EP1280987B1 - Scanning method for pressure sensors used in the pressure-based detection of filling levels - Google Patents

Scanning method for pressure sensors used in the pressure-based detection of filling levels Download PDF

Info

Publication number
EP1280987B1
EP1280987B1 EP01936012A EP01936012A EP1280987B1 EP 1280987 B1 EP1280987 B1 EP 1280987B1 EP 01936012 A EP01936012 A EP 01936012A EP 01936012 A EP01936012 A EP 01936012A EP 1280987 B1 EP1280987 B1 EP 1280987B1
Authority
EP
European Patent Office
Prior art keywords
pressure
combustion engine
internal combustion
sampling
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01936012A
Other languages
German (de)
French (fr)
Other versions
EP1280987A1 (en
Inventor
Manfred Pfitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1280987A1 publication Critical patent/EP1280987A1/en
Application granted granted Critical
Publication of EP1280987B1 publication Critical patent/EP1280987B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle

Definitions

  • a sampling of the pressure sensor is done every 1 ms, followed by a summation of the samples over a segment.
  • the sum of the samples is divided by the number of samples, so that a arithmetic mean, which is a filling calculation due the respective partial pressures of residual gas and fresh gas of the cylinder one Internal combustion engine allowed.
  • a sampling of the pressure sensor every 1 ms may be caused by glitches, for example, during cold start or due to EMC influences to wrong Print information for the Frischgasbe spallungsbetician lead because the determined partial pressures are inaccurate and the actual circumstances do not play correctly.
  • the proposed solution according to the invention can be the Total partial pressure at the respective cylinders one Internal combustion engine shortly before the time "inlet valve closes" (ES) Measure several times in succession. It will be an advantageous one Sampling method proposed in which the samples by the number of Scans are shared and so a more representative, the actual Conditions reflecting average pressure for further processing Available. Based on such a determined, representative Medium pressure can be a calculation of the fresh gas filling in the cylinder be performed. Due to the higher number of samples of the print at the time "inlet valve closes" (ES) corresponds to the intake manifold in the Internal combustion engine determined intake manifold pressure in the cylinder prevailing partial pressure. Because a large number of scans are short be made consecutively during the above mentioned time, Any recorded false samples caused by EMC or other interference peaks during the cold start phase averaged out, so that no incorrect, because falsified printing information in the Fresh gas filling invoice received.
  • the signal curve of the pressure sensor signal is shown plotted over the time axis.
  • the signal curve of the pressure sensor signal 1 is over the time axis 2 applied.
  • Timeline 2 is scaled in [ms]. From the presentation of the Pressure sensor signal 1 in Fig. 1 is the amplitude 3 of the pressure signal without further readable. From the course of the pressure signal 1 shows that the Pulsation form of the pressure signal 1 over the time axis, i. the Crankshaft angle is extremely unbalanced.
  • Fig. 2 shows the course of the pressure signal, which continuously in the ms cycle is scanned and the reference to the crankshaft.
  • the generation according to FIG. 3 leads to the generation of the scanning sequence Timing of closing the intake valve clearer.
  • the curve representing the course of the crankshaft revolution is horizontal first for a first cylinder of an internal combustion engine with a Reference mark 5 (GRD value). From this value, the one certain angular position of the crankshaft, one counts in the Control electronics implemented software counter 4 the crankshaft angle, wherein the inlet valve of the respective cylinder of the Internal combustion engine closes. This time is denoted by reference numeral 9 identified.
  • reference numeral 9 identified.
  • the aspiration of the fuel / air mixture is now complete, the point in time 9 of closing the inlet valve (s) concerned Cylinder is now reached.
  • the inlet valve is about to transition to its closed state. During this process, the total partial pressure of the concerned Cylinder scanned several times in succession and corresponding pressure signals added.
  • the scanning sequence 10, which the scanning area 11 at time 9 of Closing the inlet valve sweeps over - for example, over one Microcontroller with a quartz frequency of 24 MHz - generated and enabled Scanning sequences 10 of individual pulses 11, which are only 160 ⁇ s apart. Compared with a sampling every 1 ms as previously used in the
  • the microcontroller with, for example, 24 MHz quartz frequency can the scanning signals in the calculation and evaluation of the same be weighted differently.
  • These signals correspond with very high Accuracy of the actual total partial pressure in the corresponding cylinder the internal combustion engine.
  • an ignition of the compressed fuel / air mixture in one another cylinder namely the cylinder 2 of the internal combustion engine, which is identified by reference numeral 13.
  • the ignition point is a few Crankshaft angle degrees before top dead center of the cylinder 2 of Internal combustion engine, designated by reference numeral 14 in FIG.
  • Fig. 4 shows a 1 ms sample with averaging over 1 segment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The invention relates to a method for scanning a sensor that senses a pressure signal and the pressure signals of a pressure-signal based cylinder filling calculation for the purpose of calculating the refilling of the cylinders of an internal combustion engine with fresh gas. At the point in time (9) when the inlet valves on the respective cylinders of an internal combustion engine are closed the pressure signal (1) is sensed several times in succession by a scanning sequence (10) of individual pulses (12).

