EP1278865A1 - Nucleotide sequences which code for the pgsa2 gene - Google Patents

Nucleotide sequences which code for the pgsa2 gene

Info

Publication number
EP1278865A1
EP1278865A1 EP01940367A EP01940367A EP1278865A1 EP 1278865 A1 EP1278865 A1 EP 1278865A1 EP 01940367 A EP01940367 A EP 01940367A EP 01940367 A EP01940367 A EP 01940367A EP 1278865 A1 EP1278865 A1 EP 1278865A1
Authority
EP
European Patent Office
Prior art keywords
gene
codes
polynucleotide
sequence
pgsa2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01940367A
Other languages
German (de)
French (fr)
Inventor
Madhavan Nampoothiri
Bettina Möckel
Walter Pfefferle
Lothar Eggeling
Hermann Sahm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Evonik Operations GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Degussa GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1278865A1 publication Critical patent/EP1278865A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08005CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (2.7.8.5)

Definitions

  • the invention provides -genetically modified coryneform bacteria, nucleotide sequences which code for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and processes for the fermentative preparation of amino acids, in particular L-lysine, using coryneform bacteria in which the pgsA2 gene, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase (EC 2.7.8.5), is enhanced.
  • Amino acids in particular L-lysine, are used in human medicine and in the pharmaceuticals industry, but in particular in animal nutrition.
  • amino acids are prepared by fermentation from strains of coryneform bacteria, in particular Corynebacterium glutamicum . Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the processes can relate to fermentation measures, such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
  • fermentation measures such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
  • Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms.
  • Strains which are resistant to antimetabolites such as e. g. the lysine analogue S-(2- aminoethyl) -cysteine, or are auxotrophic for metabolites of regulatory importance and produce L-amino acids, such as e. g. L-lysine, are obtained in this manner.
  • the object of the present invention was to provide new aids for improved fermentative preparation of amino acids, in particular L-lysine.
  • This object is achieved by a genetically modified coryneform bacterium, the pgsA2 gene of which, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
  • Amino acids in particular L-lysine
  • L-lysine are used in human medicine, in the pharmaceuticals industry and in particular in animal nutrition. There is therefore a general interest in providing new improved processes for the preparation of amino acids, in particular L-lysine.
  • the invention provides a genetically modified coryneform bacterium, in which its pgsA2 gene, which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
  • Enhancement can be achieved with the aid of various manipulations of the bacterial cell.
  • the number of copies of the corresponding genes can be increased, a potent promoter can be used, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated.
  • Expression cassettes which are incorporated upstream of the structural gene act in the same way.
  • inducible promoters it is additionally possible to increase the expression in the course of fermentative L-lysine production.
  • a gene which codes for a corresponding enzyme with a high activity The expression is likewise improved by measures to prolong the life of the m-RNA.
  • the enzyme activity is also increased overall by preventing the degradation of the enzyme. These measures can optionally also be combined as desired.
  • the microorganisms which the present invention provides can prepare L-amino acids, in particular L-lysine, from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They can be representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.
  • Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains
  • the present invention also provides an isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
  • polynucleotide which is homologous to the extent of at least 70 % with a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2,
  • polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is homologous to the extent of at least 70% with the amino acid sequence of SEQ ID No. 2,
  • polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a) , b) or c) .
  • a polynucleotide sequence is "homologous" to the sequence according to the invention if it coincides in its base composition and sequence with the sequence according to the invention to the extent of at least 70%, preferably at least 80%, particularly preferably at least 90%.
  • a "homologous protein” is to be understood as proteins which have an amino acid sequence which coincide with the amino acid sequence coded by the pgsA2 gene (SEQ ID No.l) to the extent of at least 70 %, preferably at least 80 %, particularly preferably at least 90 %, "coincide” being understood as meaning that either the corresponding amino acids are identical or they are amino acids which are homologous to one another. Those amino acids which correspond in their properties, in particular in respect of charge, hydrophobicity, steric properties etc., are called “homologous amino acids”.
  • the invention also provides a polynucleotide as described above , this preferably being a DNA which is capable of replication, comprising:
  • the invention also provides a preferably recombinant polynucleotide which is capable of replication in coryneform bacteria and comprises the nucleotide sequence SEQ ID No. 1,
  • coryneform bacteria serving as the host cell, which contain the vector or in which the pgsA2 gene is enhanced.
  • the invention also provides polynucleotides which comprise the complete gene with the polynucleotide sequence corresponding to SEQ ID No. 1 or fragments thereof, and which are obtainable by screening by means of hybridization of a corresponding gene library with a probe which comprises the sequence of the polynucleotide mentioned, according to SEQ ID No. 1, or a fragment thereof, and isolation of the DNA sequence mentioned.
  • Polynucleotide sequences according to the invention are also suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate, in the full length, cDNA which code for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and to isolate those cDNA or genes which have a high similarity with the sequence of the CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase gene.
  • Polynucleotide sequences according to the invention are furthermore suitable as primers for the polymerase chain reaction (PCR) , for the preparation of DNA which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase proteins.
  • PCR polymerase chain reaction
  • Such oligonucleotides which serve as probes or primers can comprise more than 30, preferably up to 30, particularly preferably up to 20, very particularly preferably at least 15 successive nucleotides. Oligonucleotides which have a length of at least 40 or 50 nucleotides are also suitable.
  • Polynucleotide in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.
  • Polypeptides is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds .
  • polypeptides according to the invention include a polypeptide according to SEQ ID No. 2, in particular those with the biological activity of the CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase protein, and also those which are homologous to the extent of at least 70 % with the polypeptide according to SEQ ID No. 2, and preferably are homologous to the extent of at least 80% and in particular to the extent of at least 90 % to 95 % with the polypeptide according to SEQ ID no. 2, and have the activity mentioned.
  • the invention moreover provides a process for the fermentative preparation of amino acids, in particular L- lysine, using coryneform bacteria which in particular already produce an amino acid, and in which the nucleotide sequences which code for the pgsA2 gene are enhanced, in particular over-expressed.
  • the pgsA2 gene of C. glutamicum which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase is described for the first time in the present invention.
  • a gene library of this microorganism is first set up in E. coli . The setting up of gene libraries is described in generally known textbooks and handbooks.
  • glutamicum ATCC13032 which was set up with the aid of the cosmid vector SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the E. coli K-12 strain NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575). Bormann et al. (Molecular Microbiology 6(3), 317-326)) (1992)) in turn describe a gene library of C. glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)). To prepare a gene library of C. glutamicum in E.
  • coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) or pUC9 (Vieira et al., 1982, Gene, 19:259-268).
  • Suitable hosts are, in particular, those E. coli strains which are restriction- and recombination- defective.
  • An example of these is the strain DH5 ⁇ mcr, which has been described by Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) .
  • the long DNA fragments cloned with the aid of cosmids can then in turn be subcloned and subsequently sequenced in the usual vectors which are suitable for sequencing, such as is described e. g. by Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977).
  • the new DNA sequence of C. glutamicum ' which codes for the pgsA2 gene and which, as SEQ ID No. 1, is a constituent of the present invention, was obtained in this manner.
  • the amino acid sequence of the corresponding protein has moreover been derived from the present DNA sequence by the methods described above.
