O[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O ARQXEQLMMNGFDU-JHZZJYKESA-N 0.000 description 1
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 1
- 101150118123 4.2 gene Proteins 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- XKFPYPQQHFEXRZ-UHFFFAOYSA-N 5-methyl-N'-(phenylmethyl)-3-isoxazolecarbohydrazide Chemical compound O1C(C)=CC(C(=O)NNCC=2C=CC=CC=2)=N1 XKFPYPQQHFEXRZ-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 101150030240 A9 gene Proteins 0.000 description 1
- 101150094949 APRT gene Proteins 0.000 description 1
- 102100029457 Adenine phosphoribosyltransferase Human genes 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 108090000363 Bacterial Luciferases Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000004031 Carboxy-Lyases Human genes 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 1
- 102100031162 Collagen alpha-1(XVIII) chain Human genes 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 1
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 229940123736 Decarboxylase inhibitor Drugs 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 108010093099 Endoribonucleases Proteins 0.000 description 1
- 102000002494 Endoribonucleases Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- NIGWMJHCCYYCSF-UHFFFAOYSA-N Fenclonine Chemical compound OC(=O)C(N)CC1=CC=C(Cl)C=C1 NIGWMJHCCYYCSF-UHFFFAOYSA-N 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- NYMGNSNKLVNMIA-UHFFFAOYSA-N Iproniazid Chemical compound CC(C)NNC(=O)C1=CC=NC=C1 NYMGNSNKLVNMIA-UHFFFAOYSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- NHTGHBARYWONDQ-JTQLQIEISA-N L-α-methyl-Tyrosine Chemical compound OC(=O)[C@](N)(C)CC1=CC=C(O)C=C1 NHTGHBARYWONDQ-JTQLQIEISA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000009571 Macrophage Inflammatory Proteins Human genes 0.000 description 1
- 108010009474 Macrophage Inflammatory Proteins Proteins 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- 108700019961 Neoplasm Genes Proteins 0.000 description 1
- 102000048850 Neoplasm Genes Human genes 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- ZPXHDIUQXMOTDC-NREQDYHMSA-N OC[C@H]([C@@H]([C@@H]([C@H]1O)O)O)O[C@H]1O[C@H]([C@@H](CO)OC([C@@H]1O)O)[C@@H]1O.C(C=C1)=CC=C1C1=NN(C2=CC=CC=C2)N(C2=CC=CC=C2)N1 Chemical compound OC[C@H]([C@@H]([C@@H]([C@H]1O)O)O)O[C@H]1O[C@H]([C@@H](CO)OC([C@@H]1O)O)[C@@H]1O.C(C=C1)=CC=C1C1=NN(C2=CC=CC=C2)N(C2=CC=CC=C2)N1 ZPXHDIUQXMOTDC-NREQDYHMSA-N 0.000 description 1
- UUEIUSQRPRBTDH-RJMJUYIDSA-N OC[C@H]([C@@H]([C@@H]([C@H]1O)O)O)O[C@H]1O[C@H]([C@@H](CO)OC([C@@H]1O)O)[C@@H]1O.C1=NN=NN1 Chemical compound OC[C@H]([C@@H]([C@@H]([C@H]1O)O)O)O[C@H]1O[C@H]([C@@H](CO)OC([C@@H]1O)O)[C@@H]1O.C1=NN=NN1 UUEIUSQRPRBTDH-RJMJUYIDSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- DPWPWRLQFGFJFI-UHFFFAOYSA-N Pargyline Chemical compound C#CCN(C)CC1=CC=CC=C1 DPWPWRLQFGFJFI-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010043958 Peptoids Proteins 0.000 description 1
- RMUCZJUITONUFY-UHFFFAOYSA-N Phenelzine Chemical compound NNCCC1=CC=CC=C1 RMUCZJUITONUFY-UHFFFAOYSA-N 0.000 description 1
- QZVCTJOXCFMACW-UHFFFAOYSA-N Phenoxybenzamine Chemical compound C=1C=CC=CC=1CN(CCCl)C(C)COC1=CC=CC=C1 QZVCTJOXCFMACW-UHFFFAOYSA-N 0.000 description 1
- 241000254064 Photinus pyralis Species 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108010052090 Renilla Luciferases Proteins 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000248384 Tetrahymena thermophila Species 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 241000607618 Vibrio harveyi Species 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229960000836 amitriptyline Drugs 0.000 description 1
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 description 1
- 229940025084 amphetamine Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 229940125713 antianxiety drug Drugs 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940054058 antipsychotic thioxanthene derivative Drugs 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001557 benzodiazepines Chemical class 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical class CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 229960000623 carbamazepine Drugs 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229960004424 carbon dioxide Drugs 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 229960001552 chlorprothixene Drugs 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- BTFHLQRNAMSNLC-UHFFFAOYSA-N clorgyline Chemical compound C#CCN(C)CCCOC1=CC=C(Cl)C=C1Cl BTFHLQRNAMSNLC-UHFFFAOYSA-N 0.000 description 1
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 description 1
- 229960004170 clozapine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229960003920 cocaine Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003954 decarboxylase inhibitor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- 150000008533 dibenzodiazepines Chemical class 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- RJBIAAZJODIFHR-UHFFFAOYSA-N dihydroxy-imino-sulfanyl-$l^{5}-phosphane Chemical compound NP(O)(O)=S RJBIAAZJODIFHR-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229940052760 dopamine agonists Drugs 0.000 description 1
- 239000003210 dopamine receptor blocking agent Substances 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002616 endonucleolytic effect Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000007421 fluorometric assay Methods 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002464 fluoxetine Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 229930182480 glucuronide Natural products 0.000 description 1
- 102000005396 glutamine synthetase Human genes 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 229960004801 imipramine Drugs 0.000 description 1
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229940070023 iproniazide Drugs 0.000 description 1
- 229960002672 isocarboxazid Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000006674 lysosomal degradation Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000008883 metastatic behaviour Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229960002460 nitroprusside Drugs 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000002474 noradrenergic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229960001779 pargyline Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960000964 phenelzine Drugs 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 229960003418 phenoxybenzamine Drugs 0.000 description 1
- MRBDMNSDAVCSSF-UHFFFAOYSA-N phentolamine Chemical compound C1=CC(C)=CC=C1N(C=1C=C(O)C=CC=1)CC1=NCCN1 MRBDMNSDAVCSSF-UHFFFAOYSA-N 0.000 description 1
- 229960001999 phentolamine Drugs 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001855 preneoplastic effect Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 238000009163 protein therapy Methods 0.000 description 1
- 108010030416 proteoliposomes Proteins 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000003772 serotonin uptake inhibitor Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 102000035025 signaling receptors Human genes 0.000 description 1
- 108091005475 signaling receptors Proteins 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002511 suppository base Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229940066767 systemic antihistamines phenothiazine derivative Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960005333 tetrabenazine Drugs 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- ZEMGGZBWXRYJHK-UHFFFAOYSA-N thiouracil Chemical compound O=C1C=CNC(=S)N1 ZEMGGZBWXRYJHK-UHFFFAOYSA-N 0.000 description 1
- 150000005075 thioxanthenes Chemical class 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000011820 transgenic animal model Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 1
- XSCGXQMFQXDFCW-UHFFFAOYSA-N triflupromazine Chemical compound C1=C(C(F)(F)F)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 XSCGXQMFQXDFCW-UHFFFAOYSA-N 0.000 description 1
- 229960003904 triflupromazine Drugs 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to promoters, enhancers and other regulatory elements that control the expression of a renal cell carcinoma related protein, MN-CA9.
- MN-CA9 a renal cell carcinoma related protein
- compositions comprising nucleotide sequences from the 5' regulatory region, and transcriptionally active fragments thereof, that control expression of MN-CA9.
- expression vectors, host cells and transgenic animals wherein the MN-CA9 promoter is capable of controlling expression of a heterologous gene, over- expressing an endogenous gene or an inhibitor of a pathological process or knocking out expression of a specific gene believed to be important in cancer development and/or progression.
- the invention also relates to methods for using said vectors, cells and animals for screening candidate molecules for agonists and antagonists of cancer development and/or progression.
- the present invention also relates to compositions and methods for modulating expression of compounds that are involved in cancer development and/or progression.
- the invention further relates to screening compounds that modulate expression during cancer development and/or progression. Methods for using molecules and compounds identified by the screening assays for therapeutic treatments also are provided.
- the present invention further relates to methods and compositions comprising the MN-CA9 promoter, and transcriptionally active fragments thereof, which are capable of selectively driving expression of a heterologous gene in a tissue specific manner.
- the promoters are capable of selectively increasing expression of heterologous genes within various tumors.
- therapeutic gene delivery can be targeted to cancer cells, while sparing delivery of the therapeutic genes to normal, nonneoplastic cells.
- the tissue specific expression provides the added advantage of allowing for administration of a therapeutic gene not only via direct application, such as by injection, but also systemically to the body via intravenous administration, oral administration or the like, because gene expression will be limited and localized to specific cell types.
- Somatic cell gene therapy is a strategy in which a nucleic acid, typically in the form of DNA, is administered to alter the genetic repertoire of target cells for
- endothehal cells WO89/05345
- hepatocytes WO89/07136; Wolff et al., 1987, Proc. Natl. Acad. Sci. USA 84:3344-3348; Ledley et al., 1987 Proc. Natl. Acad. Sci. 84:5335-5339; Wilson and Mulligan, WO89/07136; Wilson et al., 1990, Proc. Natl. Acad. Sci. 87:8437-8441
- fibroblasts Palmer et al., 1987, Proc. Natl. Acad. Sci. USA 84:1055-
- therapies whether ex vivo or in vivo, is the inability to control expression of a target gene and to limit expression of the target gene to the cell type or types needed to achieve a beneficial therapeutic effect.