Description

Technisches GebietTechnical area

Bei heutigen Anwendungen von Abtastverfahren zur sensorgestützten, druckbasieren Füllungserfassung erfolgt eine Abtastung des Drucksensors alle 1 ms, danach erfolgt eine Aufsummation der Abtastwerte über ein Segment. Die Summe der Abtastwerte wird durch die Anzahl der Abtastungen geteilt, so daß ein arithmetischer Mittelwert erhalten wird, der eine Füllungsberechnung aufgrund der jeweiligen Partialdrücke von Restgas und Frischgas des Zylinders einer Verbrennungskraftmaschine erlaubt.In today's applications of sensing techniques for sensor-based, pressure based fill detection, a sampling of the pressure sensor is done every 1 ms, followed by a summation of the samples over a segment. The The sum of the samples is divided by the number of samples, so that a arithmetic mean, which is a filling calculation due the respective partial pressures of residual gas and fresh gas of the cylinder one Internal combustion engine allowed.

Stand der TechnikState of the art

Bei dem bisher angewandten Verfahren erfolgt eine Abtastung eines Drucksignal sensierenden Drucksensors kontinuierlich alle 1 ms und anschließender Mittelwertbildung zwischen zwei Zündungen (Segment). Die erhaltenen Werte dienen zur Bestimmung des Gesamtpartialdruckes, bestehend aus dem Restgaspartialdruck und dem Frischgaspartialdruck. Eine Bestimmung des Gesamtpartialdruckes und die darauf beruhende Feillungsermittlung an den jeweiligen Zylindern einer Verbrennungskraftmaschine liefert nur bei symmetrischer Pulsationsamplitude präzise Werte, um eine indirekt über den Saugrohrdruck berechnete Füllungsbestimmung durchführen zu können. In der Praxis können die an der Verbrennungskraftmaschine auftretenden Pulsationsfortnen zum Zeitpunkt Einlaßventil schließt extrem unsymmetrisch sein; daher kann eine arithmetische Mittelwertbildung zur Bestimmung der Zylinderfrischluftfüllung unpräzise Ergebnisse liefern. Eine alle 1 ms erfolgende Abtastung ist wegen sporadisch auftretenden Störungen wesentlich empfindlicher als die Mittelwertsbildung. Diese Störungen können z.B. durch elektromagnetische Einflüsse (EMV) hervorgerufen werden. Ein solcher elektrischer Störimpuls kann auch beispielsweise beim Kaltstart auftreten und das Meßergebnis des Drucksensors total verfälschen, so daß eine nicht zutreffende Füllungsberechnung für die Zylinder der Verbrennungskraftmaschine erfolgt. Daraus resultieren ein schlechtes Kaltstartverhalten, sowie eine starke, jedoch vermeidbare Emissionszunahme während der Startphase, die die Umwelt erheblich belastet, jedoch vermeidbar wäre.In the previously used method, a sampling of a pressure signal is performed Sensing pressure sensor continuously every 1 ms and then Averaging between two ignitions (segment). The values obtained serve to determine the total partial pressure, consisting of the Residual gas partial pressure and the fresh gas partial pressure. A provision of the Total partial pressure and the resulting determination of the determination of the respective cylinders of an internal combustion engine supplies only symmetric pulsation amplitude gives precise values to an indirectly over the Intake manifold pressure calculated filling determination to be able to perform. In the Practice can occur on the internal combustion engine Pulsationsfortnen at the time intake valve closes extremely unbalanced be; Therefore, arithmetic averaging can be used to determine the Cylinder fresh air filling to provide inaccurate results. One every 1 ms Sampling is much more sensitive because of sporadic interference as the averaging. These disturbances can be e.g. by electromagnetic influences (EMC) are caused. Such a electrical interference pulse can also occur, for example, during cold start and the Measurement result of the pressure sensor totally falsify, so that a not applicable Filling calculation for the cylinders of the internal combustion engine takes place. This results in a bad cold start behavior, as well as a strong, however avoidable increase in emissions during the launch phase affecting the environment considerably burdened, but would be avoidable.

Eine alle 1 ms erfolgende Abtastung des Drucksensors kann durch Störspitzen, etwa beim Kaltstart oder aufgrund von EMV-Einflüssen zu falschen Druckinformationen für die Frischgasbefüllungsberechnung führen, da die ermittelten Partialdrücke unzutreffend sind und die tatsächlichen Gegebenheiten nicht korrekt wiedergeben.A sampling of the pressure sensor every 1 ms may be caused by glitches, for example, during cold start or due to EMC influences to wrong Print information for the Frischgasbefüllungsberechnung lead because the determined partial pressures are inaccurate and the actual circumstances do not play correctly.