  • the resulting amino acid sequence of the pgsA2 gene product is shown in SEQ ID No. 2.
  • Coding DNA sequences which result from SEQ ID No. 1 by the degeneracy of the genetic code are also a constituent of the invention.
  • DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention.
  • Conservative amino acid exchanges such as e. g. exchange of glycine for alanine or of aspartic acid for glutamic acid in proteins, are moreover known among experts as "sense mutations" which do not lead to a fundamental change in the activity of the protein, i.e. are of neutral function. It is moreover known that changes on the N and/or C terminus of a protein cannot substantially impair the function thereof or can even stabilize this.
  • DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention.
  • DNA sequences which are prepared by the polymerase chain reaction (PCR) using primers which result from SEQ ID NO. 1 are a constituent of the invention.
  • PCR polymerase chain reaction
  • Such oligonucleotides typically have a length of at least 15 nucleotides.
  • PCR polymerase chain reaction
  • coryneform bacteria produce amino acids, in particular L-lysine, in an improved manner after enhancement of the pgsA2 gene.
  • genes or gene constructs under consideration can either be present in plasmids with a varying number of copies, or can be integrated and enhanced in the chromosome. Alternatively, an over-expression of the genes in question can moreover be achieved by changing the composition of the media and the culture procedure.
  • the pgsA2 gene according to the invention was over-expressed with the aid of plasmids.
  • Suitable plasmids are those which are replicated and expressed in coryneform bacteria.
  • Numerous known plasmid vectors such as e. g. pZl (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKExl (Eikmanns et al., Gene 102:93-98 (1991)) or pHS2-l (Sonnen et al., Gene 107:69-74 (1991)) are based on the cryptic plasmids pHM1519, pBLl or pGAl.
  • Other plasmid vectors such as e. g.
  • pJClpgsA2 (figure 1) , which is based on the E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 - 480) and contains the DNA sequence of C. glutamicum which codes for the pgsA2 gene. It is contained in the strain DSM5715/pJClpgsA2.
  • Plasmid vectors which are moreover suitable are those with the aid of which the process of gene enhancement by integration into the chromosome can be used, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or enhancement of the hom-thrB operon.
  • the complete gene is cloned in a plasmid vector which can replicate in a host (typically E. coli) , but not in C. glutamicum.
  • Possible vectors are, for example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), ⁇ K18mob or pKl9mob (Schafer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994).
  • the plasmid vector which contains the gene to be enhanced is then transferred into the desired strain of C. glutamicum by conjugation or transformation.
  • the method of conjugation is described, for example, by Schafer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described, for example, by Thierbach et al.
  • amino acids in particular L-lysine
  • microorganisms prepared according to the invention can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of amino acids, in particular L- lysine.
  • batch culture batch culture
  • feed process fed batch
  • repetitive feed process repetition feed process
  • the culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook “Manual of Methods for General Bacteriology” of the American Society for Bacteriology (Washington D.C., USA, 1981).
  • Sugars and carbohydrates such as e. g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e. g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e. g. glycerol and ethanol, and organic acids, such as e. g. acetic acid, can be used as the source of carbon. These substance can be used individually or as a mixture.
  • oils and fats such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat
  • fatty acids such as e. g. palmitic acid, stearic acid and linoleic acid
  • alcohols such as e. g. glycerol and ethanol
  • organic acids such as e. g. acetic
  • DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
  • the process according to the invention is used for the fermentative preparation of amino acids, in particular L- lysine.
  • the ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217) .
  • Gigapack II XL Packing Extracts Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217.
  • the cells were taken up in 10 mM MgS0 and mixed with an aliquot of the phage suspension.
  • the infection and titering of the cosmid library were carried out as described by Sambrook et al.
  • the cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02) .
  • the DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim,
  • the raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0.
  • the individual sequences of the pZerol derivatives were assembled to a continuous contig.
  • the computer-assisted coding region analysis was prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231). Further analyses were carried out with the "BLAST search program" (Altschul et al., 1997, Nucleic Acids Research,- 25:3389-3402), against the non- redundant databank of the "National Center for
  • the resulting nucleotide sequence is shown in SEQ ID No. 1. Analysis of the nucleotide sequence showed an open reading frame of 291 base pairs, which was called the pgsA2 gene. The pgsA2 gene codes for a protein of 97 amino acids.
  • Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179). A DNA fragment which carries the pgsA2 gene was amplified with the aid of the polymerase chain reaction. The following primers were used for this:
  • Both oligonucleotides carry the sequence for the cleavage site of the restriction enzyme Xbal (nucleotides underlined) .
  • the primers shown were synthesized by MWG Biotech (Ebersberg, Germany) synthesized and the PCR reaction was carried out by the standard PCR method of Innis et al., (PCR protocol. A guide to methods and applications, 1990, Academic Press) .
  • the primers allow amplification of a DNA fragment of approx 749 bp in size, which carries the pgsA2 gene from Corynebacterium glutamicum.
  • the PCR fragment was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
  • the PCR fragment obtained in this manner was cleaved completely with the restriction enzyme Xbal.
  • the pgsA2 fragment approx 749 bp in size was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
  • the E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 -480) was used as the vector. This plasmid was also cleaved completely with the restriction enzyme Xbal and then dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250) .
  • the pgsA2 fragment obtained in this manner was mixed with the prepared vector pJCl and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) .
  • the ligation batch was transformed in the E. coli strain DH5 ⁇ (Hanahan, In: DNA cloning. A practical approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) . Selection of plasmid-carrying cells was made by plating out the transformation batch on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/1 kanamycin.
  • Plasmid DNA was isolated from a transformant with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and cleaved with the restriction enzyme Xbal to check the plasmid by subsequent agarose gel electrophoresis. The resulting plasmid was called pJClpgsA2.
  • the strain DSM5715 was transformed with the plasmid pJClpgsA2 using the electroporation method described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989) ) . Selection of the transformants took place on LBHIS agar comprising 18.5 g/1 brain-heart infusion broth, 0.5M sorbitol, 5 g/1 Bacto-tryptone, 2.5 g/1 Bacto-yeast extract, 5 g/1 NaCl, 18 g/1 Bacto-agar, which had been supplemented with 25 ⁇ g/ml kanamycin. Incubation was carried out for 2 days at 33°C.
  • Plasmid DNA was isolated from a transformant by conventional methods (Peters-Wendisch et al., 1998, Microbiology, 144, 915 -927) and cut with the restriction endonuclease EcoRI; in order to check the plasmid by subsequent agarose gel electrophoresis. The resulting strain was called DSM5715/pJClpgsA2.
  • DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
  • the C. glutamicum strain DSM5715/pJClpgsA2 obtained in example 5 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.
  • the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with kanamycin (50 ⁇ g/ml) for 24 hours at 33°C.
  • a preculture was seeded (10 ml medium in a 100 ml conical flask) .
  • the complete medium Cglll was used as the medium for the preculture.
  • Kanamycin 25 mg/1 was added to this.
  • the preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine.
  • a main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1.
  • Medium MM was used for the main culture.
  • MOPS morpholinopropanesulfonic 20 g/1 acid
  • the CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved.
  • the sterile substrate and vitamin solutions were then added, as well as the CaC0 3 autoclaved in the dry state.
  • Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Kanamycin (25 ⁇ g/ml) was added. Culturing was carried out at 33°C and 80% atmospheric humidity. After 24 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Kunststoff) . The amount of lysine formed was determined with an amino acid analyzer from Eppendorf- BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.
  • FIG. 1 Map of the plasmid pJClpgsA2
  • oriCg Plasmid-coded replication origin C. glutamicum (of pHMl519 )
  • pgsA2 pgsA2 CDP-diacylglycerol-glycerol-3-phosphate phosphatidyltransferase gene from C. glutamicum ATCC13032
  • Kan Kanamycin resistance gene
  • Hindlll Cleavage site of the restriction enzyme Hindlll