- tissue-specific or tumor-restricted promoters which, in some instances, may be inducible by a hormone, vitamin, an antibiotic, drug or heavy metal
- ii) the selection of therapeutic (or toxic) genes iii) the appropriate tissue-specific or tumor-restricted promoters, which, in some instances, may be inducible by a hormone, vitamin, an antibiotic, drug or heavy metal
- ii) the selection of therapeutic (or toxic) genes iii) the appropriate
- 35 vectors such as retrovirus, adenovirus, liposomes, etc. Key to targeting the appropriate tumor tissue while sparing the normal host tissue is a promoter that can home the therapeutic genes to only those tissues which use the chosen promoter.
- MN-CA9 The protein product known as MN-CA9 is thought to be of embryonic origin and may explain some of the highly metastatic behaviors of tumors with this phenotypic expression. In essence, the gene product behaves similar to a fetal oncogene, potentially giving cells the ability to locally progress, invade and metastasize to surrounding and distant organs. Immuno fluorescence and immunoelectron microscopy studies have revealed that MN-CA9 has a molecular weight of 54 kd and 58 kd and that the protein is present both on the plasma membrane and in the nucleus of cells. Immunohistochemical studies have revealed further that the MN-C A9 protein is produced by, e.g. , cervical cancers, renal cell carcinomas and gastric and colon cancers. Moreover, the protein is not expressed in normal cervical, ovarian or kidney tissues.
- novel therapeutic treatments for these cancers are urgently needed.
- the present invention meets these needs and provides a useful model for modulating, diagnosing and/or treating such cancers.
- the invention disclosed herein provides a model for tumor-specific gene transcription.
- the invention is based in part on the functional characterization described herein of a the novel MN-CA9 promoter, which is a promoter found to be active only in various cancers, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the present invention provides compositions and methods for screening compounds that modulate expression of compounds during cancer development and/or progression.
- compositions comprising nucleotides from the MN- CA9 5' regulatory region, and transcriptionally active fragments thereof, as well as nucleic acids that hybridize under highly stringent and moderately stringent conditions to such nucleotides, that control the expression of the cancer-related protein, MN-CA9.
- expression vectors comprising the MN-CA9 5' regulatory region, and transcriptionally active fragments thereof, operably associated to a heterologous reporter gene, and host cells and transgenic animals containing such vectors.
- the invention also provides methods for using such vectors, cells and animals for screening candidate molecules for agonists and antagonists of various cancers. Methods for using molecules and compounds identified by the screening assays for therapeutic treatments also are provided.
- a composition comprising a reporter gene is operatively linked to a tumor-specific regulatory sequence, herein called the MN-CA9 regulatory region.
- the MN-CA9 driven reporter gene is expressed as a transgene in animals.
- the transgenic animal, and cells derived from cancerous cells within the transgenic animal can be used to screen compounds for candidates useful for modulating various cancers.
- such molecules are likely to interfere with the function of trans-acting factors, such as transcription factors, as well as cis-acting elements, such as promoters and enhancers involved in various cancers.
- they are potentially powerful candidates for treatment of such cancers, including, but not limited to, cervical cancers, renal cell carcinomas, gastric and colon cancers, and any other MN-producing neoplasms.
- the invention provides methods for high throughput screening of compounds that modulate specific expression of genes within tumor cells.
- cells from cancerous tissues are removed from the transgenic animal and cultured in vitro.
- the expression of the reporter gene is used to monitor tumor- specific gene activity.
- green fluorescent protein (GFP) is the reporter gene.
- firefly luciferase is the reporter gene.
- Compounds identified by this method can be tested further for their effect on non-cancerous cells in normal animals.
- the transgenic animal model of the invention can be used for in vivo screening to test the mechanism of action of candidate drugs for their effect on cancerous cells. Specifically, the effects of the drugs on various cancers including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers, can be assayed.
- MN-CA9 regulatory sequences are used to drive tumor-specific expression of drugs or toxins and introduced into various cancer cells.
- the method comprises introducing an MN-CA9 regulatory sequence operatively associated with a drug or toxin gene into a cancer cell.
- the invention further provides methods for screening for novel transcription 10 factors that modulate the MN-CA9 regulatory sequence. Such novel transcription factors identified by this method can be used as targets for treating various cancers.
- MN promoter sequence from 1 to 540 base pairs. Also noted ⁇ within the figure are restriction sites within the promoter sequence.
- FIGS 2A-2C The construction of the MN-CD ( Figure 2 A), MNSP-CD ( Figure 2B) and MN-Ela ( Figure 2C) recombinant adenoviral shuttle vectors. These vectors have been used to construct recombinant replication defective (Ad-MN-CD and Ad- ⁇ MNSP-CD) and replication restrictive (Ad-MN-Ela) adenoviral vectors.
- FIG. 3 Relative luciferase activity of MN promoter constructs in various cell lines.
- This Figure demonstrates the relative luciferase activity of MN promoter constructs alone and combined with the SV4O enhancer region of the SV-40 promoter in 25 both MN expressing (SK-RCC 31, SK-RCC-38) and MN non-expressing (SK-RCC-29, SK- RCC-42) renal cell carcinoma lines, the MN expressing cervical cancer cell line (HeLa) and an MN non-expressing prostate cancer cell line (LNCaP).
- MN non-expressors demonstrate minimal luciferase activity relative to the pGL3 plasmid with the MN promoter and only, slight enhancement with the addition of the SV-40 promoter enhancer segment to i n the MN promoter.
- the MN-expressing cell lines express significant basal luciferase activity under the regulation of the MN promoter, which is significantly enhanced (8 to 12 fold) by the addition of the SV4O promoter enhancer region.
- FIG. 1 Schematic diagram of MN-Luciferase constructs.
- the top line represents MN 5' sequences. Numbers are distance in bp from the MN transcriptional start site.
- the present invention provides promoters, enhancers and other regulatory elements that direct expression within tumors, comprising nucleotide sequences from the 5' regulatory region, and transcriptionally active fragments thereof, that control expression of an MN-CA9 protein.
- expression vectors, host cells and transgenic animals wherein an MN-CA9 regulatory region is capable of controlling expression of a heterologous gene, over-expressing an endogenous tumor gene or an inhibitor of a pathological process or knocking out expression of a specific gene believed to be important in cancer development and/or progression.
- cancers include, but are not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the invention also provides methods for using said vectors, cells and animals for screening candidate molecules for agonists and antagonists of cancer development and/or progression.
- the invention provides compositions and methods for modulating expression of compounds that are involved in cancer development and/or progression, and to screening compounds that modulate expression during cancer development and/or progression. Methods for using the molecules and compounds identified by the screening assays for therapeutic treatments also are provided.
- the invention further provides methods of treating and/or ameliorating cancers and other diseases and disorders, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the invention is based, in part, on the discovery that nucleotide sequences encoding toxic and/or therapeutic coding sequences contained within vectors (i.e. viral vectors) can be administered in a cell and tissue specific manner, with the use of promoters which allow for tissue specific expression of the nucleotide sequences.
- the vectors of the invention utilize these promoters to control the expression of toxic and/or therapeutic coding sequences
- the vectors of the invention are effective therapeutic agents not only when administered via direct application, but also when administered systemically to the body, because the toxic and/or therapeutic coding sequences will be expressed only in specifically targeted cells, i.e., within cells that express MN-CA9.
- the methods of the present invention are designed to efficiently transfer one or more DNA molecules encoding therapeutic agents to a site where the therapeutic agent is necessary.
- the methods involve the administration of a vector containing DNA encoding translational products (i.e. therapeutic proteins) or transcriptional products (i.e. antisense or ribozymes) within a mammalian host to a site where the translational product is necessary.
- translational products i.e. therapeutic proteins
- transcriptional products i.e. antisense or ribozymes
- the present invention relates also to pharmaceutical compositions comprising vectors containing DNA for use in treating and/or ameliorating cancers and other diseases and disorders, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the compositions of the invention generally are comprised of a bio-compatible material containing the vector containing DNA encoding a therapeutic protein of interest, i.e., thymidine kinase, growth factors, etc.
- a bio-compatible composition is one that is in a form that does not produce an allergic, adverse or other untoward reaction when administered to a mammalian host.
- the invention overcomes shortcomings specifically associated with current recombinant protein therapies for treating and/or cancers and other diseases and disorders, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- First direct gene transfer is a rational strategy that allows transfected cells to (a) make physiological amounts of therapeutic protein, modified in a tissue- and context- specific manner, and (b) deliver this protein to the appropriate cell surface signaling receptor under the appropriate circumstances. Exogenous delivery of such molecules is expected to be associated with significant dosing and delivery problems.
- repeated administration while possible, is not required with the methods of the invention because various promoters, including inducible promoters, can be used to control the level of expression of the therapeutic protein of interest. Further, integration of transfected DNA can be associated with long term recombinant protein expression.
- Sections 5.1 and 5.2 are nucleotide sequences of the MN-CA9 regulatory region, and expression vectors, host cells and transgenic animals wherein the expression of a heterologous gene is controlled by the MN-CA9 regulatory region.
- Section 5.3 methods for using such polynucleotides (i.e., regulatory regions of the MN-CA9 gene) and fusion protein products, for screening compounds that interact with the regulatory region of the MN-CA9 gene are described.
- This section describes both in vivo and in vitro assays to screen small molecules, compounds, recombinant proteins, peptides, nucleic acids, antibodies, etc. which bind to or modulate the activity of the MN- CA9 regulatory region.
- Section 5.4 describes methods for the use of identified agonists and antagonists for drug delivery or gene therapy.
- Section 5.5 pharmaceutical compositions are described for using such agonists and antagonists to modulate cancer cell- related disorders. Methods and compositions are provided for treating various cancers including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the present invention encompasses polynucleotide sequences comprising the
- the present invention relates to a polynucleotide comprising the sequence, shown in Figure 1, that is located immediately 5' to the transcription start site of the MN- CA9 gene.
