EP1278865A1 - Nucleotide sequences which code for the pgsa2 gene - Google Patents
Nucleotide sequences which code for the pgsa2 geneInfo
- Publication number
- EP1278865A1 EP1278865A1 EP01940367A EP01940367A EP1278865A1 EP 1278865 A1 EP1278865 A1 EP 1278865A1 EP 01940367 A EP01940367 A EP 01940367A EP 01940367 A EP01940367 A EP 01940367A EP 1278865 A1 EP1278865 A1 EP 1278865A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gene
- codes
- polynucleotide
- sequence
- pgsa2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000623 proteins and genes Proteins 0.000 title claims description 57
- 108091028043 Nucleic acid sequence Proteins 0.000 title claims description 17
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 37
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 37
- 239000002157 polynucleotide Substances 0.000 claims abstract description 37
- 101150039978 pgsA-2 gene Proteins 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 16
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 241000186031 Corynebacteriaceae Species 0.000 claims abstract description 14
- 108010086940 CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase Proteins 0.000 claims abstract description 13
- 150000008575 L-amino acids Chemical class 0.000 claims abstract description 9
- 241000894006 Bacteria Species 0.000 claims abstract description 8
- 241000186254 coryneform bacterium Species 0.000 claims abstract description 8
- 239000000523 sample Substances 0.000 claims abstract description 5
- 150000001413 amino acids Chemical group 0.000 claims description 45
- 241000186226 Corynebacterium glutamicum Species 0.000 claims description 34
- 235000001014 amino acid Nutrition 0.000 claims description 32
- 229940024606 amino acid Drugs 0.000 claims description 32
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 25
- 108020004414 DNA Proteins 0.000 claims description 24
- 239000004472 Lysine Substances 0.000 claims description 15
- 239000002773 nucleotide Substances 0.000 claims description 12
- 125000003729 nucleotide group Chemical group 0.000 claims description 12
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 12
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 12
- 229920001184 polypeptide Polymers 0.000 claims description 11
- 235000018102 proteins Nutrition 0.000 claims description 11
- 102000004169 proteins and genes Human genes 0.000 claims description 11
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 claims description 11
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 9
- 235000018977 lysine Nutrition 0.000 claims description 9
- 239000013600 plasmid vector Substances 0.000 claims description 7
- 235000019766 L-Lysine Nutrition 0.000 claims description 6
- 241000186216 Corynebacterium Species 0.000 claims description 5
- 238000009396 hybridization Methods 0.000 claims description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 4
- 241000319304 [Brevibacterium] flavum Species 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 claims description 4
- 239000002299 complementary DNA Substances 0.000 claims description 4
- 238000000855 fermentation Methods 0.000 claims description 4
- 230000004151 fermentation Effects 0.000 claims description 4
- 230000014509 gene expression Effects 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 4
- 230000035772 mutation Effects 0.000 claims description 4
- 230000002018 overexpression Effects 0.000 claims description 4
- 230000010076 replication Effects 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 108091000044 4-hydroxy-tetrahydrodipicolinate synthase Proteins 0.000 claims description 2
- 108010055400 Aspartate kinase Proteins 0.000 claims description 2
- 241001517047 Corynebacterium acetoacidophilum Species 0.000 claims description 2
- 241000133018 Corynebacterium melassecola Species 0.000 claims description 2
- 241000337023 Corynebacterium thermoaminogenes Species 0.000 claims description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 claims description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 claims description 2
- 108010053763 Pyruvate Carboxylase Proteins 0.000 claims description 2
- 108010042687 Pyruvate Oxidase Proteins 0.000 claims description 2
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 claims description 2
- 108020004511 Recombinant DNA Proteins 0.000 claims description 2
- 108010056371 Succinyl-diaminopimelate desuccinylase Proteins 0.000 claims description 2
- 101150033985 TPI gene Proteins 0.000 claims description 2
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 claims description 2
- 108700015934 Triose-phosphate isomerases Proteins 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 claims description 2
- 101150011371 dapA gene Proteins 0.000 claims description 2
- 101150000582 dapE gene Proteins 0.000 claims description 2
- 230000007850 degeneration Effects 0.000 claims description 2
- 238000006731 degradation reaction Methods 0.000 claims description 2
- 101150073818 gap gene Proteins 0.000 claims description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 claims description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 101150035025 lysC gene Proteins 0.000 claims description 2
- 101150044424 lysE gene Proteins 0.000 claims description 2
- 101150094267 mqo gene Proteins 0.000 claims description 2
- 101150053253 pgi gene Proteins 0.000 claims description 2
- 101150047627 pgk gene Proteins 0.000 claims description 2
- 229930029653 phosphoenolpyruvate Natural products 0.000 claims description 2
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 claims description 2
- 230000003389 potentiating effect Effects 0.000 claims description 2
- 101150060030 poxB gene Proteins 0.000 claims description 2
- 101150096049 pyc gene Proteins 0.000 claims description 2
- 102000001253 Protein Kinase Human genes 0.000 claims 2
- 238000010348 incorporation Methods 0.000 claims 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 claims 1
- 101710155796 Malate:quinone oxidoreductase Proteins 0.000 claims 1
- 230000002238 attenuated effect Effects 0.000 claims 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 claims 1
- 108020004999 messenger RNA Proteins 0.000 claims 1
- 230000037353 metabolic pathway Effects 0.000 claims 1
- 229920000642 polymer Polymers 0.000 claims 1
- 108060006633 protein kinase Proteins 0.000 claims 1
- 239000000047 product Substances 0.000 description 28
- 239000013612 plasmid Substances 0.000 description 17
- 108091008146 restriction endonucleases Proteins 0.000 description 16
- 239000012634 fragment Substances 0.000 description 13
- 238000003752 polymerase chain reaction Methods 0.000 description 13
- 244000005700 microbiome Species 0.000 description 12
- 239000013598 vector Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 102000012410 DNA Ligases Human genes 0.000 description 4
- 108010061982 DNA Ligases Proteins 0.000 description 4
- 241000238557 Decapoda Species 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- 239000006142 Luria-Bertani Agar Substances 0.000 description 3
- 244000269722 Thea sinensis Species 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 108010015792 glycyllysine Proteins 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 108010031719 prolyl-serine Proteins 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 108010045269 tryptophyltryptophan Proteins 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- XCIGOVDXZULBBV-DCAQKATOSA-N Ala-Val-Lys Chemical compound CC(C)[C@H](NC(=O)[C@H](C)N)C(=O)N[C@@H](CCCCN)C(O)=O XCIGOVDXZULBBV-DCAQKATOSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- SGYSTDWPNPKJPP-GUBZILKMSA-N Arg-Ala-Arg Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SGYSTDWPNPKJPP-GUBZILKMSA-N 0.000 description 2
- KWKQGHSSNHPGOW-BQBZGAKWSA-N Arg-Ala-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)NCC(O)=O KWKQGHSSNHPGOW-BQBZGAKWSA-N 0.000 description 2
- BCADFFUQHIMQAA-KKHAAJSZSA-N Asn-Thr-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O BCADFFUQHIMQAA-KKHAAJSZSA-N 0.000 description 2
- WQAOZCVOOYUWKG-LSJOCFKGSA-N Asn-Val-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CC(=O)N)N WQAOZCVOOYUWKG-LSJOCFKGSA-N 0.000 description 2
- FAUPLTGRUBTXNU-FXQIFTODSA-N Asp-Pro-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O FAUPLTGRUBTXNU-FXQIFTODSA-N 0.000 description 2
- ZBYLEBZCVKLPCY-FXQIFTODSA-N Asp-Ser-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O ZBYLEBZCVKLPCY-FXQIFTODSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000644323 Escherichia coli C Species 0.000 description 2
- 241001646716 Escherichia coli K-12 Species 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- YRMZCZIRHYCNHX-RYUDHWBXSA-N Glu-Phe-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(O)=O YRMZCZIRHYCNHX-RYUDHWBXSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- MIIVFRCYJABHTQ-ONGXEEELSA-N Gly-Leu-Val Chemical compound [H]NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O MIIVFRCYJABHTQ-ONGXEEELSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- JLYUZRKPDKHUTC-WDSOQIARSA-N Leu-Pro-Trp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O JLYUZRKPDKHUTC-WDSOQIARSA-N 0.000 description 2
- ISHNZELVUVPCHY-ZETCQYMHSA-N Lys-Gly-Gly Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)NCC(O)=O ISHNZELVUVPCHY-ZETCQYMHSA-N 0.000 description 2
- RBEATVHTWHTHTJ-KKUMJFAQSA-N Lys-Leu-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O RBEATVHTWHTHTJ-KKUMJFAQSA-N 0.000 description 2
- 239000007993 MOPS buffer Substances 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 108010079364 N-glycylalanine Proteins 0.000 description 2
- XQLBWXHVZVBNJM-FXQIFTODSA-N Pro-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 XQLBWXHVZVBNJM-FXQIFTODSA-N 0.000 description 2
- AFWBWPCXSWUCLB-WDSKDSINSA-N Pro-Ser Chemical compound OC[C@@H](C([O-])=O)NC(=O)[C@@H]1CCC[NH2+]1 AFWBWPCXSWUCLB-WDSKDSINSA-N 0.000 description 2
- SWSRFJZZMNLMLY-ZKWXMUAHSA-N Ser-Asp-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O SWSRFJZZMNLMLY-ZKWXMUAHSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- KRPKYGOFYUNIGM-XVSYOHENSA-N Thr-Asp-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N)O KRPKYGOFYUNIGM-XVSYOHENSA-N 0.000 description 2
- AOAMKFFPFOPMLX-BVSLBCMMSA-N Trp-Arg-Phe Chemical compound C([C@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=CC=C1 AOAMKFFPFOPMLX-BVSLBCMMSA-N 0.000 description 2
- LWFWZRANSFAJDR-JSGCOSHPSA-N Trp-Val Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C(C)C)C(O)=O)=CNC2=C1 LWFWZRANSFAJDR-JSGCOSHPSA-N 0.000 description 2