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a genetically modified coryneform bacterium, the pgsA2 gene of which is enhanced, and an isolated polynucleotide which codes for CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase from coryneform bacteria, and also a process for the fermentative preparation of L-amino acids with enhancement of the pgsA2 gene in the bacteria and the use of the polynucleotide as a primer or hydridization probe.

Description

New nucleotide sequences which code for the pgsA2 gene
The invention provides -genetically modified coryneform bacteria, nucleotide sequences which code for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and processes for the fermentative preparation of amino acids, in particular L-lysine, using coryneform bacteria in which the pgsA2 gene, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase (EC 2.7.8.5), is enhanced.
Amino acids, in particular L-lysine, are used in human medicine and in the pharmaceuticals industry, but in particular in animal nutrition.
It is known that amino acids are prepared by fermentation from strains of coryneform bacteria, in particular Corynebacterium glutamicum . Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the processes can relate to fermentation measures, such as e. g. stirring and supply of oxygen, or the composition of the nutrient media, such as e. g. the sugar concentration during the fermentation, or the working up to the product form by e. g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.
Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e. g. the lysine analogue S-(2- aminoethyl) -cysteine, or are auxotrophic for metabolites of regulatory importance and produce L-amino acids, such as e. g. L-lysine, are obtained in this manner.
Methods of the recombinant DNA technique have furthermore been employed for some years for improving the strain of Corynebacterium strains which produce amino acids, by amplifying individual amino acid biosynthesis genes and investigating the effect on the amino acid production. Review articles in this context are to be found, inter alia, in Kinoshita ("Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (Eds.), Benjamin Cummings, London, UK, 1985, 115-142), Hilliger (BioTec 2, 40-44 (1991)), Eggeling (Amino Acids 6:261-272 (1994)), Jetten and Sinskey (Critical Reviews in Biotechnology 15, 73-103 (1995)) and Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)).
The object of the present invention was to provide new aids for improved fermentative preparation of amino acids, in particular L-lysine.
This object is achieved by a genetically modified coryneform bacterium, the pgsA2 gene of which, which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
Amino acids, in particular L-lysine, are used in human medicine, in the pharmaceuticals industry and in particular in animal nutrition. There is therefore a general interest in providing new improved processes for the preparation of amino acids, in particular L-lysine.
When L-lysine or lysine are mentioned in the following, not only the base" but also the salts, such as e. g. lysine monohydrochloride or lysine sulfate, are also meant by this.
The invention provides a genetically modified coryneform bacterium, in which its pgsA2 gene, which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase, is enhanced.
The term "enhancement" in this connection describes the increase in intracellular activity of one or more enzymes in a microorganism which are coded by the corresponding DNA.
Enhancement can be achieved with the aid of various manipulations of the bacterial cell.
To achieve an enhancement, in particular an over- expression, the number of copies of the corresponding genes can be increased, a potent promoter can be used, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes which are incorporated upstream of the structural gene act in the same way. By inducible promoters, it is additionally possible to increase the expression in the course of fermentative L-lysine production. It is also possible to use a gene which codes for a corresponding enzyme with a high activity. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is also increased overall by preventing the degradation of the enzyme. These measures can optionally also be combined as desired.
The microorganisms which the present invention provides can prepare L-amino acids, in particular L-lysine, from glucose, sucrose, lactose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. They can be representatives of coryneform bacteria, in particular of the genus Corynebacterium. Of the genus Corynebacterium, there may be mentioned in particular the species Corynebacterium glutamicum, which is known among experts for its ability to produce L-amino acids.
Suitable strains of the genus Corynebacterium, in particular of the species Corynebacterium glutamicum, are, for example, the known wild-type strains
Corynebacterium glutamicum ATCC13032 Corynebacterium acetoglutamicum ATCC15806 Corynebacterium acetoacidophilum ATCC13870 Corynebacterium thermoaminogenes FERM BP-1539 Corynebacterium melassecola ATCC17965 Brevibacterium flavum ATCC1 067 Brevibacterium lactofermentum ATCC13869 and
Brevibacterium divaricatum ATCC14020
and L-lysine-producing mutants or strains prepared therefrom, such as, for example
Corynebacterium glutamicum FERM-P 1709 Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712 Corynebacterium glutamicum FERM-P 6463 Corynebacterium glutamicum FERM-P 6464 and Corynebacterium glutamicum DSM5715.
The present invention also provides an isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
a) polynucleotide which is homologous to the extent of at least 70 % with a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2,
b) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is homologous to the extent of at least 70% with the amino acid sequence of SEQ ID No. 2,
c) polynucleotide which is complementary to the polynucleotides of a) or b) , and
d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a) , b) or c) . In the context of the present Application, a polynucleotide sequence is "homologous" to the sequence according to the invention if it coincides in its base composition and sequence with the sequence according to the invention to the extent of at least 70%, preferably at least 80%, particularly preferably at least 90%. According to the present invention, a "homologous protein" is to be understood as proteins which have an amino acid sequence which coincide with the amino acid sequence coded by the pgsA2 gene (SEQ ID No.l) to the extent of at least 70 %, preferably at least 80 %, particularly preferably at least 90 %, "coincide" being understood as meaning that either the corresponding amino acids are identical or they are amino acids which are homologous to one another. Those amino acids which correspond in their properties, in particular in respect of charge, hydrophobicity, steric properties etc., are called "homologous amino acids".
The invention also provides a polynucleotide as described above , this preferably being a DNA which is capable of replication, comprising:
(i) the nucleotide sequence shown in SEQ ID no. 1, or
(ii) at least one sequence which corresponds to sequence (i) in the context of the degeneration of the genetic code, or
(iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii) , and optionally
(iv) mutations of neutral function in (i) which lead to the same or a homologous amino acid.
The invention also provides a preferably recombinant polynucleotide which is capable of replication in coryneform bacteria and comprises the nucleotide sequence SEQ ID No. 1,
a polynucleotide which codes for a polypeptide which comprises the amino acid sequence SEQ ID No. 2,
a vector containing the DNA sequence of C. glutamicum which codes for the pgsA2 gene, contained in the vector pJClpgsA2, deposited in Corynebacterium glutamicum under number 13251,
and coryneform bacteria serving as the host cell, which contain the vector or in which the pgsA2 gene is enhanced.