In der US-A-4991554 wird ein Zylinderdrucksignal zu einem vorbestimmten kurbelwellenwinkel ϑ0 nach dem unteren Totpunkt UT gemessem.In US-A-4991554 a cylinder pressure signal is measured at a predetermined crankshaft angle θ 0 after bottom dead center UT.

Darstellung der ErfindungPresentation of the invention

Mit der erfindungsgemäß vorgeschlagenen Lösung läßt sich der Gesamtpartialdruck an den jeweiligen Zylindern einer Verbrennungskraftmaschine kurz vor dem Zeitpunkt "Einlaßventil schließt" (ES) mehrmals hintereinander messen. Es wird in vorteilhafter Weise ein Abtastverfahren vorgeschlagen, bei dem die Abtastwerte durch die Anzahl der Abtastungen geteilt werden und so ein repräsentativer, die tatsächlichen Gegebenheiten widerspiegelnder Mittelwertdruck zur weiteren Verarbeitung zur Verfügung steht. Anhand eines solcherart ermittelten, repräsentativen Mitteldruckes kann eine Berechnung der Frischgasfüllung im Zylinder durchgeführt werden. Durch die höhere Anzahl von Abtastungen des Druckes zum Zeitpunkt "Einlaßventil schließt" (ES) entspricht der im Saugrohr der Verbrennungskraftmaschine ermittelte Saugrohrdruck dem im Zylinder herrschenden Gesamtpartialdruck. Da eine große Anzahl von Abtastungen kurz hintereinander während des oben genannten Zeitpunktes vorgenommen werden, werden eventuell aufgenommene Fehlabtastungen, verursacht durch EMV oder andere Störspitzen während der Kaltstartphase ausgemittelt, so daß keine unzutreffende, weil verfälschte Druckinformation in die Frischgasfüllungsrechnung eingeht.With the proposed solution according to the invention can be the Total partial pressure at the respective cylinders one Internal combustion engine shortly before the time "inlet valve closes" (ES) Measure several times in succession. It will be an advantageous one Sampling method proposed in which the samples by the number of Scans are shared and so a more representative, the actual Conditions reflecting average pressure for further processing Available. Based on such a determined, representative Medium pressure can be a calculation of the fresh gas filling in the cylinder be performed. Due to the higher number of samples of the print at the time "inlet valve closes" (ES) corresponds to the intake manifold in the Internal combustion engine determined intake manifold pressure in the cylinder prevailing partial pressure. Because a large number of scans are short be made consecutively during the above mentioned time, Any recorded false samples caused by EMC or other interference peaks during the cold start phase averaged out, so that no incorrect, because falsified printing information in the Fresh gas filling invoice received.

Ein weiterer mit der erfindungsgemäßen Lösung einhergehender Vorteil ist der Umstand, daß bei Motoren mit großem Verhältnis von Zylinder-/Saugrohrvolumen, d.h. bei extrem kleinem Saugrohr, die dämpfende Wirkung des Saugrohres in Bezug auf die Ansaugluftpulsationen sehr stark in seiner Wirkung reduziert ist. Eine Frischluftberechnung über den Saugrohrdruck wäre in diesem Falle nicht möglich, da das Drucksignal stationär zu große Pulsationen aufweist.Another advantage associated with the solution according to the invention is the In the case of engines with a high ratio of cylinder / i.e. with extremely small intake manifold, the dampening effect of Intake manifold in terms of Ansaugluftpulsationen very strong in its effect is reduced. A fresh air calculation on the intake manifold pressure would be in this Trap not possible because the pressure signal has stationary too large pulsations.

Zeichnungdrawing

Anhand der Zeichnung wird die Erfindung nachstehend näher erläutert.Reference to the drawings, the invention will be explained in more detail below.

Es zeigt:

Fig. 1
den Signalverlauf des Drucksensorsignals aufgetragen über der Zeitachse,
Fig. 2
den Verlauf des kontinuierlich alle 1 ms auftretenden Abtastsignales und Bezugssignal zur Kurbelwelle,
Fig. 3
das Erzeugen eines Abtastsignalpaketes zum Zeitpunkt "Einlaßventil schließt", aufgetragen über dem Kurbelwellenwinkel, und
Fig. 4
mit Mittelwertbildung über 1 Segment (Zeit zwischen zwei Zündungen).
It shows:
Fig. 1
the waveform of the pressure sensor signal plotted against the time axis,
Fig. 2
the course of the scanning signal occurring continuously every 1 ms and the reference signal to the crankshaft,
Fig. 3
the generation of a Abtastsignalpaketes at the time "inlet valve closes", plotted against the crankshaft angle, and
Fig. 4
with averaging over 1 segment (time between two ignitions).