- RWTFCAMQLFNPTK-UMPQAUOISA-N Trp-Val-Thr Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)=CNC2=C1 RWTFCAMQLFNPTK-UMPQAUOISA-N 0.000 description 2
- BJCILVZEZRDIDR-PMVMPFDFSA-N Tyr-Leu-Trp Chemical compound C([C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=C(O)C=C1 BJCILVZEZRDIDR-PMVMPFDFSA-N 0.000 description 2
- JVYIGCARISMLMV-HOCLYGCPSA-N Val-Gly-Trp Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N JVYIGCARISMLMV-HOCLYGCPSA-N 0.000 description 2
- OTJMMKPMLUNTQT-AVGNSLFASA-N Val-Leu-Arg Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](C(C)C)N OTJMMKPMLUNTQT-AVGNSLFASA-N 0.000 description 2
- ILMVQSHENUZYIZ-JYJNAYRXSA-N Val-Met-Tyr Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N ILMVQSHENUZYIZ-JYJNAYRXSA-N 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 235000019728 animal nutrition Nutrition 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 108010062796 arginyllysine Proteins 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 239000013601 cosmid vector Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- -1 linoleic acid, alcohols Chemical class 0.000 description 2
- 230000002906 microbiologic effect Effects 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 108010073025 phenylalanylphenylalanine Proteins 0.000 description 2
- GHSJKUNUIHUPDF-UHFFFAOYSA-N s-(2-aminoethyl)-l-cysteine Chemical compound NCCSCC(N)C(O)=O GHSJKUNUIHUPDF-UHFFFAOYSA-N 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 101100298079 African swine fever virus (strain Badajoz 1971 Vero-adapted) pNG2 gene Proteins 0.000 description 1
- LSLIRHLIUDVNBN-CIUDSAMLSA-N Ala-Asp-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN LSLIRHLIUDVNBN-CIUDSAMLSA-N 0.000 description 1
- YSMPVONNIWLJML-FXQIFTODSA-N Ala-Asp-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(O)=O YSMPVONNIWLJML-FXQIFTODSA-N 0.000 description 1
- PUBLUECXJRHTBK-ACZMJKKPSA-N Ala-Glu-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O PUBLUECXJRHTBK-ACZMJKKPSA-N 0.000 description 1
- RGQCNKIDEQJEBT-CQDKDKBSSA-N Ala-Leu-Tyr Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 RGQCNKIDEQJEBT-CQDKDKBSSA-N 0.000 description 1
- YXXPVUOMPSZURS-ZLIFDBKOSA-N Ala-Trp-Leu Chemical compound C1=CC=C2C(C[C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](C)N)=CNC2=C1 YXXPVUOMPSZURS-ZLIFDBKOSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZZXMOQIUIJJOKZ-ZLUOBGJFSA-N Asn-Asn-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CC(N)=O ZZXMOQIUIJJOKZ-ZLUOBGJFSA-N 0.000 description 1
- QTKYFZCMSQLYHI-UBHSHLNASA-N Asn-Trp-Asn Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(N)=O)C(O)=O QTKYFZCMSQLYHI-UBHSHLNASA-N 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- 241000908115 Bolivar Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 108010090461 DFG peptide Proteins 0.000 description 1
- 108010081616 FAD-dependent malate dehydrogenase Proteins 0.000 description 1
- GLWXKFRTOHKGIT-ACZMJKKPSA-N Glu-Asn-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O GLWXKFRTOHKGIT-ACZMJKKPSA-N 0.000 description 1
- UQHGAYSULGRWRG-WHFBIAKZSA-N Glu-Ser Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CO)C(O)=O UQHGAYSULGRWRG-WHFBIAKZSA-N 0.000 description 1
- QCMVGXDELYMZET-GLLZPBPUSA-N Glu-Thr-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O QCMVGXDELYMZET-GLLZPBPUSA-N 0.000 description 1
- MBOAPAXLTUSMQI-JHEQGTHGSA-N Gly-Glu-Thr Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MBOAPAXLTUSMQI-JHEQGTHGSA-N 0.000 description 1
- IKAIKUBBJHFNBZ-LURJTMIESA-N Gly-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)CN IKAIKUBBJHFNBZ-LURJTMIESA-N 0.000 description 1
- YDIDLLVFCYSXNY-RCOVLWMOSA-N Gly-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)CN YDIDLLVFCYSXNY-RCOVLWMOSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- BVHLGVCQOALMSV-JEDNCBNOSA-N L-lysine hydrochloride Chemical compound Cl.NCCCC[C@H](N)C(O)=O BVHLGVCQOALMSV-JEDNCBNOSA-N 0.000 description 1
- ULXYQAJWJGLCNR-YUMQZZPRSA-N Leu-Asp-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O ULXYQAJWJGLCNR-YUMQZZPRSA-N 0.000 description 1
- HUEBCHPSXSQUGN-GARJFASQSA-N Leu-Cys-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N1CCC[C@@H]1C(=O)O)N HUEBCHPSXSQUGN-GARJFASQSA-N 0.000 description 1
- LVTJJOJKDCVZGP-QWRGUYRKSA-N Leu-Lys-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O LVTJJOJKDCVZGP-QWRGUYRKSA-N 0.000 description 1
- JVTYXRRFZCEPPK-RHYQMDGZSA-N Leu-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC(C)C)N)O JVTYXRRFZCEPPK-RHYQMDGZSA-N 0.000 description 1
- ZDBMWELMUCLUPL-QEJZJMRPSA-N Leu-Phe-Ala Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 ZDBMWELMUCLUPL-QEJZJMRPSA-N 0.000 description 1
- RRVCZCNFXIFGRA-DCAQKATOSA-N Leu-Pro-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O RRVCZCNFXIFGRA-DCAQKATOSA-N 0.000 description 1
- ILDSIMPXNFWKLH-KATARQTJSA-N Leu-Thr-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O ILDSIMPXNFWKLH-KATARQTJSA-N 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- MUXNCRWTWBMNHX-SRVKXCTJSA-N Lys-Leu-Asp Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O MUXNCRWTWBMNHX-SRVKXCTJSA-N 0.000 description 1
- HKXSZKJMDBHOTG-CIUDSAMLSA-N Lys-Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CCCCN HKXSZKJMDBHOTG-CIUDSAMLSA-N 0.000 description 1
- WUGMRIBZSVSJNP-UHFFFAOYSA-N N-L-alanyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)C)C(O)=O)=CNC2=C1 WUGMRIBZSVSJNP-UHFFFAOYSA-N 0.000 description 1
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 1
- 108010002311 N-glycylglutamic acid Proteins 0.000 description 1
- 101100005280 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-3 gene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- NEHSHYOUIWBYSA-DCPHZVHLSA-N Phe-Ala-Trp Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CC3=CC=CC=C3)N NEHSHYOUIWBYSA-DCPHZVHLSA-N 0.000 description 1
- CMHTUJQZQXFNTQ-OEAJRASXSA-N Phe-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CC=CC=C1)N)O CMHTUJQZQXFNTQ-OEAJRASXSA-N 0.000 description 1
- DXWNFNOPBYAFRM-IHRRRGAJSA-N Phe-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N DXWNFNOPBYAFRM-IHRRRGAJSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- VOHFZDSRPZLXLH-IHRRRGAJSA-N Pro-Asn-Phe Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O VOHFZDSRPZLXLH-IHRRRGAJSA-N 0.000 description 1
- DRKAXLDECUGLFE-ULQDDVLXSA-N Pro-Leu-Phe Chemical compound CC(C)C[C@H](NC(=O)[C@@H]1CCCN1)C(=O)N[C@@H](Cc1ccccc1)C(O)=O DRKAXLDECUGLFE-ULQDDVLXSA-N 0.000 description 1
- OWQXAJQZLWHPBH-FXQIFTODSA-N Pro-Ser-Asn Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O OWQXAJQZLWHPBH-FXQIFTODSA-N 0.000 description 1
- 101710196742 Probable phosphatidylglycerophosphate synthase Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- BTKUIVBNGBFTTP-WHFBIAKZSA-N Ser-Ala-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)NCC(O)=O BTKUIVBNGBFTTP-WHFBIAKZSA-N 0.000 description 1
- QYSFWUIXDFJUDW-DCAQKATOSA-N Ser-Leu-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O QYSFWUIXDFJUDW-DCAQKATOSA-N 0.000 description 1
- FRPNVPKQVFHSQY-BPUTZDHNSA-N Ser-Trp-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CO)N FRPNVPKQVFHSQY-BPUTZDHNSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- BSNZTJXVDOINSR-JXUBOQSCSA-N Thr-Ala-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O BSNZTJXVDOINSR-JXUBOQSCSA-N 0.000 description 1
- IOWJRKAVLALBQB-IWGUZYHVSA-N Thr-Asp Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@H](C(O)=O)CC(O)=O IOWJRKAVLALBQB-IWGUZYHVSA-N 0.000 description 1
- QQWNRERCGGZOKG-WEDXCCLWSA-N Thr-Gly-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O QQWNRERCGGZOKG-WEDXCCLWSA-N 0.000 description 1
- MECLEFZMPPOEAC-VOAKCMCISA-N Thr-Leu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)O)N)O MECLEFZMPPOEAC-VOAKCMCISA-N 0.000 description 1
- OGOYMQWIWHGTGH-KZVJFYERSA-N Thr-Val-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O OGOYMQWIWHGTGH-KZVJFYERSA-N 0.000 description 1
- VYVBSMCZNHOZGD-RCWTZXSCSA-N Thr-Val-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O VYVBSMCZNHOZGD-RCWTZXSCSA-N 0.000 description 1
- NMCBVGFGWSIGSB-NUTKFTJISA-N Trp-Ala-Leu Chemical compound C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N NMCBVGFGWSIGSB-NUTKFTJISA-N 0.000 description 1
- ADBFWLXCCKIXBQ-XIRDDKMYSA-N Trp-Asn-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N ADBFWLXCCKIXBQ-XIRDDKMYSA-N 0.000 description 1
- UKWSFUSPGPBJGU-VFAJRCTISA-N Trp-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N)O UKWSFUSPGPBJGU-VFAJRCTISA-N 0.000 description 1
- NESIQDDPEFTWAH-BPUTZDHNSA-N Trp-Met-Asp Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(O)=O NESIQDDPEFTWAH-BPUTZDHNSA-N 0.000 description 1
- UDNYEPLJTRDMEJ-RCOVLWMOSA-N Val-Asn-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)NCC(=O)O)N UDNYEPLJTRDMEJ-RCOVLWMOSA-N 0.000 description 1
- SRWWRLKBEJZFPW-IHRRRGAJSA-N Val-Cys-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N SRWWRLKBEJZFPW-IHRRRGAJSA-N 0.000 description 1
- YQYFYUSYEDNLSD-YEPSODPASA-N Val-Thr-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O YQYFYUSYEDNLSD-YEPSODPASA-N 0.000 description 1
- HTONZBWRYUKUKC-RCWTZXSCSA-N Val-Thr-Val Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O HTONZBWRYUKUKC-RCWTZXSCSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 108010084455 Zeocin Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 108010047857 aspartylglycine Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 108010057821 leucylproline Proteins 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000013586 microbial product Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- CWCMIVBLVUHDHK-ZSNHEYEWSA-N phleomycin D1 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC[C@@H](N=1)C=1SC=C(N=1)C(=O)NCCCCNC(N)=N)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C CWCMIVBLVUHDHK-ZSNHEYEWSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000013492 plasmid preparation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001121 post-column derivatisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1288—Transferases for other substituted phosphate groups (2.7.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/08—Transferases for other substituted phosphate groups (2.7.8)
- C12Y207/08005—CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (2.7.8.5)
Definitions
- the invention provides -genetically modified coryneform bacteria, nucleotide sequences which code for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and processes for the fermentative preparation of amino acids, in particular L-lysine, using coryneform bacteria in which the pgsA2 gene, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase (EC 2.7.8.5), is enhanced.