The invention also provides polynucleotides which comprise the complete gene with the polynucleotide sequence corresponding to SEQ ID No. 1 or fragments thereof, and which are obtainable by screening by means of hybridization of a corresponding gene library with a probe which comprises the sequence of the polynucleotide mentioned, according to SEQ ID No. 1, or a fragment thereof, and isolation of the DNA sequence mentioned.
Polynucleotide sequences according to the invention are also suitable as hybridization probes for RNA, cDNA and DNA, in order to isolate, in the full length, cDNA which code for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase and to isolate those cDNA or genes which have a high similarity with the sequence of the CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase gene.
Polynucleotide sequences according to the invention are furthermore suitable as primers for the polymerase chain reaction (PCR) , for the preparation of DNA which codes for CDP-diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase proteins. Such oligonucleotides which serve as probes or primers can comprise more than 30, preferably up to 30, particularly preferably up to 20, very particularly preferably at least 15 successive nucleotides. Oligonucleotides which have a length of at least 40 or 50 nucleotides are also suitable.
"Isolated" means separated out of its natural environment.
"Polynucleotide" in general relates to polyribonucleotides and polydeoxyribonucleotides, it being possible for these to be non-modified RNA or DNA or modified RNA or DNA.
"Polypeptides" is understood as meaning peptides or proteins which comprise two or more amino acids bonded via peptide bonds .
The polypeptides according to the invention include a polypeptide according to SEQ ID No. 2, in particular those with the biological activity of the CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase protein, and also those which are homologous to the extent of at least 70 % with the polypeptide according to SEQ ID No. 2, and preferably are homologous to the extent of at least 80% and in particular to the extent of at least 90 % to 95 % with the polypeptide according to SEQ ID no. 2, and have the activity mentioned.
The invention moreover provides a process for the fermentative preparation of amino acids, in particular L- lysine, using coryneform bacteria which in particular already produce an amino acid, and in which the nucleotide sequences which code for the pgsA2 gene are enhanced, in particular over-expressed.
The pgsA2 gene of C. glutamicum which codes for CDP- diacylglycerol-glycerol-3-phosphate 3- phosphatidyltransferase is described for the first time in the present invention. To isolate the pgsA2 gene or also other genes of C. glutamicum, a gene library of this microorganism is first set up in E. coli . The setting up of gene libraries is described in generally known textbooks and handbooks. The textbook by Winnacker: Gene und Klone, Eine Einfuhrung in die Gentechnologie [Genes and Clones, An Introduction to Genetic Engineering] (Verlag Chemie, Weinheim, Germany, 1990) or the handbook by Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) may be mentioned as an example. A well-known gene library is that of the E. coli K-12 strain W3110 set up in λ vectors by Kohara et al. (Cell 50, 495 -508 (1987) ) . Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) describe a gene library of C. glutamicum ATCC13032, which was set up with the aid of the cosmid vector SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) in the E. coli K-12 strain NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575). Bormann et al. (Molecular Microbiology 6(3), 317-326)) (1992)) in turn describe a gene library of C. glutamicum ATCC13032 using the cosmid pHC79 (Hohn and Collins, Gene 11, 291-298 (1980)). To prepare a gene library of C. glutamicum in E. coli it is also possible to use plasmids such as pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) or pUC9 (Vieira et al., 1982, Gene, 19:259-268). Suitable hosts are, in particular, those E. coli strains which are restriction- and recombination- defective. An example of these is the strain DH5αmcr, which has been described by Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) . The long DNA fragments cloned with the aid of cosmids can then in turn be subcloned and subsequently sequenced in the usual vectors which are suitable for sequencing, such as is described e. g. by Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977). The new DNA sequence of C. glutamicum ' which codes for the pgsA2 gene and which, as SEQ ID No. 1, is a constituent of the present invention, was obtained in this manner. The amino acid sequence of the corresponding protein has moreover been derived from the present DNA sequence by the methods described above. The resulting amino acid sequence of the pgsA2 gene product is shown in SEQ ID No. 2.
Coding DNA sequences which result from SEQ ID No. 1 by the degeneracy of the genetic code are also a constituent of the invention. In the same way, DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention. Conservative amino acid exchanges, such as e. g. exchange of glycine for alanine or of aspartic acid for glutamic acid in proteins, are moreover known among experts as "sense mutations" which do not lead to a fundamental change in the activity of the protein, i.e. are of neutral function. It is moreover known that changes on the N and/or C terminus of a protein cannot substantially impair the function thereof or can even stabilize this. Information in this context can be found by the expert, inter alia, in Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), in O'Regan et al. (Gene 77:237-251 (1989)), in Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), in Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) and in known textbooks of genetics and molecular biology. Amino acid sequences which result in a corresponding manner from SEQ ID No. 2 are also a constituent of the invention.
In the same way, DNA sequences which hybridize with SEQ ID No. 1 or parts of SEQ ID No. 1 are a constituent of the invention. Finally, DNA sequences which are prepared by the polymerase chain reaction (PCR) using primers which result from SEQ ID NO. 1 are a constituent of the invention. Such oligonucleotides typically have a length of at least 15 nucleotides. Instructions for identifying DNA sequences by means of hybridization can be found by the expert, inter alia, in the handbook "The DIG System Users Guide for Filter Hybridization" from Boehringer Mannheim GmbH (Mannheim, Germany, 1993) and in Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260) . Instructions for amplification of DNA sequences with the aid of the polymerase chain reaction (PCR) can be found by the expert, inter alia, in the handbook by Gait: Oligonucleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) and in Newton and Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Germany, 1994) .
In the work on the present invention, it has been found that coryneform bacteria produce amino acids, in particular L-lysine, in an improved manner after enhancement of the pgsA2 gene.
The genes or gene constructs under consideration can either be present in plasmids with a varying number of copies, or can be integrated and enhanced in the chromosome. Alternatively, an over-expression of the genes in question can moreover be achieved by changing the composition of the media and the culture procedure.
Instructions in this context can be found by the expert, inter alia, in Martin et al. (Bio/Technology 5, 137-146 (1987)), in Guerrero et al. (Gene 138, 35-41 (1994)),
Tsuchiya and Morinaga (Bio/Technology 6, 428-430 (1988)), in Eikmanns et al. (Gene 102, 93-98 (1991)), EP 0 472 869, US Patent 4,601,893, in Schwarzer and Pϋhler (Bio/Technology 9, 84-87 (1991), in Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132
(1994)), in LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in WO 96/15246, in Malumbres et al. (Gene 134, 15 - 24 (1993)), in JP-A-10-229891, in Jensen and Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), in Makrides (Microbiological Reviews 60:512-538 (1996) ) and in known textbooks of genetics and molecular biology.
