EP1282142B1 - Electrical winding assembly - Google Patents
Electrical winding assembly Download PDFInfo
- Publication number
- EP1282142B1 EP1282142B1 EP20020090275 EP02090275A EP1282142B1 EP 1282142 B1 EP1282142 B1 EP 1282142B1 EP 20020090275 EP20020090275 EP 20020090275 EP 02090275 A EP02090275 A EP 02090275A EP 1282142 B1 EP1282142 B1 EP 1282142B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- winding
- cooling
- transformer
- cooling element
- assemblies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 title claims description 141
- 238000001816 cooling Methods 0.000 claims description 94
- 239000011810 insulating material Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000012809 cooling fluid Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000011162 core material Substances 0.000 description 28
- 238000000429 assembly Methods 0.000 description 26
- 230000005855 radiation Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 239000011152 fibreglass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 240000006829 Ficus sundaica Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/085—Cooling by ambient air
Definitions
- the invention relates to an electrical winding arrangement with at least two juxtaposed winding subassemblies.
- Such a winding arrangement is known from the German patent DE 199 12 280 C1 , There, a transformer is described in which the winding arrangement has three standing and juxtaposed in a row winding sub-assemblies.
- Each of the winding subassemblies is provided for one phase of the electrical transformer and has a high voltage winding and a low voltage winding.
- Each low-voltage winding is arranged coaxially in the associated high-voltage winding and thereby surrounded by this. Between the upper and lower voltage winding a gap is left to flow through with cooling air, which forms an annular channel.
- Each of the winding subassemblies each surrounds a core leg of a closed transformer core.
- the DE 199 12 280 C1 a transformer and method for cooling a transformer.
- the transformer comprises three winding combinations, wherein the second winding combination is subjected to a correspondingly higher thermal load when subjected to a higher electrical rated power, compared to the first and the third winding combination.
- the second winding combination has a cooling element and thus the second winding combination is cooled with a higher cooling capacity than the first and the third winding combination.
- the object of the invention is to provide an electrical winding arrangement of the type mentioned, which is designed for a comparatively high rated power.
- a cooling element is arranged, which is designed as a cooling plate, which divides the gap between juxtaposed winding sub-assemblies in two sub-columns.
- the winding subassemblies give heat directly to the surrounding air and by thermal radiation to other surrounding parts, such as the Core or each other winding sub-assemblies.
- the locations of a winding subassembly which are close to another winding subassembly are heated to a greater extent.
- the stronger heating is due to the fact that the winding sub-assemblies there due to their proximity more strongly heat each other by each of them emitted heat radiation and the Wicklungssteilan extract there are worse coolable because there is only a small distance between them, so that the more heated points for a cooling medium are less accessible.
- the cooling element arranged exactly there between the winding subassemblies acts like a screen for the thermal radiation lying between the winding arrangements.
- the cooling element the heat radiation otherwise emitted from one winding arrangement to the other is largely absorbed and thus does not pass from one to the other winding arrangement.
- the cooling element is thereby heated; from the surface of the cooling element, however, the heat is released directly to the surrounding cooling air, whereby the cooling element is cooled.
- the mutual heating of the winding sub-assemblies is thus reduced and a heat accumulation largely avoided between the winding sub-assemblies.
- the cooling element the temperature distribution during operation within each of the winding sub-assemblies is made uniform and the winding sub-assemblies are better cooled.
- the electric winding assembly having a higher rated electric power is operable than the prior art electrical winding assembly.
- the winding arrangement according to the invention can just as well be operated with the same rated electrical power, although the requirements for the thermal resistance of the insulating material used in the winding sub-arrangements are lower can be as in the prior art, so that the electrical winding assembly is cheaper for the same electrical rated power.
- the cooling element may be arranged in contact with the two winding sub-assemblies between them.
- the winding sub-assemblies are juxtaposed while leaving a gap and the cooling element is formed as a cooling plate which divides the gap into two sub-columns.
- a cooling fluid for example cooling air. Due to the cooling fluid, the winding subassemblies and also the cooling plate are cooled convectively.
- the winding sub-assemblies emit heat by radiation, which are absorbed by the cooling plate, and thereby do not reach the other part windings. Through the cooling plate, the winding sub-assemblies are thermally shielded from each other.
- the cooling plate can be formed from a solid material, for example a composite material.
- the cooling plate preferably has cooling passages for flowing through with a cooling fluid. Taking into account the selected orientation and arrangement of the plate, the cooling channels are guided in such a way that they can be flown through by the cooling fluid as well as possible. With cooling fluid flowing through the cooling channels, the cooling plate itself is particularly easy to cool.
- the cooling element is formed entirely of electrical insulating material. In this embodiment, a good cooling is achieved with high dielectric strength between the winding sub-assemblies.
- the cooling element may be formed of a good heat conducting material.