Ausführungsvarianten:Models:

In der Darstellung gemäß Fig. 1 ist der Signalverlauf des Drucksensorsignales über der Zeitachse aufgetragen.In the illustration according to FIG. 1, the signal curve of the pressure sensor signal is shown plotted over the time axis.

In [mV] ist der Signalverlauf des Drucksensorsignales 1 über der Zeitachse 2 aufgetragen. Die Zeitachse 2 ist in [ms] skaliert. Aus der Darstellung des Drucksensorsignales 1 in Fig. 1 ist die Amplitude 3 des Drucksignales ohne weiteres ablesbar. Aus dem Verlauf des Drucksignales 1 geht hervor, daß die Pulsationsform des Drucksignales 1 über der Zeitachse, d.h. dem Kurbelwellenwinkel extrem unsymmetrisch verläuft.In [mV], the signal curve of the pressure sensor signal 1 is over the time axis 2 applied. Timeline 2 is scaled in [ms]. From the presentation of the Pressure sensor signal 1 in Fig. 1 is the amplitude 3 of the pressure signal without further readable. From the course of the pressure signal 1 shows that the Pulsation form of the pressure signal 1 over the time axis, i. the Crankshaft angle is extremely unbalanced.

Fig. 2 zeigt den Verlauf des Drucksignales, welches kontinuierlich im ms-Takt abgetastet wird und den Bezug zur Kurbelwelle.Fig. 2 shows the course of the pressure signal, which continuously in the ms cycle is scanned and the reference to the crankshaft.

In der oberen Hälfte der Fig. 2 ist der Verlauf des Drucksignales über der Zeitachse 2 aufgetragen; in der unteren Hälfte der Fig. 2 ist der Verlauf 1.2 des ms-Signales wiedergegeben und der Bezug zur Kurbelwelle.In the upper half of Fig. 2, the course of the pressure signal over the Time axis 2 applied; in the lower half of Fig. 2, the course is 1.2 of the ms signal reproduced and the reference to the crankshaft.

Aus der Darstellung gemäß Fig. 3 geht die Generierung der Abtastfolge zum Zeitpunkt des Schließens des Einlaßventiles deutlicher hervor.The generation according to FIG. 3 leads to the generation of the scanning sequence Timing of closing the intake valve clearer.

Die den Verlauf der Kurbelwellenumdrehung darstellende Horizontale ist zunächst für einen ersten Zylinder einer Verbrennungskraftmaschine mit einer Referenzmarke 5 (GRD-Wert) versehen. Von diesem Wert aus, der einer bestimmten Winkelstellung der Kurbelwelle entspricht, zählt ein in der Steuerungselektronik implementierter Softwarezähler 4 den Kurbelwellenwinkel, bei dem das Einlaßventil des betreffenden Zylinders der Verbrennungskraftmaschine schließt. Dieser Zeitpunkt ist mit Bezugszeichen 9 identifiziert. Während der Zeitspanne, die von der Referenzmarke 5 bis zum Zeitpunkt des Schließens des Einlaßventiles des betreffenden Zylinders der Verbrennungskraftmaschine vergeht, hat an dem ersten Zylinder einer Verbrennungskraftmaschine eine Zündung des verdichteten Kraftstoff/Luftgemisches stattgefunden, ferner hat der Kolben des betreffenden Zylinders 1 den Hubweg vom oberen Totpunkt 6 zum unteren Totpunkt 8 zurückgelegt. Das Ansaugen des Kraftstoff/Luftgemisches ist nun abgeschlossen, der Zeitpunkt 9 des Schließens des oder der betreffenden Einlaßventile am Zylinder ist nunmehr erreicht.The curve representing the course of the crankshaft revolution is horizontal first for a first cylinder of an internal combustion engine with a Reference mark 5 (GRD value). From this value, the one certain angular position of the crankshaft, one counts in the Control electronics implemented software counter 4 the crankshaft angle, wherein the inlet valve of the respective cylinder of the Internal combustion engine closes. This time is denoted by reference numeral 9 identified. During the period of time from the reference mark 5 to the Timing of the closing of the inlet valve of the respective cylinder Internal combustion engine passes, has at the first cylinder one Internal combustion engine an ignition of the compacted Fuel / air mixture took place, also has the piston of the relevant Cylinder 1 the stroke from top dead center 6 to bottom dead center. 8 kilometer. The aspiration of the fuel / air mixture is now complete, the point in time 9 of closing the inlet valve (s) concerned Cylinder is now reached.