- the polynucleotide may be 5000, 4000, 3000, 2000, 1000, preferably approximately 500 and more preferably 250 bp in length.
- the invention further provides probes, primers and fragments of the MN- CA9 regulatory region.
- purified nucleic acids consisting of at least 8 nucleotides (i.e., a hybridizable portion) of an MN-CA9 gene sequence are provided; in other embodiments, the nucleic acids consist of at least 20 (contiguous) nucleotides, 25 nucleotides, 50 nucleotides, 100 nucleotides, 200 nucleotides, 500, 1000, 2000, 3000, 4000 or 5000 nucleotides of an MN-CA9 sequence. Methods which are well known to those skilled in the art can be used to construct these sequences, either in isolated form or contained in expression vectors.
- nucleic acids are smaller than 20, 25, 35, 200 or
- nucleic acids in length.
- Nucleic acids can be single or double stranded.
- the invention also encompasses nucleic acids hybridizable to or complementary to the foregoing sequences.
- nucleic acids are provided which comprise a sequence complementary to at least 10, 20, 25, 50, 100, 200, 500 nucleotides or the entire regulatory region of an MN-CA9 gene.
- the probes, primers and fragments of the MN-CA9 regulatory region provided by the present invention can be used by the research community for various purposes.
- nucleotide sequences of the invention also include nucleotide sequences that have at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more nucleotide sequence identity to the nucleotide sequence depicted in Figure 1, and/or transcriptionally active fragments thereof, which are capable of driving expression specifically within cancers, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence).
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
- the determination of percent identity between two sequences also can be accomplished using a mathematical algorithm.
- a preferred, non- limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl Acad. Sci. USA 57:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA P0:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J. Mol Biol 275:403-410.
- Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res.25:3389-3402.
- PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.).
- BLAST Gapped BLAST and PSI-Blast programs
- the default parameters of the respective programs e.g., XBLAST and NBLAST
- Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package.
- ALIGN program version 2.0
- a gap length penalty of 12 and a gap penalty of 4 can be used.
- alignments can be obtained using the NA_MULTIPLE_ALIGNMENT 1.0 program, using a Gap Weight of 5 and a GapLength Weight of 1.
- the percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, typically only exact matches are counted.
- the invention also encompasses:
- DNA vectors that contain any of the foregoing MN-CA9 regulatory sequences and/or their complements i.e., antisense
- DNA expression vectors that contain any of the foregoing MN-CA9 regulatory element sequences operatively associated with a heterologous gene, such as a reporter gene i.e., antisense
- a “transcriptionally active” or “transcriptionally functional” fragment of the sequence depicted in Figure 1 according to the present invention refers to a polynucleotide comprising a fragment of said polynucleotide which is functional as a regulatory region for expressing a recombinant polypeptide or a recombinant polynucleotide in a recombinant cell host.
- a nucleic acid or polynucleotide is "transcriptionally active" as a regulatory region for expressing a recombinant polypeptide or a recombinant polynucleotide if said regulatory polynucleotide contains nucleotide sequences which contain transcriptional information, and such sequences are operably associated to nucleotide sequences which encode the desired polypeptide or the desired polynucleotide.
- the transcriptionally active fragments of the MN-CA9 regulatory region of the present invention encompass those fragments that are of sufficient length to promote transcription of a reporter gene when operatively linked to the MN-CA9 regulatory sequence and transfected into an MN-CA9-expressing cell line.
- the regulatory region is placed immediately 5' to, and is operatively associated with the coding sequence.
- the term "operatively associated" refers to the placement of the regulatory sequence immediately 5' (upstream) of the reporter gene, such that trans-acting factors required for initiation of transcription, such as transcription factors, polymerase subunits and accessory proteins, can assemble at this region to allow RNA polymerase dependent transcription initiation of the reporter gene.
- the polynucleotide sequence chosen may further comprise other nucleotide sequences, either from the MN-CA9 gene, or from a heterologous gene.
- multiple copies of a promoter sequence, or a fragment thereof may be linked to each other.
- the promoter sequence, or a fragment thereof may be linked to another copy of the promoter sequence, or another fragment thereof, in a head to tail, head to head, or tail to tail orientation.
- a tumor-specific enhancer may be operatively linked to the MN-CA9 regulatory sequence, or fragment thereof, and used to enhance transcription from the construct containing the MN- CA9 regulatory sequence.
- nucleotide sequence without substantially affecting its transcriptional activities. Such modifications include additions, deletions and substitutions.
- nucleotide sequence that selectively hybridizes to the complement of the sequence depicted in Figure 1 under stringent conditions, and is capable of activating the expression of a coding sequence is encompassed by the invention.
- Exemplary moderately stringent hybridization conditions are as follows: prehybridization of filters containing DNA is carried out for 8 hours to overnight at 65 °C in buffer composed of 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 ⁇ g/mtf denatured salmon sperm DNA. Filters are hybridized for 48 hours at 65 °C in prehybridization mixture containing 100 ⁇ g/md denatured salmon sperm DNA and 5-20 X 10 6 cpm of 32 P-labeled probe.
- exemplary conditions of high stringency are as follows: e.g., hybridization to filter-bound DNA in 0.5 M NaHPO 4 , 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in O.lxSSC/0.1% SDS at 68°C (Ausubel F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol.
- TM melting temperature
- hybridization is carried out at about 20-25 degrees below Tm (for DNA-DNA hybrids) or 10-15 degrees below Tm (for RNA- DNA hybrids).
- the MN-C A9 regulatory region, or transcriptionally functional fragments thereof is preferably derived from a mammalian organism. Screening procedures which rely on nucleic acid hybridization make it possible to isolate any gene sequence from other organisms.
- the isolated polynucleotide sequence disclosed herein, or fragments thereof may be labeled and used to screen a cDNA library constructed from mRNA obtained from appropriate cells or tissues (e.g., cancerous tissue) derived from the organism of interest.
- the hybridization conditions used should be of a lower stringency when the cDNA library is derived from an organism different from the type of organism from which the labeled sequence was derived.
- mammalian MN-CA9 regulatory region homologues may be isolated from, for example, bovine or other non-human nucleic acid, by performing polymerase chain reaction (PCR) amplification using two primer pools designed on the basis of the nucleotide sequence of the MN-CA9 regulatory region disclosed herein.
- the template for the reaction may be cDNA obtained by reverse transcription of the mRNA prepared from, for example, bovine or other non-human cell lines, or tissue known to express the MN-CA9 gene. For guidance regarding such conditions, see, e.g., Innis et al.
- Promoter sequences within the 5' non-coding regions of the MN-CA9 gene may be further defined by constructing nested 5' and/or 3' deletions using conventional techniques such as exonuclease HI or appropriate restriction endonuclease digestion. The resulting deletion fragments can be inserted into the promoter reporter vector to determine whether the deletion has reduced or obliterated promoter activity, such as described, for example, by Coles et al. (Hum. Mol. Genet., 7:791-800, 1998).
- promoters may be defined.
- potential individual regulatory sites within the promoter may be identified using site directed mutagenesis or linker scanning to obliterate potential transcription factor binding sites within the promoter individually or in combination.
- the effects of these mutations on transcription levels may be determined by inserting the mutations into cloning sites in promoter reporter vectors.
- assays are well known to those skilled in the art (WO 97/17359, US 5,374,544, EP 582 796, US 5,698,389, US 5,643,746, US5,502,176, and US 5,266,488).
- the MN-CA9 regulatory region, and transcriptionally functional fragments thereof, and the fragments and probes described herein which serve to identify MN-CA9 regulatory regions and fragments thereof, may be produced by recombinant DNA technology using techniques well known in the art. Methods which are well known to those skilled in the art can be used to construct these sequences, either in isolated form or contained in expression vectors. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo genetic recombination. See, e.g., the techniques described in Sambrook et al, 1989, supra, and Ausabel et al, 1989, supra; also see the techniques described in "Oligonucleotide Synthesis", 1984, Gait M.J. ed., IRL Press, Oxford, which is incorporated herein by reference in its entirety.
- Alterations in the regulatory sequences can be generated using a variety of chemical and enzymatic methods which are well known to those skilled in the art. For example, regions of the sequences defined by restriction sites can be deleted.
- Oligonucleotide-directed mutagenesis can be employed to alter the sequence in a defined way and/or to introduce restriction sites in specific regions within the sequence. Additionally, deletion mutants can be generated using DNA nucleases such as Bal31, Exom, or SI nuclease. Progressively larger deletions in the regulatory sequences are generated by incubating the DNA with nucleases for increased periods of time (see, e.g. , Ausubel et al, 1989, supra). The altered sequences are evaluated for their ability to direct expression of heterologous coding sequences in appropriate host cells. It is within the scope of the present invention that any altered regulatory sequences which retain their ability to direct expression of a coding sequence be incorporated into recombinant expression vectors for further use.
- the MN-CA9 gene regulatory region shows selective tissue and cell-type specificity; i.e., it induces gene expression in cervical cancer cells, renal cell carcinomas and gastric and colon cancer cells.
- the regulatory region, and transcriptionally active fragments thereof, of the present invention maybe used to induce expression of a heterologous gene in tumor cells.
- the present invention relates to the use of the MN-CA9 gene regulatory region to achieve tissue specific expression of a target gene.
- the activity and the specificity of the MN-CA9 regulatory region can further be assessed by monitoring the expression level of a detectable polynucleotide operably associated with the MN-CA9 promoter in different types of cells and tissues.
- the detectable polynucleotide may be either a polynucleotide that specifically hybridizes with a predefined oligonucleotide probe, or a polynucleotide encoding a detectable protein.