- Amino acids in particular L-lysine, are used in human medicine and in the pharmaceuticals industry, but in particular in animal nutrition.
- amino acids are prepared by fermentation from strains of coryneform bacteria, in particular Corynebacterium glutamicum . Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the processes can relate to fermentation measures, such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
- fermentation measures such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
- Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms.
- Strains which are resistant to antimetabolites such as e. g. the lysine analogue S-(2- aminoethyl) -cysteine, or are auxotrophic for metabolites of regulatory importance and produce L-amino acids, such as e. g. L-lysine, are obtained in this manner.
- the object of the present invention was to provide new aids for improved fermentative preparation of amino acids, in particular L-lysine.
- This object is achieved by a genetically modified coryneform bacterium, the pgsA2 gene of which, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
- Amino acids in particular L-lysine
- L-lysine are used in human medicine, in the pharmaceuticals industry and in particular in animal nutrition. There is therefore a general interest in providing new improved processes for the preparation of amino acids, in particular L-lysine.
- the invention provides a genetically modified coryneform bacterium, in which its pgsA2 gene, which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
- Enhancement can be achieved with the aid of various manipulations of the bacterial cell.
- the number of copies of the corresponding genes can be increased, a potent promoter can be used, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated.
- Expression cassettes which are incorporated upstream of the structural gene act in the same way.
- inducible promoters it is additionally possible to increase the expression in the course of fermentative L-lysine production.
- a gene which codes for a corresponding enzyme with a high activity The expression is likewise improved by measures to prolong the life of the m-RNA.
- the enzyme activity is also increased overall by preventing the degradation of the enzyme. These measures can optionally also be combined as desired.
- the microorganisms which the present invention provides can prepare L-amino acids, in particular L-lysine, from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They can be representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.
- Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains
- the present invention also provides an isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
- polynucleotide which is homologous to the extent of at least 70 % with a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2,
- polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is homologous to the extent of at least 70% with the amino acid sequence of SEQ ID No. 2,
- polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a) , b) or c) .
- a polynucleotide sequence is "homologous" to the sequence according to the invention if it coincides in its base composition and sequence with the sequence according to the invention to the extent of at least 70%, preferably at least 80%, particularly preferably at least 90%.
- a "homologous protein” is to be understood as proteins which have an amino acid sequence which coincide with the amino acid sequence coded by the pgsA2 gene (SEQ ID No.l) to the extent of at least 70 %, preferably at least 80 %, particularly preferably at least 90 %, "coincide” being understood as meaning that either the corresponding amino acids are identical or they are amino acids which are homologous to one another. Those amino acids which correspond in their properties, in particular in respect of charge, hydrophobicity, steric properties etc., are called “homologous amino acids”.
- the invention also provides a polynucleotide as described above , this preferably being a DNA which is capable of replication, comprising:
- the invention also provides a preferably recombinant polynucleotide which is capable of replication in coryneform bacteria and comprises the nucleotide sequence SEQ ID No. 1,
- coryneform bacteria serving as the host cell, which contain the vector or in which the pgsA2 gene is enhanced.
- the invention also provides polynucleotides which comprise the complete gene with the polynucleotide sequence corresponding to SEQ ID No. 1 or fragments thereof, and which are obtainable by screening by means of hybridization of a corresponding gene library with a probe which comprises the sequence of the polynucleotide mentioned, according to SEQ ID No. 1, or a fragment thereof, and isolation of the DNA sequence mentioned.
- Polynucleotide sequences according to the invention are also suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate, in the full length, cDNA which code for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and to isolate those cDNA or genes which have a high similarity with the sequence of the CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase gene.
- Polynucleotide sequences according to the invention are furthermore suitable as primers for the polymerase chain reaction (PCR) , for the preparation of DNA which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase proteins.
- PCR polymerase chain reaction
- Such oligonucleotides which serve as probes or primers can comprise more than 30, preferably up to 30, particularly preferably up to 20, very particularly preferably at least 15 successive nucleotides. Oligonucleotides which have a length of at least 40 or 50 nucleotides are also suitable.
- Polynucleotide in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.
- Polypeptides is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds .
- polypeptides according to the invention include a polypeptide according to SEQ ID No. 2, in particular those with the biological activity of the CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase protein, and also those which are homologous to the extent of at least 70 % with the polypeptide according to SEQ ID No. 2, and preferably are homologous to the extent of at least 80% and in particular to the extent of at least 90 % to 95 % with the polypeptide according to SEQ ID no. 2, and have the activity mentioned.
- the invention moreover provides a process for the fermentative preparation of amino acids, in particular L- lysine, using coryneform bacteria which in particular already produce an amino acid, and in which the nucleotide sequences which code for the pgsA2 gene are enhanced, in particular over-expressed.
- the pgsA2 gene of C. glutamicum which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase is described for the first time in the present invention.
- a gene library of this microorganism is first set up in E. coli . The setting up of gene libraries is described in generally known textbooks and handbooks.
- glutamicum ATCC13032 which was set up with the aid of the cosmid vector SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the E. coli K-12 strain NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575). Bormann et al. (Molecular Microbiology 6(3), 317-326)) (1992)) in turn describe a gene library of C. glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)). To prepare a gene library of C. glutamicum in E.
- coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) or pUC9 (Vieira et al., 1982, Gene, 19:259-268).
- Suitable hosts are, in particular, those E. coli strains which are restriction- and recombination- defective.
- An example of these is the strain DH5 ⁇ mcr, which has been described by Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) .
- the long DNA fragments cloned with the aid of cosmids can then in turn be subcloned and subsequently sequenced in the usual vectors which are suitable for sequencing, such as is described e. g. by Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977).
- the new DNA sequence of C. glutamicum ' which codes for the pgsA2 gene and which, as SEQ ID No. 1, is a constituent of the present invention, was obtained in this manner.
- the amino acid sequence of the corresponding protein has moreover been derived from the present DNA sequence by the methods described above.
- the resulting amino acid sequence of the pgsA2 gene product is shown in SEQ ID No. 2.
- Coding DNA sequences which result from SEQ ID No. 1 by the degeneracy of the genetic code are also a constituent of the invention.
- DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention.
- Conservative amino acid exchanges such as e. g. exchange of glycine for alanine or of aspartic acid for glutamic acid in proteins, are moreover known among experts as "sense mutations" which do not lead to a fundamental change in the activity of the protein, i.e. are of neutral function. It is moreover known that changes on the N and/or C terminus of a protein cannot substantially impair the function thereof or can even stabilize this.
- DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention.
- DNA sequences which are prepared by the polymerase chain reaction (PCR) using primers which result from SEQ ID NO. 1 are a constituent of the invention.
- PCR polymerase chain reaction
- Such oligonucleotides typically have a length of at least 15 nucleotides.
- PCR polymerase chain reaction
- coryneform bacteria produce amino acids, in particular L-lysine, in an improved manner after enhancement of the pgsA2 gene.
- genes or gene constructs under consideration can either be present in plasmids with a varying number of copies, or can be integrated and enhanced in the chromosome. Alternatively, an over-expression of the genes in question can moreover be achieved by changing the composition of the media and the culture procedure.
- the pgsA2 gene according to the invention was over-expressed with the aid of plasmids.
- Suitable plasmids are those which are replicated and expressed in coryneform bacteria.
- Numerous known plasmid vectors such as e. g. pZl (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKExl (Eikmanns et al., Gene 102:93-98 (1991)) or pHS2-l (Sonnen et al., Gene 107:69-74 (1991)) are based on the cryptic plasmids pHM1519, pBLl or pGAl.
- Other plasmid vectors such as e. g.
- pJClpgsA2 (figure 1) , which is based on the E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 - 480) and contains the DNA sequence of C. glutamicum which codes for the pgsA2 gene. It is contained in the strain DSM5715/pJClpgsA2.
- Plasmid vectors which are moreover suitable are those with the aid of which the process of gene enhancement by integration into the chromosome can be used, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or enhancement of the hom-thrB operon.
- the complete gene is cloned in a plasmid vector which can replicate in a host (typically E. coli) , but not in C. glutamicum.
- Possible vectors are, for example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), ⁇ K18mob or pKl9mob (Schafer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994).
- the plasmid vector which contains the gene to be enhanced is then transferred into the desired strain of C. glutamicum by conjugation or transformation.
- the method of conjugation is described, for example, by Schafer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described, for example, by Thierbach et al.
- amino acids in particular L-lysine
- microorganisms prepared according to the invention can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of amino acids, in particular L- lysine.
- batch culture batch culture
- feed process fed batch
- repetitive feed process repetition feed process
- the culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook “Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington D.C., USA, 1981).
- Sugars and carbohydrates such as e. g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e. g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e. g. glycerol and ethanol, and organic acids, such as e. g. acetic acid, can be used as the source of carbon. These substance can be used individually or as a mixture.
- oils and fats such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat
- fatty acids such as e. g. palmitic acid, stearic acid and linoleic acid
- alcohols such as e. g. glycerol and ethanol
- organic acids such as e. g. acetic
- DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- the process according to the invention is used for the fermentative preparation of amino acids, in particular L- lysine.
- the ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217) .
- Gigapack II XL Packing Extracts Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217.
- the cells were taken up in 10 mM MgS0 and mixed with an aliquot of the phage suspension.
- the infection and titering of the cosmid library were carried out as described by Sambrook et al.
- the cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02) .
- the DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim,
- the raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0.
- the individual sequences of the pZerol derivatives were assembled to a continuous contig.