By way of example, the pgsA2 gene according to the invention was over-expressed with the aid of plasmids.
Suitable plasmids are those which are replicated and expressed in coryneform bacteria. Numerous known plasmid vectors, such as e. g. pZl (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKExl (Eikmanns et al., Gene 102:93-98 (1991)) or pHS2-l (Sonnen et al., Gene 107:69-74 (1991)) are based on the cryptic plasmids pHM1519, pBLl or pGAl. Other plasmid vectors, such as e. g. those based on pCG4 (US-A 4,489,160), or pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119- 124 (1990)), or pAGl (US-A 5,158,891), can be used in the same manner.
An example of a plasmid, with the aid of which the pgsA2 gene can be over-expressed is pJClpgsA2 (figure 1) , which is based on the E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 - 480) and contains the DNA sequence of C. glutamicum which codes for the pgsA2 gene. It is contained in the strain DSM5715/pJClpgsA2.
Plasmid vectors which are moreover suitable are those with the aid of which the process of gene enhancement by integration into the chromosome can be used, as has been described, for example, by Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) for duplication or enhancement of the hom-thrB operon. In this method, the complete gene is cloned in a plasmid vector which can replicate in a host (typically E. coli) , but not in C. glutamicum. Possible vectors are, for example, pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), ρK18mob or pKl9mob (Schafer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678- 84; US-A 5,487,993), pCR®Blunt (Invitrogen, Groningen, Holland; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) or pEMl (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516). The plasmid vector which contains the gene to be enhanced is then transferred into the desired strain of C. glutamicum by conjugation or transformation. The method of conjugation is described, for example, by Schafer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)). Methods for transformation are described, for example, by Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican and Shivnan (Bio/Technology 7, 1067-1070 (1989)) and Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994) ) . After homologous recombination by means of a "cross over" event, the resulting strain contains at least two copies of the gene in question.
In addition, it may be advantageous for the production of amino acids, in particular L-lysine, to amplify or over- express one or more enzymes of the particular biosynthesis route, of glycolysis, of anaplerosis, of the citric acid- cycle or of amino acid export, in addition to the pgsA2 gene.
Thus, for example, for the preparation of L-lysine, one or more genes chosen from the group consisting of
• the dapA gene which codes for dihydrodipicolinate synthase (EP-B 0 197 335), or
• the dapE gene which codes for succinyl diaminopimelate desuccinylase, or
• the lysC gene which codes for a feed-back resistant aspartate kinase (Kalinowski et al. (1990), Molecular and General Genetics 224, 317-324), or • the gap gene which codes for glyceraldehyde 3-phosphate dehydrogenase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086), or
• the tpi gene which codes for triose phosphate isomerase (Eikmanns (1992), Journal of Bacteriology 174:6076-6086), or
• the pgk gene which codes for 3-ρhosphoglycerate kinase
(Eikmanns (1992), Journal of Bacteriology 174:6076-6086), or
• the pyc gene which codes for pyruvate carboxylase (DE-A- 19831609), or
• the mqo gene which codes for malate-quinone oxidoreductase (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)), or
• the lysE gene which codes for lysine export (DE-A-195 48 222)
can be enhanced, in particular over-expressed or amplified, at the same time.
In addition to enhancement of the pgsA2 gene it may moreover be advantageous for the production of amino acids, in particular L-lysine, to attenuate
• the pck gene which codes for phosphoenol pyruvate carboxykinase (DE 199 50 409.1, DSM 13047) and/or
• the pgi gene which codes for glucose 6-phosphate isomerase (US 09/396,478, DSM 12969) and/or
• the poxB gene which codes for pyruvate oxidase
(DE: 1995 1975.7)
at the same time. In addition to over-expression of the pgsA2 gene it may moreover be advantageous for the production of amino acids, in particular L-lysine, to eliminate undesirable side reactions (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982) .
The microorganisms prepared according to the invention can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of amino acids, in particular L- lysine. A summary of known culture methods is described in the textbook by Chmiel (Bioprozesstechnik 1. Einfϋhrung in die Bioverfahrenstechnik [Bioprocess Technology 1.
Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991) ) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).
The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).
Sugars and carbohydrates, such as e. g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e. g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e. g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e. g. glycerol and ethanol, and organic acids, such as e. g. acetic acid, can be used as the source of carbon. These substance can be used individually or as a mixture. ω ω M t ι-> cπ o o O Ui
φ ι-3 d d -. O ιQ 3 rt 0) Ω Φ μ- CO 3* ω Ω μ- IS Ό 0s O 3 O 1-3 Ω •τ) σ d TJ CO H" O
IX 3" co 3 ϋi d OS OJ O O • 3 d 0s d 3 rt H α d φ d 3J O μ- 3* φ O 3' d μ- Φ hi
0 Φ d rt 0 H CO μ- O 3 Ω co j &) Φ α Ω Ω Ω Φ 3 T3 O φ O Ω Λ 0J iQ c OJ H- o rt 3 rt Φ c+ ιQ Q) 3" H μ- rt rt H Ω μ- 3* Φ 3" rt O CO d α CO 3- d CO CU a 0) I-1 H d 3 rt 3" H H • 0 Ω d 3" rt d rt CO Ω 0J rt T5 CO K) o rt 3
3 3 I-1 H μ- OJ Φ Φ O CO PJ x i-s Φ μ- H μ- CU O 0J d μ- 0J 3" φ 0J 3' OJ H μ-
£) 0) • DJ 0 Φ X μ- Ω H Hi C ω μ- Ω φ 3 CO 0 CD CU CO H1 3 ω O O cυ O Φ Ω
Φ h-1 3 • rt 3 3 rt CS μ- o Hi ιQ O 3 H rt μ- CD H rt
< H 3 d Φ μ- rt re¬ rt Φ 3 μ- o H U Φ d 3 μ- μ- μ- rt Φ cu CO rt 3 o O Φ 0) (-3 l-i OJ <i 3" ef OJ * ^ Ό 3 H CO CO rt 3 • H ιQ d Ω 3 3^ 3 0 H μ- t H- OJ K ts * φ Φ μ- φ Φ *< σ o o 3 d o μ- Hi Φ 3 α Φ : 0J rt n o O μ- hi Φ CO H d H O 0J d 0) σ Ω 3 o ιQ CO 0J μ- OJ 0 OJ Ω hi
O 3* 3 φ *% O 3 fu CU Φ σ 3 3 0 CO CD rt 0 H 3 0J 3* Ω <! CD 3 3 ft O
3 o Φ d Hi rt tr Ω Φ Ω 3* p α O H, rt 3 t Φ H <: μ- μ- O 3 μ- σ ιQ
(1) Mi 3 Φ Φ CO μ- rt rt <ι μ- 3 o O O d fl) Φ 0) •Ti 3 rt Q. d O d Φ Φ rt H 3 d Ω O μ- Φ D) H 3 μ- OS 3 3 a l-i 0J μ- CD H d H 3 3 0J 3 3
O r> s: o CSS Ό o 0 3 μ- μ- rt Ω O 0s μ- O ! d o DJ Ω μ- 3 φ 1 ιQ 1 H- Hi σ Φ 3" Ω 3 3 o Ό 3 Ω u co fu CO Φ H s: 3 3 Ω ιQ Tf M Φ d CD 0J Ω
H I-1 rt M ι-i o OJ Ό o Φ d σ μ- CO Φ O CO rt Φ 0J φ o H 3 d Hi rt O
DJ 3J H a OJ 3 μ- 3 l-* H is) o Ω μ- 3 O 31 CO 3 3 3 rt O μ* 3
Ό CO H- rt CO 3 CO φ < a H 31 φ iQ 3 < Φ cυ . μ- d 0J Hi Ω Hi o Φ rt t P- 3 CO M d μ- rt d 3 ιQ rt μ- Φ Φ 3 3 d CO σ 13 CO O 0J CU d OJ
: 3 μ- cπ H Φ rt OJ Ω rt I-1 O 0) ID 3 Φ 3 H Φ •n 3 rt φ 3" CD l-i 3 H rt H rt μ- φ 3 0 Φ • μ- μ- " Λ CO 0J rt 3 μ- o μ- μ- σ Φ H 3 s: o Φ o o 3 O Ω Ω o d 3 σ μ- σ rt < 3 CO 3 d CO d 0J rt o 0J OJ μ-
H- o O ιQ 3 5li Hi O O H Φ CO 3 0) O Φ μ- μ- cu d O CD O t 3 CO H 3 3 Ω 3 rt DJ 3* rt Hi CO r O H1 3 o o φ rt 3 o rt H1 i-1 l-i φ 3^ O 0J 0J (X rt ιQ
3" 3 o OJ O 3* Hi rt CO d H Ω Φ 0s 3 0J H" Hi φ 0J OJ iQ rt g ^ d CO rt fu Φ Φ o Φ H d CO μ- • 31 Φ 3 : 0J o rt μ- Φ Φ § d Ω
CO σ n ^ 3* μ- o • 03 CO O 1-" d ^» α μ- •^ rt <J 0J Φ 3" 3 3 o H 3 O d φ O M) O Φ hi i CO 3 rt μ*1 Hi o> 3 Ω Φ 3 Φ φ CO " μ- • 0) 3 Φ DJ 3 σ O o • rt ιQ Φ d g o OS O CQ Φ H O α. κ 3 μ- 0J <υ
CO o rt H O O cQ OJ • H rt H 3 3* H 3 d •*. O O rt H l-i rt ι-3 d ^ ft o φ DJ 0 3 • d £U Φ σ ω CO 3- μ- o " rt σ CO i-i Ω 3d o d tr 3 d
Λ i Φ h-* H 3 μ- 0) d Φ Ω 3 α Ω σ o CO Ω φ O Φ rt cQ H Φ OJ 0 Φ 3 d H I-1 o rt Φ H1 3 μ- μ- H 0i Φ rt DJ 3 μ- σ> • 3 3J Φ Φ g Ω H
Φ H- d d O μ- rt rt Ω 13 0J o> 0 3 rt 0J 3 rt h s CO Φ 3 • O 3J rt CO
3 Φ o H hi μ- H rt μ- 0J DJ ffi Ω ^ x OJ 3J 3 μ- O H O O 0 H μ- H *» rt ι-3 rt Φ 3 • σ σ 3 • μ- μ- σ φ Ω σ u 3 μ- d Ω d 3 O 3 0J