- metals are suitable for this purpose.
- the cooling element is formed of metal with an electrical insulating material as a coating.
- the cooling element has the high thermal conductivity of the metal and at the same time a deterioration of important electrical properties of the winding arrangement, such as the dielectric strength, is avoided by the insulating effect of the coating.
- the cooling element may also be formed completely from a metal. This embodiment is particularly suitable where there are only low demands on the dielectric strength, or there are no special requirements for the dimensions of the winding arrangement, so that the distance between the winding sub-assemblies can be chosen so that the dielectric strength meets the prescribed requirements.
- the winding sub-assemblies are components of a transformer and each enclosing a core leg of a closed transformer core, wherein the cooling element is arranged in the window of the transformer core.
- FIG. 1 a section through a transformer 1 is shown, which is designed here as a three-phase transformer.
- the transformer 4 has a winding arrangement 2 with winding subassemblies 3 to 5, which are each arranged standing and which respectively enclose a core leg 6, 7 or 8 of a transformer core 9 closed via yokes 9A and 9B.
- Each of the partial winding arrangements 3 to 5 has in each case a high-voltage winding 10, 11 or 12 and a low-voltage winding 13, 14 and 15, respectively.
- Each undervoltage winding 13, 14 and 15 is arranged standing within their associated high-voltage winding 10, 11 and 12 respectively.
- the cooling elements 20 and 21 are presently designed in each case as a cooling plate (see also Figures 2 and FIG. 3 , Reference numerals 48 and 49).
- the cooling elements 20 and 21 each divide one of the gaps 22 and 23 into partial gaps 22a, 22b or 23a, 23b.
- the interspaces 16 to 18 and the partial gaps 22 a, 22 b and 23 a, 23 b of cooling air 19 flows through.
- 10 to 15 of the windings heat is delivered directly to the cooling air 19 by convection.
- the windings 10 to 15 give off heat in the form of radiation to the environment. Parts in the environment, such as the core leg 6, absorb this radiation and are thereby heated.
- the windings 10 to 15 also heat each other more or less by their heat radiation.
- the improved cooling with the cooling elements 20 and 21 will be explained with reference to the cooling element 20. The same applies to the cooling element 21.
- the cooling element 20 arranged between them is provided. It is thus there between the two winding subassemblies 3 and 4, where these or their high-voltage windings 10 and 11 come closest (s Figures 2 and 3 ).
- the cooling element 20 absorbs the heat radiation otherwise emitted from one high-voltage winding 10 to the other high-voltage winding 11 and vice versa and is thereby heated.
- the cooling element 20 is convectively cooled by cooling air 19 flowing through the partial gaps 22a and 22b.
- the high-voltage windings 10 and 11 and thus the winding subassemblies 3 and 4 are thermally shielded from each other by the cooling element 20 against each other and compared to the prior art, the area coolable with cooling air 19 increases.
- the thermal shield with the cooling element 20 the high-voltage winding 10 and the high-voltage winding 11 no longer heat each other, so that they assume a lower operating temperature overall, so are better cooled compared to the prior art.
- the cooling element 20 which shields the high-voltage winding 11 and the high-voltage winding 12 mutually thermally.
- the cooling elements 20 and 21 are presently each formed of a metal plate 24 and 25, which is respectively provided with a coating of insulating material 26 and 27 respectively.
- Suitable metals are aluminum or transformer sheet and as thermally conductive insulating material such as polyester, kraft paper or glass fiber reinforced plastic (GRP) in question.
- the cooling elements 20 and 21 are arranged in the windows 30 and 31 formed by the transformer core 9.
- the cooling elements 20 and 21 are each provided with cooling channels 28 and 29 (s. FIG. 2 ) provided with cooling air 19 for the flow. As a result, the cooling elements 20 and 21 can be cooled particularly effectively by the cooling air 19.
- FIG. 2 is the transformer 1 in the in FIG. 1 shown specified cutting plane. It can be clearly seen there that the cooling elements 20 and 21 are each designed as cooling plates and have the cooling channels 28 or 29 provided for the flow of cooling air 19 through them.
- the winding sub-assemblies are each formed with circular cylindrical windings 10 to 15.
- cooling elements 20 and 21 are each symmetrical between them directly adjacent winding sub-assemblies 3 and 4 or 4 and 5 are arranged.
- FIG. 3 is one to in FIG. 1 Represented with II sectional view corresponding representation for a transformer 1a with a winding assembly 2a with three winding sub-assemblies 32 to 34 shown.
- Each of the winding subassemblies 32 to 34 corresponding to the winding subassemblies 3 to 5 according to FIG. 1 a high-voltage winding 35, 35 and 37, respectively surrounding a low-voltage winding 38, 39 and 40 coaxially.
- a gap 41, 42 and 43 are left to flow with cooling air 19 respectively.