- the computer-assisted coding region analysis was prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231). Further analyses were carried out with the "BLAST search program" (Altschul et al., 1997, Nucleic Acids Research,- 25:3389-3402), against the non- redundant databank of the "National Center for
- the resulting nucleotide sequence is shown in SEQ ID No. 1. Analysis of the nucleotide sequence showed an open reading frame of 291 base pairs, which was called the pgsA2 gene. The pgsA2 gene codes for a protein of 97 amino acids.
- Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179). A DNA fragment which carries the pgsA2 gene was amplified with the aid of the polymerase chain reaction. The following primers were used for this:
- Both oligonucleotides carry the sequence for the cleavage site of the restriction enzyme Xbal (nucleotides underlined) .
- the primers shown were synthesized by MWG Biotech (Ebersberg, Germany) synthesized and the PCR reaction was carried out by the standard PCR method of Innis et al., (PCR protocol. A guide to methods and applications, 1990, Academic Press) .
- the primers allow amplification of a DNA fragment of approx 749 bp in size, which carries the pgsA2 gene from Corynebacterium glutamicum.
- the PCR fragment was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
- the PCR fragment obtained in this manner was cleaved completely with the restriction enzyme Xbal.
- the pgsA2 fragment approx 749 bp in size was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
- the E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 -480) was used as the vector. This plasmid was also cleaved completely with the restriction enzyme Xbal and then dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250) .
- the pgsA2 fragment obtained in this manner was mixed with the prepared vector pJCl and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) .
- the ligation batch was transformed in the E. coli strain DH5 ⁇ (Hanahan, In: DNA cloning. A practical approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) . Selection of plasmid-carrying cells was made by plating out the transformation batch on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/1 kanamycin.
- Plasmid DNA was isolated from a transformant with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and cleaved with the restriction enzyme Xbal to check the plasmid by subsequent agarose gel electrophoresis. The resulting plasmid was called pJClpgsA2.
- the strain DSM5715 was transformed with the plasmid pJClpgsA2 using the electroporation method described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989) ) . Selection of the transformants took place on LBHIS agar comprising 18.5 g/1 brain-heart infusion broth, 0.5M sorbitol, 5 g/1 Bacto-tryptone, 2.5 g/1 Bacto-yeast extract, 5 g/1 NaCl, 18 g/1 Bacto-agar, which had been supplemented with 25 ⁇ g/ml kanamycin. Incubation was carried out for 2 days at 33°C.
- Plasmid DNA was isolated from a transformant by conventional methods (Peters-Wendisch et al., 1998, Microbiology, 144, 915 -927) and cut with the restriction endonuclease EcoRI; in order to check the plasmid by subsequent agarose gel electrophoresis. The resulting strain was called DSM5715/pJClpgsA2.
- DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- the C. glutamicum strain DSM5715/pJClpgsA2 obtained in example 5 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.
- the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with kanamycin (50 ⁇ g/ml) for 24 hours at 33°C.
- a preculture was seeded (10 ml medium in a 100 ml conical flask) .
- the complete medium Cglll was used as the medium for the preculture.
- Kanamycin 25 mg/1 was added to this.
- the preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine.
- a main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1.
- Medium MM was used for the main culture.
- MOPS morpholinopropanesulfonic 20 g/1 acid
- the CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved.
- the sterile substrate and vitamin solutions were then added, as well as the CaC0 3 autoclaved in the dry state.
- Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Kanamycin (25 ⁇ g/ml) was added. Culturing was carried out at 33°C and 80% atmospheric humidity. After 24 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Kunststoff) . The amount of lysine formed was determined with an amino acid analyzer from Eppendorf- BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.
- FIG. 1 Map of the plasmid pJClpgsA2
- oriCg Plasmid-coded replication origin C. glutamicum (of pHMl519 )
- pgsA2 pgsA2 CDP-diacylglycerol-glycerol-3-phosphate phosphatidyltransferase gene from C. glutamicum ATCC13032
- Kan Kanamycin resistance gene
- Hindlll Cleavage site of the restriction enzyme Hindlll
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention relates to a genetically modified coryneform bacterium, the pgsA2 gene of which is enhanced, and an isolated polynucleotide which codes for CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase from coryneform bacteria, and also a process for the fermentative preparation of L-amino acids with enhancement of the pgsA2 gene in the bacteria and the use of the polynucleotide as a primer or hydridization probe.
Description
New nucleotide sequences which code for the pgsA2 gene
The invention provides -genetically modified coryneform bacteria, nucleotide sequences which code for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and processes for the fermentative preparation of amino acids, in particular L-lysine, using coryneform bacteria in which the pgsA2 gene, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase (EC 2.7.8.5), is enhanced.
Amino acids, in particular L-lysine, are used in human medicine and in the pharmaceuticals industry, but in particular in animal nutrition.
It is known that amino acids are prepared by fermentation from strains of coryneform bacteria, in particular Corynebacterium glutamicum . Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the processes can relate to fermentation measures, such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e. g. the lysine analogue S-(2- aminoethyl) -cysteine, or are auxotrophic for metabolites of regulatory importance and produce L-amino acids, such as e. g. L-lysine, are obtained in this manner.
Methods of the recombinant DNA technique have furthermore been employed for some years for improving the strain of Corynebacterium strains which produce amino acids, by
amplifying individual amino acid biosynthesis genes and investigating the effect on the amino acid production. Review articles in this context are to be found, inter alia, in Kinoshita ("Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (Eds.), Benjamin Cummings, London, UK, 1985, 115-142), Hilliger (BioTec 2, 40-44 (1991)), Eggeling (Amino Acids 6:261-272 (1994)), Jetten and Sinskey (Critical Reviews in Biotechnology 15, 73-103 (1995)) and Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)).
The object of the present invention was to provide new aids for improved fermentative preparation of amino acids, in particular L-lysine.
This object is achieved by a genetically modified coryneform bacterium, the pgsA2 gene of which, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
Amino acids, in particular L-lysine, are used in human medicine, in the pharmaceuticals industry and in particular in animal nutrition. There is therefore a general interest in providing new improved processes for the preparation of amino acids, in particular L-lysine.
When L-lysine or lysine are mentioned in the following, not only the base" but also the salts, such as e. g. lysine monohydrochloride or lysine sulfate, are also meant by this.
The invention provides a genetically modified coryneform bacterium, in which its pgsA2 gene, which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
The term "enhancement" in this connection describes the increase in intracellular activity of one or more enzymes
in a microorganism which are coded by the corresponding DNA.
Enhancement can be achieved with the aid of various manipulations of the bacterial cell.
To achieve an enhancement, in particular an over- expression, the number of copies of the corresponding genes can be increased, a potent promoter can be used, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes which are incorporated upstream of the structural gene act in the same way. By inducible promoters, it is additionally possible to increase the expression in the course of fermentative L-lysine production. It is also possible to use a gene which codes for a corresponding enzyme with a high activity. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is also increased overall by preventing the degradation of the enzyme. These measures can optionally also be combined as desired.
The microorganisms which the present invention provides can prepare L-amino acids, in particular L-lysine, from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They can be representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.
Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains
Corynebacterium glutamicum ATCC13032 Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870 Corynebacterium thermoaminogenes FERM BP-1539 Corynebacterium melassecola ATCC17965 Brevibacterium flavum ATCC1 067 Brevibacterium lactofermentum ATCC13869 and
Brevibacterium divaricatum ATCC14020
and L-lysine-producing mutants or strains prepared therefrom, such as, for example
Corynebacterium glutamicum FERM-P 1709 Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712 Corynebacterium glutamicum FERM-P 6463 Corynebacterium glutamicum FERM-P 6464 and Corynebacterium glutamicum DSM5715.
The present invention also provides an isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
a) polynucleotide which is homologous to the extent of at least 70 % with a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2,
b) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is homologous to the extent of at least 70% with the amino acid sequence of SEQ ID No. 2,
c) polynucleotide which is complementary to the polynucleotides of a) or b) , and
d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a) , b) or c) .
In the context of the present Application, a polynucleotide sequence is "homologous" to the sequence according to the invention if it coincides in its base composition and sequence with the sequence according to the invention to the extent of at least 70%, preferably at least 80%, particularly preferably at least 90%. According to the present invention, a "homologous protein" is to be understood as proteins which have an amino acid sequence which coincide with the amino acid sequence coded by the pgsA2 gene (SEQ ID No.l) to the extent of at least 70 %, preferably at least 80 %, particularly preferably at least 90 %, "coincide" being understood as meaning that either the corresponding amino acids are identical or they are amino acids which are homologous to one another. Those amino acids which correspond in their properties, in particular in respect of charge, hydrophobicity, steric properties etc., are called "homologous amino acids".
The invention also provides a polynucleotide as described above , this preferably being a DNA which is capable of replication, comprising:
(i) the nucleotide sequence shown in SEQ ID no. 1, or
(ii) at least one sequence which corresponds to sequence (i) in the context of the degeneration of the genetic code, or
(iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii) , and optionally
(iv) mutations of neutral function in (i) which lead to the same or a homologous amino acid.
The invention also provides
a preferably recombinant polynucleotide which is capable of replication in coryneform bacteria and comprises the nucleotide sequence SEQ ID No. 1,
a polynucleotide which codes for a polypeptide which comprises the amino acid sequence SEQ ID No. 2,
a vector containing the DNA sequence of C. glutamicum which codes for the pgsA2 gene, contained in the vector pJClpgsA2, deposited in Corynebacterium glutamicum under number 13251,
and coryneform bacteria serving as the host cell, which contain the vector or in which the pgsA2 gene is enhanced.
The invention also provides polynucleotides which comprise the complete gene with the polynucleotide sequence corresponding to SEQ ID No. 1 or fragments thereof, and which are obtainable by screening by means of hybridization of a corresponding gene library with a probe which comprises the sequence of the polynucleotide mentioned, according to SEQ ID No. 1, or a fragment thereof, and isolation of the DNA sequence mentioned.
Polynucleotide sequences according to the invention are also suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate, in the full length, cDNA which code for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and to isolate those cDNA or genes which have a high similarity with the sequence of the CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase gene.
Polynucleotide sequences according to the invention are furthermore suitable as primers for the polymerase chain reaction (PCR) , for the preparation of DNA which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase proteins.
Such oligonucleotides which serve as probes or primers can comprise more than 30, preferably up to 30, particularly preferably up to 20, very particularly preferably at least 15 successive nucleotides. Oligonucleotides which have a length of at least 40 or 50 nucleotides are also suitable.
"Isolated" means separated out of its natural environment.
"Polynucleotide" in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.