3' \ d rt O μ- H-1 o- o a Φ α Φ Φ H ω H O 3* H μ- H 0 Ω CO
3 o O μ- hi μ- hi X 0 o Φ σ H Φ Φ Ω O CO φ Ω H o Ω d H- l-S rt d
H- e d co μ- co O Hi rt Φ 3 -> Hi d • Φ ιQ d Φ H CO φ 3 α iQ Ω
3 rt H 3 ιQ μ- CO rt Ω DJ Φ H 3 H I-1 CD Φ Ό CD Φ 0J 3^
3" CO rt ιQ d d Φ T3 Ω d Φ μ- OS Ω Ό o. rt rt o 8 O Hi cu O CO 3' 3 *-*»
σ • 3 Ω
(U CO O 3 CO σ Hi 3 μ- o o d d ≤ 0J l-1 Hi O 0J O μ- μ- O OJ
0. H μ- d Φ 1 0J ^ CO 'd O Q. rt μ- H μ- O rt rt rt O rt Hi rt OJ Ω hi ω hi ιQ C0 OJ α Ω CO ft μ» Css σ 0) 3 rt Φ rt * 3" Φ ω T3 3 φ H 3
H- es φ (-> O 3 Ω 0) o 3 φ Ω CO d OS Φ 3* Q. 3 cu g Ω Ό
3 3 rt o μ- 3 μ- (D 3 O O O & Φ 3 cr CO o O μ- o μ- rt o o CO φ
H- o 3 rt 3 Ω Φ φ 3 μ- d Φ d s: Hi CD 3 H rt Φ 3 Ό
O μ- 3 rt DJ O Φ s 3 rt
3 Ό d H Ω n ιQ H ^ μ-
3 lf rt σ *
M α Φ μ-
O μ- • σ O CO Ό o 3 μ- d μ- 3 ω μ- 3 3* O d Φ rt o Φ O μ- o 3 Φ rt d d 3 d rt Ω φ O ω ιQ Ω 3 d Ό 3
3 0 rt μ- H3 3' o Ω o 3 iQ rt 3 DJ rr rt H O Φ OJ 3 Φ d o 3" 3 O O SD 3- d 3 OJ d . 3 3 CO φ Φ ιQ a. < φ CO rt l-i Ω cυ I-1 CO μ- CD α rt μ- Css 3' Φ ι-3 Φ d Ω •*. O Φ 3 Φ 3* φ 3 Φ Φ 1 3
derivatization, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190).
The following microorganism has been deposited at the Deutsche Sammlung fur Mikrorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty:
• Corynebacterium glutamicum strain DSM5715/pJClpgsA2 as DSM 13251
The process according to the invention is used for the fermentative preparation of amino acids, in particular L- lysine.
The present invention is explained in more detail in the following with the aid of embodiment examples.
Example 1
Preparation of a genomic cosmid gene library from Corynebacterium glutamicum ATCC 13032
Chromosomal DNA from Corynejacteriujn glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179) and partly cleaved with the restriction enzyme Sau3AI (A ersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Code no. 27-0913-02) . The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Bioche icals, Mannheim, Germany, Product Description SAP, Code no. 1758250) . The DNA of the cosmid vector SuperCosl (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), obtained from Stratagene (La Jolla, USA, Product Description SuperCosl Cosmid Vektor Kit, Code no. 251301) was cleaved with the restriction enzyme Xbal (Amersham Pharmacia,,
Freiburg, Germany, Product Description Xbal, Code no. 27- 0948-02) and likewise dephosphorylated with shrimp alkaline phosphatase. The cosmid DNA was then cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Code no. 27-0868-04) . The cosmid DNA treated in this manner was mixed with the treated ATCC 13032 DNA gemischt and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) . The ligation mixture was then packed in phages with the aid of Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Product Description Gigapack II XL Packing Extract, Code no. 200217) . For infection of the E. coli strain NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) the cells were taken up in 10 mM MgS0 and mixed with an aliquot of the phage suspension. The infection and titering of the cosmid library were carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) , the cells being plated out on LB agar (Lennox, 1955, Virology, 1:190) with 100 mg/1 ampicillin. After incubation overnight at 37 °C, recombinant individual clones were selected.
Example 2
Isolation and sequencing of the pgsA2 gene
The cosmid DNA of an individual colony was isolated with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and partly cleaved with the restriction enzyme Sau3AI (Amersham Pharmacia, Freiburg, Germany, Product Description Sau3AI, Product No. 27-0913-02) . The DNA fragments were dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim,
Germany, Product Description SAP, Product No. 1758250) . After separation by gel electrophoresis, the cosmid fragments in the size range of 1500 to 2000 bp were isolated with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) . The DNA of the sequencing vector pZero-1, obtained from Invitrogen (Groningen, Holland, Product Description Zero Background Cloning Kit, Product No. K2500-01) was cleaved with the restriction enzyme BamHI (Amersham Pharmacia, Freiburg, Germany, Product Description BamHI, Product No. 27-0868-04) . The ligation of the cosmid fragments in the sequencing vector pZero-1 was carried out as described by Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) , the DNA mixture being incubated overnight with T4 ligase (Pharmacia Biotech, Freiburg, Germany) . This ligation mixture was then incorporated by means of electroporation (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) into the E. coli strain DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) and plated out on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/1 zeocin. The plasmid preparation of the recombinant clones was carried out with Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Germany) . The sequencing was carried out by the dideoxy chain-stopping method of Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) with modifications according to Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). The "RR dRhoda in Terminator Cycle Sequencing Kit" from PE Applied Biosystems (Product No. 403044, Weiterstadt, Germany) was used. The separation by gel electrophoresis and analysis of the sequencing reaction were carried out in a "Rotiphoresis NF Acrylamide/Bisacrylamide" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) with the "ABI Prism 377" sequencer from PE Applied Biosystems (Weiterstadt, Germany) .
The raw sequence data obtained were then processed using the Staden program package (1986, Nucleic Acids Research, 14:217-231) version 97-0. The individual sequences of the pZerol derivatives were assembled to a continuous contig. The computer-assisted coding region analysis was prepared with the XNIP program (Staden, 1986, Nucleic Acids Research, 14:217-231). Further analyses were carried out with the "BLAST search program" (Altschul et al., 1997, Nucleic Acids Research,- 25:3389-3402), against the non- redundant databank of the "National Center for
Biotechnology Information" (NCBI, Bethesda, MD, USA) .
The resulting nucleotide sequence is shown in SEQ ID No. 1. Analysis of the nucleotide sequence showed an open reading frame of 291 base pairs, which was called the pgsA2 gene. The pgsA2 gene codes for a protein of 97 amino acids.
Example 3
Cloning of the pgsA2 gene in the vector pJCl
Chromosomal DNA from Corynebacterium glutamicum ATCC 13032 was isolated as described by Tauch et al. (1995, Plasmid 33:168-179). A DNA fragment which carries the pgsA2 gene was amplified with the aid of the polymerase chain reaction. The following primers were used for this:
5X-TGC TCT AGA CGT CCG TCG AGA GGT TTT TAG G-3
5V-TGC TCT AGA CCC CGC CAG ATT CTC CGA CAT -3X
Both oligonucleotides carry the sequence for the cleavage site of the restriction enzyme Xbal (nucleotides underlined) . The primers shown were synthesized by MWG Biotech (Ebersberg, Germany) synthesized and the PCR reaction was carried out by the standard PCR method of Innis et al., (PCR protocol. A guide to methods and applications, 1990, Academic Press) . The primers allow amplification of a DNA fragment of approx 749 bp in size, which carries the pgsA2 gene from Corynebacterium glutamicum.
After separation by gel electrophoresis, the PCR fragment was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
The PCR fragment obtained in this manner was cleaved completely with the restriction enzyme Xbal. The pgsA2 fragment approx 749 bp in size was isolated from the agarose gel with the QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) .
The E. coli - C. glutamicum shuttle vector pJCl (Cremer et al., 1990, Molecular and General Genetics 220: 478 -480) was used as the vector. This plasmid was also cleaved completely with the restriction enzyme Xbal and then dephosphorylated with shrimp alkaline phosphatase (Roche Molecular Biochemicals, Mannheim, Germany, Product Description SAP, Product No. 1758250) .