- Each winding arrangement 32 to 34 surrounds a core leg 44, 45 and 46 of a transformer core, which corresponds to the transformer core 9 and is self-contained.
- the winding sub-assemblies 32 to 34 are designed with windings 35 to 40, each having a rectangular cross-section. Accordingly, the core legs 44 to 46 of the transformer core 47 are formed with a rectangular cross-section.
- a respective cooling elements 20 and 21 similar cooling element 48 and 49 is arranged, each of which is also formed as a cooling plate.
- the cooling elements 48 and 49 are each formed from a solid material.
- the solid material can be a metal or an insulating material - as already in the description too FIG. 1 be specified.
- the cooling elements are particularly easy to produce.
- These cooling elements 48 and 49 are also in the winding assembly 2 after FIGS. 1 and 2 instead of the cooling elements 20 and 21 applicable.
- the cooling elements 48 and 49 may be designed like the cooling elements 20 and 21.
- the choice of the rectangular cross sections for the windings 35 to 40 and the core legs 44 to 46 allows a particularly compact construction of the transformer 1a.
- the transformer 1A can be optimized in terms of material costs.
- the winding sub-assembly 34 and in particular its high-voltage winding 37 and the core leg 46 which surrounds the winding sub-assembly 34 received in particular.
- the other explanations also apply to the other winding sub-assemblies 32 and 33 and their core legs 4 and 45, respectively.
- the total width B3 is set. Assuming that the cross-sectional area of the core legs 44, 45, 46 should each remain constant, so decreases the length L2 of the core leg 46 and thus the length L1 of the high-voltage winding 37 and the corresponding dimension of the lower voltage winding 40 with decreasing total width B3. As a result, the amount of core material used decreases as the overall width B3 decreases, because the yokes of the transformer core 47 extending over the entire width B3 (corresponding to those in FIG FIG. 1 shown yokes 9A and 9B of the transformer core 9) become shorter.
- the amount of the conductor material used, from which the winding conductors of the windings 37 and 40 are respectively formed, increases because the length L1 of the high-voltage winding 37 and the corresponding dimension of the winding 40 increases.
- the quantities of material for the winding conductor material and the core material behave in opposite directions with changing overall width B3.
- the total width B3 and thus the dimensions B1 and B2, L1 and L2 and the corresponding dimensions of the undervoltage winding 40 and the corresponding dimensions Select dimensions of the winding subassemblies 32 and 33 so that the total costs for the conductor material and the core material are the lowest.
- the winding sub-assembly 32 and 33 or 33 and 34 specifically their high-voltage windings 35 and 36 and 36 and 38 large facing surfaces 50 and 51 and 52 and 53, via which the high-voltage windings 35 to 37 each heat for each opposing high-voltage windings 35 to 37 deliver. Due to the arrangement of the cooling elements 48 and 49 respectively exactly between the winding sub-assemblies 32 and 34, the winding sub-assemblies 32 to 34 are thermally shielded against each other and each of the high-voltage windings 35 to 37 output heat from the cooling elements 48 and 49 and discharged to the cooling air 19.
- the width B3 of the transformer 1A can be selected smaller than without the provision of such cooling elements 48 and 49, since then the respective distance between the winding sub-assemblies 32 to 34 and their high-voltage windings 35 and 36 or 36 and 37 are selected to be larger must, so that a flow of cooling air 19 alone sufficient for their cooling in nominal operation and inadmissible high heating of the high-voltage windings 35 to 37 is avoided.
- width B3 is of course also possible with winding subassemblies with another non-circular cross section, for example elliptical cross section.
- the windings 10 to 15 and 35 to 40 may each be formed as a self-supporting winding with a dry insulation.
- Casting resin or adhesive resin is used in particular as insulating material; Also, fiberglass material can be used for insulation.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
Description
Die Erfindung betrifft eine elektrische Wicklungsanordnung mit zumindest zwei nebeneinander angeordneten Wicklungsteilanordnungen.The invention relates to an electrical winding arrangement with at least two juxtaposed winding subassemblies.
Eine solche Wicklungsanordnung ist bekannt aus der
So beschreibt die
Des Weiteren offenbart die
Aufgabe der Erfindung ist es, eine elektrische Wicklungsanordnung der eingangs genannten Art anzugeben, die für eine vergleichsweise hohe Nennleistung ausgelegt ist.The object of the invention is to provide an electrical winding arrangement of the type mentioned, which is designed for a comparatively high rated power.