"Polypeptides" is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds .
The polypeptides according to the invention include a polypeptide according to SEQ ID No. 2, in particular those with the biological activity of the CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase protein, and also those which are homologous to the extent of at least 70 % with the polypeptide according to SEQ ID No. 2, and preferably are homologous to the extent of at least 80% and in particular to the extent of at least 90 % to 95 % with the polypeptide according to SEQ ID no. 2, and have the activity mentioned.
The invention moreover provides a process for the fermentative preparation of amino acids, in particular L- lysine, using coryneform bacteria which in particular already produce an amino acid, and in which the nucleotide sequences which code for the pgsA2 gene are enhanced, in particular over-expressed.
The pgsA2 gene of C. glutamicum which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase is described for the first time in the present invention.
To isolate the pgsA2 gene or also other genes of C. glutamicum, a gene library of this microorganism is first set up in E. coli . The setting up of gene libraries is described in generally known textbooks and handbooks. The textbook by Winnacker: Gene und Klone, Eine Einfuhrung in die Gentechnologie [Genes and Clones, An Introduction to Genetic Engineering] (Verlag Chemie, Weinheim, Germany, 1990) or the handbook by Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) may be mentioned as an example. A well-known gene library is that of the E. coli K-12 strain W3110 set up in λ vectors by Kohara et al. (Cell 50, 495 -508 (1987) ) . Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) describe a gene library of C. glutamicum ATCC13032, which was set up with the aid of the cosmid vector SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the E. coli K-12 strain NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575). Bormann et al. (Molecular Microbiology 6(3), 317-326)) (1992)) in turn describe a gene library of C. glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)). To prepare a gene library of C. glutamicum in E. coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) or pUC9 (Vieira et al., 1982, Gene, 19:259-268). Suitable hosts are, in particular, those E. coli strains which are restriction- and recombination- defective. An example of these is the strain DH5αmcr, which has been described by Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) . The long DNA fragments cloned with the aid of cosmids can then in turn be subcloned and subsequently sequenced in the usual vectors which are suitable for sequencing, such as is described e. g. by Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977).
The new DNA sequence of C. glutamicum ' which codes for the pgsA2 gene and which, as SEQ ID No. 1, is a constituent of the present invention, was obtained in this manner. The amino acid sequence of the corresponding protein has moreover been derived from the present DNA sequence by the methods described above. The resulting amino acid sequence of the pgsA2 gene product is shown in SEQ ID No. 2.
Coding DNA sequences which result from SEQ ID No. 1 by the degeneracy of the genetic code are also a constituent of the invention. In the same way, DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention. Conservative amino acid exchanges, such as e. g. exchange of glycine for alanine or of aspartic acid for glutamic acid in proteins, are moreover known among experts as "sense mutations" which do not lead to a fundamental change in the activity of the protein, i.e. are of neutral function. It is moreover known that changes on the N and/or C terminus of a protein cannot substantially impair the function thereof or can even stabilize this. Information in this context can be found by the expert, inter alia, in Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), in O'Regan et al. (Gene 77:237-251 (1989)), in Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), in Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) and in known textbooks of genetics and molecular biology. Amino acid sequences which result in a corresponding manner from SEQ ID No. 2 are also a constituent of the invention.
In the same way, DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention. Finally, DNA sequences which are prepared by the polymerase chain reaction (PCR) using primers which result from SEQ ID NO. 1 are a constituent of the invention. Such oligonucleotides typically have a length of at least 15 nucleotides.
Instructions for identifying DNA sequences by means of hybridization can be found by the expert, inter alia, in the handbook "The DIG System Users Guide for Filter Hybridization" from Boehringer Mannheim GmbH (Mannheim, Germany, 1993) and in Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260) . Instructions for amplification of DNA sequences with the aid of the polymerase chain reaction (PCR) can be found by the expert, inter alia, in the handbook by Gait: Oligonucleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) and in Newton and Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Germany, 1994) .
In the work on the present invention, it has been found that coryneform bacteria produce amino acids, in particular L-lysine, in an improved manner after enhancement of the pgsA2 gene.
The genes or gene constructs under consideration can either be present in plasmids with a varying number of copies, or can be integrated and enhanced in the chromosome. Alternatively, an over-expression of the genes in question can moreover be achieved by changing the composition of the media and the culture procedure.
Instructions in this context can be found by the expert, inter alia, in Martin et al. (Bio/Technology 5, 137-146 (1987)), in Guerrero et al. (Gene 138, 35-41 (1994)),
Tsuchiya and Morinaga (Bio/Technology 6, 428-430 (1988)), in Eikmanns et al. (Gene 102, 93-98 (1991)), EP 0 472 869, US Patent 4,601,893, in Schwarzer and Pϋhler (Bio/Technology 9, 84-87 (1991), in Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132
(1994)), in LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in WO 96/15246, in Malumbres et al. (Gene 134, 15 - 24 (1993)), in JP-A-10-229891, in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), in Makrides (Microbiological Reviews 60:512-538
(1996) ) and in known textbooks of genetics and molecular biology.
By way of example, the pgsA2 gene according to the invention was over-expressed with the aid of plasmids.
Suitable plasmids are those which are replicated and expressed in coryneform bacteria. Numerous known plasmid vectors, such as e. g. pZl (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKExl (Eikmanns et al., Gene 102:93-98 (1991)) or pHS2-l (Sonnen et al., Gene 107:69-74 (1991)) are based on the cryptic plasmids pHM1519, pBLl or pGAl. Other plasmid vectors, such as e. g. those based on pCG4 (US-A 4,489,160), or pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119- 124 (1990)), or pAGl (US-A 5,158,891), can be used in the same manner.
An example of a plasmid, with the aid of which the pgsA2 gene can be over-expressed is pJClpgsA2 (figure 1) , which is based on the E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 - 480) and contains the DNA sequence of C. glutamicum which codes for the pgsA2 gene. It is contained in the strain DSM5715/pJClpgsA2.
Plasmid vectors which are moreover suitable are those with the aid of which the process of gene enhancement by integration into the chromosome can be used, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or enhancement of the hom-thrB operon. In this method, the complete gene is cloned in a plasmid vector which can replicate in a host (typically E. coli) , but not in C. glutamicum. Possible vectors are, for example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), ρK18mob or pKl9mob (Schafer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO
(Shuman (1994). Journal of Biological Chemistry 269:32678- 84; US-A 5,487,993), pCR®Blunt (Invitrogen, Groningen, Holland; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) or pEMl (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516). The plasmid vector which contains the gene to be enhanced is then transferred into the desired strain of C. glutamicum by conjugation or transformation. The method of conjugation is described, for example, by Schafer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described, for example, by Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivnan (Bio/Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994) ) . After homologous recombination by means of a "cross over" event, the resulting strain contains at least two copies of the gene in question.
In addition, it may be advantageous for the production of amino acids, in particular L-lysine, to amplify or over- express one or more enzymes of the particular biosynthesis route, of glycolysis, of anaplerosis, of the citric acid- cycle or of amino acid export, in addition to the pgsA2 gene.
Thus, for example, for the preparation of L-lysine, one or more genes chosen from the group consisting of
• the dapA gene which codes for dihydrodipicolinate synthase (EP-B 0 197 335), or
• the dapE gene which codes for succinyl diaminopimelate desuccinylase, or
• the lysC gene which codes for a feed-back resistant aspartate kinase (Kalinowski et al. (1990), Molecular and General Genetics 224, 317-324), or
• the gap gene which codes for glyceraldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086), or
• the tpi gene which codes for triose phosphate isomerase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086), or
• the pgk gene which codes for 3-ρhosphoglycerate kinase
(Eikmanns (1992), Journal of Bacteriology 174:6076-6086), or
• the pyc gene which codes for pyruvate carboxylase (DE-A- 19831609), or
• the mqo gene which codes for malate-quinone oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)), or
• the lysE gene which codes for lysine export (DE-A-195 48 222)
can be enhanced, in particular over-expressed or amplified, at the same time.
In addition to enhancement of the pgsA2 gene it may moreover be advantageous for the production of amino acids, in particular L-lysine, to attenuate
• the pck gene which codes for phosphoenol pyruvate carboxykinase (DE 199 50 409.1, DSM 13047) and/or
• the pgi gene which codes for glucose 6-phosphate isomerase (US 09/396,478, DSM 12969) and/or
• the poxB gene which codes for pyruvate oxidase
(DE: 1995 1975.7)
at the same time.
In addition to over-expression of the pgsA2 gene it may moreover be advantageous for the production of amino acids, in particular L-lysine, to eliminate undesirable side reactions (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982) .
The microorganisms prepared according to the invention can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of amino acids, in particular L- lysine. A summary of known culture methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einfϋhrung in die Bioverfahrenstechnik [Bioprocess Technology 1.
Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991) ) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).
The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).
Sugars and carbohydrates, such as e. g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e. g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e. g. glycerol and ethanol, and organic acids, such as e. g. acetic acid, can be used as the source of carbon. These substance can be used individually or as a mixture.