- the regulatory polynucleotides according to the invention may be advantageously part of a recombinant expression vector that may be used to express a coding sequence, or reporter gene, in a desired host cell or host organism.
- the MN-CA9 regulatory region of the present invention, and transcriptionally active fragments thereof, may be used to direct the expression of a heterologous coding sequence.
- transcriptionally active fragments of the MN-CA9 regulatory region encompass those fragments of the region which are of sufficient length to promote transcription of a reporter coding sequence to which the fragment is operatively linked.
- reporter gene sequences well known to those of skill in the art can be utilized, including, but not limited to, genes encoding fluorescent proteins such as green fluorescent protein (GFP), enzymes (e.g. CAT, beta-galactosidase, luciferase) or antigenic markers.
- fluorescent proteins such as green fluorescent protein (GFP)
- enzymes e.g. CAT, beta-galactosidase, luciferase
- enzymatic reporters and light-emitting reporters analyzed by colorometric or fluorometric assays are preferred for the screening assays of the invention.
- a bioluminescent, chemiluminescent or fluorescent protein can be used as a light-emitting reporter in the invention.
- Types of light- emitting reporters which do not require substrates or cofactors, include, but are not limited to the wild-type green fluorescent protein (GFP) of Victoria aequoria (Chalfie et al, 1994,
- reporter gene Another type of reporter gene that may be used are enzymes that require cofactor(s) to emit light, including, but not limited to, Renilla luciferase.
- Other sources of luciferase also are well known in the art, including, but not limited to, the bacterial luciferase (luxAB gene product) of Vibrio harveyi (Karp, 1989, Biochim. Biophys. Acta
- reporter genes that can be analyzed using colorimetric analysis include, but are not limited to, ⁇ -galactosidase (Nolan et al. 1988, Proc. Natl. Acad. Sci. USA 85:2603- 07), ⁇ -glucuronidase (Roberts et al. 1989, Curr. Genet. 15:177-180), luciferase (Miyamoto et al, 1987, J. Bacteriol. 169:247-253), or ⁇ -lactamase.
- the reporter gene sequence comprises a nucleotide sequence which encodes a LacZ gene product, ⁇ -
- the enzyme is very stable and has a broad specificity so as to allow the use of different histochemical, chromogenic or fiuorogenic substrates, such as, but not limited to, 5-bromo-4-chloro-3-indoyl- ⁇ -D-galactoside (X-gal), lactose 2,3,5-triphenyl-2H- tetrazolium (lactose-tetrazolium) and fluorescein galactopyranoside (see Nolan et al, 1988, supra).
- X-gal 5-bromo-4-chloro-3-indoyl- ⁇ -D-galactoside
- lactose 2,3,5-triphenyl-2H- tetrazolium lactose-tetrazolium
- fluorescein galactopyranoside see Nolan et al, 1988, supra.
- GUS can be used as a reporter gene (Roberts et al. 1989, Curr. Genet. 15:177-180). GUS activity can be detected by various histochemical and fiuorogenic substrates, such as X- glucuronide (Xgluc) and 4-methylumbelliferyl glucuronide.
- Xgluc X- glucuronide
- 4-methylumbelliferyl glucuronide 4-methylumbelliferyl glucuronide
- reporter gene sequences such as those described above, which 5 provide convenient colorimetric responses
- other reporter gene sequences such as, for example, selectable reporter gene sequences
- the coding sequence for chloramphenicol acetyl transferase (CAT) can be utilized, leading to MN-CA9 regulatory region-dependent expression of chloramphenicol resistant cell growth.
- CAT chloramphenicol acetyl transferase
- Other selectable reporter gene sequences also can be utilized and include, but are not limited to, gene sequences encoding polypeptides which confer zeocin (Hegedus et al. 1998, Gene 207:241-249) or kanamycin resistance (Friedrich & Soriano, 1991, Genes. Dev. 5:1513-1523).
- genes such as toxic gene products, potentially toxic gene products, and antiproliferation or cytostatic gene products, also can be used.
- gene products include ⁇ -fetal protein to target hepatoma cells (Kuriyama, S., et al., Cell Struct Funct, 16:503, 1991), the carcinomembryonic antigen (CEA) promoter for gastric carcinoma (Tanaka, T. et al., Cancer Res, 56:1341, 1996), the tyrosinase promoter to kill melanoma cells(Vile, R. G.
- the detectable reporter polynucleotide may be either a polynucleotide that specifically hybridizes with a predefined oligonucleotide probe, or a polynucleotide encoding a detectable protein, including an MN-CA9 polypeptide or a fragment or a variant thereof.
- This type of assay is well known to those skilled in the art (US 5,502,176 and US 5,266,488).
- MN-CA9 driven reporter constructs can be constructed according to standard recombinant DNA techniques (see, e.g., Methods in Enzymology, 1987, volume 154, Academic Press; Sambrook et al. 1989, Molecular Cloning - A Laboratory Manual, 2nd Edition, Cold Spring Harbor Press, New York; and Ausubel et al. Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, New York, each of which is incorporated herein by reference in its entirety).
- Methods for assaying promoter activity are well-known to those skilled in the art (see, e.g., Sambrook et al, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).
- An example of a typical method that can be used involves a recombinant vector carrying a reporter gene and genomic sequences from MN-CA9 genomic sequence. Briefly, the expression of the reporter gene (for example, green fluorescent protein, luciferase, ⁇ -galactosidase or chloramphenicol acetyl transferase) is detected when placed under the control of a biologically active polynucleotide fragment.
- the reporter gene for example, green fluorescent protein, luciferase, ⁇ -galactosidase or chloramphenicol acetyl transferase
- Genomic sequences located upstream of the first exon of the gene may be cloned into any suitable promoter reporter vector.
- a number of commercially available vectors can be engineered to insert the MN-CA9 regulatory region of the invention for expression in mammalian host cells.
- Non-limiting examples of such vectors are pSEAPBasic, pSEAP-Enhancer, p ⁇ gal-Basic, p ⁇ gal-Enhancer, or pEGFP-1 Promoter Reporter vectors (Clontech, Palo Alto, CA) or pGL2-basic or pGL3-basic promoterless luciferase reporter gene vector (Promega, Madison, WI).
- Each of these promoter reporter vectors include multiple cloning sites positioned upstream of a reporter gene encoding a readily assayable protein such as secreted alkaline phosphatase, green fluorescent protein, luciferase or ⁇ -galactosidase.
- the regulatory sequences of the MN-CA9 gene are inserted into the cloning sites upstream of the reporter gene in both orientations and introduced into an appropriate host cell.
- the level of reporter protein is assayed and compared to the level obtained with a vector lacking an insert in the cloning site. The presence of an elevated expression level in the vector containing the insert with respect the control vector indicates the presence of a promoter in the insert.
- Expression vectors that comprise an MN-C A9 gene regulatory region may further contain a gene encoding a selectable marker.
- a number of selection systems may be used, including but not limited to, the herpes simplex virus thymidine kinase (Wigler et al, 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci.
- adenine phosphoribosyltransferase (Lowy et al., 1980, Cell 22:817) genes, which can be employed in tk “ , hgprt " or aprt " cells, respectively.
- antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler et al, 1980, Proc. Natl. Acad. Sci. USA 77:3567; O'Hare et al, 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc.
- neo which confers resistance to the aminoglycoside G-418 (Colberre-Garapin et al., 1981, J. Mol. Biol. 150:1)
- hygro which confers resistance to hygromycin (Santerre et al, 1984, Gene 30:147) genes.
- Additional selectable genes include trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, 1988, Proc. Natl. Acad. Sci.
- ODC omithine decarboxylase
- DFMO McConlogue L., 1987, In: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.
- glutamine synthetase Bebbington et al, 1992, Biotech 10:169.
- a fusion construct comprising an MN-CA9 regulatory region, or a fragment thereof, can be assayed for transcriptional activity.
- the transcriptional start point (+1 site) of the tumor-specific gene under study has to be determined using primer extension assay and/or RNAase protection assay, following standard methods (Sambrook et ⁇ /.,1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, Cold Spring Harbor Press).
- the DNA sequence upstream of the +1 site is generally considered as the promoter region responsible for gene regulation. However, downstream sequences, including sequences within introns, also may be involved in gene regulation.
- a -3 kb to +3 kb region may be cloned upstream of the reporter gene coding region.
- Two or more additional reporter gene constructs also may be made which contain 5' and/or 3' truncated versions of the regulatory region to aid in identification of the region responsible for tumor-specific expression.
- the choice of the type of reporter gene is made based on the application.
- a GFP reporter gene construct is used.
- the application of green fluorescent protein (GFP) as a reporter is particularly useful in the study of tumor-specific gene promoters.
- GFP green fluorescent protein
- a luciferase reporter construct is used.
- GFP that has been optimized for expression in mammalian cells is preferred.
- the promoterless cloning vector pEGFPl (Clontech, Palo Alto, CA) encodes a red shifted variant of the wild-type GFP which has been optimized for brighter fluorescence and higher expression in mammalian cells (Cormack et al, 1996, Gene 173:33; Haas et al, 1996, Curr. Biol. 6: 315).
- EGFP enhanced GFP
- filter sets such as fluorescein isothiocyanate (FITC) optics which illuminate at 450-500 nm can be used to visualize GFP fluorescence.
- FITC fluorescein isothiocyanate
- pEGFPl proved to be useful as a reporter vector for promoter analysis in transgenic mice (Okabe et al, 1997, FEBS Lett. 407: 313).
- transgenic mice containing transgenes with a MN-CA9 regulatory region upstream of the luciferase reporter gene are utilized.
- Putative promoter fragments can be prepared (usually from a parent phage clone containing 8-10 kb genomic DNA including the promoter region) for cloning using methods known in the art.