Die Aufgabe wird bei einer elektrischen Wicklungsanordnung der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass zwischen den Wicklungsteilanordnungen ein Kühlelement angeordnet ist, das als Kühlplatte ausgebildet ist, die den Spalt zwischen nebeneinander angeordneten Wicklungsteilanordnungen in zwei Teilspalten teilt. Im Betrieb geben die Wicklungsteilanordnungen Wärme unmittelbar an die sie umgebende Luft und durch Wärmestrahlung an andere sie umgebenden Teile, beispielsweise den Kern oder jeweils andere Wicklungsteilanordnungen. Dadurch werden die Stellen einer Wicklungsteilanordnung stärker erwärmt, die nahe bei einer anderen Wicklungsteilanordnung liegen. Die stärkere Erwärmung ist darauf zurückzuführen, dass sich die Wicklungsteilanordnungen dort aufgrund ihrer Nähe stärker gegenseitig durch die von ihnen jeweils abgegebene Wärmestrahlung erwärmen und die Wicklungsteilanordnungen dort schlechter kühlbar sind, weil dort zwischen ihnen nur ein geringer Abstand besteht, so dass die stärker erwärmten Stellen für ein Kühlmedium schlechter zugänglich sind. Das jedoch genau dort zwischen den Wicklungsteilanordnungen angeordnete Kühlelement wirkt wie ein zwischen den Wicklungsanordnungen liegender Schirm für die Wärmestrahlung. Durch das Kühlelement wird die ansonsten von der einen Wicklungsanordnung zur anderen abgegebene Wärmestrahlung weitgehend aufgenommen und gelangt also nicht von der einen zur anderen Wicklungsanordnung. Das Kühlelement wird dadurch zwar erwärmt; von der Oberfläche des Kühlelements wird die Wärme aber unmittelbar an die umgebende Kühlluft abgegeben, wodurch das Kühlelement gekühlt wird. Die gegenseitige Erwärmung der Wicklungsteilanordnungen wird also verringert und ein Wärmestau weitgehend zwischen den Wicklungsteilanordnungen vermieden. Insgesamt wird mit dem Kühlelement die Temperaturverteilung im Betrieb innerhalb jeder der Wicklungsteilanordnungen vergleichmäßigt und die Wicklungsteilanordnungen sind besser gekühlt. Demzufolge ist die elektrische Wicklungsanordnung mit einer höheren elektrischen Nennleistung betreibbar als die elektrische Wicklungsanordnung nach dem Stand der Technik. Ebensogut kann die erfindungsgemäße Wicklungsanordnung mit gleicher elektrischer Nennleistung betrieben werden, wobei allerdings die Anforderungen an die thermische Festigkeit des bei den Wicklungsteilanordnungen verwendeten Isoliermaterial geringer sein können als beim Stand der Technik, so dass die elektrische Wicklungsanordnung bei gleicher elektrischer Nennleistung kostengünstiger ist.The object is achieved in an electrical winding arrangement of the type mentioned in the present invention, that between the winding part arrangements, a cooling element is arranged, which is designed as a cooling plate, which divides the gap between juxtaposed winding sub-assemblies in two sub-columns. In operation, the winding subassemblies give heat directly to the surrounding air and by thermal radiation to other surrounding parts, such as the Core or each other winding sub-assemblies. As a result, the locations of a winding subassembly which are close to another winding subassembly are heated to a greater extent. The stronger heating is due to the fact that the winding sub-assemblies there due to their proximity more strongly heat each other by each of them emitted heat radiation and the Wicklungssteilanordnungen there are worse coolable because there is only a small distance between them, so that the more heated points for a cooling medium are less accessible. However, the cooling element arranged exactly there between the winding subassemblies acts like a screen for the thermal radiation lying between the winding arrangements. By the cooling element, the heat radiation otherwise emitted from one winding arrangement to the other is largely absorbed and thus does not pass from one to the other winding arrangement. Although the cooling element is thereby heated; from the surface of the cooling element, however, the heat is released directly to the surrounding cooling air, whereby the cooling element is cooled. The mutual heating of the winding sub-assemblies is thus reduced and a heat accumulation largely avoided between the winding sub-assemblies. Overall, with the cooling element, the temperature distribution during operation within each of the winding sub-assemblies is made uniform and the winding sub-assemblies are better cooled. As a result, the electric winding assembly having a higher rated electric power is operable than the prior art electrical winding assembly. The winding arrangement according to the invention can just as well be operated with the same rated electrical power, although the requirements for the thermal resistance of the insulating material used in the winding sub-arrangements are lower can be as in the prior art, so that the electrical winding assembly is cheaper for the same electrical rated power.