ω ω M t ι-> cπ o o O Ui
φ ι-3 d d • -. O ιQ 3 rt 0) Ω Φ μ- CO 3* ω Ω μ- IS Ό 0s O 3 O 1-3 Ω •τ) σ d TJ CO H" O
IX 3" co 3 ϋi d OS OJ O O • 3 d 0s d 3 rt H α d φ d 3J O μ- 3* φ O 3' d μ- Φ hi
0 Φ d rt 0 H CO μ- O 3 Ω co j &) Φ α Ω Ω Ω Φ 3 T3 O φ O Ω Λ 0J iQ c OJ H- o rt 3 rt Φ c+ ιQ Q) 3" H μ- rt rt H Ω μ- 3* Φ 3" rt O CO d α CO 3- d CO CU a 0) I-1 H d 3 rt 3" H H • 0 Ω d 3" rt d rt CO Ω 0J rt T5 CO K) o rt 3
3 3 I-1 H μ- OJ Φ Φ O CO PJ x i-s Φ μ- H μ- CU O 0J d μ- 0J 3" φ 0J 3' OJ H μ-
■£) 0) • DJ 0 Φ X μ- Ω H Hi C ω μ- Ω φ 3 CO 0 CD CU CO H1 3 ω O O cυ O Φ Ω
Φ h-1 3 • rt 3 3 rt CS μ- o Hi ιQ O 3 H rt μ- CD H rt
■< H 3 d Φ μ- rt re¬ rt • Φ 3 μ- o H U Φ d 3 μ- μ- μ- rt Φ cu CO rt 3 o O Φ 0) (-3 l-i OJ <i 3" ef OJ * ^ Ό 3 H CO CO rt 3 • H ιQ d Ω 3 3^ 3 0 H μ- t H- OJ K ts * φ Φ μ- φ Φ *< σ o o 3 d o μ- Hi Φ 3 α Φ • : 0J rt n o O μ- hi Φ CO H d H O 0J d 0) σ Ω 3 o ιQ CO 0J μ- OJ 0 OJ Ω hi
O 3* 3 φ *% O 3 fu CU Φ •σ 3 3 0 CO CD rt 0 H 3 0J 3* Ω <! CD 3 3 ft O
3 o Φ d Hi rt tr Ω Φ Ω 3* p α O H, rt 3 t Φ H ■<: μ- μ- O 3 μ- σ ιQ
(1) Mi 3 Φ Φ CO μ- rt rt <ι μ- 3 o O O d fl) Φ 0) •Ti 3 rt Q. d O d Φ Φ rt H 3 d Ω O μ- Φ D) H 3 μ- OS 3 3 a l-i 0J μ- CD H d H 3 3 0J 3 3
O r> s: o CSS Ό o 0 3 μ- μ- rt Ω O 0s μ- O ■ ! d o DJ Ω μ- 3 φ 1 ιQ 1 H- Hi σ Φ 3" Ω 3 3 o Ό 3 Ω u co fu CO Φ H s: 3 3 Ω ιQ Tf M Φ d CD 0J Ω
H I-1 rt M ι-i o OJ Ό o Φ d σ μ- CO Φ O CO rt Φ 0J φ o H 3 d Hi rt O
DJ • 3J H • a OJ 3 μ- 3 l-* H is) o Ω μ- 3 O 31 CO 3 3 3 rt • O μ* 3
Ό CO H- rt CO 3 CO φ •< a H 31 φ iQ 3 < Φ cυ . μ- d 0J Hi Ω Hi o Φ rt t P- 3 CO M d μ- rt d 3 ιQ rt μ- Φ Φ 3 3 d CO σ 13 CO O 0J CU d OJ
• : 3 μ- cπ H Φ rt OJ Ω rt I-1 O 0) ID 3 Φ 3 H Φ •n 3 rt φ 3" CD l-i 3 H rt H rt μ- φ 3 0 Φ • μ- μ- " Λ CO 0J rt 3 μ- o μ- μ- σ Φ H 3 s: o Φ o o 3 O Ω Ω o d 3 σ μ- σ rt < 3 CO 3 d CO d 0J rt o 0J OJ μ-
H- o O ιQ 3 5li Hi O O H Φ CO 3 0) O Φ μ- μ- cu d O CD O t 3 CO H 3 3 Ω 3 rt DJ 3* rt Hi CO r O H1 3 o o φ rt 3 o rt H1 i-1 l-i φ 3^ O 0J 0J (X rt ιQ
3" 3 o OJ O 3* Hi rt CO d H Ω Φ 0s 3 0J H" Hi φ 0J OJ iQ rt g ^ d CO rt fu Φ Φ o Φ H d CO μ- • 31 Φ 3 • : 0J o rt μ- Φ Φ § d Ω
CO σ n ■ ^ 3* μ- o • 03 CO O 1-" d ^» α μ- •^ rt <J 0J Φ 3" 3 3 o H 3 O d φ O M) O Φ hi i CO 3 rt μ*1 Hi o> 3 Ω Φ 3 Φ φ CO " μ- • 0) 3 Φ DJ 3 σ O o • rt ιQ Φ d g o OS O CQ Φ H O α. κ 3 μ- 0J <υ
CO o rt H O O cQ OJ • H rt H 3 3* H 3 d •*. O O rt H l-i rt ι-3 d ^ ft o φ DJ 0 3 • d £U Φ σ ω CO 3- μ- o " rt σ CO i-i Ω 3d o d tr 3 d
Λ i Φ h-* H 3 μ- 0) d Φ Ω 3 α Ω σ o CO Ω φ O Φ rt cQ H Φ OJ 0 Φ 3 d H I-1 o rt Φ H1 3 μ- μ- H 0i Φ rt DJ 3 μ- σ> • 3 3J Φ Φ g Ω H
Φ H- d d O μ- rt rt Ω 13 0J o> 0 3 rt 0J 3 rt h •s CO Φ 3 • O 3J rt CO
3 Φ o H hi μ- H rt μ- 0J DJ ffi Ω ^ x OJ 3J 3 μ- O H O O 0 H μ- H *» rt ι-3 rt Φ 3 • σ σ 3 • μ- μ- σ φ Ω σ u 3 μ- d Ω • d 3 O 3 0J
3' \ d rt O μ- H-1 o- o a Φ α Φ Φ H ω H O 3* H μ- H 0 Ω CO
3 o O μ- hi μ- hi X 0 o Φ σ H Φ Φ Ω O CO φ Ω H o Ω d H- l-S rt d
H- e d co μ- co O Hi rt Φ 3 -> Hi d • Φ ιQ d Φ H CO φ 3 α iQ Ω
3 rt H 3 ιQ μ- CO rt Ω DJ Φ H 3 H I-1 CD Φ Ό CD Φ 0J 3^
3" CO rt ιQ d d Φ T3 Ω d Φ μ- OS Ω Ό o. rt rt o •8 O Hi cu O CO 3' 3 *-*»
• σ • 3 Ω
(U CO O 3 CO σ Hi 3 μ- o o d d ≤ 0J l-1 Hi O 0J O μ- μ- O OJ
0. • H μ- d Φ 1 0J ^ CO 'd O Q. rt μ- H μ- O rt rt rt O rt Hi rt OJ Ω hi ω hi ιQ C0 OJ α Ω CO ft μ» Css σ 0) 3 rt Φ rt * 3" Φ ω T3 3 φ H 3
H- es φ (-> O 3 Ω 0) o 3 φ Ω CO d OS Φ 3* Q. 3 cu g Ω Ό
3 3 rt o μ- 3 μ- (D 3 O O O & Φ 3 cr CO o O μ- o μ- rt o o CO φ
H- o 3 rt 3 Ω Φ φ 3 μ- d Φ d s: Hi CD 3 H rt Φ 3 Ό
O μ- 3 rt DJ O Φ s 3 rt
3 Ό d H Ω •n ιQ H ^ μ-
3 lf rt σ *
M α Φ μ-
O μ- • σ O CO Ό o 3 μ- d μ- 3 ω μ- 3 3* O d • Φ rt o Φ O μ- o 3 Φ rt d d 3 d rt Ω φ O ω ιQ Ω 3 d Ό 3
3 0 rt μ- H3 3' o Ω o 3 iQ rt 3 DJ rr rt H O Φ OJ 3 Φ d o 3" 3 O O SD 3- d 3 OJ d . 3 3 CO φ Φ ιQ a. < φ CO rt l-i Ω cυ I-1 CO μ- CD α rt μ- Css 3' Φ ι-3 Φ d Ω •*. O Φ 3 Φ 3* φ 3 Φ Φ 1 3
derivatization, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190).
The following microorganism has been deposited at the Deutsche Sammlung fur Mikrorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty:
• Corynebacterium glutamicum strain DSM5715/pJClpgsA2 as DSM 13251
The process according to the invention is used for the fermentative preparation of amino acids, in particular L- lysine.
The present invention is explained in more detail in the following with the aid of embodiment examples.
Example 1
Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032
Chromosomal DNA from Corynejacteriujn glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179) and partly cleaved with the restriction enzyme Sau3AI (A ersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02) . The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Bioche icals, Mannheim, Germany, Product Description SAP, Code no. 1758250) . The DNA of the cosmid vector SuperCosl (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description SuperCosl Cosmid Vektor Kit, Code no. 251301) was cleaved with the restriction enzyme Xbal (Amersham Pharmacia,,
Freiburg, Germany, Product Description Xbal, Code no. 27- 0948-02) and likewise dephosphorylated with shrimp alkaline
phosphatase. The cosmid DNA was then cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04) . The cosmid DNA treated in this manner was mixed with the treated ATCC 13032 DNA gemischt and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) . The ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217) . For infection of the E. coli strain NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) the cells were taken up in 10 mM MgS0 and mixed with an aliquot of the phage suspension. The infection and titering of the cosmid library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) , the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) with 100 mg/1 ampicillin. After incubation overnight at 37 °C, recombinant individual clones were selected.
Example 2
Isolation and sequencing of the pgsA2 gene
The cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02) . The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim,
Germany, Product Description SAP, Product No. 1758250) . After separation by gel electrophoresis, the cosmid fragments in the size range of 1500 to 2000 bp were isolated with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) . The DNA of the sequencing
vector pZero-1, obtained from Invitrogen (Groningen, Holland, Product Description Zero Background Cloning Kit, Product No. K2500-01) was cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No. 27-0868-04) . The ligation of the cosmid fragments in the sequencing vector pZero-1 was carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) , the DNA mixture being incubated overnight with T4 ligase (Pharmacia Biotech, Freiburg, Germany) . This ligation mixture was then incorporated by means of electroporation (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) into the E. coli strain DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) and plated out on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/1 zeocin. The plasmid preparation of the recombinant clones was carried out with Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Germany) . The sequencing was carried out by the dideoxy chain-stopping method of Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) with modifications according to Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). The "RR dRhoda in Terminator Cycle Sequencing Kit" from PE Applied Biosystems (Product No. 403044, Weiterstadt, Germany) was used. The separation by gel electrophoresis and analysis of the sequencing reaction were carried out in a "Rotiphoresis NF Acrylamide/Bisacrylamide" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) with the "ABI Prism 377" sequencer from PE Applied Biosystems (Weiterstadt, Germany) .
The raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0. The individual sequences of the pZerol derivatives were assembled to a continuous contig. The computer-assisted coding region analysis was prepared
with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231). Further analyses were carried out with the "BLAST search program" (Altschul et al., 1997, Nucleic Acids Research,- 25:3389-3402), against the non- redundant databank of the "National Center for
Biotechnology Information" (NCBI, Bethesda, MD, USA) .
The resulting nucleotide sequence is shown in SEQ ID No. 1. Analysis of the nucleotide sequence showed an open reading frame of 291 base pairs, which was called the pgsA2 gene. The pgsA2 gene codes for a protein of 97 amino acids.