- promoter fragments are cloned into the multiple cloning site of a luciferase reporter vector.
- restriction endonucleases are used to excise the regulatory region fragments to be inserted into the reporter vector.
- the feasibility of this method depends on the availability of proper restriction endonuclease sites in the regulatory fragment.
- the required promoter fragment is amplified by polymerase chain reaction (PCR; Saiki et al, 1988, Science 239:487) using oligonucleotide primers bearing the appropriate sites for restriction endonuclease cleavage.
- the sequence necessary for restriction cleavage is included at the 5' end of the forward and reverse primers which flank the regulatory fragment to be amplified.
- the appropriate ends are generated by restriction digestion of the PCR product.
- the promoter fragments, generated by either method, are then ligated into the multiple cloning site of the reporter vector following standard cloning procedures (Sambrook et ⁇ /.,1989, supra).
- the DNA sequence of the PCR generated promoter fragments in the constructs be verified prior to generation of transgenic animals.
- the resulting reporter gene construct will contain the putative promoter fragment located upstream of the reporter gene open reading frame, e.g., GFP or luciferase cDNA.
- the following protocol is used. Fifty to 100 pg of the reporter gene construct is digested using appropriate restriction endonucleases to release the transgene fragment.
- the restriction endonuclease cleaved products are resolved in a 1% (w/v) agarose gel containing 0.5 ug/ml ethidium bromide and TAE buffer (lx: 0.04 M Triacetate, 0.001 M EDTA, pH 8.0) at 5-6 V/cm.
- the transgene band is located by size using a UV transilluminator, preferably using long- wavelength UV lamp to reduce nicking of DNA, and the gel piece containing the required band carefully excised.
- the gel slice and 1 ml of 0.5x TAE buffer is added to a dialysis bag, which has been boiled in 1 mM EDTA, pH 8.0 for 10 minutes (Sambrook et ⁇ /.,1989, supra) and the ends are fastened.
- the dialysis bag containing the gel piece is submerged in a horizontal gel electrophoresis chamber containing 0.5x TAE buffer, and electrophoresed at 5-6 V/cm for 45 minutes.
- the current flow in the electrophoresis chamber is reversed for one minute before stopping the run to release the DNA which may be attached to the wall of the dialysis tube.
- the TAE buffer containing the electroeluted DNA from the dialysis bag is collected in a fresh eppendorf tube.
- the gel piece may be observed on the UV transilluminator to ascertain that the electroelution of the DNA is complete.
- the electroeluted DNA sample is further purified by passing through Elutip
- the matrix of the column is prewashed with 1-2 ml of High salt buffer (1.0 M NaCl, 20 mM Tris. Cl, 1.0 mM EDTA, pH 7.5), followed by a wash with 5 ml of low salt buffer (0.2 M NaCl, 20 mM Tris. Cl, 1.0 mM EDTA, pH 7.5).
- a 5 ml syringe is used to apply solutions to the Elutip D column, avoiding reverse flow.
- the solution containing the electroeluted DNA is loaded slowly.
- the column is washed with 2-3 ml of low salt buffer and the DNA is eluted in 0.4 ml of high salt buffer. Two volumes of cold 95% ethanol is added to precipitate DNA.
- the DNA is collected by centrifugation in a microcentrifuge at 14,000 x g for 10 minutes, carefully removing the alcohol without disrupting the DNA pellet. The pellet is washed at least twice with 70% (v/v) ethanol, and dried. The washing and drying steps are important, as residual salt and ethanol are lethal to the developing embryos.
- the DNA is resuspend in the injection buffer (10 mM TM, 0.1 mM EDTA, pH 7.5 prepared with Milli-Q quality water).
- the MN-CA9 regulatory region can be used to direct expression of, inter alia, a reporter coding sequence, a homologous gene or a heterologous gene in transgenic animals.
- Animals of any species including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, sheep, and non-human primates, e.g., baboons, monkeys and chimpanzees may be used to generate transgenic animals.
- transgenic refers to animals expressing MN-CA9 gene sequences from a different species (e.g., mice expressing MN-CA9 sequences), as well as animals that have been genetically engineered to over-express endogenous (i.e., same species) MN-CA9 sequences or animals that have been genetically engineered to knock-out specific sequences.
- the present invention provides for transgenic animals that carry a transgene such as a reporter gene, therapeutic and/or toxic coding sequence under the control of the MN-CA9 regulatory region, or transcriptionally active fragments thereof, in all their cells, as well as animals that carry the transgene in some, but not all their cells, i.e., mosaic animals.
- the transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems.
- the transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (1992, Proc. Natl. Acad. Sci. USA 89:6232-6236).
- transgene targeting is preferred.
- vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene.
- Any technique known in the art may be used to introduce a transgene under the control of the MN-CA9 regulatory region into animals to produce the founder lines of transgenic animals.
- Such techniques include, but are not limited to, pronuclear micro injection (Hoppe & Wagner, 1989, U.S. Patent No.
- the transgene containing the regulatory region, the reporter gene and the polyadenylation signals, is excised from the reporter gene construct.
- the transgene may be gel purified by methods known in the art, for example, by the electroelution method. Following electroelution of gel fragments, any traces of impurities are further removed by passing through Elutip D column (Schleicher & Schuell, Dassel, Germany).
- the purified transgene fragment is microinjected into the male pronuclei of fertilized eggs obtained from B6 CBA females by standard methods (Hogan, 1986, Manipulating the Mouse Embryo, A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Mice are analyzed transiently at several embryonic stages or by establishing founder lines that allow more detailed analysis of transgene expression throughout development and in adult animals. Transgene presence is analyzed by PCR using genomic DNA purified from placentas (transients) or tail clips (founders) according to the method of Vemet et al, Methods Enzymol 1993;225:434-451.
- the PCR reaction is carried out in a volume of 100 ⁇ l containing 1 ⁇ g of genomic DNA, in IX reaction buffer supplemented with 0.2 mM dNTPs, 2 mM MgCl 2 , 600 ⁇ M each of primer, and 2.5 units o ⁇ Taq polymerase (Promega, Madison, WI).
- Each of the 30 PCR cycles consists of denaturation at 94 °C for 1 min, annealing at 54 °C for 1 min, and extension at 72 °C for 1 min.
- the founder mice are then mated with C57B1 partners to generate transgenic F, lines of mice.
- Compounds that interfere the tumorigenesis and/or the progression of cancer can provide therapies targeting defects in various cancers. Such compounds may be used to interfere with the onset or the progression of the various cancers. Compounds that stimulate or inhibit promoter activity also may be used to ameliorate symptoms of the cancers. Genetically engineered cells, cell lines, cancer cells, and/or transgenic animals containing an MN-CA9 regulatory region, or fragment thereof, operably linked to a reporter gene, can be used as systems for the screening of agents that modulate MN-CA9 transcriptional activity.
- MN-C A9 containing transgenic mice may provide an experimental model both in vivo and in vitro to develop new methods of treating various cancers, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers by targeting drugs to cause arrest in the progression of such disorders.
- the present invention encompasses screening assays designed to identify compounds that modulate activity of the MN-CA9 regulatory region.
- the present invention encompasses in vitro and cell-based assays, as well as in vivo assays in transgenic animals.
- compounds to be tested may include, but are not limited to, oligonucleotides, peptides, proteins, small organic or inorganic compounds, antibodies, etc.
- Examples of compounds may include, but are not limited to, peptides, such as, for example, soluble peptides, including, but not limited to, Ig-tailed fusion peptides, and members of random peptide libraries; (see, e.g., Lam, et al, 1991, Nature 354:82-84;
- Such compounds may further comprise compounds, in particular drugs or members of classes or families of drugs, known to ameliorate the symptoms of various cancers.
- Such compounds include, but are not limited to, families of antidepressants such as lithium salts, carbamazepine, valproic acid, lysergic acid diethylamide (LSD), p- chlorophenylalanine,/?-propyldopacetamide dithiocarbamate derivatives e.g., FLA 63; anti- anxiety drugs, e.g., diazepam; monoamine oxidase (MAO) inhibitors, e.g., iproniazid, clorgyline, phenelzine and isocarboxazid; biogenic amine uptake blockers, e.g., tricyclic antidepressants such as desipramine, imipramine and amitriptyline; serotonin reuptake inhibitors e.g., fluoxetine; antipsychotic drugs such as phenothiazine derivatives (e.g., chlorpromazine (thorazine) and trifluopro
- genetically engineered cells, cells lines or primary cultures of germ cells and/or somatic cells containing an MN-CA9 regulatory region operatively linked to a heterologous gene are used to develop assay systems to screen for compounds which can inhibit sequence-specific DNA-protein interactions.
- Such methods comprise contacting a compound to a cell that expresses a gene under the control of an MN-C A9 regulatory region, or a transcriptionally active fragment thereof, measuring the level of the gene expression or gene product activity and comparing this level to the level of gene expression or gene product activity produced by the cell in the absence of the compound, such that if the level obtained in the presence of the compound differs from that obtained in its absence, a compound capable of modulating the expression of the MN-CA9 regulatory region has been identified.
- Alterations in gene expression levels may be by any number of methods known to those of skill in the art e.g., by assaying for reporter gene activity, assaying cell lysates for mRNA transcripts, e.g. by Northern analysis or using other methods known in the art for assaying for gene products expressed by the cell.
- microdissection and transillumination can be used. These techniques offer a rapid assay for monitoring effects of putative drugs on tumor cells in transgenic animals containing an MN-CA9 regulatory region-driven reporter gene.
- a test agent is delivered to the transgenic animal by any of a variety of methods. Methods of introducing a test agent may include oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal and via scarification (scratching through the top layers of skin, e.g., using a bifurcated needle) or any other standard routes of drug delivery. The effect of such test compounds on the tumor cell can be analyzed by the microdissection and transillumination of the tumor cell.