Das Kühlelement kann unter Berührung der beiden Wicklungsteilanordnungen zwischen diesen angeordnet sein. Die Wicklungsteilanordnungen sind unter Belassung eines Spalts nebeneinander angeordnet und das Kühlelement ist als Kühlplatte ausgebildet, die den Spalt in zwei Teilspalten teilt. Dadurch ist der Bereich zwischen den beiden Wicklungsteilanordnungen zur Kühlung derselben von einem Kühlfluid, beispielsweise Kühlluft, durchströmbar. Durch das Kühlfluid werden die Wicklungsteilanordnungen und auch die Kühlplatte konvektiv gekühlt. Gleichzeitig geben die Wicklungsteilanordnungen Wärme durch Strahlung ab, die von der Kühlplatte aufgenommen werden, und dadurch nicht zur jeweils anderen Teilwicklungen gelangen. Durch die Kühlplatte sind die Wicklungsteilanordnungen thermisch gegeneinander abgeschirmt.The cooling element may be arranged in contact with the two winding sub-assemblies between them. The winding sub-assemblies are juxtaposed while leaving a gap and the cooling element is formed as a cooling plate which divides the gap into two sub-columns. As a result, the area between the two winding subassemblies for cooling the same can be flowed through by a cooling fluid, for example cooling air. Due to the cooling fluid, the winding subassemblies and also the cooling plate are cooled convectively. At the same time, the winding sub-assemblies emit heat by radiation, which are absorbed by the cooling plate, and thereby do not reach the other part windings. Through the cooling plate, the winding sub-assemblies are thermally shielded from each other.
Die Kühlplatte kann aus einem Vollmaterial, beispielsweise einem Verbundwerkstoff, ausgebildet sein. Vorzugsweise weist die Kühlplatte jedoch Kühlkanäle zur Durchströmung mit einem Kühlfluid auf. Die Kühlkanäle sind unter Berücksichtigung der gewählten Ausrichtung und Anordnung der Platte so geführt, dass sie möglichst gut von dem Kühlfluid durchströmbar sind. Mit durch die Kühlkanäle strömendem Kühlfluid ist die Kühlplatte selbst besonders gut kühlbar.The cooling plate can be formed from a solid material, for example a composite material. However, the cooling plate preferably has cooling passages for flowing through with a cooling fluid. Taking into account the selected orientation and arrangement of the plate, the cooling channels are guided in such a way that they can be flown through by the cooling fluid as well as possible. With cooling fluid flowing through the cooling channels, the cooling plate itself is particularly easy to cool.
In einer besonders bevorzugten Ausgestaltung ist das Kühlelement vollständig aus elektrischem Isolierstoff gebildet. Bei dieser Ausgestaltung ist eine gute Kühlung bei hoher Spannungsfestigkeit zwischen den Wicklungsteilanordnungen erreicht.In a particularly preferred embodiment, the cooling element is formed entirely of electrical insulating material. In this embodiment, a good cooling is achieved with high dielectric strength between the winding sub-assemblies.
Das Kühlelement kann aus einem gut wärmeleitenden Material gebildet sein. Insbesondere bieten sich dafür Metalle an. Vorzugsweise ist das Kühlelement aus Metall mit einem elektrischen Isolierstoff als Überzug gebildet. Dadurch weist das Kühlelement die hohe Wärmeleitfähigkeit des Metalls auf und gleichzeitig wird durch die isolierende Wirkung des Überzugs eine Verschlechterung wichtiger elektrischer Eigenschaften der Wicklungsanordnung, wie beispielsweise der Spannungsfestigkeit, vermieden.The cooling element may be formed of a good heat conducting material. In particular, metals are suitable for this purpose. Preferably, the cooling element is formed of metal with an electrical insulating material as a coating. As a result, the cooling element has the high thermal conductivity of the metal and at the same time a deterioration of important electrical properties of the winding arrangement, such as the dielectric strength, is avoided by the insulating effect of the coating.
Bei einer dritten Ausgestaltung kann das Kühlelement auch vollständig aus einem Metall gebildet sein. Diese Ausgestaltung bietet sich insbesondere dort an, wo nur geringe Anforderungen an die Spannungsfestigkeit bestehen, oder keine besonderen Anforderungen an die Abmessungen der Wicklungsanordnung bestehen, so dass der Abstand zwischen den Wicklungsteilanordnungen so gewählt werden kann, dass die Spannungsfestigkeit die vorgeschriebenen Anforderungen erfüllt.In a third embodiment, the cooling element may also be formed completely from a metal. This embodiment is particularly suitable where there are only low demands on the dielectric strength, or there are no special requirements for the dimensions of the winding arrangement, so that the distance between the winding sub-assemblies can be chosen so that the dielectric strength meets the prescribed requirements.
Nach einer bevorzugten Ausgestaltung sind die Wicklungsteilanordnungen Bestandteile eines Transformators und umschließen jeweils einen Kernschenkel eines geschlossenen Transformatorkerns, wobei das Kühlelement im Fenster des Transformatorkerns angeordnet ist.According to a preferred embodiment, the winding sub-assemblies are components of a transformer and each enclosing a core leg of a closed transformer core, wherein the cooling element is arranged in the window of the transformer core.