The pgsA2 fragment obtained in this manner was mixed with the prepared vector pJCl and the batch was treated with T4 DNA ligase (Amersham Pharmacia, Freiburg, Germany, Product Description T4-DNA-Ligase, Code no.27-0870-04) . The ligation batch was transformed in the E. coli strain DH5α (Hanahan, In: DNA cloning. A practical approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) . Selection of plasmid-carrying cells was made by plating out the transformation batch on LB agar (Lennox, 1955, Virology, 1:190) with 50 mg/1 kanamycin. After incubation overnight at 37°C, recombinant individual clones were selected. Plasmid DNA was isolated from a transformant with the Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) in accordance with the manufacturer's instructions and cleaved with the restriction enzyme Xbal to check the plasmid by subsequent agarose gel electrophoresis. The resulting plasmid was called pJClpgsA2. Example 4
Transformation of the strain DSM5715 with the plasmid pJClpgsA2
The strain DSM5715 was transformed with the plasmid pJClpgsA2 using the electroporation method described by Liebl et al., (FEMS Microbiology Letters, 53:299-303 (1989) ) . Selection of the transformants took place on LBHIS agar comprising 18.5 g/1 brain-heart infusion broth, 0.5M sorbitol, 5 g/1 Bacto-tryptone, 2.5 g/1 Bacto-yeast extract, 5 g/1 NaCl, 18 g/1 Bacto-agar, which had been supplemented with 25 μg/ml kanamycin. Incubation was carried out for 2 days at 33°C.
Plasmid DNA was isolated from a transformant by conventional methods (Peters-Wendisch et al., 1998, Microbiology, 144, 915 -927) and cut with the restriction endonuclease EcoRI; in order to check the plasmid by subsequent agarose gel electrophoresis. The resulting strain was called DSM5715/pJClpgsA2.
The strain DSM5715/pJClpgsA2 has been deposited at the Deutsche Sammlung fur Mikrorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty as DSM 13251.
Example 5
Preparation of lysine
The C. glutamicum strain DSM5715/pJClpgsA2 obtained in example 5 was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined.
For this, the strain was first incubated on an agar plate with the corresponding antibiotic (brain-heart agar with kanamycin (50 μg/ml) for 24 hours at 33°C. Starting from this agar plate culture, a preculture was seeded (10 ml medium in a 100 ml conical flask) . The complete medium Cglll was used as the medium for the preculture.
Medium Cg III
NaCl 2.5 g/1
Bacto-Peptone 10 g/1
Bacto-Yeast extract 10 g/1
Glucose (autoclaved separately) 2% (w/v)
The pH was brought to pH 7.4
Kanamycin (25 mg/1) was added to this. The preculture was incubated for 16 hours at 33°C at 240 rpm on a shaking machine. A main culture was seeded from this preculture such that the initial OD (660nm) of the main culture was 0.1. Medium MM was used for the main culture.
Medium MM
CSL (corn steep liquor) 5 g/1
MOPS (morpholinopropanesulfonic 20 g/1 acid)
Glucose (autoclaved separately) 50g/l
(NH4)2S04 25 g/1
KH2P04 0.1 g/1
MgS04 * 7 H20 1.0 g/1
CaCl2 * 2 H20 10 mg/1
FeS04 * 7 H20 10 mg/1
MnS0 * H20 5.0mg/l
Biotin (sterile-filtered) 0.3 mg/1
Thiamine * HCI (sterile-filtered) 0.2 mg/1
L-Leucine 0.1 g/1
CaC03 25 g/1
The CSL, MOPS and the salt solution were brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions were then added, as well as the CaC03 autoclaved in the dry state.
Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Kanamycin (25 μg/ml) was added. Culturing was carried out at 33°C and 80% atmospheric humidity. After 24 hours, the OD was determined at a measurement wavelength of 660 nm with a Biomek 1000 (Beckmann Instruments GmbH, Munich) . The amount of lysine formed was determined with an amino acid analyzer from Eppendorf- BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column derivatization with ninhydrin detection.
The result of the experiment is shown in Table 1.
Table 1
Brief Description of the Drawing:
Figure 1: Map of the plasmid pJClpgsA2
The abbreviations and designations used have the following meaning.
oriCg : Plasmid-coded replication origin C. glutamicum (of pHMl519 )
pgsA2 pgsA2 (CDP-diacylglycerol-glycerol-3-phosphate phosphatidyltransferase) gene from C. glutamicum ATCC13032
Kan: Kanamycin resistance gene
BamHI: Cleavage site of the restriction enzyme BamHI
EcoRI: Cleavage site of the restriction enzyme EcoRI
Hindlll: Cleavage site of the restriction enzyme Hindlll
Sail: Cleavage site of the restriction enzyme Sail S al: Cleavage site of the restriction enzyme Smal Xbal: Cleavage site of the restriction enzyme Xbal
SEQUENCE LISTING
<110> Degussa AG, Forschungszentrum Jϋlich GmbH
<120> New nucleotide sequences which code for the pgsA2 gene
<130> 000015 BT
<140> <141>
<160> 2
<170> Patentln Ver. 2.1
<210> 1
<211> 1000
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (186) .. (815)
<223> pgsA2-Gen
<400> 1 gcacggcaaa ataagtcata acaggtaagt ttaggcgtct agacgtacac taaacggaat 60 ttggttcact tatattcttc tcttgctttt gtggcgcttc gtccgtcgag aggtttttag 120 gaatagagtg ggctcaagct ttgtgacaag ttttttggag aaatcattac tagtcgtagt 180 cttca att tgg gtg cag gta ggg tgg aac ace gtg agt gat gta tea gca 230 lie Trp Val Gin Val Gly Trp Asn Thr Val Ser Asp Val Ser Ala 1 5 10 15 ggc gta aat ggc gca caa gat cca age aat caa gcg gtc aag cct tec 278
Gly Val Asn Gly Ala Gin Asp Pro Ser Asn Gin Ala Val Lys Pro Ser 20 25 30 aac tgg aac ctt ccg aac ttc ttg ace age ttg cgt ate att gtc ate 326
Asn Trp Asn Leu Pro Asn Phe Leu Thr Ser Leu Arg lie lie Val lie 35 40 45 cct ttg ttt gcg tgg ctt acg ctt aaa ggt gag acg gaa aac aat get 374 Pro Leu Phe Ala Trp Leu Thr Leu Lys Gly Glu Thr Glu Asn Asn Ala 50 55 60 ttt gee tgg tgg gcg ttg gtt gtt ttc att ttg etc atg ate ace gac 422 Phe Ala Trp Trp Ala Leu Val Val Phe He Leu Leu Met He Thr Asp 65 70 75 aag ctt gac ggc gat att gcg cga gca cgt ggc ctg gtc act gac ttt 470 Lys Leu Asp Gly Asp He Ala Arg Ala Arg Gly Leu Val Thr Asp Phe 80 85 90 95 ggc aag ate gcg gat ccg att gee gat aag gcg ttg atg ace aca gca 518 Gly Lys He Ala Asp Pro He Ala Asp Lys Ala Leu Met Thr Thr Ala 100 105 110 ttt gtc tgt ttc aac ate ate ggc att ttg ccc tgg tgg gtc act gcg 566 Phe Val Cys Phe Asn He He Gly He Leu Pro Trp Trp Val Thr Ala 115 120 125 ttg att gtg ctt cga gag ttc ggc att ace ate tgg cgt ttc ttc caa 614 Leu He Val Leu Arg Glu Phe Gly He Thr He Trp Arg Phe Phe Gin 130 135 140 ctg cgc get gga aat gtt gtg cct gca tea aag ggg ggc aag ctt aag 662 Leu Arg Ala Gly Asn Val Val Pro Ala Ser Lys Gly Gly Lys Leu Lys 145 150 155 act get ctg cag act gtt gee gtt get ctg tat ctg tgc cct ttc cca 710 Thr Ala Leu Gin Thr Val Ala Val Ala Leu Tyr Leu Cys Pro Phe Pro 160 165 170 175 agt tgg atg gat att cca age cag ate gtc atg tat gca gcg ctg ate 758 Ser Trp Met Asp He Pro Ser Gin He Val Met Tyr Ala Ala Leu He 180 185 190 gtc ace gtg gtc acg ggt ctg cag tac ctg tgg gat tea cga aag tec 806 Val Thr Val Val Thr Gly Leu Gin Tyr Leu Trp Asp Ser Arg Lys Ser 195 200 205 gca gaa age tagaccatgt cggagaatct ggcggggcga gtggtggagc 855 Ala Glu Ser 210 tgttgaaatc gcgcggtgaa aegctggcgt tttgtgaate cctcaccgcc ggccttgcca 915 gtgcgacgat cgcagagatc cccggegcct eagtggtaet taaaggeggg ctggtcacet 975 atgccaccga gcttaaggtt gcgct 1000
<210> 2
<211> 210 <212> PRT <213> Corynebacterium glutamicum <400> 2
He Trp Val Gin Val Gly Trp Asn Thr Val Ser Asp Val Ser Ala Gly 1 5 10 15
Val Asn Gly Ala Gin Asp Pro Ser Asn Gin Ala Val Lys Pro Ser Asn 20 25 30
Trp Asn Leu Pro Asn Phe Leu Thr Ser Leu Arg He He Val He Pro 35 40 45 Leu Phe Ala Trp Leu Thr Leu Lys Gly Glu Thr Glu Asn Asn Ala Phe 50 55 60
Ala Trp Trp Ala Leu Val Val Phe He Leu Leu Met He Thr Asp Lys 65 70 75 80
Leu Asp Gly Asp He Ala Arg Ala Arg Gly Leu Val Thr Asp Phe Gly 85 90 95
Lys He Ala Asp Pro He Ala Asp Lys Ala Leu Met Thr Thr Ala Phe 100 105 110
Val Cys Phe Asn He He Gly He Leu Pro Trp Trp Val Thr Ala Leu 115 120 125 He Val Leu Arg Glu Phe Gly He Thr He Trp Arg Phe Phe Gin Leu 130 135 140 Arg Ala Gly Asn Val Val Pro Ala Ser Lys Gly Gly Lys Leu Lys Thr 145 150 155 160
Ala Leu Gin Thr Val Ala Val Ala Leu Tyr Leu Cys Pro Phe Pro Ser 165 170 175
Trp Met Asp He Pro Ser Gin He Val Met Tyr Ala Ala Leu He Val 180 185 190
Thr Val Val Thr Gly Leu Gin Tyr Leu Trp Asp Ser Arg Lys Ser Ala 195 200 205
Glu Ser 210