Example 3
Cloning of the pgsA2 gene in the vector pJCl
Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179). A DNA fragment which carries the pgsA2 gene was amplified with the aid of the polymerase chain reaction. The following primers were used for this:
5X-TGC TCT AGA CGT CCG TCG AGA GGT TTT TAG G-3
5V-TGC TCT AGA CCC CGC CAG ATT CTC CGA CAT -3X
Both oligonucleotides carry the sequence for the cleavage site of the restriction enzyme Xbal (nucleotides underlined) . The primers shown were synthesized by MWG Biotech (Ebersberg, Germany) synthesized and the PCR reaction was carried out by the standard PCR method of Innis et al., (PCR protocol. A guide to methods and applications, 1990, Academic Press) . The primers allow amplification of a DNA fragment of approx 749 bp in size, which carries the pgsA2 gene from Corynebacterium glutamicum.
After separation by gel electrophoresis, the PCR fragment was isolated from the agarose gel with the QiaExII Gel
Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
The PCR fragment obtained in this manner was cleaved completely with the restriction enzyme Xbal. The pgsA2 fragment approx 749 bp in size was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
The E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 -480) was used as the vector. This plasmid was also cleaved completely with the restriction enzyme Xbal and then dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250) .
The pgsA2 fragment obtained in this manner was mixed with the prepared vector pJCl and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) . The ligation batch was transformed in the E. coli strain DH5α (Hanahan, In: DNA cloning. A practical approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) . Selection of plasmid-carrying cells was made by plating out the transformation batch on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/1 kanamycin. After incubation overnight at 37°C, recombinant individual clones were selected. Plasmid DNA was isolated from a transformant with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and cleaved with the restriction enzyme Xbal to check the plasmid by subsequent agarose gel electrophoresis. The resulting plasmid was called pJClpgsA2.
Example 4
Transformation of the strain DSM5715 with the plasmid pJClpgsA2
The strain DSM5715 was transformed with the plasmid pJClpgsA2 using the electroporation method described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989) ) . Selection of the transformants took place on LBHIS agar comprising 18.5 g/1 brain-heart infusion broth, 0.5M sorbitol, 5 g/1 Bacto-tryptone, 2.5 g/1 Bacto-yeast extract, 5 g/1 NaCl, 18 g/1 Bacto-agar, which had been supplemented with 25 μg/ml kanamycin. Incubation was carried out for 2 days at 33°C.
Plasmid DNA was isolated from a transformant by conventional methods (Peters-Wendisch et al., 1998, Microbiology, 144, 915 -927) and cut with the restriction endonuclease EcoRI; in order to check the plasmid by subsequent agarose gel electrophoresis. The resulting strain was called DSM5715/pJClpgsA2.
The strain DSM5715/pJClpgsA2 has been deposited at the Deutsche Sammlung fur Mikrorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty as DSM 13251.
Example 5
Preparation of lysine
The C. glutamicum strain DSM5715/pJClpgsA2 obtained in example 5 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.
For this, the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with
kanamycin (50 μg/ml) for 24 hours at 33°C. Starting from this agar plate culture, a preculture was seeded (10 ml medium in a 100 ml conical flask) . The complete medium Cglll was used as the medium for the preculture.
Medium Cg III
NaCl 2.5 g/1
Bacto-Peptone 10 g/1
Bacto-Yeast extract 10 g/1
Glucose (autoclaved separately) 2% (w/v)
The pH was brought to pH 7.4
Kanamycin (25 mg/1) was added to this. The preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1. Medium MM was used for the main culture.
Medium MM
CSL (corn steep liquor) 5 g/1
MOPS (morpholinopropanesulfonic 20 g/1 acid)
Glucose (autoclaved separately) 50g/l
(NH4)2S04 25 g/1
KH2P04 0.1 g/1
MgS04 * 7 H20 1.0 g/1
CaCl2 * 2 H20 10 mg/1
FeS04 * 7 H20 10 mg/1
MnS0 * H20 5.0mg/l
Biotin (sterile-filtered) 0.3 mg/1
Thiamine * HCI (sterile-filtered) 0.2 mg/1
L-Leucine 0.1 g/1
CaC03 25 g/1
The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaC03 autoclaved in the dry state.
Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Kanamycin (25 μg/ml) was added. Culturing was carried out at 33°C and 80% atmospheric humidity.
After 24 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich) . The amount of lysine formed was determined with an amino acid analyzer from Eppendorf- BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.
The result of the experiment is shown in Table 1.
Table 1
Brief Description of the Drawing:
Figure 1: Map of the plasmid pJClpgsA2
The abbreviations and designations used have the following meaning.
oriCg : Plasmid-coded replication origin C. glutamicum (of pHMl519 )
pgsA2 pgsA2 (CDP-diacylglycerol-glycerol-3-phosphate phosphatidyltransferase) gene from C. glutamicum ATCC13032
Kan: Kanamycin resistance gene
BamHI: Cleavage site of the restriction enzyme BamHI
EcoRI: Cleavage site of the restriction enzyme EcoRI
Hindlll: Cleavage site of the restriction enzyme Hindlll
Sail: Cleavage site of the restriction enzyme Sail
S al: Cleavage site of the restriction enzyme Smal Xbal: Cleavage site of the restriction enzyme Xbal
SEQUENCE LISTING
<110> Degussa AG, Forschungszentrum Jϋlich GmbH
<120> New nucleotide sequences which code for the pgsA2 gene
<130> 000015 BT
<140> <141>
<160> 2
<170> Patentln Ver. 2.1
<210> 1
<211> 1000
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (186) .. (815)
<223> pgsA2-Gen
<400> 1 gcacggcaaa ataagtcata acaggtaagt ttaggcgtct agacgtacac taaacggaat 60 ttggttcact tatattcttc tcttgctttt gtggcgcttc gtccgtcgag aggtttttag 120 gaatagagtg ggctcaagct ttgtgacaag ttttttggag aaatcattac tagtcgtagt 180 cttca att tgg gtg cag gta ggg tgg aac ace gtg agt gat gta tea gca 230 lie Trp Val Gin Val Gly Trp Asn Thr Val Ser Asp Val Ser Ala 1 5 10 15 ggc gta aat ggc gca caa gat cca age aat caa gcg gtc aag cct tec 278
Gly Val Asn Gly Ala Gin Asp Pro Ser Asn Gin Ala Val Lys Pro Ser 20 25 30 aac tgg aac ctt ccg aac ttc ttg ace age ttg cgt ate att gtc ate 326
Asn Trp Asn Leu Pro Asn Phe Leu Thr Ser Leu Arg lie lie Val lie 35 40 45 cct ttg ttt gcg tgg ctt acg ctt aaa ggt gag acg gaa aac aat get 374 Pro Leu Phe Ala Trp Leu Thr Leu Lys Gly Glu Thr Glu Asn Asn Ala 50 55 60 ttt gee tgg tgg gcg ttg gtt gtt ttc att ttg etc atg ate ace gac 422 Phe Ala Trp Trp Ala Leu Val Val Phe He Leu Leu Met He Thr Asp 65 70 75 aag ctt gac ggc gat att gcg cga gca cgt ggc ctg gtc act gac ttt 470 Lys Leu Asp Gly Asp He Ala Arg Ala Arg Gly Leu Val Thr Asp Phe 80 85 90 95 ggc aag ate gcg gat ccg att gee gat aag gcg ttg atg ace aca gca 518 Gly Lys He Ala Asp Pro He Ala Asp Lys Ala Leu Met Thr Thr Ala 100 105 110 ttt gtc tgt ttc aac ate ate ggc att ttg ccc tgg tgg gtc act gcg 566
Phe Val Cys Phe Asn He He Gly He Leu Pro Trp Trp Val Thr Ala 115 120 125 ttg att gtg ctt cga gag ttc ggc att ace ate tgg cgt ttc ttc caa 614 Leu He Val Leu Arg Glu Phe Gly He Thr He Trp Arg Phe Phe Gin 130 135 140 ctg cgc get gga aat gtt gtg cct gca tea aag ggg ggc aag ctt aag 662 Leu Arg Ala Gly Asn Val Val Pro Ala Ser Lys Gly Gly Lys Leu Lys 145 150 155 act get ctg cag act gtt gee gtt get ctg tat ctg tgc cct ttc cca 710 Thr Ala Leu Gin Thr Val Ala Val Ala Leu Tyr Leu Cys Pro Phe Pro 160 165 170 175 agt tgg atg gat att cca age cag ate gtc atg tat gca gcg ctg ate 758 Ser Trp Met Asp He Pro Ser Gin He Val Met Tyr Ala Ala Leu He 180 185 190 gtc ace gtg gtc acg ggt ctg cag tac ctg tgg gat tea cga aag tec 806 Val Thr Val Val Thr Gly Leu Gin Tyr Leu Trp Asp Ser Arg Lys Ser 195 200 205 gca gaa age tagaccatgt cggagaatct ggcggggcga gtggtggagc 855 Ala Glu Ser 210 tgttgaaatc gcgcggtgaa aegctggcgt tttgtgaate cctcaccgcc ggccttgcca 915 gtgcgacgat cgcagagatc cccggegcct eagtggtaet taaaggeggg ctggtcacet 975 atgccaccga gcttaaggtt gcgct 1000
<210> 2
<211> 210 <212> PRT <213> Corynebacterium glutamicum <400> 2
He Trp Val Gin Val Gly Trp Asn Thr Val Ser Asp Val Ser Ala Gly 1 5 10 15
Val Asn Gly Ala Gin Asp Pro Ser Asn Gin Ala Val Lys Pro Ser Asn 20 25 30
Trp Asn Leu Pro Asn Phe Leu Thr Ser Leu Arg He He Val He Pro 35 40 45 Leu Phe Ala Trp Leu Thr Leu Lys Gly Glu Thr Glu Asn Asn Ala Phe 50 55 60
Ala Trp Trp Ala Leu Val Val Phe He Leu Leu Met He Thr Asp Lys 65 70 75 80
Leu Asp Gly Asp He Ala Arg Ala Arg Gly Leu Val Thr Asp Phe Gly 85 90 95
Lys He Ala Asp Pro He Ala Asp Lys Ala Leu Met Thr Thr Ala Phe 100 105 110
Val Cys Phe Asn He He Gly He Leu Pro Trp Trp Val Thr Ala Leu 115 120 125
He Val Leu Arg Glu Phe Gly He Thr He Trp Arg Phe Phe Gin Leu 130 135 140 Arg Ala Gly Asn Val Val Pro Ala Ser Lys Gly Gly Lys Leu Lys Thr 145 150 155 160
Ala Leu Gin Thr Val Ala Val Ala Leu Tyr Leu Cys Pro Phe Pro Ser 165 170 175
Trp Met Asp He Pro Ser Gin He Val Met Tyr Ala Ala Leu He Val 180 185 190
Thr Val Val Thr Gly Leu Gin Tyr Leu Trp Asp Ser Arg Lys Ser Ala 195 200 205
Glu Ser 210
Claims
1. A genetically modified coryneform bacterium, wherein the pgsA2 gene, which codes for CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase, is enhanced.