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele wird die erfindungsgemäße elektrische Wicklungsanordnung näher erläutert. Es zeigen schematisiert und teilweise nicht maßstäblich:
-
Figur 1 einen Schnitt durch einen Transformator mit der erfindungsgemäßen Wicklungsanordnung, -
Figur 2 die inFigur 1 angegebene Schnittdarstellung des Transformators und -
einen Transformator mit einer elektrischen Anordnung mit Rechteckwicklungen entsprechend der inFigur 3Figur 1 spezifizierten Schnittdarstellung.
-
FIG. 1 a section through a transformer with the winding arrangement according to the invention, -
FIG. 2 in theFIG. 1 given sectional view of the transformer and -
FIG. 3 a transformer with an electrical arrangement with rectangular windings according to the inFIG. 1 specified sectional view.
Gleiche Teile sind in den Figuren mit denselben Bezugszeichen versehen.Identical parts are provided in the figures with the same reference numerals.
In
Zur verbesserten Kühlung der Wicklungstanordnungen 3, 4, 5 der Wicklungsanordnung 2 ist zwischen den nebeneinander angeordneten Wicklungsteilanordnungen 3 und 4 bzw. 4 und 5 jeweils ein Kühlelement 20 bzw. 21 vorgesehen. Die Kühlelemente 20 und 21 sind vorliegend jeweils als Kühlplatte ausgeführt (siehe auch
Zur Kühlung der Wicklungen 10 bis 15 der Teilwicklungsanordnungen 3 bis 5 werden die Zwischenräume 16 bis 18 und die Teilspalten 22a, 22b und 23a, 23b von Kühlluft 19 durchströmt. Dabei wird von den Wicklungen 10 bis 15 Wärme unmittelbar an die Kühlluft 19 durch Konvektion abgegeben. Darüber hinaus geben die Wicklungen 10 bis 15 Wärme in Form von Strahlung an die Umgebung ab. Teile in der Umgebung, wie beispielsweise der Kernschenkel 6, nehmen diese Strahlung auf und werden dadurch erwärmt. Auch erwärmen die Wicklungen 10 bis 15 sich durch ihre Wärmestrahlung mehr oder weniger stark gegenseitig. Die verbesserte Kühlung mit den Kühlelementen 20 und 21 wird anhand des Kühlelementes 20 erläutert. Entsprechendes gilt für das Kühlelement 21. Damit die Wicklungsteilanordnungen 3 und 4 - speziell deren Oberspannungswicklungen 10 und 11 sich möglichst nicht gegenseitig durch Abgabe von Wärmestrahlung erwärmen, ist das zwischen diesen angeordnete Kühlelement 20 vorgesehen. Es befindet sich damit dort zwischen den beiden Wicklungsteilanordnungen 3 und 4, wo sich diese bzw. deren Oberspannungswicklungen 10 und 11 am nächsten kommen (s. auch
Die Kühlelemente 20 und 21 sind vorliegend jeweils aus einer Metallplatte 24 bzw. 25 gebildet, die jeweils mit einem Überzug aus Isolierstoff 26 bzw. 27 versehen ist. Als Metalle kommen hierbei Aluminium oder Transformatorblech und als wärmeleitender Isolierstoff beispielsweise Polyester, Hartpapier oder glasfaserverstärkter Kunststoff (GFK) in Frage.The
Die Kühlelemente 20 und 21 sind in den durch den Transformatorkern 9 gebildeten Fenstern 30 bzw. 31 angeordnet.The
Die Kühlelemente 20 und 21 sind jeweils mit Kühlkanälen 28 bzw. 29 (s.