Das Einlaßventil ist im Begriff, in seinen geschlossenen Zustaad überzugehen. Während dieses Vorganges wird der Gesamtpartialdruck des betreffenden Zylinders mehrmals hintereinander abgetastet und entsprechende Drucksignale aufgenommen. Die Abtastfolge 10, die den Abtastbereich 11 zum Zeitpunkt 9 des Schließens des Einlaßventiles überstreicht - beispielsweise über einer Mikrokontroller mit einer Quarzfrequenz von 24 MHz - erzeugt und ermöglicht Abtastfolgen 10 von Einzelimpulsen 11, die nur 160 µs auseinanderliegen. Verglichen mit einer alle 1 ms erfolgenden Abtastung wie sie bisher aus demThe inlet valve is about to transition to its closed state. During this process, the total partial pressure of the concerned Cylinder scanned several times in succession and corresponding pressure signals added. The scanning sequence 10, which the scanning area 11 at time 9 of Closing the inlet valve sweeps over - for example, over one Microcontroller with a quartz frequency of 24 MHz - generated and enabled Scanning sequences 10 of individual pulses 11, which are only 160 μs apart. Compared with a sampling every 1 ms as previously used in the

Stand der Technik bekannt ist, sind Abtastabstände von 160 µs möglich, so daß eine etwa 6-mal häufigere Abtastung des Drucksignales pro Zylinder der Verbrennungskraftmaschine, verglichen mit bisherigen Anwendungen erfolgen kann.State of the art is known, scanning distances of 160 microseconds are possible, so that an approximately 6 times more frequent sampling of the pressure signal per cylinder Internal combustion engine, compared with previous applications done can.

Im Mikrocontroller mit einer beispielsweise 24 MHz betragenden Quarzfrequenz können die Abtastsignale bei der Berechnung und Auswertung derselben unterschiedlich gewichtet werden. So lassen sich die Drucksignale zum Zeitpunkt 9, d.h. des Schließens des Einlaßventiles einer Berechnung der Füllungsermittlung des betreffenden Zylinders bei der Mittelung unterschiedlich gewichten; die Signale, die recht früh in Bezug auf den Schließzeitpunkt 9 des Einlaßventiles liegen, oder diejenigen Signale, die spät liegen, können bei der Mittelwertbildung im Mikrocontroller wenig stark gewichtet werden, verglichen mit denjenigen Signalen, die unmittelbar vor dem tatsächlichen Schließzeitpunkt des Einlaßventiles erhalten werden. Diese Signale entsprechen mit sehr hoher Genauigkeit dem tatsächlichen Gesamtpartialdruck im entsprechenden Zylinder der Verbrennungskraftmaschine. Diese Signale lassen sich bei der Ermittlung des tatsächlichen Gesamtpartialdruckes im Zylinder der Verbrennungskraftmaschine bei der Mittelwertbildung dann stärker berücksichtigen. Die Mittelwertbildung im Druckkontroller aus Einzelabtastsignalen 11, die alle 160 µs aufgenommen werden, erfolgt bei A/D-Wandelzeiten von ca 10 µs und kann auch derart vorgenommen werden, daß alle Signalwerte gleichmäßig gewichtet in die Mittelwertberechnung eingehen. So wird vermieden, daß falsche Abtastinformationen die ermittelten Mittelwertergebnisse verfälschen und ein Drucksignal in die Frischgasfüllungsrechnung eingeht, welches insbesondere während der Kaltstartphase durch sporadisch auftretende Störungen oder EMV-Einflüsse verfälscht ist.In the microcontroller with, for example, 24 MHz quartz frequency can the scanning signals in the calculation and evaluation of the same be weighted differently. This allows the pressure signals at the time 9, i. the closing of the inlet valve of a calculation of the filling determination of the cylinder concerned in the averaging differently; the Signals that are quite early in relation to the closing time 9 of the intake valve lie, or those signals that are late, when averaging are little heavily weighted in the microcontroller compared to those Signals immediately before the actual closing time of the Inlet valves are obtained. These signals correspond with very high Accuracy of the actual total partial pressure in the corresponding cylinder the internal combustion engine. These signals can be found in the determination of the actual total partial pressure in the cylinder of the internal combustion engine then take greater account of averaging. The averaging in the Single-scan signal controller 11, which records every 160 μs be carried out at A / D conversion times of about 10 μs and can be so be made that all signal values evenly weighted in the Average calculation. This will avoid that wrong Scanning information falsifies and determines the averaged results obtained Pressure signal enters the fresh gas filling, which in particular During the cold start phase due to sporadic interference or EMC influences is falsified.