- compounds that may be used in screens for modulators of tumor-related disorders include peptides, small molecules, both naturally occurring and/or synthetic (e.g. , libraries of small molecules or peptides), cell- bound or soluble molecules, organic, non-protein molecules and recombinant molecules that may have MN-CA9 regulatory region binding capacity and, therefore, may be candidates for pharmaceutical agents.
- the proteins and compounds include endogenous cellular components which interact with MN-CA9 regulatory region sequences in vivo. Cell lysates or tissue homogenates may be screened for proteins or other compounds which bind to the MN-CA9 regulatory region, or fragment thereof. Such endogenous components may provide new targets for pharmaceutical and therapeutic interventions.
- libraries can be screened.
- Many libraries are known in the art that can be used, e.g. , peptide libraries, chemically synthesized libraries, recombinant (e.g., phage display libraries), and in vitro translation-based libraries.
- peptide libraries maybe used to screen for agonists or antagonists of MN-CA9-linked reporter expression.
- Diversity libraries such as random or combinatorial peptide or non-peptide libraries can be screened for molecules that specifically modulate MN-CA9 regulatory region activity.
- Random peptide libraries consisting of all possible combinations of amino acids attached to a solid phase support may be used to identify peptides that are able to activate or inhibit MN-CA9 regulatory region activities (Lam, K.S. et al, 1991, Nature 354: 82-84).
- the screening of peptide libraries may have therapeutic value in the discovery of pharmaceutical agents that stimulate or inhibit the expression of MN-CA9 by interaction with the promoter region.
- phage display libraries are described in Scott and Smith, 1990, Science 249:386-390; Devlin et al, 1990, Science, 249:404-406; Christian, et al, 1992, J. Mol. Biol. 227:711-718; Lenstra, 1992, J. Immunol. Meth. 152:149-157; Kay et al, 1993, Gene 128:59-65; and PCT Publication No. WO 94/18318 dated August 18, 1994.
- a benzodiazepine library (see e.g., Bunin et al, 1994, Proc. Natl. Acad. Sci. USA 91:4708-4712) can be adapted for use.
- Peptoid libraries (Simon et al., 1992, Proc. Natl. Acad. Sci. USA 89:9367-9371) also can be used.
- Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994, Proc. Natl. Acad. Sci. USA 91:11138-11142).
- MN-CA9 regulatory region-reporter vector is used to generate transgenic mice from which primary cultures of MN-CA9 regulatory region-reporter vector germ cells are established. About 10,000 cells per well are plated in 96-well plates in total volume of 100 ⁇ l, using medium appropriate for the cell line.
- Candidate inhibitors of MN-CA9 gene expression are added to the cells. The effect of the inhibitors of MN-CA9 gene activation can be determined by measuring the response of the reporter gene driven by the MN-CA9 regulatory region.
- This assay could easily be set up in a high-throughput screening mode for evaluation of compound libraries in a 96-well format that reduce (or increase) reporter gene activity, but which are not cytotoxic.
- 100 ⁇ l DMEM medium + 2.5% fetal bovine serum (FBS) to 1.25% final serum concentration is added to the cells, which are incubated for a total of 24 hours (18 hours more).
- FBS fetal bovine serum
- the plates are washed with PBS, blot dried, and frozen at -80°C. The plates are thawed the next day and analyzed for the presence of reporter activity.
- tumor cells derived from transgenic mice can be transplanted into mice with a normal or other desired phenotype (Brinster et al, 1994, Proc. Natl. Acad. Sci. USA 91: 11298-302; Ogawa et al, 1997, Int. J. Dev. Biol. 41 :111-12).
- mice can then be used to test the effect of compounds and other various factors on tumor-related disorders.
- such mice can be used to assay factors or conditions that can be difficult to test using other methods, such as dietary effects, internal pH, temperature, etc.
- a compound may then be tested in an animal-based assay to determine if the compound exhibits the ability to act as a drug to ameliorate symptoms of various cancers including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the assays of the present invention may be first optimized on a small scale (i.e., in test tubes), and then scaled up for high-throughput assays.
- the screening assays of the present invention may be performed in vitro, i.e., in test tubes, using purified components or cell lysates.
- the screening assays of the present invention may also be carried out in intact cells in culture and in animal models.
- test compounds which are shown to modulate the activity of the MN-CA9 regulatory region in vitro, as described herein will further be assayed in vivo in cultured cells and animal models to determine if the test compound has the similar effects in vivo and to determine the effects of the test compound on various cancers.
- MN-CA9 polynucleotides can be used to treat diseases, conditions or disorders that can be ameliorated by modifying the level or the expression of MN-CA9, or a heterologous gene linked to an MN-CA9 regulatory region, in a tumor-specific manner. Described herein are methods for such, therapeutic treatments.
- the MN-CA9 regulatory region may be used to achieve tissue specific expression in gene therapy protocols. In cases where such cells are tumor cells, the induction of a cytotoxic product by the MN-CA9 regulatory region may be used in the form of cancer gene therapy specifically targeted to tumor cells which contain trans-acting factors required for MN-CA9 expression. In this way, the MN-CA9 regulatory region may serve as a delivery route for a gene therapy approach to various cancers which express the MN-CA9 protein. Examples of these cancers include, but are not limited to, renal cell, gastric, colon and cervical cancers. Additionally, antisense, antigene or aptameric oligonucleotides may be delivered to cells using the presently described expression constructs. Ribozymes or single-stranded RNA also can be expressed in a cell to inhibit the expression of a target gene of interest. The target genes for these antisense or ribozyme molecules should be those encoding gene products that are essential for cell maintenance.
- the MN-CA9 regulatory region, and transcriptionally active fragments thereof, of the present invention may be used for a wide variety of purposes, e.g., to down regulate MN-CA9 gene expression, or, alternatively, to achieve tumor-specific, stage- specific expression of heterologous genes.
- the endogenous MN-CA9 regulatory region may be targeted to specifically down-regulate expression of the MN-CA9 gene.
- oligonucleotides complementary to the regulatory region may be designed and delivered to the cells. Such oligonucleotides may anneal to the regulatory sequence and prevent transcription activation.
- the regulatory sequence, or portions thereof may be delivered to cells in saturating concentrations to compete for transcription factor binding.
- MN-CA9 regulatory region sequences are used to drive tumor-specific expression of drugs or toxins and introduced in the tumors.
- the method comprises introducing an MN-CA9 regulatory region sequence operatively associated with a drug or toxin gene into the tumor.
- the invention provides a gene therapy method for treatment of cancer or other proliferative disorders.
- the MN-CA9 regulatory region is used to direct the expression of one or more proteins specifically in tumor cells of a patient.
- proteins may be, for example, tumor suppressor genes, thymidine kinase (used in combination with acyclovir), toxins or proteins involved in cell killing, such as proteins involved in the apoptosis pathway.
- the invention provides for a therapeutic agent comprising an MN-CA9 promoter which is useful for toxic gene therapy.
- This method includes a eukaryotic delivery vector and a toxic gene.
- the vector is adeno virus (Ad) and the gene is thymidine kinase (TK).
- Ad adeno virus
- TK thymidine kinase
- the therapeutic agent is represented by the formula Ad-MN-CA9-TK, but in reality the novel concept contained herein is the MN-CA9 promoter as the driving force for cancer-specific expression of heterologous coding sequences.
- the DNA encoding the translational or transcriptional products of interest may be engineered recombinantly into a variety of vector systems that provide for replication of the DNA in large scale for the preparation of the vectors of the invention. These vectors can be designed to contain the necessary elements for directing the transcription and/or translation of the DNA sequence taken up by the cancer cells.
- Vectors that may be used include, but are not limited to, those derived from recombinant bacteriophage DNA, plasmid DNA or cosmid DNA.
- plasmid vectors such as pBR322, pUC 19/18, pUC 118, 119 and the M13 mp series of vectors may be used.
- Bacteriophage vectors may include ⁇ gtlO, ⁇ gtl 1, ⁇ gtl8-23, ⁇ ZAP/R and the EMBL series of bacteriophage vectors.
- Cosmid vectors that may be utilized include, but are not limited to, pJB8, pCV 103, pCV 107, pCV 108, pTM, pMCS, pNNL, pHSG274, COS202, COS203, pWE15, pWE16 and the charomid 9 series of vectors.
- Vectors that allow for the in vitro transcription of RNA such as SP6 vectors, also may be used to produce large quantities of RNA that may be incorporated into viral vectors.
- recombinant replication competent or incompetent viral vectors including, but not limited to, those derived from viruses such as herpes virus, retroviruses, vaccinia viruses, adenoviruses, adeno-associated viruses or bovine papilloma virus may be engineered. While integrating vectors may be used, non-integrating systems, which do not transmit the gene product to daughter cells for many generations, are preferred for non-disease related repair and regeneration. In this way, the gene product is expressed during the repair process, and as the gene is diluted out in progeny generations, the amount of expressed gene product is diminished.
- tissue specific promoters to drive therapeutic gene expression would decrease further a toxic effect of the therapeutic gene on neighboring normal cells when virus-mediated gene delivery results in the infection of the normal cells. This would be important especially in diseases where systemic administration could be utilized to deliver a therapeutic vector throughout the body, while maintaining transgene expression to a limited and specific number of cell types. Moreover, since many bone growth factors, such as TGF- ⁇ , have pleiotropic effects, numerous, harmful side effects likely would be exhibited if the growth factor genes are expressed in all cells.
- the promoter elements may be constitutive or inducible promoters and can be used under the appropriate conditions to direct high level or regulated expression of the gene of interest.
- genes under the control of constitutive promoters does not require the presence of a specific substrate to induce gene expression and will occur under all conditions of cell growth.