2. A genetically modified coryneform bacterium as claimed in claim 1, wherein the starting bacterium (wild-type) is chosen from the group consisting of Corynebacterium glutamicum (ATCC13032), Corynebacterium acetoglutamicum (ATCC15806), Corynebacterium acetoacidophilum (ATCC13870) , Corynebacterium thermoaminogenes (FERM BP-1539) , Corynebacterium melassecola (ATCC17965) , Brevibacterium flavum (ATCC14067), Brevibacterium lactofermentum (ATCC13869) and Brevibacterium divaricatum (ATCC14020) , or is chosen from the group consisting of Corynebacterium glutamicum FERM-P 1709, Brevibacterium flavum FERM-P 1708, Brevibacterium lactofermentum FERM-P 1712, Corynebacterium glutamicum FERM-P 6463, Corynebacterium glutamicum FERM-P 6464 and Corynebacterium glutamicum DSM5715.
3. A genetically modified coryneform bacterium as claimed in claim 1, wherein the enhancement of the pgsA2 gene is carried out by over-expression of the gene, in particular by increasing the number of copies of the gene, by choosing a potent promoter or a regulation region above the reading frame, by mutation of the promoter, the regulation region or the ribosome binding site, by incorporation of a suitable expression cassette above the structural gene or by incorporation of inducible promoters, by prolonging the life of the corresponding mRNA, by a reduced degradation of the proteins expressed, or by combination of several of these possibilities.
4. A genetically modified coryneform bacterium as claimed in one of claims 1 to 3, wherein the strain is transformed with a plasmid vector and the plasmid vector carries the nucleotide sequence which codes for the pgsA2 gene.
5. A genetically modified coryneform bacterium as claimed in one of claims 1 to 4, wherein it corresponds genotypically to the strain Corynebacterium glutamicum DSM 13251.
6. An isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
a) polynucleotide which is homologous to the extent of at least 70 % to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2, or consists of this,
b) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is homologous to the extent of at least 70% to the amino acid sequence of SEQ ID No. 2,
c) polynucleotide which is complementary to the polynucleotides of a) or b) , and
d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a) , b) or c) .
7. A polynucleotide as claimed in claim 6, wherein the polynucleotide is a preferably recombinant DNA which is capable of replication in coryneform bacteria.
8. A polynucleotide as claimed in claim 6, wherein the polynucleotide is an RNA.
. A DNA as claimed in claim 7 which is capable of replication, comprising
i) . the nucleotide sequence shown in SEQ ID no. 1, or
ii) at least one sequence which corresponds to sequence (i) in the context of the degeneration of the genetic code, or
iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii) , and optionally
iv) mutations of neutral function in (i) which lead to homologous amino acids .
10. A polynucleotide sequence as claimed in claim 7, 8 or 9, which comprises codes for a polypeptide which has the amino acid sequence SEQ ID No. 2.
11. A process for the fermentative preparation of L-amino acids, wherein the following steps are carried out:
a) fermentation of coryneform bacteria which produce L-amino acids and in which at least the pgsA2 gene or nucleotide sequences which code for it are enhanced, in particular over-expressed,
b) concentration of the L-amino acid in the medium or in the cells of the bacteria and
c) isolation of the L-amino acid.
12. A process as claimed in claim 11, wherein a strain as claimed in one of claims 1 to 5 is employed.
13. A process as claimed in claim 11 or 12, wherein further genes which code for a protein of the biosynthesis pathway of the desired L-amino acid are additionally enhanced in the bacteria.
14. A process as claimed in one of claims 11 to 13, wherein metabolic pathways which reduce the formation of the desired amino acid are at least partly eliminated in the bacteria.
15. A process as claimed in one or claims 12 to 15, wherein the amino acid prepared is L-lysine.
16. A process as claimed in one of claims 11 to 15, wherein for the preparation of lysine, bacteria in which one or more genes chosen from the group consisting of
a) the dapA gene which codes for dihydrodipicolinate synthase,
b) the dapE gene which codes for succinyl diaminopimelate desuccinylase,
c) the lysC gene which codes for a feed-back resistant aspartate kinase,
d) the tpi gene which codes for triose phosphate isomerase,
e) the gap gene which codes for glyceraldehyde 3- phosphate dehydrogenase,
f) the pgk gene which codes for 3-phosphoglycerate kinase,
g) the pyc gene which codes for pyruvate carboxylase,
h) the mqo gene which codes for malate:quinone oxidoreductase,
i) the lysE gene which codes for lysine export,
is enhanced, in particular over-expressed or amplified, at the same time are fermented.
7. A process as claimed in one of claims 11 to 16, wherein for the preparation of L-lysine, bacteria in which one or more genes chosen from the group consisting of
a) the pck gene which codes for phosphoenol pyruvate carboxykinase,
b) the pgi gene which codes for glucose 6-phosphate isomerase,
c) the poxB gene which codes for pyruvate oxidase,
is attenuated at the same time are fermented.
18. The use of polynucleotide sequences or parts thereof as claimed in claim 6 as primers for the preparation of DNA of genes which code for CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase by the polymer chain reaction.
19. The use of polynucleotide sequences as claimed in claim 6 as hybridization probes for isolation of cDNA or genes which have a high homology with the sequence of the pgsA2 gene.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10021829A DE10021829A1 (en) | 2000-05-04 | 2000-05-04 | New nucleotide sequences coding for the pgsA2 gene |
DE10021829 | 2000-05-04 | ||
PCT/EP2001/004704 WO2001083766A1 (en) | 2000-05-04 | 2001-04-26 | New nucleotide sequences which code for the pgsa2 gene |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1278865A1 true EP1278865A1 (en) | 2003-01-29 |
Family
ID=7640836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01940367A Withdrawn EP1278865A1 (en) | 2000-05-04 | 2001-04-26 | Nucleotide sequences which code for the pgsa2 gene |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1278865A1 (en) |
KR (1) | KR20020097244A (en) |
AU (1) | AU2001273970A1 (en) |
DE (1) | DE10021829A1 (en) |
WO (1) | WO2001083766A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2817157B2 (en) * | 1989-01-13 | 1998-10-27 | 味の素株式会社 | Production method of L-amino acid by fermentation method |
DE3943117A1 (en) * | 1989-12-27 | 1991-07-04 | Forschungszentrum Juelich Gmbh | METHOD FOR THE FERMENTATIVE PRODUCTION OF AMINO ACID, IN PARTICULAR L-LYSINE, THEREFORE SUITABLE MICROORGANISMS AND RECOMBINANT DNA |
DE4203320C2 (en) * | 1992-02-06 | 1994-02-03 | Forschungszentrum Juelich Gmbh | Fermentation process for the extraction of amino acids and a suitable bacterial strain |
US6448037B1 (en) * | 1998-02-20 | 2002-09-10 | Smithkline Beecham Corporation | PgsA |
KR100878332B1 (en) * | 1999-06-25 | 2009-01-14 | 백광산업 주식회사 | Corynebacterium Glutamicum Genes Encoding Proteins Involved in Membrane Synthesis and Membrane Transport |
DE19931314A1 (en) * | 1999-07-07 | 2001-01-11 | Degussa | L-lysine producing coryneform bacteria and method for producing lysine |
JP4623825B2 (en) * | 1999-12-16 | 2011-02-02 | 協和発酵バイオ株式会社 | Novel polynucleotide |
-
2000
- 2000-05-04 DE DE10021829A patent/DE10021829A1/en not_active Withdrawn
-
2001
- 2001-04-26 KR KR1020027014696A patent/KR20020097244A/en not_active Application Discontinuation
- 2001-04-26 AU AU2001273970A patent/AU2001273970A1/en not_active Abandoned
- 2001-04-26 WO PCT/EP2001/004704 patent/WO2001083766A1/en not_active Application Discontinuation
- 2001-04-26 EP EP01940367A patent/EP1278865A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0183766A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2001273970A1 (en) | 2001-11-12 |
DE10021829A1 (en) | 2001-11-08 |
KR20020097244A (en) | 2002-12-31 |
WO2001083766A1 (en) | 2001-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7262036B2 (en) | Process for the preparation of l-amino acids | |
CA2339307A1 (en) | Nucleotide sequences coding for the dapc gene and process for the production of l-lysine | |
EP1287143A2 (en) | Corynebacterium glutamicum nucleotide sequences coding for the glbo gene | |
AU7254800A (en) | New nucleotide sequences coding for the ptsH gene | |
US6818432B2 (en) | Nucleotide sequences encoding the ptsH gene | |
US6913910B2 (en) | Nucleotide sequences coding for the glk-gene | |
US20040005675A9 (en) | Nucleotide sequences encoding the ptsH gene | |
US6830921B2 (en) | Nucleotide sequences which code for the ACP gene | |
US6806068B1 (en) | Nucleotide sequences which encode the pfk gene | |
US6949374B2 (en) | FadD15 gene of Corynebacterium glutamicum, encoding an acyl-CoA synthase polypeptide | |
MXPA00011412A (en) | New isolated polynucleotide encoding phosphofructokinase a of coryneform bacteria, useful, when overexpressed, for increasing fermentative production of amino acids. | |
EP1278860B1 (en) | Nucleotide sequences which code for the cma gene | |
US6638753B2 (en) | Nucleotide sequences which code for the cma gene | |
US20020155555A1 (en) | Nucleotide sequences which code for the pgsA2 gene | |
EP1311683B1 (en) | Nucleotide sequences which code for the csta gene from corynebacterium glutamicum | |
WO2002002779A2 (en) | Nucleotide sequences which encode the plsc protein | |
AU7177300A (en) | Novel nucleotide sequences coding for the gpm gene | |
EP1278865A1 (en) | Nucleotide sequences which code for the pgsa2 gene | |
EP1278857A1 (en) | Nucleotide sequences which code for the fadd15 gene | |
WO2002002777A2 (en) | Gpsa gene from corynebaxteria and use thereof in synthesis of l-amino acids | |
EP1320616A2 (en) | Sequences which code for the sige gene of corynebacterium glutamicum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020829 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20030306 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030917 |