Bei weiterer Umdrehung der Kurbelwelle um ihre Kubelwellenachse erfolgt gemäß Fig. 3 eine Zündung des verdichteten Kraftstoff/Luftgemisches in einem weiteren Zylinder, nämlich dem Zylinder 2 der Verbrennungskraftmaschine, welcher mit Bezugszeichen 13 gekennzeichnet ist. Der Zündzeitpunkt liegt einige Kurbelwellenwinkelgrade vor dem oberen Totpunkt des Zylinders 2 der Verbrennungskraftmaschine, in der Fig. 3 mit Bezugszeichen 14 bezeichnet.Upon further rotation of the crankshaft about their crankshaft axis takes place As shown in FIG. 3, an ignition of the compressed fuel / air mixture in one another cylinder, namely the cylinder 2 of the internal combustion engine, which is identified by reference numeral 13. The ignition point is a few Crankshaft angle degrees before top dead center of the cylinder 2 of Internal combustion engine, designated by reference numeral 14 in FIG.

Fig. 4 zeigt eine 1-ms-Abtastung mit Mittelwertbildung über 1 Segment.Fig. 4 shows a 1 ms sample with averaging over 1 segment.

Aus der nur schematisch wiedergegebenen Darstellung gemäß Fig. 4 geht hervor, daß die vom Sensor erhaltenen Drucksignale in einer Summationseinheit 17 sämtlich aufaddiert werden. Die Summationseinheit 17 ist über ein Rücksetzelement 16 auf den Wert 0 rücksetzbar. Über eine elektronisch implementierte Zähleinrichtung 15 wird die Anzahl der ermittelten Einzelabtastungen 12 innerhalb der Abtastfolge 10 aufgenommen. Auch die Zähleinrichtung 15 ist mit einem Rücksetzelement 18 versehen. Die Signale sowohl der Zähleinrichtung 15 als auch der Summationseinheit 17 werden an eine Mittelwertbildungsstufe 19 übertragen, wo eine Mittelwertbildung entweder gewichtet oder arithmetisch erfolgt. Bei einer gewichteten Mittelwertbildung werden diejenigen Signale, die in der Nähe des tatsächlichen Schließpunktes des Einlaßventiles liegen, stärker berücksichtigt, als diejenigen Signale, die weiter entfernt vom tatsächlichen Schließpunkt des Einlaßventiles liegen. Bei einer arithmetischen Mittelwertbildung werden die erhaltenen Druckwerte durch die Anzahl der ermittelten Einzelimpulse 12 geteilt. Innerhalb dieses Funktionsrahmens, gekennzeichnet durch Bezugszeichen 20, kann eine Mittelwertbildung erfolgen, der jedoch eine höhere Anzahl von den tatsächlichen Gesamtpartialdruckverhältnis am Zylinder wiedergebenden Drucksignalen zugrundeliegen. Daher sind die solcher Art erhaltenen Mittelwerte wesentlich aussagekräftiger und spiegeln ein Abbild der tatsächlich am jeweiligen Zylinder, dessen Frischluftfüllung berechnet werden soll, vorliegenden Gegebenheiten wider. Mittels des erfindungsgemäß vorgeschlagenen Verfahrens ist die Abtastfrequenz genau zum kritischen Zeitpunkt, d.h. dem Schließen 9 des Einlaßventiles des jeweiligen Zylinders der Verbrennungskraftmaschine signifikant erhöht worden. Durch die Mittelwertbildung lassen sich weiterhin Störsignale und nur sporadisch auftretende Signale, die ein Meßergebnis erheblich verfälschen können, wirksam ausschließen. From the only schematically represented representation according to FIG. 4 it is apparent that that the pressure signals obtained from the sensor in a summation unit 17th all be added up. The summation unit 17 is above a Reset element 16 to the value 0 resettable. About an electronic implemented counter 15 is the number of determined Single scans 12 are recorded within the scan sequence 10. Also the Counter 15 is provided with a reset element 18. The signals Both the counter 15 and the summation unit 17 are connected to a Averaging stage 19 transmitted where averaging either weighted or arithmetically done. For a weighted average are those signals that are near the actual closing point of the Intake valves are more considered than those signals that continue lie away from the actual closing point of the intake valve. At a Arithmetic averaging, the pressure values obtained by the Number of determined individual pulses 12 divided. Within this Functional frame, characterized by reference numeral 20, a Averaging, but a higher number of the actual Total partial pressure ratio at the cylinder reproducing pressure signals underlie. Therefore, the averages obtained in this way are essential more meaningful and reflect an image of the actual cylinder, whose fresh air filling is to be calculated, present circumstances contrary. By means of the method proposed by the invention is the Sampling frequency exactly at the critical time, i. the closing 9 of the Inlet valves of the respective cylinder of the internal combustion engine been significantly increased. By averaging can continue Interference signals and only sporadically occurring signals, the measurement result considerably be able to falsify effectively exclude.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1.1.
Signalverlauf DrucksensorsignalSignal curve pressure sensor signal
1.11.1
1-ms Signal1 ms signal
2.Second
Zeitachsetimeline
3.Third
Amplitudeamplitude
4.4th
Softwarezählersoftware counters
5.5th
Referenzmarke (GRD-Wert) 6. oberer Totpunkt Zylinder 1Reference mark (GRD value) 6. top dead center cylinder 1
7.7th
Zündzeitpunkt Zylinder 1Timing of cylinder 1
8.8th.
unterer Totpunkt Zylinder 1bottom dead center cylinder 1
9.9th
Schließzeitpunkt EinlaßventilClosing time inlet valve
10.10th
Abtastfolgesampling sequence
11.11th
Abtastbereichscanning
12.12th
EinzelimpulsSingle pulse
13.13th
Zündzeitpunkt Zylinder 2Ignition timing cylinder 2
14.14th
oberer Totpunkt Zylinder 2top dead center cylinder 2
15.15th
Zähleinrichtung AbtastanzahlCounting device Number of samples
16.16th
Rücksetzelement nach SegmentendeReset element after segment end
17.17th
Summierersumming
18.18th
Rücksetzelement nach SegmentendeReset element after segment end
19.19th
Mittelwertbildneraverager
20.20th
Funktionsrahmenfunctional frame