- expression of genes controlled by inducible promoters is responsive to the presence or absence of an inducing agent. For example, if a cell is stably transfected with a therapeutic, inducible transgene, its expression could be controlled over the life-time of the individual.
- Specific initiation signals also are required for sufficient translation of inserted protein coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where the entire coding sequence, including the initiation codon and adjacent sequences, are inserted into the appropriate expression vectors, no additional translational control signals may be needed. However, in cases where only a portion of the coding sequence is inserted, exogenous translational control signals, including the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the protein coding sequences to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic.
- the efficiency and control of expression maybe enhanced by the inclusion of transcription attenuation sequences, enhancer elements, etc.
- a method for treating cancers or other proliferative disorders comprising delivering a therapeutic agent to the tumor.
- the therapeutic agent comprises a recombinant adenovirus vector (Ad) containing an MN-CA9 promoter driven toxic thymidine kinase (Tk).
- Ad adenovirus vector
- Tk toxic thymidine kinase
- An additional aspect of the present invention provides a method of regulating expression of Tk with the addition of a suitable prodrug including, but not limited to, acyclovir (AcV).
- the therapeutic agent containing the MN-CA9 promoter-driven toxic gene therapy, in the presence of a suitable prodrug can be administered to cancers, including, but not limited to, cervical cancers, renal cell carcinomas and gastric and colon cancers.
- the MN-C A9 regulatory region may code for a variety of genes with immune modulatory functions, e.g. for cytokines such as interleukins 1 to 15 inclusive, especially for example IL2, IL12, gamma-interferon, tumour necrosis factor, GMCSF, and/or other genes, e.g. those mentioned in specifications WO 88/00971 (CSIRO, Australian National University: Ramshaw et al) and WO 94/16716 (Virogenetics Corp; Paoletti et al).
- cytokines such as interleukins 1 to 15 inclusive, especially for example IL2, IL12, gamma-interferon, tumour necrosis factor, GMCSF, and/or other genes, e.g. those mentioned in specifications WO 88/00971 (CSIRO, Australian National University: Ramshaw et al) and WO 94/16716 (Virogenetics Corp; Paoletti et al).
- genes for interferons alpha, beta or gamma genes for interferons alpha, beta or gamma; tumour necrosis factor; granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (N-CSF), chemokines such as neutrophil activating protein NAP, macrophage chemoattractant and activating factor MCAF, RANTES, macrophage inflammatory peptides MlP-la and MlP-lb, complement components and their receptors, accessory molecules such as 87.1, 87.2, ICAM-1.2 or 3 or cytokine receptors.
- nucleotide sequences encoding more than one immunomodulating protein are inserted, they may comprise more than one cytokine or may represent a combination of cytokine and accessory molecule(s).
- symptoms of conditions, disorders or diseases involving tumor cells may be ameliorated by decreasing the level of MN-C A9 regulatory region activity by using well-known antisense, gene "knock-out,” ribozyme and/or triple helix methods to decrease the level of MN-C A9 regulatory region expression.
- antisense, gene "knock-out,” ribozyme and/or triple helix methods to decrease the level of MN-C A9 regulatory region expression.
- antisense, ribozyme and triple helix molecules are antisense, ribozyme and triple helix molecules.
- Such molecules may be designed to reduce or inhibit either unimpaired, or if appropriate, mutant MN-C A9 regulatory region activity. Techniques for the production and use of such molecules are well known to those of skill in the art.
- Antisense RNA and DNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation.
- Antisense approaches involve the design of oligonucleotides that are complementary to a target gene mRNA. The antisense oligonucleotides will bind to the complementary target gene mRNA transcripts and prevent translation. Absolute complementarity, although preferred, is not required.
- a sequence "complementary" to a portion of an RNA means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed.
- the ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be).
- One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- oligonucleotides complementary to non-coding regions of the gene of interest could be used in an antisense approach to inhibit translation of endogenous mRNA.
- Antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length.
- the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.
- in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit target gene expression. It is preferred that these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides. It is also preferred that these studies compare levels of the target RNA or protein with that of an internal control RNA or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide.
- control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
- the oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
- the oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc.
- the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger, et al, 1989, Proc. Natl. Acad. Sci. U.S.A.
- the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
- the antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta- D-mannosylqueo
- the antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
- the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
- the antisense oligonucleotide is an ⁇ -anomeric oligonucleotide.
- An ⁇ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gautier, et al, 1987, Nucl. Acids Res. 15:6625-6641).
- the oligonucleotide is a 2'-0-methylribonucleotide (Inoue, et al, 1987, Nucl. Acids Res.
- Oligonucleotides of the invention may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein, et al. (1988, Nucl. Acids Res.
- methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin, et al, 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.
- antisense nucleotides complementary to the target gene coding region sequence could be used, those complementary to the transcribed, untranslated region are
- Antisense molecules should be delivered to cells that express the target gene in vivo.
- a number of methods have been developed for delivering antisense DNA or RNA to cells; e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or
- antibodies that specifically bind receptors or antigens expressed on the target cell surface can be administered systemically.
- a preferred approach to achieve intracellular concentrations of the antisense sufficient to suppress translation of endogenous mRNAs utilizes a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol
- a vector can be introduced e.g., such that it is taken up by a cell and directs the transcription of an antisense RNA.
- a vector can be introduced e.g., such that it is taken up by a cell and directs the transcription of an antisense RNA.
- vector 25 can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA.
- Such vectors can be constructed by recombinant DNA technology methods standard in the art.
- Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells. Expression of the sequence encoding the antisense RNA can be by any promoter known in the art to act in
- promoters can be inducible or constitutive.
- Such promoters include but are not limited to: the SV40 early promoter region (Bemoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma vims (Yamamoto, et al, 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner, et al, 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-
- any type of plasmid, cosmid, YAC or viral vector can be used to prepare the recombinant DNA constmct which can be introduced directly into the tissue site.
- viral vectors can be used that selectively infect the desired tissue, in which case administration may be accomplished by another route (e.g., systemically via intravenous administration, oral administration or the like).
- Ribozyme molecules designed to catalytically cleave target gene mRNA transcripts can also be used to prevent translation of target gene mRNA and, therefore, expression of target gene product. (See, e.g., PCT International Publication WO90/11364, published October 4, 1990; Sarver, et al, 1990, Science 247, 1222-1225).
- Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA.
- the mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by an endonucleolytic cleavage event.
- the composition of ribozyme molecules must include one or more sequences complementary to the target gene mRNA, and must include the well known catalytic sequence responsible for mRNA cleavage. For this sequence, see, e.g., U.S. Patent No. 5,093,246, which is incorporated herein by reference in its entirety.
- ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy target gene mRNAs
- the use of hammerhead ribozymes is preferred.
- Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'.
- the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the target gene mRNA, i.e., to increase efficiency and minimize the intracellular accumulation of non- functional mRNA transcripts.
- the ribozymes of the present invention also include RNA endoribonucleases
- Cech-type ribozymes such as the one that occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and that has been extensively described by Thomas Cech and collaborators (Zaug, et al, 1984, Science, 224:574-578; Zaug and Cech, 1986, Science, 231:470-475; Zaug, et al, 1986, Nature, 324:429-433; published International patent application No. WO 88/04300 by University Patents Inc.; Been and Cech, 1986, Cell, 47:207-216).
- the Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place.
- the invention encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in the target gene.
- the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells that express the target gene in vivo.
- a preferred method of delivery involves using a DNA constmct "encoding" the ribozyme under the control of a strong constitutive pol in or pol ⁇ promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous target gene messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.
- Endogenous target gene expression can also be reduced by inactivating or "knocking out” the target gene or its promoter using targeted homologous recombination (e.g., see Smithies, et al, 1985, Nature 317:230-234; Thomas and Capecchi, 1987, Cell 51:503-512; Thompson, et al, 1989, Cell 5:313-321; each of which is incorporated by reference herein in its entirety).
- targeted homologous recombination e.g., see Smithies, et al, 1985, Nature 317:230-234; Thomas and Capecchi, 1987, Cell 51:503-512; Thompson, et al, 1989, Cell 5:313-321; each of which is incorporated by reference herein in its entirety).
- a mutant, non-functional target gene flanked by DNA homologous to the endogenous target gene (either the coding regions or regulatory regions of the target gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express the target gene in vivo. Insertion of the DNA constmct, via targeted homologous recombination, results in inactivation of the target gene.
- ES embryonic stem
- endogenous target gene expression can be reduced by targeting deoxyribonucleotide sequences complementary to the regulatory region of the target gene (i.e., the target gene promoter and/or enhancers) to form triple helical structures that prevent transcription of the target gene in target cells in the body.
- deoxyribonucleotide sequences complementary to the regulatory region of the target gene i.e., the target gene promoter and/or enhancers
- triple helical structures that prevent transcription of the target gene in target cells in the body.
- Nucleic acid molecules to be used in triplex helix formation for the inhibition of transcription should be single stranded and composed of deoxynucleotides.
- the base composition of these oligonucleotides must be designed to promote triple helix formation via Hoogsteen base pairing mles, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex.
- Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC + triplets across the three associated strands of the resulting triple helix.
- the pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand.
- nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.
- the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule.
- Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.
- the antisense, ribozyme, and/or triple helix molecules described herein are utilized to inhibit mutant gene expression, it is possible that the technique may so efficiently reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles that the possibility may arise wherein the concentration of normal target gene product present may be lower than is necessary for a normal phenotype.
- nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity may, be introduced into cells via gene therapy methods such as those described, below, in Section 5.4.2 that do not contain sequences susceptible to whatever antisense, ribozyme, or triple helix treatments are being utilized.
- the target gene encodes an extracellular protein, it may be preferable to co-administer normal target gene protein in order to maintain the requisite level of target gene activity.