In
Deutlich ist auch hier zu erkennen, dass sich die Kühlelemente 20 und 21 jeweils symmetrisch zwischen den diese jeweils direkt benachbarten Wicklungsteilanordnungen 3 und 4 bzw. 4 und 5 angeordnet sind.It can also clearly be seen here that the
In
Zwischen den Wicklungsteilanordnungen 32 und 33 bzw. 33 und 34 ist jeweils ein den Kühlelementen 20 und 21 ähnliches Kühlelement 48 bzw. 49 angeordnet, das jeweils ebenfalls als Kühlplatte ausgebildet ist. Im Unterschied zu den Kühlelementen 20 und 21 sind die Kühlelemente 48 und 49 jeweils aus einem Vollmaterial gebildet. Das Vollmaterial kann ein Metall oder auch ein Isolierstoff - wie auch schon in der Beschreibung zu
Die Wahl der rechteckigen Querschnitte für die Wicklungen 35 bis 40 und der Kernschenkel 44 bis 46 ermöglicht ein besonders kompakten Aufbau des Transformators 1a. Dabei kann der Transformator 1A hinsichtlich der Materialkosten optimiert werden. Zur weiteren Erläuterung wird insbesondere auch die Wicklungsteilanordnung 34 und dabei speziell auch deren Oberspannungswicklung 37 und den Kernschenkel 46 den die Wicklungsteilanordnung 34 umgibt, eingegangen. Sinngemäß gelten die weiteren Ausführungen auch für die anderen Wicklungsteilanordnungen 32 und 33 sowie deren Kernschenkel 4 bzw. 45.The choice of the rectangular cross sections for the
Bei der Optimierung wird die Gesamtbreite B3 eingestellt. Geht man davon aus, dass die Querschnittsfläche der Kernschenkel 44, 45, 46 jeweils konstant bleiben soll, so nimmt mit sinkender Gesamtbreite B3 die Länge L2 des Kernschenkels 46 und damit auch die Länge L1 der Oberspannungswicklung 37 sowie die entsprechende Abmessung der Unterspannungswicklung 40 zu. Dadurch nimmt mit sinkender Gesamtbreite B3 die Menge des verwendeten Kernmaterials ab, weil die sich über die Gesamtbreite B3 erstreckenden Joche des Transformatorkernes 47 (entsprechend den in
Da davon auszugehen ist, dass für eine bestimmte Mengeneinheit des Kernmaterials und der gleichen Mengeneinheit des Leitermaterials der Wicklungen unterschiedliche Kosten anfallen, lassen sich die Gesamtbreite B3 und damit die Maße B1 und B2, L1 und L2 und die entsprechenden Abmessungen der Unterspannungswicklung 40 sowie die entsprechenden Abmessungen der Wicklungsteilanordnungen 32 und 33 so wählen, dass die Gesamtkosten für das Leitermaterial und das Kernmaterial am geringsten sind.Since it can be assumed that different costs are incurred for a certain unit of quantity of the core material and the same unit of quantity of the conductor material of the windings, the total width B3 and thus the dimensions B1 and B2, L1 and L2 and the corresponding dimensions of the undervoltage winding 40 and the corresponding dimensions Select dimensions of the winding
Allerdings weisen bei dieser rechteckigen Ausgestaltung die Wicklungsteilanordnung 32 und 33 bzw. 33 und 34 speziell deren Oberspannungswicklungen 35 und 36 bzw. 36 und 38 große einander zugewandte Flächen 50 und 51 bzw. 52 und 53 auf, über die die Oberspannungswicklungen 35 bis 37 jeweils Wärme zur jeweils gegenüberliegenden Oberspannungswicklungen 35 bis 37 abgeben. Durch die Anordnung der Kühlelemente 48 und 49 jeweils genau zwischen den Wicklungsteilanordnungen 32 und 34 werden die Wicklungsteilanordnungen 32 bis 34 gegeneinander thermisch abgeschirmt und die jeweils von den Oberspannungswicklungen 35 bis 37 abgegebene Wärme von den Kühlelementen 48 und 49 aufgenommen und an die Kühlluft 19 abgegeben. Durch diese thermische Abschirmung kann die Breite B3 des Transformators 1A kleiner gewählt werden als ohne das Vorsehen solcher Kühlelemente 48 und 49, da dann der jeweilige Abstand zwischen den Wicklungsteilanordnungen 32 bis 34 bzw. deren Oberspannungswicklungen 35 und 36 bzw. 36 und 37 größer gewählt werden müssen, damit ein Durchströmen mit Kühlluft 19 allein zu deren Kühlung im Nennbetrieb ausreicht und eine unzulässig hohe Erwärmung der Oberspannungswicklungen 35 bis 37 vermieden ist.However, in this rectangular embodiment, the winding
Die Optimierung der Breite B3 ist selbstverständlich auch bei Wicklungsteilanordnungen mit einem anderen nicht kreisförmigen Querschnitt, beispielsweise elliptischem Querschnitt, möglich.The optimization of the width B3 is of course also possible with winding subassemblies with another non-circular cross section, for example elliptical cross section.
Die Wicklungen 10 bis 15 sowie 35 bis 40 können jeweils als selbsttragende Wicklung mit einer Trockenisolation ausgebildet sein. Als Isoliermaterial kommt dabei insbesondere Gießharz oder Klebharz zum Einsatz; auch kann Glasfasermaterial zur Isolierung verwendet werden.The
Claims (6)
- Electrical winding arrangement (2, 2a) with at least two winding subarrangements (3, 4; 32, 33) arranged next to one another, a cooling element (20; 48) being arranged between the winding subarrangements (3, 4; 32, 33), and the winding subarrangements (3, 4; 32, 33) being arranged next to one another with a gap (22), characterized in that the cooling element (20) is in the form of a cooling plate, which divides the gap (22) into two subgaps (22A, 22B).
- Electrical winding arrangement (2, 2a) according to Claim 1, characterized in that the cooling plate (20) has cooling channels (28) through which a cooling fluid (19) flows.