Claims (8)

  1. Method for sampling a pressure sensor which generates pressure signals (1) and which picks up pressure signals (1) which are used as the basis for a pressure-signal-based cylinder charge calculation for calculating the fresh gas charge of the cylinders of an internal combustion engine, characterized in that at the time when the respective inlet valve on the respective cylinders of an internal combustion engine is closed (9) the pressure signal (1) is recorded repeatedly in succession by means of a sequence (10) of sampling operations.
  2. Method according to Claim 1, characterized in that the overall partial pressure in the cylinder of the internal combustion engine is recorded repeatedly in succession just before the time (9) when the inlet valve closes.
  3. Method according to Claim 1, characterized in that the number of individual sampling operations (12) within the sampling sequence (10) of sampling operations is dependent on the basic pulsation of the internal combustion engine.
  4. Method according to Claim 1, characterized in that the sampling sequence (10) of the individual sampling operations (12) is 160 µs.
  5. Method according to Claim 1, characterized in that a representative rotational speed value for calculating the fresh gas charge in the cylinder is made available from the number of individual sampling operations (12) within the sampling sequence (10).
  6. Method according to Claim 1, characterized in that the sampling sequence (10) is generated after the expiry of a time period (4) after a reference mark (5).
  7. Method according to Claim 1, characterized in that the sampling sequence (10) is generated after the passage of the bottom dead centre (8) of the respective cylinder of the internal combustion engine.
  8. Method according to Claim 1, characterized in that the sampling sequence (10) is generated by a micro controller with a quartz frequency of 24 MHz with A/D conversion times of approximately 10 µs.
EP01936012A 2000-05-04 2001-05-02 Scanning method for pressure sensors used in the pressure-based detection of filling levels Expired - Lifetime EP1280987B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10021647A DE10021647A1 (en) 2000-05-04 2000-05-04 Scanning method for pressure sensors with pressure-based filling detection
DE10021647 2000-05-04
PCT/DE2001/001635 WO2001083968A1 (en) 2000-05-04 2001-05-02 Scanning method for pressure sensors used in the pressure-based detection of filling levels

Publications (2)

Publication Number Publication Date
EP1280987A1 EP1280987A1 (en) 2003-02-05
EP1280987B1 true EP1280987B1 (en) 2005-12-28

Family

ID=7640714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01936012A Expired - Lifetime EP1280987B1 (en) 2000-05-04 2001-05-02 Scanning method for pressure sensors used in the pressure-based detection of filling levels

Country Status (5)