- Anti-sense RNA and DNA, ribozyme and triple helix molecules of the invention may be prepared by any method known in the art for the synthesis of DNA and RNA molecules, as discussed above. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis.
- RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters.
- antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.
- nucleic acid sequences of the invention can be utilized for transferring recombinant nucleic acid sequences to cells and expressing said sequences in recipient cells. Such techniques can be used, for example, in marking cells or for the treatment of various cancers and related disorders. Such treatment can be in the form of gene replacement therapy. Specifically, one or more copies of a normal gene or a portion of the gene that directs the production of a gene product exhibiting normal gene function, may be inserted into the appropriate cells within a patient, using vectors that include, but are not limited to adenovirus, adeno-associated vims and retrovims vectors, in addition to other particles that introduce DNA into cells, such as liposomes.
- nucleic acid is directly administered in vivo into a target cell or a transgenic mouse that expresses an MN-CA9 regulatory region operably linked to a heterologous coding sequencee.
- This can be accomplished by any method known in the art, e.g., by constmcting it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or other viral vector (see U.S. Patent No.
- a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to dis pt endosomes, allowing the nucleic acid to avoid lysosomal degradation.
- the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180 dated April 16, 1992; WO 92/22635 dated December 23, 1992; WO92/20316 dated November 26, 1992; WO93/14188 dated July 22, 1993; WO 93/20221 dated October 14, 1993).
- the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, 1989, Proc. Natl. Acad. Sci. USA 86:8932-8935; Zijlstra et al, 1989, Nature 342:435-438). Because the nucleic acids of the invention may be expressed in the brain, such gene replacement therapy techniques should be capable of delivering gene sequences to these cell types within patients. Thus, in one embodiment, techniques that are well known to those of skill in the art (see, e.g., PCT Publication No.
- WO89/10134 published April 25, 1988
- viral vectors such as, for example, those described above, are preferable.
- techniques for delivery involve direct administration, e.g., by stereotactic delivery of such gene sequences to the site of the cells in which the gene sequences are to be expressed.
- Additional methods that maybe utilized to increase the overall level of gene expression and/or gene product activity include using targeted homologous recombination methods, as discussed above, to modify the expression characteristics of an endogenous gene in a cell or microorganism by inserting a heterologous DNA regulatory element such that the inserted regulatory element is operatively linked with the endogenous gene in question.
- Targeted homologous recombination can thus be used to activate transcription of an endogenous gene that is "transcriptionally silent", i.e., is not normally expressed or is normally expressed at very low levels, or to enhance the expression of an endogenous gene that is normally expressed.
- target gene expression and/or gene product activity may be increased by the introduction of appropriate target gene-expressing cells, preferably autologous cells, into a patient at positions and in numbers that are sufficient to ameliorate the symptoms of various cancers and related disorders.
- target gene-expressing cells preferably autologous cells
- Such cells may be either recombinant or non-recombinant.
- the cells to be administered are non-autologous cells, they can be administered using well known techniques that prevent a host immune response against the introduced cells from developing.
- the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.
- compounds such as those identified via techniques such as those described above that are capable of modulating activity of a MN-C A9 regulatory region can be administered using standard techniques that are well known to those of skill in the art.
- the administration techniques should include well known ones that allow for a crossing of the blood-brain barrier.
- the compounds that are determined to modify MN-CA9 regulatory region activity or gene product activity can be administered to a patient at therapeutically effective doses to treat or ameliorate various cancers and related disorders.
- a therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of such a disorder.
- Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
- Compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC 50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- IC 50 i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms
- levels in plasma may be measured, for example, by high performance liquid chromatography. 5.5.2 Formulations and Use
- compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients.
- the compounds and their physiologically acceptable salts and solvates may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.
- the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate).
- binding agents e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
- fillers e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate
- lubricants e.g., magnesium stearate, talc or silica
- disintegrants e.g., potato starch
- Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use.
- Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).
- the preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.
- Preparations for oral administration may be suitably formulated to give controlled release of the active compound.
- compositions may take the form of tablets or lozenges formulated in conventional manner.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g. , dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- a suitable propellant e.g. , dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
- the dosage unit may be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
- the compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion.
- Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
- the compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
- the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
- the compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as o cocoa butter or other glycerides.
- compositions of the invention may be desirable to administer locally to the area in need of treatment.
- This may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by 5 means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
- administration can be by direct injection at the site (or former site) of a malignant tumor or neoplastic or pre-neoplastic tissue.
- the compounds may be combined with a carrier so that an effective dosage is delivered, based on the desired activity.
- the compounds also may be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by5 intramuscular injection.
- the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
- compositions may, if desired, be presented in a pack or dispenser device0 that may contain one or more unit dosage forms containing the active ingredient.
- the pack may for example comprise metal or plastic foil, such as a blister pack.
- the pack or dispenser device may be accompanied by instmctions for administration.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20790000P | 2000-05-25 | 2000-05-25 | |
US207900P | 2000-05-25 | ||
PCT/US2001/016944 WO2001090306A2 (en) | 2000-05-25 | 2001-05-24 | Compositions and methods for modulating tumor specific expression |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1287362A2 true EP1287362A2 (en) | 2003-03-05 |
EP1287362A4 EP1287362A4 (en) | 2004-05-12 |
Family
ID=22772429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01945989A Withdrawn EP1287362A4 (en) | 2000-05-25 | 2001-05-24 | Compositions and methods for modulating tumor specific expression |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1287362A4 (en) |
JP (1) | JP2004510406A (en) |
CN (1) | CN1447920A (en) |
AU (1) | AU2001268087A1 (en) |
CA (1) | CA2410094A1 (en) |
WO (1) | WO2001090306A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015277369B2 (en) * | 2014-06-16 | 2021-08-19 | The Johns Hopkins University | Compositions and methods for the expression of CRISPR guide RNAs using the H1 promoter |
CN109609505A (en) * | 2019-01-14 | 2019-04-12 | 中国科学院成都生物研究所 | A kind of hammerhead ribozyme of the shearing RNA screened in vivo |
AU2020297594A1 (en) * | 2019-06-21 | 2022-02-03 | Kernal Biologics, Inc. | Engineered oncoselective protein expression |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972353A (en) * | 1992-03-11 | 1999-10-26 | Institute Of Virology, Slovak Academy Of Sciences | MN proteins, polypeptides, fusion proteins and fusion polypeptides |
-
2001
- 2001-05-24 CA CA002410094A patent/CA2410094A1/en not_active Abandoned
- 2001-05-24 AU AU2001268087A patent/AU2001268087A1/en not_active Abandoned
- 2001-05-24 JP JP2001587102A patent/JP2004510406A/en not_active Ceased
- 2001-05-24 CN CN01813165A patent/CN1447920A/en active Pending
- 2001-05-24 EP EP01945989A patent/EP1287362A4/en not_active Withdrawn
- 2001-05-24 WO PCT/US2001/016944 patent/WO2001090306A2/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972353A (en) * | 1992-03-11 | 1999-10-26 | Institute Of Virology, Slovak Academy Of Sciences | MN proteins, polypeptides, fusion proteins and fusion polypeptides |
Non-Patent Citations (1)
Title |
---|
See also references of WO0190306A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2001090306A2 (en) | 2001-11-29 |
CA2410094A1 (en) | 2001-11-29 |
JP2004510406A (en) | 2004-04-08 |
EP1287362A4 (en) | 2004-05-12 |
WO2001090306A3 (en) | 2002-04-04 |
CN1447920A (en) | 2003-10-08 |
AU2001268087A1 (en) | 2001-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7470673B2 (en) | Composition and methods for the therapeutic use of an atonal-associated sequence for deafness, osteoarthritis and abnormal cell proliferation | |
US5589392A (en) | Nucleic acid construct encoding a nuclear transport peptide operatively linked to an inducible promoter | |
AU5291800A (en) | Osteonectin based toxic gene therapy for the treatment of calcified tumors and tissues | |
AU2003264727A1 (en) | Compositions and methods for tissue specific or inducible inhibition of gene expression | |
AU769773B2 (en) | Bone sialoprotein based toxic gene therapy for the treatment of calcified tumors and tissues | |
US20030213006A1 (en) | Beta-hcg promoter based tumor restrictive gene expression for cancer theraphy | |
WO2001090306A2 (en) | Compositions and methods for modulating tumor specific expression | |
WO2001090344A1 (en) | β-HCG PROMOTER BASED TUMOR-RESTRICTIVE GENE EXPRESSION FOR CANCER GENE THERAPY | |
US20040038232A1 (en) | Compositions and methods for modulating tumor specific expression | |
WO2000024254A1 (en) | Compositions and methods for modulating expression within smooth muscle cells | |
US6825035B1 (en) | Compositions and methods for modulating expression within smooth muscle cells | |
US20030078224A1 (en) | Gene expression directed by a super-PSA promoter | |
US6303370B1 (en) | Tissue-specific regulatory elements | |
CA2389335A1 (en) | Gene expression directed by a super-psa promoter | |
US20020106635A1 (en) | Cytokine resistant cytomegalovirus promoter mutants and related products and methods | |
JP2002519025A (en) | Methods and compositions for modulating spermatogenesis | |
US20100015148A1 (en) | Methods and compositions for the utilization and targeting of osteomimicry | |
US20030037351A1 (en) | Nucleic acid regulatory sequences and uses therefor | |
WO2002059270A2 (en) | Methods and compositions for expressing polynucleotides specifically in smooth muscle cells in vivo | |
Yeung et al. | Tissue Targeted and Regulated Gene Expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021218 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040326 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7C 07K 14/47 B Ipc: 7A 61K 48/00 B Ipc: 7G 01N 33/567 A |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20040504 |