Claims

What is claimed is:
1. A genetically modified coryneform bacterium, wherein the pgsA2 gene, which codes for CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase, is enhanced.
2. A genetically modified coryneform bacterium as claimed in claim 1, wherein the starting bacterium (wild-type) is chosen from the group consisting of Corynebacterium glutamicum (ATCC13032), Corynebacterium acetoglutamicum (ATCC15806), Corynebacterium acetoacidophilum (ATCC13870) , Corynebacterium thermoaminogenes (FERM BP-1539) , Corynebacterium melassecola (ATCC17965) , Brevibacterium flavum (ATCC14067), Brevibacterium lactofermentum (ATCC13869) and Brevibacterium divaricatum (ATCC14020) , or is chosen from the group consisting of Corynebacterium glutamicum FERM-P 1709, Brevibacterium flavum FERM-P 1708, Brevibacterium lactofermentum FERM-P 1712, Corynebacterium glutamicum FERM-P 6463, Corynebacterium glutamicum FERM-P 6464 and Corynebacterium glutamicum DSM5715.
3. A genetically modified coryneform bacterium as claimed in claim 1, wherein the enhancement of the pgsA2 gene is carried out by over-expression of the gene, in particular by increasing the number of copies of the gene, by choosing a potent promoter or a regulation region above the reading frame, by mutation of the promoter, the regulation region or the ribosome binding site, by incorporation of a suitable expression cassette above the structural gene or by incorporation of inducible promoters, by prolonging the life of the corresponding mRNA, by a reduced degradation of the proteins expressed, or by combination of several of these possibilities.
4. A genetically modified coryneform bacterium as claimed in one of claims 1 to 3, wherein the strain is transformed with a plasmid vector and the plasmid vector carries the nucleotide sequence which codes for the pgsA2 gene.
5. A genetically modified coryneform bacterium as claimed in one of claims 1 to 4, wherein it corresponds genotypically to the strain Corynebacterium glutamicum DSM 13251.
6. An isolated polynucleotide from coryneform bacteria, comprising a polynucleotide sequence chosen from the group consisting of
a) polynucleotide which is homologous to the extent of at least 70 % to a polynucleotide which codes for a polypeptide which comprises the amino acid sequence of SEQ ID No. 2, or consists of this,
b) polynucleotide which codes for a polypeptide which comprises an amino acid sequence which is homologous to the extent of at least 70% to the amino acid sequence of SEQ ID No. 2,
c) polynucleotide which is complementary to the polynucleotides of a) or b) , and
d) polynucleotide comprising at least 15 successive nucleotides of the polynucleotide sequence of a) , b) or c) .
7. A polynucleotide as claimed in claim 6, wherein the polynucleotide is a preferably recombinant DNA which is capable of replication in coryneform bacteria.
8. A polynucleotide as claimed in claim 6, wherein the polynucleotide is an RNA.
. A DNA as claimed in claim 7 which is capable of replication, comprising
i) . the nucleotide sequence shown in SEQ ID no. 1, or
ii) at least one sequence which corresponds to sequence (i) in the context of the degeneration of the genetic code, or
iii) at least one sequence which hybridizes with the sequence complementary to sequence (i) or (ii) , and optionally
iv) mutations of neutral function in (i) which lead to homologous amino acids .
10. A polynucleotide sequence as claimed in claim 7, 8 or 9, which comprises codes for a polypeptide which has the amino acid sequence SEQ ID No. 2.
11. A process for the fermentative preparation of L-amino acids, wherein the following steps are carried out:
a) fermentation of coryneform bacteria which produce L-amino acids and in which at least the pgsA2 gene or nucleotide sequences which code for it are enhanced, in particular over-expressed,
b) concentration of the L-amino acid in the medium or in the cells of the bacteria and
c) isolation of the L-amino acid.
12. A process as claimed in claim 11, wherein a strain as claimed in one of claims 1 to 5 is employed.
13. A process as claimed in claim 11 or 12, wherein further genes which code for a protein of the biosynthesis pathway of the desired L-amino acid are additionally enhanced in the bacteria.
14. A process as claimed in one of claims 11 to 13, wherein metabolic pathways which reduce the formation of the desired amino acid are at least partly eliminated in the bacteria.
15. A process as claimed in one or claims 12 to 15, wherein the amino acid prepared is L-lysine.
16. A process as claimed in one of claims 11 to 15, wherein for the preparation of lysine, bacteria in which one or more genes chosen from the group consisting of
a) the dapA gene which codes for dihydrodipicolinate synthase,
b) the dapE gene which codes for succinyl diaminopimelate desuccinylase,
c) the lysC gene which codes for a feed-back resistant aspartate kinase,
d) the tpi gene which codes for triose phosphate isomerase,
e) the gap gene which codes for glyceraldehyde 3- phosphate dehydrogenase,
f) the pgk gene which codes for 3-phosphoglycerate kinase,
g) the pyc gene which codes for pyruvate carboxylase,
h) the mqo gene which codes for malate:quinone oxidoreductase,
i) the lysE gene which codes for lysine export,
is enhanced, in particular over-expressed or amplified, at the same time are fermented.
7. A process as claimed in one of claims 11 to 16, wherein for the preparation of L-lysine, bacteria in which one or more genes chosen from the group consisting of
a) the pck gene which codes for phosphoenol pyruvate carboxykinase,
b) the pgi gene which codes for glucose 6-phosphate isomerase,
c) the poxB gene which codes for pyruvate oxidase,
is attenuated at the same time are fermented.
18. The use of polynucleotide sequences or parts thereof as claimed in claim 6 as primers for the preparation of DNA of genes which code for CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase by the polymer chain reaction.
19. The use of polynucleotide sequences as claimed in claim 6 as hybridization probes for isolation of cDNA or genes which have a high homology with the sequence of the pgsA2 gene.
EP01940367A 2000-05-04 2001-04-26 Nucleotide sequences which code for the pgsa2 gene Withdrawn EP1278865A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10021829A DE10021829A1 (en) 2000-05-04 2000-05-04 New nucleotide sequences coding for the pgsA2 gene
DE10021829 2000-05-04
PCT/EP2001/004704 WO2001083766A1 (en) 2000-05-04 2001-04-26 New nucleotide sequences which code for the pgsa2 gene

Publications (1)

Publication Number Publication Date
EP1278865A1 true EP1278865A1 (en) 2003-01-29

Family

ID=7640836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940367A Withdrawn EP1278865A1 (en) 2000-05-04 2001-04-26 Nucleotide sequences which code for the pgsa2 gene

Country Status (5)

Country Link
EP (1) EP1278865A1 (en)
KR (1) KR20020097244A (en)
AU (1) AU2001273970A1 (en)
DE (1) DE10021829A1 (en)
WO (1) WO2001083766A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817157B2 (en) * 1989-01-13 1998-10-27 味の素株式会社 Production method of L-amino acid by fermentation method
DE3943117A1 (en) * 1989-12-27 1991-07-04 Forschungszentrum Juelich Gmbh METHOD FOR THE FERMENTATIVE PRODUCTION OF AMINO ACID, IN PARTICULAR L-LYSINE, THEREFORE SUITABLE MICROORGANISMS AND RECOMBINANT DNA
DE4203320C2 (en) * 1992-02-06 1994-02-03 Forschungszentrum Juelich Gmbh Fermentation process for the extraction of amino acids and a suitable bacterial strain
US6448037B1 (en) * 1998-02-20 2002-09-10 Smithkline Beecham Corporation PgsA
KR100878332B1 (en) * 1999-06-25 2009-01-14 백광산업 주식회사 Corynebacterium Glutamicum Genes Encoding Proteins Involved in Membrane Synthesis and Membrane Transport
DE19931314A1 (en) * 1999-07-07 2001-01-11 Degussa L-lysine producing coryneform bacteria and method for producing lysine
JP4623825B2 (en) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 Novel polynucleotide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0183766A1 *

Also Published As

Publication number Publication date
AU2001273970A1 (en) 2001-11-12
DE10021829A1 (en) 2001-11-08
KR20020097244A (en) 2002-12-31
WO2001083766A1 (en) 2001-11-08

Similar Documents

Publication Publication Date Title
US7262036B2 (en) Process for the preparation of l-amino acids
CA2339307A1 (en) Nucleotide sequences coding for the dapc gene and process for the production of l-lysine
EP1287143A2 (en) Corynebacterium glutamicum nucleotide sequences coding for the glbo gene
AU7254800A (en) New nucleotide sequences coding for the ptsH gene
US6818432B2 (en) Nucleotide sequences encoding the ptsH gene
US6913910B2 (en) Nucleotide sequences coding for the glk-gene
US20040005675A9 (en) Nucleotide sequences encoding the ptsH gene
US6830921B2 (en) Nucleotide sequences which code for the ACP gene
US6806068B1 (en) Nucleotide sequences which encode the pfk gene
US6949374B2 (en) FadD15 gene of Corynebacterium glutamicum, encoding an acyl-CoA synthase polypeptide
MXPA00011412A (en) New isolated polynucleotide encoding phosphofructokinase a of coryneform bacteria, useful, when overexpressed, for increasing fermentative production of amino acids.
EP1278860B1 (en) Nucleotide sequences which code for the cma gene
US6638753B2 (en) Nucleotide sequences which code for the cma gene
US20020155555A1 (en) Nucleotide sequences which code for the pgsA2 gene
EP1311683B1 (en) Nucleotide sequences which code for the csta gene from corynebacterium glutamicum
WO2002002779A2 (en) Nucleotide sequences which encode the plsc protein
AU7177300A (en) Novel nucleotide sequences coding for the gpm gene
EP1278865A1 (en) Nucleotide sequences which code for the pgsa2 gene
EP1278857A1 (en) Nucleotide sequences which code for the fadd15 gene
WO2002002777A2 (en) Gpsa gene from corynebaxteria and use thereof in synthesis of l-amino acids
EP1320616A2 (en) Sequences which code for the sige gene of corynebacterium glutamicum

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020829

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20030306

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030917