Country Link
US (1) US6675638B2 (en)
EP (1) EP1280987B1 (en)
JP (1) JP2003532019A (en)
DE (2) DE10021647A1 (en)
WO (1) WO2001083968A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148238B2 (en) * 2005-05-19 2008-09-10 株式会社デンソー Common rail fuel injection system
US7606655B2 (en) * 2006-09-29 2009-10-20 Delphi Technologies, Inc. Cylinder-pressure-based electronic engine controller and method
GB2469826B (en) * 2009-04-29 2012-11-21 Gm Global Tech Operations Inc Method for estimating the pressure prevailing in an intake manifold of an internal combustion engine and method of controlling an internal combustion engine
US9903306B2 (en) 2013-02-08 2018-02-27 Cummins Inc. System and method for acquiring pressure data from a fuel accumulator of an internal combustion engine
US9551631B2 (en) 2013-02-08 2017-01-24 Cummins Inc. System and method for adapting to a variable fuel delivery cutout delay in a fuel system of an internal combustion engine
US9169784B2 (en) 2013-02-08 2015-10-27 Cummins Inc. Processing system and method for calculating pressure decreases due to injection events in a high-pressure fuel system
US9267460B2 (en) 2013-07-19 2016-02-23 Cummins Inc. System and method for estimating high-pressure fuel leakage in a common rail fuel system
US9897504B2 (en) 2015-04-20 2018-02-20 Infineon Technologies Ag System and method for a MEMS sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196153A (en) * 1989-01-20 1990-08-02 Mitsubishi Electric Corp Ignition timing controller for engine
DE3917905A1 (en) * 1989-06-01 1990-12-06 Siemens Ag IC engine efficiency optimisation system - uses detected engine knock and monitored air of engine cylinder working vol to adjust ignition timing
DE3918534A1 (en) * 1989-06-07 1990-12-20 Braun Melsungen Ag PRESSURE SENSOR FOR INFUSION PIPES
CA2104144C (en) * 1992-08-21 2004-01-06 Jay C. Mccombie Dual sensor misfire detection apparatus and method for an internal combustion engine
DE4341796A1 (en) 1993-12-08 1995-09-14 Bosch Gmbh Robert Method for controlling the combustion in the combustion chamber of an internal combustion engine
DE4441194A1 (en) * 1994-11-18 1996-05-23 Helmut Dr Baader Pressure sensor
US5715794A (en) * 1995-05-12 1998-02-10 Yamaha Hatsudoki Kabushiki Kaisha Engine control system and method
US5616834A (en) * 1996-01-25 1997-04-01 Motorola Inc. Misfire detection dependent on intake air charge fluctuations
DE19756619B4 (en) * 1997-04-01 2007-03-15 Robert Bosch Gmbh System for operating an internal combustion engine, in particular for a motor vehicle
DE19741820B4 (en) 1997-09-23 2009-02-12 Robert Bosch Gmbh Method for evaluating the combustion chamber pressure profile
US6138504A (en) * 1998-06-04 2000-10-31 Ford Global Technologies, Inc. Air/fuel ratio control system
JP2000045823A (en) * 1998-07-28 2000-02-15 Honda Motor Co Ltd Control method for internal combustion engine
DE19900738C1 (en) * 1999-01-12 2000-06-15 Daimler Chrysler Ag Determining combustion chamber pressure in combustion engine; involves treating sensor offset as variable over compression or expansion phases derived from estimated, measured pressures

Also Published As

Publication number Publication date
WO2001083968A1 (en) 2001-11-08
JP2003532019A (en) 2003-10-28
US6675638B2 (en) 2004-01-13
EP1280987A1 (en) 2003-02-05
US20020170345A1 (en) 2002-11-21
DE10021647A1 (en) 2001-11-15
DE50108551D1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US5359883A (en) Apparatus and method for analyzing events for an internal combustion engine
DE19622448B4 (en) Method for detecting misfiring
DE4443517A1 (en) Load sensing device for internal combustion engine
EP1972780A1 (en) Vehicle diagnosis system and method
KR900001562B1 (en) Apparatus for controlling fuel injection timing of a fuel injection pump
DE602004004493T2 (en) Device for calibrating a pressure measuring chain in a cylinder of a motor vehicle diesel engine
DE4001362C2 (en)
EP0269606B1 (en) Method of and device for testing an internal-combustion engine
EP1280987B1 (en) Scanning method for pressure sensors used in the pressure-based detection of filling levels
US4102181A (en) Procedure for determining the starting point of fuel injection especially for running internal-combustion engines
US5132909A (en) Apparatus for diagnosing individual cylinder performance by estimated instantaneous engine speeds
US20010006004A1 (en) Method for determining the top dead centre of an internal combustion engine
DE102010048787A1 (en) Systems and methods for measuring vehicle speed
US4158305A (en) Method for dynamically timing an apparatus
EP1046026B1 (en) Method and arrangement for evaluating combustion processes in an internal combustion engine
Hamedović et al. IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure
DE19941171B4 (en) Method for determining the torque applied by an internal combustion engine
US5000042A (en) Engine timing calibration method
DE4126182A1 (en) ELECTRONIC CONTROL DEVICE FOR FUEL INJECTION IN AN INTERNAL COMBUSTION ENGINE
CA1216672A (en) Method of locating engine top dead center position
DE69815409T2 (en) Normalized misfire detection method
DE4020681C2 (en) Device for determining at least one machine parameter in an internal combustion engine
DE3127264C2 (en) Device for determining the trigger point of an electrical signal
EP0569608A1 (en) Monitoring procedure for combustion engine cylinder pressure sensors
EP0269607B1 (en) Diagnosis method and apparatus for multi-cylinder combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021204

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50108551

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070526

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140516

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140724

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108551

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601