- Electrical winding arrangement (2, 2a) according to either of Claims 1 and 2, characterized in that the cooling element (48) consists completely of an electrical insulating material.
- Electrical winding arrangement (2, 2a) according to either of Claims 1 and 2, characterized in that the cooling element (20) is formed from metal with an electrical insulating material as a coating.
- Electrical winding arrangement (2, 2a) according to either of Claims 1 and 2, characterized in that the cooling element (48) is formed completely from a metal.
- Electrical winding arrangement (2, 2a) according to one of the preceding claims, characterized in that the winding subarrangements (3, 4; 32, 33) are components of a transformer (1, 1A) and each surround a core limb (6, 5; 44, 45) of a closed transformer core (9; 47), the cooling element (20; 48) being arranged in the window (30) of the transformer core (9; 47).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001137518 DE10137518C1 (en) | 2001-07-30 | 2001-07-30 | Electrical winding arrangement |
DE10137518 | 2001-07-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1282142A2 EP1282142A2 (en) | 2003-02-05 |
EP1282142A3 EP1282142A3 (en) | 2003-05-28 |
EP1282142B1 true EP1282142B1 (en) | 2010-09-29 |
Family
ID=7693879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20020090275 Expired - Lifetime EP1282142B1 (en) | 2001-07-30 | 2002-07-23 | Electrical winding assembly |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1282142B1 (en) |
DE (2) | DE10137518C1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101809686B (en) * | 2007-09-28 | 2012-11-14 | 西门子公司 | Electric winding body and transformer having forced cooling |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62165307A (en) * | 1986-01-16 | 1987-07-21 | Fuji Electric Co Ltd | Liquid-cooled uniform magnetic field coil |
SE9704414D0 (en) * | 1997-02-03 | 1997-11-28 | Asea Brown Boveri | Axial air cooling and transformer |
DE19912280C1 (en) * | 1999-03-18 | 2000-09-14 | Siemens Ag | Transformer and method for cooling a transformer |
-
2001
- 2001-07-30 DE DE2001137518 patent/DE10137518C1/en not_active Expired - Lifetime
-
2002
- 2002-07-23 EP EP20020090275 patent/EP1282142B1/en not_active Expired - Lifetime
- 2002-07-23 DE DE50214685T patent/DE50214685D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE10137518C1 (en) | 2003-04-24 |
DE50214685D1 (en) | 2010-11-11 |
EP1282142A3 (en) | 2003-05-28 |
EP1282142A2 (en) | 2003-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2428967B1 (en) | Transformer coil | |
EP2463871B1 (en) | Amorphous transformer core | |
DE69723435T2 (en) | CONTROLLABLE INDUCTOR | |
DE2809070C2 (en) | Electric linear motor | |
WO1993018528A1 (en) | Coil for high-voltage transformer | |
DE112015004298T5 (en) | Superconducting cable | |
EP1496534A1 (en) | High power circuit breaker with heat sink rib assembly | |
DE1803363A1 (en) | Electric medium voltage line for power transmission | |
WO2010149673A1 (en) | Heat sink for an inductor or a transformer and inductor and transformer having such a heat sink | |
DE19854439C2 (en) | Transformer - especially cast resin transformer | |
EP1344230B1 (en) | Medium frequency transformer | |
EP1722998B1 (en) | Magnetic pole for magnetic levitation vehicles | |
EP1282142B1 (en) | Electrical winding assembly | |
EP0932168B1 (en) | Coaxial transformer | |
DE69400184T2 (en) | Power resistance with natural convection | |
EP0818791A1 (en) | High voltage transformer | |
DE3046505C2 (en) | Suction choke for high-current transformers | |
EP0124809B1 (en) | Inductive element | |
DE3629310C2 (en) | ||
DE2904746C3 (en) | Winding for an air-cooled dry-type transformer | |
EP0791941B1 (en) | High tension pancake coil winding for tranformers and chokes | |
DE69716482T2 (en) | CONTROLLABLE INDUCTOR | |
DE102016011386A1 (en) | Cooling element for a liquid-cooled reactor or a liquid-cooled transformer and reactor or transformer with such a cooling element | |
DE1174421B (en) | Winding arrangement for high voltage power transformers | |
EP2034495B1 (en) | Transformer componentry, collet device and switching device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20031103 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB LI SE |
|
17Q | First examination report despatched |
Effective date: 20090701 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REF | Corresponds to: |
Ref document number: 50214685 Country of ref document: DE Date of ref document: 20101111 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50214685 Country of ref document: DE Effective date: 20110630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200813 Year of fee payment: 19 Ref country code: FR Payment date: 20200720 Year of fee payment: 19 Ref country code: DE Payment date: 20200921 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20200713 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50214685 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20201002 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50214685 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210723 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210724 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |