EP1278846A2 - Proteines associees au cytosquelette - Google Patents
Proteines associees au cytosqueletteInfo
- Publication number
- EP1278846A2 EP1278846A2 EP01932973A EP01932973A EP1278846A2 EP 1278846 A2 EP1278846 A2 EP 1278846A2 EP 01932973 A EP01932973 A EP 01932973A EP 01932973 A EP01932973 A EP 01932973A EP 1278846 A2 EP1278846 A2 EP 1278846A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- polynucleotide
- seq
- polypeptide
- amino acid
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000623 proteins and genes Proteins 0.000 title abstract description 242
- 102000004169 proteins and genes Human genes 0.000 title abstract description 167
- 210000004292 cytoskeleton Anatomy 0.000 title abstract description 28
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 349
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 349
- 239000002157 polynucleotide Substances 0.000 claims abstract description 349
- 238000000034 method Methods 0.000 claims abstract description 192
- 210000004027 cell Anatomy 0.000 claims abstract description 189
- 230000014509 gene expression Effects 0.000 claims abstract description 133
- 239000005557 antagonist Substances 0.000 claims abstract description 18
- 239000000556 agonist Substances 0.000 claims abstract description 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 259
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 245
- 229920001184 polypeptide Polymers 0.000 claims description 239
- 239000012634 fragment Substances 0.000 claims description 133
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 123
- 150000001875 compounds Chemical class 0.000 claims description 117
- 239000000523 sample Substances 0.000 claims description 95
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 88
- 150000007523 nucleic acids Chemical class 0.000 claims description 76
- 238000009396 hybridization Methods 0.000 claims description 71
- 238000012360 testing method Methods 0.000 claims description 60
- 239000000203 mixture Substances 0.000 claims description 59
- 230000000694 effects Effects 0.000 claims description 57
- 239000002773 nucleotide Substances 0.000 claims description 56
- 125000003729 nucleotide group Chemical group 0.000 claims description 56
- 201000010099 disease Diseases 0.000 claims description 42
- 102000039446 nucleic acids Human genes 0.000 claims description 41
- 108020004707 nucleic acids Proteins 0.000 claims description 41
- 230000027455 binding Effects 0.000 claims description 38
- 230000000295 complement effect Effects 0.000 claims description 37
- 239000012472 biological sample Substances 0.000 claims description 31
- 238000012216 screening Methods 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 238000011282 treatment Methods 0.000 claims description 22
- 230000002163 immunogen Effects 0.000 claims description 20
- 241001465754 Metazoa Species 0.000 claims description 17
- 231100000419 toxicity Toxicity 0.000 claims description 12
- 230000001988 toxicity Effects 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 9
- 230000009870 specific binding Effects 0.000 claims description 8
- 230000009261 transgenic effect Effects 0.000 claims description 8
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 4
- 210000004408 hybridoma Anatomy 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 230000003053 immunization Effects 0.000 claims description 3
- 238000012408 PCR amplification Methods 0.000 claims description 2
- 230000002018 overexpression Effects 0.000 claims description 2
- 230000005875 antibody response Effects 0.000 claims 2
- 210000000628 antibody-producing cell Anatomy 0.000 claims 2
- 108060003951 Immunoglobulin Proteins 0.000 claims 1
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 102000018358 immunoglobulin Human genes 0.000 claims 1
- 241000282414 Homo sapiens Species 0.000 abstract description 36
- 239000013604 expression vector Substances 0.000 abstract description 19
- 230000001594 aberrant effect Effects 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 154
- 239000002299 complementary DNA Substances 0.000 description 86
- 108020004414 DNA Proteins 0.000 description 66
- 239000013598 vector Substances 0.000 description 65
- 210000004688 microtubule Anatomy 0.000 description 49
- 102000029749 Microtubule Human genes 0.000 description 48
- 108091022875 Microtubule Proteins 0.000 description 48
- 108091028043 Nucleic acid sequence Proteins 0.000 description 47
- 208000035475 disorder Diseases 0.000 description 46
- 210000001519 tissue Anatomy 0.000 description 46
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 45
- 239000013615 primer Substances 0.000 description 43
- 238000004458 analytical method Methods 0.000 description 37
- 238000003752 polymerase chain reaction Methods 0.000 description 35
- 102000007469 Actins Human genes 0.000 description 34
- 108010085238 Actins Proteins 0.000 description 34
- 235000001014 amino acid Nutrition 0.000 description 33
- 229940024606 amino acid Drugs 0.000 description 29
- 150000001413 amino acids Chemical class 0.000 description 28
- 239000013612 plasmid Substances 0.000 description 28
- 238000002493 microarray Methods 0.000 description 25
- 238000003556 assay Methods 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 24
- 239000012528 membrane Substances 0.000 description 24
- 101710196266 Protein 4.1 Proteins 0.000 description 21
- 238000004422 calculation algorithm Methods 0.000 description 21
- 230000002068 genetic effect Effects 0.000 description 21
- 210000004379 membrane Anatomy 0.000 description 21
- 238000012163 sequencing technique Methods 0.000 description 20
- 102100031952 Protein 4.1 Human genes 0.000 description 19
- 238000000746 purification Methods 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 210000000349 chromosome Anatomy 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 18
- 208000021642 Muscular disease Diseases 0.000 description 17
- 206010028980 Neoplasm Diseases 0.000 description 17
- 230000006870 function Effects 0.000 description 17
- 230000001105 regulatory effect Effects 0.000 description 17
- 108020004635 Complementary DNA Proteins 0.000 description 16
- 230000001580 bacterial effect Effects 0.000 description 16
- 210000003632 microfilament Anatomy 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 108010019965 Spectrin Proteins 0.000 description 15
- 230000000692 anti-sense effect Effects 0.000 description 15
- 210000000170 cell membrane Anatomy 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 108010049777 Ankyrins Proteins 0.000 description 14
- 102000004243 Tubulin Human genes 0.000 description 14
- 108090000704 Tubulin Proteins 0.000 description 14
- 108020001507 fusion proteins Proteins 0.000 description 14
- 102000037865 fusion proteins Human genes 0.000 description 14
- 210000003963 intermediate filament Anatomy 0.000 description 14
- 108020004999 messenger RNA Proteins 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 230000003612 virological effect Effects 0.000 description 14
- 102000008102 Ankyrins Human genes 0.000 description 13
- -1 EF-la Proteins 0.000 description 13
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 13
- 102000005890 Spectrin Human genes 0.000 description 13
- 125000000539 amino acid group Chemical group 0.000 description 13
- 238000001514 detection method Methods 0.000 description 13
- 210000003743 erythrocyte Anatomy 0.000 description 13
- 230000003993 interaction Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 241000894007 species Species 0.000 description 13
- 230000001225 therapeutic effect Effects 0.000 description 13
- 108091077621 MAPRE family Proteins 0.000 description 12
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 238000013519 translation Methods 0.000 description 12
- 102000005937 Tropomyosin Human genes 0.000 description 11
- 108010030743 Tropomyosin Proteins 0.000 description 11
- 238000007792 addition Methods 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- 230000026731 phosphorylation Effects 0.000 description 11
- 238000006366 phosphorylation reaction Methods 0.000 description 11
- 108010063296 Kinesin Proteins 0.000 description 10
- 102000010638 Kinesin Human genes 0.000 description 10
- 201000009623 Myopathy Diseases 0.000 description 10
- 241000700584 Simplexvirus Species 0.000 description 10
- 201000011510 cancer Diseases 0.000 description 10
- 230000002759 chromosomal effect Effects 0.000 description 10
- 238000001415 gene therapy Methods 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 230000001939 inductive effect Effects 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000028973 vesicle-mediated transport Effects 0.000 description 9
- 208000030507 AIDS Diseases 0.000 description 8
- 241000710929 Alphavirus Species 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 108700024394 Exon Proteins 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 description 8
- 108010088950 Tensins Proteins 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 230000036961 partial effect Effects 0.000 description 8
- 230000001850 reproductive effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- XUHRVZXFBWDCFB-QRTDKPMLSA-N (3R)-4-[[(3S,6S,9S,12R,15S,18R,21R,24R,27R,28R)-12-(3-amino-3-oxopropyl)-6-[(2S)-butan-2-yl]-3-(2-carboxyethyl)-18-(hydroxymethyl)-28-methyl-9,15,21,24-tetrakis(2-methylpropyl)-2,5,8,11,14,17,20,23,26-nonaoxo-1-oxa-4,7,10,13,16,19,22,25-octazacyclooctacos-27-yl]amino]-3-[[(2R)-2-[[(3S)-3-hydroxydecanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoic acid Chemical compound CCCCCCC[C@H](O)CC(=O)N[C@H](CC(C)C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H]1[C@@H](C)OC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CO)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC1=O)[C@@H](C)CC XUHRVZXFBWDCFB-QRTDKPMLSA-N 0.000 description 7
- 108090000994 Catalytic RNA Proteins 0.000 description 7
- 102000053642 Catalytic RNA Human genes 0.000 description 7
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 7
- 208000029578 Muscle disease Diseases 0.000 description 7
- 108010026552 Proteome Proteins 0.000 description 7
- 108091034057 RNA (poly(A)) Proteins 0.000 description 7
- 102100024547 Tensin-1 Human genes 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 230000007812 deficiency Effects 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 7
- 210000003617 erythrocyte membrane Anatomy 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002987 primer (paints) Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 108091092562 ribozyme Proteins 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 108010026424 tau Proteins Proteins 0.000 description 7
- 102000013498 tau Proteins Human genes 0.000 description 7
- 231100000167 toxic agent Toxicity 0.000 description 7
- 239000003440 toxic substance Substances 0.000 description 7
- 241000701161 unidentified adenovirus Species 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- 208000035143 Bacterial infection Diseases 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 201000011240 Frontotemporal dementia Diseases 0.000 description 6
- 108010070675 Glutathione transferase Proteins 0.000 description 6
- 102000005720 Glutathione transferase Human genes 0.000 description 6
- 206010061201 Helminthic infection Diseases 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 241000124008 Mammalia Species 0.000 description 6
- 102000002151 Microfilament Proteins Human genes 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 6
- 102000004903 Troponin Human genes 0.000 description 6
- 108090001027 Troponin Proteins 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 208000006673 asthma Diseases 0.000 description 6
- 208000022362 bacterial infectious disease Diseases 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 6
- 238000004113 cell culture Methods 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 230000001086 cytosolic effect Effects 0.000 description 6
- 201000001981 dermatomyositis Diseases 0.000 description 6
- 102000013035 dynein heavy chain Human genes 0.000 description 6
- 108060002430 dynein heavy chain Proteins 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 239000005090 green fluorescent protein Substances 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 238000003018 immunoassay Methods 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 230000000394 mitotic effect Effects 0.000 description 6
- 201000006417 multiple sclerosis Diseases 0.000 description 6
- 210000003205 muscle Anatomy 0.000 description 6
- 230000004118 muscle contraction Effects 0.000 description 6
- 206010028417 myasthenia gravis Diseases 0.000 description 6
- 230000000926 neurological effect Effects 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 208000005987 polymyositis Diseases 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 102000010825 Actinin Human genes 0.000 description 5
- 108010063503 Actinin Proteins 0.000 description 5
- 208000024827 Alzheimer disease Diseases 0.000 description 5
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 108091035707 Consensus sequence Proteins 0.000 description 5
- 238000001712 DNA sequencing Methods 0.000 description 5
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- 206010020751 Hypersensitivity Diseases 0.000 description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 5
- 108010040897 Microfilament Proteins Proteins 0.000 description 5
- 108010085839 Neurofibromin 2 Proteins 0.000 description 5
- 102000007517 Neurofibromin 2 Human genes 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 201000004681 Psoriasis Diseases 0.000 description 5
- 208000036142 Viral infection Diseases 0.000 description 5
- 230000007815 allergy Effects 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000001363 autoimmune Effects 0.000 description 5
- 210000004081 cilia Anatomy 0.000 description 5
- 230000003436 cytoskeletal effect Effects 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 210000003495 flagella Anatomy 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 230000013595 glycosylation Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 102000054765 polymorphisms of proteins Human genes 0.000 description 5
- 230000002685 pulmonary effect Effects 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 241000701447 unidentified baculovirus Species 0.000 description 5
- 241001529453 unidentified herpesvirus Species 0.000 description 5
- 208000026872 Addison Disease Diseases 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 4
- 102100036465 Autoimmune regulator Human genes 0.000 description 4
- 208000031229 Cardiomyopathies Diseases 0.000 description 4
- 208000031879 Chédiak-Higashi syndrome Diseases 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 108091060211 Expressed sequence tag Proteins 0.000 description 4
- 102100036089 Fascin Human genes 0.000 description 4
- 206010017533 Fungal infection Diseases 0.000 description 4
- 206010018364 Glomerulonephritis Diseases 0.000 description 4
- 208000015023 Graves' disease Diseases 0.000 description 4
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 4
- 101710154606 Hemagglutinin Proteins 0.000 description 4
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 4
- 101000928549 Homo sapiens Autoimmune regulator Proteins 0.000 description 4
- 208000013016 Hypoglycemia Diseases 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 208000031888 Mycoses Diseases 0.000 description 4
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 4
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 4
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 4
- 101710176177 Protein A56 Proteins 0.000 description 4
- 206010037075 Protozoal infections Diseases 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 241000283984 Rodentia Species 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- 208000021386 Sjogren Syndrome Diseases 0.000 description 4
- 108091013841 Spermatogenesis-associated protein 6 Proteins 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 201000009594 Systemic Scleroderma Diseases 0.000 description 4
- 206010042953 Systemic sclerosis Diseases 0.000 description 4
- 102000013394 Troponin I Human genes 0.000 description 4
- 108010065729 Troponin I Proteins 0.000 description 4
- 102000004987 Troponin T Human genes 0.000 description 4
- 108090001108 Troponin T Proteins 0.000 description 4
- 208000025865 Ulcer Diseases 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical group O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 208000024780 Urticaria Diseases 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 208000009956 adenocarcinoma Diseases 0.000 description 4
- 208000003455 anaphylaxis Diseases 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 4
- 201000009771 autoimmune polyendocrine syndrome type 1 Diseases 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 230000009087 cell motility Effects 0.000 description 4
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 230000001054 cortical effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 206010012601 diabetes mellitus Diseases 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 206010015037 epilepsy Diseases 0.000 description 4
- 210000001650 focal adhesion Anatomy 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 239000000185 hemagglutinin Substances 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 210000000688 human artificial chromosome Anatomy 0.000 description 4
- 230000002218 hypoglycaemic effect Effects 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 108010041420 microbial alkaline proteinase inhibitor Proteins 0.000 description 4
- 210000003879 microtubule-organizing center Anatomy 0.000 description 4
- 230000002107 myocardial effect Effects 0.000 description 4
- 210000000653 nervous system Anatomy 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 208000002761 neurofibromatosis 2 Diseases 0.000 description 4
- 208000022032 neurofibromatosis type 2 Diseases 0.000 description 4
- 210000003463 organelle Anatomy 0.000 description 4
- 201000008482 osteoarthritis Diseases 0.000 description 4
- 230000027758 ovulation cycle Effects 0.000 description 4
- 210000000496 pancreas Anatomy 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000004850 protein–protein interaction Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 description 4
- 208000012672 seasonal affective disease Diseases 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 4
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 208000011990 Corticobasal Degeneration Diseases 0.000 description 3
- 201000003883 Cystic fibrosis Diseases 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 102000029792 Desmoplakin Human genes 0.000 description 3
- 108091000074 Desmoplakin Proteins 0.000 description 3
- 108010069091 Dystrophin Proteins 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- 102000004533 Endonucleases Human genes 0.000 description 3
- 241001635598 Enicostema Species 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 102100032864 General transcription factor IIH subunit 2 Human genes 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 101000840293 Homo sapiens Interferon-induced protein 44 Proteins 0.000 description 3
- 101000582546 Homo sapiens Methylosome protein 50 Proteins 0.000 description 3
- 101001052506 Homo sapiens Microtubule-associated proteins 1A/1B light chain 3A Proteins 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 206010058359 Hypogonadism Diseases 0.000 description 3
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 3
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 3
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 3
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 3
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 3
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 3
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 101710196267 Protein 4.2 Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 241000714474 Rous sarcoma virus Species 0.000 description 3
- 206010039491 Sarcoma Diseases 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108010006785 Taq Polymerase Proteins 0.000 description 3
- 208000024313 Testicular Neoplasms Diseases 0.000 description 3
- 102100036407 Thioredoxin Human genes 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 241000723873 Tobacco mosaic virus Species 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 102000013534 Troponin C Human genes 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 230000021736 acetylation Effects 0.000 description 3
- 238000006640 acetylation reaction Methods 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 3
- 208000036815 beta tubulin Diseases 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000006037 cell lysis Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000009918 complex formation Effects 0.000 description 3
- 210000000172 cytosol Anatomy 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000007877 drug screening Methods 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000011278 mitosis Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000003068 molecular probe Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 201000006938 muscular dystrophy Diseases 0.000 description 3
- 210000005036 nerve Anatomy 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000008177 pharmaceutical agent Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 201000002212 progressive supranuclear palsy Diseases 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 238000003127 radioimmunoassay Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 108060008226 thioredoxin Proteins 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000008791 toxic response Effects 0.000 description 3
- 230000002110 toxicologic effect Effects 0.000 description 3
- 231100000027 toxicology Toxicity 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- HONKEGXLWUDTCF-YFKPBYRVSA-N (2s)-2-amino-2-methyl-4-phosphonobutanoic acid Chemical compound OC(=O)[C@](N)(C)CCP(O)(O)=O HONKEGXLWUDTCF-YFKPBYRVSA-N 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- 108091006112 ATPases Proteins 0.000 description 2
- 102100026041 Acrosin Human genes 0.000 description 2
- 108090000107 Acrosin Proteins 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 2
- 102000055025 Adenosine deaminases Human genes 0.000 description 2
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 2
- 208000007887 Alphavirus Infections Diseases 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 2
- 208000031091 Amnestic disease Diseases 0.000 description 2
- 206010002198 Anaphylactic reaction Diseases 0.000 description 2
- 206010002199 Anaphylactic shock Diseases 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000012219 Autonomic Nervous System disease Diseases 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 208000023328 Basedow disease Diseases 0.000 description 2
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000004020 Brain Abscess Diseases 0.000 description 2
- 208000014644 Brain disease Diseases 0.000 description 2
- 206010006811 Bursitis Diseases 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010078140 Cation Transport Proteins Proteins 0.000 description 2
- 208000015374 Central core disease Diseases 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 206010010099 Combined immunodeficiency Diseases 0.000 description 2
- 108020004394 Complementary RNA Proteins 0.000 description 2
- 208000019736 Cranial nerve disease Diseases 0.000 description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 208000014311 Cushing syndrome Diseases 0.000 description 2
- 201000005171 Cystadenoma Diseases 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 102100034690 Delta(14)-sterol reductase LBR Human genes 0.000 description 2
- 102100036337 Dematin Human genes 0.000 description 2
- 101710088199 Dematin Proteins 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- 206010012438 Dermatitis atopic Diseases 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- 208000012239 Developmental disease Diseases 0.000 description 2
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 208000011345 Duchenne and Becker muscular dystrophy Diseases 0.000 description 2
- 102000001039 Dystrophin Human genes 0.000 description 2
- 206010014328 Ejaculation failure Diseases 0.000 description 2
- 101100001673 Emericella variicolor andH gene Proteins 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- 208000032274 Encephalopathy Diseases 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 241000701867 Enterobacteria phage T7 Species 0.000 description 2
- 206010015226 Erythema nodosum Diseases 0.000 description 2
- 206010049466 Erythroblastosis Diseases 0.000 description 2
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 2
- 206010061846 Extradural abscess Diseases 0.000 description 2
- 208000000571 Fibrocystic breast disease Diseases 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 208000001287 Galactorrhea Diseases 0.000 description 2
- 206010017600 Galactorrhoea Diseases 0.000 description 2
- 208000018522 Gastrointestinal disease Diseases 0.000 description 2
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 2
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108091005250 Glycophorins Proteins 0.000 description 2
- 102000028180 Glycophorins Human genes 0.000 description 2
- 206010018498 Goitre Diseases 0.000 description 2
- 208000024869 Goodpasture syndrome Diseases 0.000 description 2
- 201000005569 Gout Diseases 0.000 description 2
- 208000003807 Graves Disease Diseases 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 101000616438 Homo sapiens Microtubule-associated protein 4 Proteins 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- 208000035150 Hypercholesterolemia Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 108010005579 Katanin Proteins 0.000 description 2
- 102000005909 Katanin Human genes 0.000 description 2
- 206010048804 Kearns-Sayre syndrome Diseases 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 206010025327 Lymphopenia Diseases 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 206010027202 Meningitis bacterial Diseases 0.000 description 2
- 206010027260 Meningitis viral Diseases 0.000 description 2
- 208000036626 Mental retardation Diseases 0.000 description 2
- 102100021794 Microtubule-associated protein 4 Human genes 0.000 description 2
- 208000019695 Migraine disease Diseases 0.000 description 2
- 201000002169 Mitochondrial myopathy Diseases 0.000 description 2
- 208000019022 Mood disease Diseases 0.000 description 2
- 101100181037 Mus musculus Kif5b gene Proteins 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000009525 Myocarditis Diseases 0.000 description 2
- 102000003505 Myosin Human genes 0.000 description 2
- 108060008487 Myosin Proteins 0.000 description 2
- 201000002481 Myositis Diseases 0.000 description 2
- 206010068871 Myotonic dystrophy Diseases 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000009905 Neurofibromatoses Diseases 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- 206010033266 Ovarian Hyperstimulation Syndrome Diseases 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010033645 Pancreatitis Diseases 0.000 description 2
- 208000027099 Paranoid disease Diseases 0.000 description 2
- 208000030852 Parasitic disease Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 2
- 208000004362 Penile Induration Diseases 0.000 description 2
- 208000020758 Peyronie disease Diseases 0.000 description 2
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 2
- 208000010067 Pituitary ACTH Hypersecretion Diseases 0.000 description 2
- 208000020627 Pituitary-dependent Cushing syndrome Diseases 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 241000223960 Plasmodium falciparum Species 0.000 description 2
- 102100035181 Plastin-1 Human genes 0.000 description 2
- 108010054050 Plectin Proteins 0.000 description 2
- 102100030477 Plectin Human genes 0.000 description 2
- 101710182846 Polyhedrin Proteins 0.000 description 2
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 2
- 208000024777 Prion disease Diseases 0.000 description 2
- 102000011195 Profilin Human genes 0.000 description 2
- 108050001408 Profilin Proteins 0.000 description 2
- 102000003946 Prolactin Human genes 0.000 description 2
- 108010057464 Prolactin Proteins 0.000 description 2
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 102100031953 Protein 4.2 Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108020004518 RNA Probes Proteins 0.000 description 2
- 239000003391 RNA probe Substances 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 208000033464 Reiter syndrome Diseases 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- 206010038967 Retrograde ejaculation Diseases 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 206010039710 Scleroderma Diseases 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 208000029033 Spinal Cord disease Diseases 0.000 description 2
- 208000010112 Spinocerebellar Degenerations Diseases 0.000 description 2
- 208000007107 Stomach Ulcer Diseases 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 description 2
- 201000000002 Subdural Empyema Diseases 0.000 description 2
- 108091027544 Subgenomic mRNA Proteins 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 2
- 208000031320 Teratogenesis Diseases 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 2
- 206010044248 Toxic shock syndrome Diseases 0.000 description 2
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 2
- 108091023045 Untranslated Region Proteins 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 206010046798 Uterine leiomyoma Diseases 0.000 description 2
- 206010046851 Uveitis Diseases 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 201000011032 Werner Syndrome Diseases 0.000 description 2
- 102100023895 Zyxin Human genes 0.000 description 2
- 108010023249 Zyxin Proteins 0.000 description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 description 2
- 208000009621 actinic keratosis Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 230000006986 amnesia Effects 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 208000011775 arteriosclerosis disease Diseases 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 201000008937 atopic dermatitis Diseases 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 206010003883 azoospermia Diseases 0.000 description 2
- 201000009904 bacterial meningitis Diseases 0.000 description 2
- 208000018300 basal ganglia disease Diseases 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000008236 biological pathway Effects 0.000 description 2
- 210000000625 blastula Anatomy 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 208000011803 breast fibrocystic disease Diseases 0.000 description 2
- 206010006451 bronchitis Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 102000028861 calmodulin binding Human genes 0.000 description 2
- 108091000084 calmodulin binding Proteins 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 206010007776 catatonia Diseases 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 201000007303 central core myopathy Diseases 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 210000004718 centriole Anatomy 0.000 description 2
- 210000003793 centrosome Anatomy 0.000 description 2
- 206010008129 cerebral palsy Diseases 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 201000001352 cholecystitis Diseases 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 230000007882 cirrhosis Effects 0.000 description 2
- 208000019425 cirrhosis of liver Diseases 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 208000010247 contact dermatitis Diseases 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 210000005045 desmin Anatomy 0.000 description 2
- 210000001047 desmosome Anatomy 0.000 description 2
- 201000010064 diabetes insipidus Diseases 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- VZFRNCSOCOPNDB-UHFFFAOYSA-N domoic acid Natural products OC(=O)C(C)C=CC=C(C)C1CNC(C(O)=O)C1CC(O)=O VZFRNCSOCOPNDB-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 208000000718 duodenal ulcer Diseases 0.000 description 2
- 208000010118 dystonia Diseases 0.000 description 2
- 201000003511 ectopic pregnancy Diseases 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 210000001062 endolymphatic sac Anatomy 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 210000000918 epididymis Anatomy 0.000 description 2
- 201000010063 epididymitis Diseases 0.000 description 2
- 201000000165 epidural abscess Diseases 0.000 description 2
- 230000001667 episodic effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 102000054078 gamma Catenin Human genes 0.000 description 2
- 108010084448 gamma Catenin Proteins 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 102000054767 gene variant Human genes 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 208000005594 glucose-galactose malabsorption Diseases 0.000 description 2
- 201000003872 goiter Diseases 0.000 description 2
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 2
- 201000000079 gynecomastia Diseases 0.000 description 2
- 238000001631 haemodialysis Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 201000002222 hemangioblastoma Diseases 0.000 description 2
- 210000000301 hemidesmosome Anatomy 0.000 description 2
- 230000000322 hemodialysis Effects 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 201000001421 hyperglycemia Diseases 0.000 description 2
- 206010020718 hyperplasia Diseases 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 201000001881 impotence Diseases 0.000 description 2
- 208000023692 inborn mitochondrial myopathy Diseases 0.000 description 2
- 201000008319 inclusion body myositis Diseases 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 208000015626 infectious myositis Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 208000002551 irritable bowel syndrome Diseases 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 206010023497 kuru Diseases 0.000 description 2
- 208000006443 lactic acidosis Diseases 0.000 description 2
- 108010022838 lamin B receptor Proteins 0.000 description 2
- 201000010260 leiomyoma Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 231100001023 lymphopenia Toxicity 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 208000010907 male breast carcinoma Diseases 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- VKHAHZOOUSRJNA-GCNJZUOMSA-N mifepristone Chemical compound C1([C@@H]2C3=C4CCC(=O)C=C4CC[C@H]3[C@@H]3CC[C@@]([C@]3(C2)C)(O)C#CC)=CC=C(N(C)C)C=C1 VKHAHZOOUSRJNA-GCNJZUOMSA-N 0.000 description 2
- 206010027599 migraine Diseases 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000000329 molecular dynamics simulation Methods 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 208000005264 motor neuron disease Diseases 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 206010028537 myelofibrosis Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 230000002151 myoclonic effect Effects 0.000 description 2
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 201000004931 neurofibromatosis Diseases 0.000 description 2
- 208000018360 neuromuscular disease Diseases 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 206010030875 ophthalmoplegia Diseases 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000000624 ovulatory effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000000849 parathyroid Effects 0.000 description 2
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 2
- 210000003899 penis Anatomy 0.000 description 2
- 208000029308 periodic paralysis Diseases 0.000 description 2
- 208000027232 peripheral nervous system disease Diseases 0.000 description 2
- 230000002974 pharmacogenomic effect Effects 0.000 description 2
- 208000028591 pheochromocytoma Diseases 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 108010049148 plastin Proteins 0.000 description 2
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 2
- 208000037244 polycythemia vera Diseases 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 206010036601 premature menopause Diseases 0.000 description 2
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 2
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 229940097325 prolactin Drugs 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 201000001514 prostate carcinoma Diseases 0.000 description 2
- 201000007094 prostatitis Diseases 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 230000006916 protein interaction Effects 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 208000002574 reactive arthritis Diseases 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 210000003705 ribosome Anatomy 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 210000004116 schwann cell Anatomy 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 231100000527 sperm abnormality Toxicity 0.000 description 2
- 230000021595 spermatogenesis Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 210000003699 striated muscle Anatomy 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000001608 teratocarcinoma Diseases 0.000 description 2
- 201000005060 thrombophlebitis Diseases 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 231100000399 thyrotoxic Toxicity 0.000 description 2
- 230000001897 thyrotoxic effect Effects 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- MDYOLVRUBBJPFM-UHFFFAOYSA-N tropolone Chemical compound OC1=CC=CC=CC1=O MDYOLVRUBBJPFM-UHFFFAOYSA-N 0.000 description 2
- 208000009999 tuberous sclerosis Diseases 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 208000010579 uterine corpus leiomyoma Diseases 0.000 description 2
- 201000007954 uterine fibroid Diseases 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 108090000195 villin Proteins 0.000 description 2
- 210000005048 vimentin Anatomy 0.000 description 2
- 201000010044 viral meningitis Diseases 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- PFCLMNDDPTZJHQ-XLPZGREQSA-N 2-amino-7-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PFCLMNDDPTZJHQ-XLPZGREQSA-N 0.000 description 1
- ZPZDIFSPRVHGIF-UHFFFAOYSA-N 3-aminopropylsilicon Chemical compound NCCC[Si] ZPZDIFSPRVHGIF-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- QQKKFVXSQXUHPI-NBVRZTHBSA-N Acidissiminol epoxide Chemical compound O1C(C)(C)C1CC(O)C(/C)=C/COC(C=C1)=CC=C1CCNC(=O)C1=CC=CC=C1 QQKKFVXSQXUHPI-NBVRZTHBSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- CXISPYVYMQWFLE-VKHMYHEASA-N Ala-Gly Chemical compound C[C@H]([NH3+])C(=O)NCC([O-])=O CXISPYVYMQWFLE-VKHMYHEASA-N 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 102100032956 Alpha-actinin-3 Human genes 0.000 description 1
- 101710115089 Alpha-actinin-3 Proteins 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 108050001632 Anion exchange proteins Proteins 0.000 description 1
- 102000011399 Anion exchange proteins Human genes 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- BNODVYXZAAXSHW-IUCAKERBSA-N Arg-His Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 BNODVYXZAAXSHW-IUCAKERBSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- VGRHZPNRCLAHQA-IMJSIDKUSA-N Asp-Asn Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O VGRHZPNRCLAHQA-IMJSIDKUSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 208000004300 Atrophic Gastritis Diseases 0.000 description 1
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102000009039 Axonemal Dyneins Human genes 0.000 description 1
- 108010049197 Axonemal Dyneins Proteins 0.000 description 1
- OGBVRMYSNSKIEF-UHFFFAOYSA-N Benzylphosphonic acid Chemical class OP(O)(=O)CC1=CC=CC=C1 OGBVRMYSNSKIEF-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 108091028026 C-DNA Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 108010009575 CD55 Antigens Proteins 0.000 description 1
- 108010080818 Caenorhabditis elegans Proteins Proteins 0.000 description 1
- 101100074828 Caenorhabditis elegans lin-12 gene Proteins 0.000 description 1
- 101100152433 Caenorhabditis elegans tat-1 gene Proteins 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 241000173351 Camvirus Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 102000019198 CapZ Actin Capping Protein Human genes 0.000 description 1
- 108010012892 CapZ Actin Capping Protein Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100025832 Centromere-associated protein E Human genes 0.000 description 1
- 201000003728 Centronuclear myopathy Diseases 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 239000005496 Chlorsulfuron Substances 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 206010008635 Cholestasis Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 102000008130 Cyclic AMP-Dependent Protein Kinases Human genes 0.000 description 1
- 108010049894 Cyclic AMP-Dependent Protein Kinases Proteins 0.000 description 1
- HAYVTMHUNMMXCV-IMJSIDKUSA-N Cys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CS HAYVTMHUNMMXCV-IMJSIDKUSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 102000005362 Cytoplasmic Dyneins Human genes 0.000 description 1
- 108010070977 Cytoplasmic Dyneins Proteins 0.000 description 1
- 102000010831 Cytoskeletal Proteins Human genes 0.000 description 1
- 108010037414 Cytoskeletal Proteins Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 102100036912 Desmin Human genes 0.000 description 1
- 108010044052 Desmin Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 208000027877 Disorders of Sex Development Diseases 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108700007800 Drosophila N Proteins 0.000 description 1
- 102100021238 Dynamin-2 Human genes 0.000 description 1
- 102100032249 Dystonin Human genes 0.000 description 1
- 101100001669 Emericella variicolor andD gene Proteins 0.000 description 1
- 101100001671 Emericella variicolor andF gene Proteins 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000350139 Erythrophleum suaveolens Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 201000003364 Extraskeletal myxoid chondrosarcoma Diseases 0.000 description 1
- 102000010111 Ezrin/radixin/moesin Human genes 0.000 description 1
- 108050001788 Ezrin/radixin/moesin Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 201000003542 Factor VIII deficiency Diseases 0.000 description 1
- 108090000786 Fascin Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- LLQPHQFNMLZJMP-UHFFFAOYSA-N Fentrazamide Chemical compound N1=NN(C=2C(=CC=CC=2)Cl)C(=O)N1C(=O)N(CC)C1CCCCC1 LLQPHQFNMLZJMP-UHFFFAOYSA-N 0.000 description 1
- 102100028314 Filaggrin Human genes 0.000 description 1
- 101710088660 Filaggrin Proteins 0.000 description 1
- 102000013366 Filamin Human genes 0.000 description 1
- 108060002900 Filamin Proteins 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102100025101 GATA-type zinc finger protein 1 Human genes 0.000 description 1
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 208000036495 Gastritis atrophic Diseases 0.000 description 1
- 102000004878 Gelsolin Human genes 0.000 description 1
- 108090001064 Gelsolin Proteins 0.000 description 1
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 1
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 1
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 1
- 102000042092 Glucose transporter family Human genes 0.000 description 1
- 108091052347 Glucose transporter family Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- VPZXBVLAVMBEQI-VKHMYHEASA-N Glycyl-alanine Chemical compound OC(=O)[C@H](C)NC(=O)CN VPZXBVLAVMBEQI-VKHMYHEASA-N 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 208000035185 Hemolytic Congenital Anemia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 description 1
- WSDOHRLQDGAOGU-BQBZGAKWSA-N His-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 WSDOHRLQDGAOGU-BQBZGAKWSA-N 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000817607 Homo sapiens Dynamin-2 Proteins 0.000 description 1
- 101001016186 Homo sapiens Dystonin Proteins 0.000 description 1
- 101001021925 Homo sapiens Fascin Proteins 0.000 description 1
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 description 1
- 101000954986 Homo sapiens Merlin Proteins 0.000 description 1
- 101000578830 Homo sapiens Methionine aminopeptidase 1 Proteins 0.000 description 1
- 101001057324 Homo sapiens Microtubule-associated protein 1A Proteins 0.000 description 1
- 101000632319 Homo sapiens Septin-7 Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 101001042049 Human herpesvirus 1 (strain 17) Transcriptional regulator ICP22 Proteins 0.000 description 1
- 101000999690 Human herpesvirus 2 (strain HG52) E3 ubiquitin ligase ICP22 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 1
- 101150027427 ICP4 gene Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000012411 Intermediate Filament Proteins Human genes 0.000 description 1
- 108010061998 Intermediate Filament Proteins Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108700005090 Lethal Genes Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102100037106 Merlin Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- 102100028379 Methionine aminopeptidase 1 Human genes 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 108700005084 Multigene Family Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101000917158 Mus musculus Filaggrin-2 Proteins 0.000 description 1
- 206010028643 Myopathy endocrine Diseases 0.000 description 1
- 208000023137 Myotoxicity Diseases 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 208000034965 Nemaline Myopathies Diseases 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010029164 Nephrotic syndrome Diseases 0.000 description 1
- 102000008730 Nestin Human genes 0.000 description 1
- 108010088225 Nestin Proteins 0.000 description 1
- 102100035414 Neurofascin Human genes 0.000 description 1
- 101710189786 Neurofascin Proteins 0.000 description 1
- 101150025719 Nf2 gene Proteins 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001537205 Paracoccidioides Species 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 241001483952 Peach chlorotic mottle virus Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102100024315 Pericentrin Human genes 0.000 description 1
- 101710179262 Pericentrin Proteins 0.000 description 1
- 102100028465 Peripherin Human genes 0.000 description 1
- 108010003081 Peripherins Proteins 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 241000881705 Porcine endogenous retrovirus Species 0.000 description 1
- 206010052649 Primary hypogonadism Diseases 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 201000005613 Pseudohermaphroditism Diseases 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 102000014400 SH2 domains Human genes 0.000 description 1
- 108050003452 SH2 domains Proteins 0.000 description 1
- 241000242678 Schistosoma Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- FCHAMFUEENBIDH-UHFFFAOYSA-N Severin Natural products CC1CCC2C(C)C3CCC4(O)C(CC5C4CC(O)C6CC(CCC56C)OC(=O)C)C3CN2C1 FCHAMFUEENBIDH-UHFFFAOYSA-N 0.000 description 1
- 108010089417 Sex Hormone-Binding Globulin Proteins 0.000 description 1
- 102100030758 Sex hormone-binding globulin Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 208000013738 Sleep Initiation and Maintenance disease Diseases 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000032978 Structural Congenital Myopathies Diseases 0.000 description 1
- 102100033920 Synemin Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 208000016620 Tourette disease Diseases 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 102000003672 Tropomodulin Human genes 0.000 description 1
- 108090000089 Tropomodulin Proteins 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000018472 Type I Keratins Human genes 0.000 description 1
- 108010091525 Type I Keratins Proteins 0.000 description 1
- 102000007962 Type II Keratins Human genes 0.000 description 1
- 108010089374 Type II Keratins Proteins 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- 102100035071 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 102000016913 Voltage-Gated Sodium Channels Human genes 0.000 description 1
- 108010053752 Voltage-Gated Sodium Channels Proteins 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 230000025363 abortive mitotic cell cycle Effects 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 210000005221 acidic domain Anatomy 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 108091000387 actin binding proteins Proteins 0.000 description 1
- 108091009126 actinin binding proteins Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 102000011759 adducin Human genes 0.000 description 1
- 108010076723 adducin Proteins 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 210000002867 adherens junction Anatomy 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000011256 aggressive treatment Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 231100001075 aneuploidy Toxicity 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000037979 autoimmune inflammatory disease Diseases 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 208000025261 autosomal dominant disease Diseases 0.000 description 1
- 230000008335 axon cargo transport Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 108010086826 calponin Proteins 0.000 description 1
- 102000006783 calponin Human genes 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 108010031379 centromere protein E Proteins 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- 230000007870 cholestasis Effects 0.000 description 1
- 231100000359 cholestasis Toxicity 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000016644 chronic atrophic gastritis Diseases 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 108010086096 desmuslin Proteins 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000007878 drug screening assay Methods 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 108010036236 extracellular matrix receptor Proteins 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 201000006061 fatal familial insomnia Diseases 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 229940087051 fragmin Drugs 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000001551 hemic and immune system Anatomy 0.000 description 1
- 208000009429 hemophilia B Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 208000009601 hereditary spherocytosis Diseases 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001118 hypergonadotropic effect Effects 0.000 description 1
- 201000003368 hypogonadotropic hypogonadism Diseases 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 206010022437 insomnia Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 210000001955 intestinal smooth muscle cell Anatomy 0.000 description 1
- 244000000056 intracellular parasite Species 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 208000001024 intrahepatic cholestasis Diseases 0.000 description 1
- 230000007872 intrahepatic cholestasis Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 230000005830 kidney abnormality Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 210000002415 kinetochore Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 101710130522 mRNA export factor Proteins 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229960003248 mifepristone Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000002346 musculoskeletal system Anatomy 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 210000005055 nestin Anatomy 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 210000005044 neurofilament Anatomy 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 210000002353 nuclear lamina Anatomy 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 108091005706 peripheral membrane proteins Proteins 0.000 description 1
- 210000005047 peripherin Anatomy 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- BQVCCPGCDUSGOE-UHFFFAOYSA-N phenylarsine oxide Chemical compound O=[As]C1=CC=CC=C1 BQVCCPGCDUSGOE-UHFFFAOYSA-N 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 230000001884 polyglutamylation Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 210000002442 prefrontal cortex Anatomy 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 208000016685 primary ovarian failure Diseases 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 1
- 244000000040 protozoan parasite Species 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 210000003935 rough endoplasmic reticulum Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002235 sarcomere Anatomy 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 210000004929 secretory organelle Anatomy 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000001548 stomatognathic system Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 210000005050 synemin Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000016853 telophase Effects 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000003956 transport vesicle Anatomy 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- 108091005990 tyrosine-phosphorylated proteins Proteins 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701366 unidentified nuclear polyhedrosis viruses Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000009447 viral pathogenesis Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/12—Keratolytics, e.g. wart or anti-corn preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/06—Antigout agents, e.g. antihyperuricemic or uricosuric agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- This invention relates to nucleic acid and amino acid sequences of cytoskeleton-associated proteins and to the use of these sequences in the diagnosis , treatment, and prevention of cell proliferative, autoimmune/iriflammatory, vesicle trafficking, neurological, cell motility, reproductive, and muscle disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of cytoskeleton-associated proteins.
- the cytoskeleton a cytoplasmic system of protein fibers, mediates cell shape, structure, and movement.
- the cytoskeleton supports the cell membrane and forms tracks along which organelles and other elements move in the cytosol.
- the cytoskeleton is a dynamic structure that allows cells to adopt various shapes and to carry out directed movements. Additonally. molecules can be sequestered to a specific cellular location through interaction with cytoskeleton associated proteins.
- Major cytoskeletal fibers are the microfflaments, the microtubules, and the intermediate filaments.
- Motor proteins including myosin, dynein, and kinesin, drive movement of, or along, the fibers.
- Accessory or associated proteins modify the structure or activity of the fibers while cytoskeletal membrane anchors connect the fibers to the cell membrane.
- Other proteins associated with the cytoskeleton have roles in processes such as secretion and intracellular signaling. (The cytoskeleton is reviewed in Lodish, H. et al. (1995) Molecular Cell Biology Scientific American Books, New York NY.) Microtubules and Associated Proteins Tubulins
- Microtubules cytoskeletal fibers with a diameter of 24 nm, have multiple roles in the cell. Bundles of microtubules form cilia and flagella, which are whip-like extensions of the cell membrane that are necessary for sweeping materials across an epithelium and for swimming of sperm, respectively. Marginal bands of microtubules in red blood cells and platelets are important for these cells' pliability. Organelles, membrane vesicles, and proteins are transported in the cell along tracks of microtubules. For example, microtubules run through nerve cell axons, allowing bi-directional transport of materials and membrane vesicles between the cell body and the nerve terminal. Failure to supply the nerve terminal with these vesicles blocks the transmission of neural signals. Microtubules, in the form of the spindle, are also critical to chromosomal movement during cell division. Both stable and short-lived populations of microtubules exist in the cell.
- Microtubules are a polymer of GTP-binding tubulin protein subunits. Each subunit is a heterodimer of ⁇ - and ⁇ - tubulin, multiple iso orms of which exist. Alpha-tubulin undergoes a number of post-translational modifications, including acetylation, polyglutamylation, truncation of two amino acids (forming ⁇ 2 tubulin), and tyrosination. In some cases, these modifications can affect microtubule stability.
- the hydrolysis of GTP is linked to the addition of tubulin subunits at the end of a microtubule. The subunits interact head to tail to form protofilaments ; the protofilaments interact side to side to form a microtubule.
- a microtubule is polarized, one end ringed with ⁇ -tubulin and the other with ⁇ -tubulin, and the two ends differ in their rates of assembly.
- Each microtubule is generally composed of 13 protofilaments although 11 or 15 protofilament-microtubules are sometimes found.
- Cilia and flagella contain doublet microtubules.
- Microtubules grow from specialized structures known as centrosomes or microtubule-organizing centers (MTOCs). MTOCs may contain one or two centrioles, which are pinwheel arrays of triplet microtubules.
- the basal body, the organizing center located at the base of a cilium or flagellum, contains one centriole.
- ⁇ - tubulin present in the MTOG is important for nucleating the polymerization of ⁇ - and ⁇ - tubulin heterodimers but does not polymerize into microtubules.
- the protein pericentrin is found in the MTOC and has a role in microtubule assembly.
- Microtubule-associated proteins have roles in the assembly and stabilization of microtubules.
- assembly MAPs can be identified in neurons as well as non-neuronal cells. Assembly MAPs are responsible for cross-linking microtubules in the cytosol. These MAPs are organized into two domains: a basic microtubule-binding domain and an acidic projection domain. The projection domain is the binding site for membranes, intermediate filaments, or other microtubules. Based on sequence analysis, assembly MAPs can be further grouped into two types: Type I and Type II.
- Type I MAPs which include MAPI A and MAPIB, are large, filamentous molecules that co- purify with microtubules and are abundantly expressed in brain and testis. They contain several repeats of a positively-charged amino acid sequence motif that binds and neutralizes negatively charged tubulin, leading to stabilization of microtubules.
- MAPI A and MAPIB are each derived from a single precursor polypeptide that is subsequently proteolytically processed to generate one heavy chain and one light chain. Another light chain, LC3, is a 16.4 kDa molecule that binds MAPI A, MAPIB, and microtubules.
- LC3 is synthesized from a source other than the MAP1A or MAPIB transcripts, and the expression of LC3 may be important in regulating the microtubule binding activity of MAPI A and MAPIB during cell proliferation (Mann, S. S. et al. (1994) J. Biol. Chem. 269:11492- 11497).
- Type II MAPs which include MAP2a, MAP2b, MAP2c, MAP4, and Tau, are characterized by three to four copies of an 18-residue sequence in the microtubule-binding domain.
- MAP2a, MAP2b, and MAP2c are found only in dendrites, MAP4 is found in non-neuronal cells, and Tau is found in axons and dendrites of nerve cells.
- Alternative splicing of the Tau mRNA leads to the existence of multiple forms of Tau protein.
- Tau phosphorylation is altered in neurodegenerative disorders such as Alzheimer's disease, Pick's disease, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia and Parkinsonism linked to chromosome 17.
- the altered Tau phosphorylation leads to a collapse of the microtubule network and the formation of intraneuronal Tau aggregates (Spillantini, M.G. and Goedert, M.
- Microtubule stability may also be regulated by severing the microtubule along its length.
- the protein katanin a member of the AAA adenosine triphosphatase (ATPase) superfamily, uses ATP hydrolysis energy to sever and disassemble stable microtubules.
- Katanin may play a role in releasing microtubules from centrosomes, regulating assembly of the mitotic spindle, and accelerating microtubule turnover during cell cycle transitions (Hartman, J.J. and Vale, R.D. (1999) Science 286:782-785).
- Microtubular aggregates are associated with several disorders.
- An extraskeletal myxoid chondrosarcoma tumor from human contained parallel arrays of microtubules within the rough endoplasmic reticulum (Suzuki, T. et al. (1988) J. Pathol. 156:51-57).
- Microtubular aggregates were also found in hepatocytes from chimpanzees infected with hepatitis C virus. Monoclonal antibodies prepared to these aggregates detect a protein called p44 (or microtubular aggregates protein) (Maeda, T. et al. (1989) J. Gen. Virol. 70:1401-1407).
- a human homolog of p44 is inducible by interferon- ⁇ and interferon- ⁇ , but not by interferon- ⁇ .
- p44 protein may be a mediator in the antiviral action of interferon (Kita ura, A. et al. (1994) Eur. J. Biochem. 224:877-883).
- Dvnein-related Motor Proteins Dyneins are (-) end-directed motor proteins which act on microtubules. Two classes of dyneins exist, cytosolic and axonemal.
- Cytosolic dyneins are responsible for translocation of materials along cytoplasmic microtubules; for example, transport from the nerve terminal to the cell body and transport of endocytic vesicles to lysosomes. Cytoplasmic dyneins are also reported to play a role in mitosis. Axonemal dyneins are responsible for the beating of flagella and cilia. Dynein on one microtubule doublet walks along the adjacent microtubule doublet. This shding force produces bending forces that cause the flagellum or cilium to beat. Dyneins have a native mass between 1000 and 2000 kDa and contain either two or three force-producing heads driven by the hydrolysis of ATP. The heads are linked via stalks to a basal domain which is composed of a highly variable number of accessory intermediate and light chains. Kinesin-related Motor Proteins
- Kinesins are (+) end-directed motor proteins which act on microtubules.
- the prototypical kinesin molecule is involved in the transport of membrane-bound vesicles and organelles. This function is particularly important for axonal transport in neurons.
- Kinesin is also important in all cell types for the transport of vesicles from the Golgi complex to the endoplasmic reticulum. This role is critical for maintaining the identity and functionality of these secretory organelles.
- Kinesins define a ubiquitous, conserved family of over 50 proteins that can be classified into at least 8 subfamilies based on primary amino acid sequence, domain structure, velocity of movement, and cellular function. (Reviewed in Moore, J.D. and S.A. Endow (1996) Bioessays 18:207-219; and Hoyt, A.M. (1994) Curr. Opin. Cell Biol. 6:63-68.)
- the prototypical kinesin molecule is a heterotetramer comprised of two heavy polypeptide chains (KHCs) and two light polypeptide chains (KLCs).
- KHC subunits are typically referred to as "kinesin.” KHC is about 1000 amino acids in length, and KLC is about 550 amino acids in length.
- Two KHCs dimerize to form a rod-shaped molecule with three distinct regions of secondary structure.
- a globular motor domain that functions in ATP hydrolysis and microtubule binding.
- Kinesin motor domains are highly conserved and share over 70% identity.
- an ⁇ -helical coiled-coil region which mediates dimerization.
- a fan-shaped tail that associates with molecular cargo. The tail is formed by the interaction of the KHC C-termini with the two KLCs.
- KRPs kinesin-related proteins
- centromere protein E localizes to the kinetochore of human mitotic chromosomes and may play a role in their segregation to opposite spindle poles.
- Microfilaments are vital to cell locomotion, cell shape, cell adhesion, cell division, and muscle contraction. Assembly and disassembly of the microfilaments allow cells to change their morphology. Microfilaments are the polymerized form of actin, the most abundant intracellular protein in the eukaryotic cell. Human cells contain six isoforms of actin. The three ⁇ -actins are found in different kinds of muscle, nonmuscle ⁇ -actin and nonmuscle ⁇ - actin are found in nonmuscle cells, and another ⁇ -actin is found in intestinal smooth muscle cells.
- G- actin the monomeric form of actin, polymerizes into polarized, helical F-actin filaments, accompanied by the hydrolysis of ATP to ADP.
- Actin filaments associate to form bundles and networks, providing a framework to support the plasma membrane and determine cell shape. These bundles and networks are connected to the cell membrane.
- thin filaments containing actin slide past thick filaments containing the motor protein myosin during contraction.
- Other actin-related filaments are not part of the actin cytoskeleton, but rather associate with microtubules and dyenin. Actin- Associated Proteins
- Actin-associated proteins have roles in cross-Unking, severing, and stabilization of actin filaments and in sequestering actin monomers.
- actin-associated proteins have multiple functions. Bundles and networks of actin filaments are held together by actin cross-linking proteins. These proteins have two actin-binding sites, one for each filament. Short cross-linking proteins promote bundle formation while longer, more flexible cross-linking proteins promote network formation. Calmodulin-like calcium-binding domains in actin cross-linking proteins allow calcium regulation of cross-hnking.
- Group I cross-linking proteins have unique actin-binding domains and include the 30 Kd protein, EF-la, fascin, and scruin.
- Group II cross-hnking proteins have a 7,000-MW actin-binding domain and include villin and dematin.
- Group III cross-linking proteins have pairs of a 26,000-MW actin-binding domain and include alpha-actinin, fimbrin, spectrin, dystrophin, ABP 120, andfilamin.
- Severing proteins regulate the length of actin filaments by breaking them into short pieces or by blocking their ends.
- Severing proteins include gCAP39, severin (fragmin), gelsolin, and villin.
- Capping proteins can cap the ends of actin filaments, but cannot break filaments.
- Capping proteins include CapZ, tropomodulin, and tensin.
- Tensin which is found in focal adhesions, also crosslinks actin filaments. Integrin activation by the extracellular matrix leads to the phosphorylation of tensin on tyrosine, serine, and threonine residues; this phosphorylation also occurs in cells transformed with oncogenes. Tensin has an SH2 domain and may bind to other tyrosine-phosphorylated proteins. (Lo, S.H. et al. (1997) J. Cell Biol. 136:1349-1361.) The N-terminus of tensin contains a region homologous to the catalytic domain of a putative tyrosine phosphatase (PTP) from Saccharomvces cerevisiae.
- PTP putative tyrosine phosphatase
- This PTP domain in tensin may mediate binding interactions with phosphorylated polypeptides (Haynie, D.T. andPonting, CP. (1996) Protein Sci. 5 :2643-2646). Mice which lack the tensin gene have kidney abnormalities, indicating that the loss of tensin leads to weakening of focal adhesions in the kidney (Lo, supra).
- Profilin may also stimulate F-actin formation by effectively lowering the critical concentration required for actin monomer addition (Gertler, F.B. et al. (1996) Cell 87:227-239).
- the actin-associated proteins tropomyosin, troponin, and caldesmon regulate muscle contraction in response to calcium.
- the tropomyosin proteins, found in muscle and nonmuscle cells, are ⁇ -helical and form coiled-coil dimers.
- Striated muscle tropomyosin mediates the interactions between the troponin complex and actin, regulating muscle contraction (PROSITE PDOC00290 Tropomyosins signature).
- the troponin complex is composed of troponin-T, troponin-I, and troponin-C.
- Troponin-T binds tropomyosin, linking troponin-I and troponin-C to tropomyosin.
- the actin-associated proteins tropomyosin, troponin, and caldesmon regulate muscle contraction in response to calcium.
- the tropomyosin proteins found in muscle and nonmuscle cells, are ⁇ -helical and form coiled-coil dimers.
- Striated muscle tropomyosin mediates the interactions between the troponin complex and actin, regulating muscle contraction.
- the troponin complex is composed of troponin-T, troponin-I, and troponin- C.
- Troponin-T binds tropomyosin, linking troponin-I and troponin-C to tropomyosin.
- calponin homology domains found in actin cross- linking proteins including alpha- actinin, spectrin, and fimbrin.
- CH calponin homology
- LIM domains protein-protein interaction motifs known as LIM domains.
- zyxin is a protein that plays a role in the spatial control of actin assembly and contains three tandem LIM domains.
- Zyxin also interacts with alpha-actinin through its prolinerichN-terminus (Beckerle, M. C.
- Alpha-actinin and several MAPs are present in Hirano bodies, which are observed more frequently in the elderly and in patients with neurodegenerative diseases such as Alzheimer's disease (Maciver, S.K. and Harrington, C.R. (1995) Neuroreport. 6:1985-1988).
- Actinin-4 a novel actin- bundling protein, appears to be associated with the cell motility of metastatic cancer cells.
- Other disease associations include premature chromosome condensation which is frequently observed in dividing cells from tumor tissue (Murnane, J.P. (1995) Cancer Metastasis Rev. 14:17-29) and the significant roles of axonemal and assembly MAPs in viral pathogenesis (Sodeik, B. et al. (1997) J. Cell Biol. 136:1007-1021).
- Intermediate filaments are cytoskeletal fibers with a diameter of 10 nm, intermediate between that of microfilaments and microtubules. They serve structural roles in the cell, reinforcing cells and organizing cells into tissues.
- IFs are particularly abundant in epidermal cells and in neurons. IFs are extremely stable, and, in contrast to microfilaments and microtubules, do not function in cell motility.
- IF proteins include acidic keratins, basic keratins, desmin, glial fibrillary acidic protein, vimentin, peripherin, neurofilaments, nestin, andlamins.
- IFs have a central ⁇ -helical rod region interrupted by short nonhelical linker segments.
- the rod region is bracketed, in most cases, by non-helical head and tail domains.
- the rod regions of intermediate filament proteins associate to form a coiled-coil dimer.
- a highly ordered assembly process leads from the dimers to the IFs. Neither ATP nor GTP is needed for IF assembly, unlike that of microfilaments and microtubules.
- IF-associated proteins mediate the interactions of IFs with one another and with other cell structures.
- IFAPs cross-link IFs into a bundle, into a network, or to the plasma membrane, and may cross-link IFs to the microfilament and microtubule cytoskeleton. Microtubules and IFs in particular are closely associated.
- IFAPs include BPAG1, plakoglobin, desmoplakin I, desmoplakin II, plectin, ankyrin, filaggrin, and lamin B receptor.
- ankyrin consists of a repeated 33 -amino acid motif, the ankyrin repeat, which is involved in specific protein-protein interactions. Variable regions within the motif are responsible for specific protein binding, such that different ankyrin repeats are involved in binding to tubulin, anion exchange protein, voltage-gated sodium channel, Na7K + -ATPase, and neurofascin.
- the ankyrin motif is also found in transcription factors, such as NF-K-B, and in the yeast cell cycle proteins CDC10, SW14, and SW16. Proteins involved in tissue differentiation, such as Drosophila Notch and C, elegans LIN-12 and GLP-1, also contain ankyrin-like repeats.
- Lux et al. (1990; Nature 344:36-42) suggest that ankyrin-hke repeats function as 'built-in' ankyrins and form binding sites for integral membrane proteins, tubulin, and other proteins.
- Cytoskeletal fibers are attached to the plasma membrane by specific proteins. These attachments are important for maintaining cell shape and for muscle contraction.
- the spectrin-actin cytoskeleton is attached to cell membrane by three proteins, band 4.1 , ankyrin, and adducin. Defects in this attachment result in abnormally shaped cells which are more rapidly degraded by the spleen, leading to anemia.
- the spectrin-actin cytoskeleton is also linked to the membrane by ankyrin; a second actin network is anchored to the membrane by filamin.
- muscle cells the protein dystrophin Unks actin filaments to the plasma membrane; mutations in the dystrophin gene lead to Duchenne muscular dystrophy.
- adherens junctions and adhesion plaques the peripheral membrane proteins ⁇ -actinin and vincuUn attach actin filaments to the cell membrane.
- IFs are also attached to membranes by cytoskeletal-membrane anchors.
- the nuclear lamina is attached to the inner surface of the nuclear membrane by the lamin B receptor.
- Vimentin IFs are attached to the plasma membrane by ankyrin and plectin.
- Desmosome and hemidesmosome membrane junctions hold together epifheUal cells of organs and skin. These membrane junctions allow shear forces to be distributed across the entire epifheUal cell layer, thus providing strength and rigidity to the epitheUum.
- IFs in epifheUal cells are attached to the desmosome by plakoglobin and desmoplakins. The proteins that Unk TJFs to hemidesmosomes are not known.
- Desmin IFs surround the sarcomere in muscle and are Unked to the plasma membrane by paranemin, synemin, and ankyrin. Proteins of the Erythrocyte Membrane Skeleton
- Oxygen diffuses from surrounding water or from the atmosphere through either gill epitheUum or pulmonary epifheUal type I cells. Oxygen then diffuses through the blood capillary endothelium directly to the blood circulatory system and through the erythrocyte membrane and is stored as soluble oxyhemoglobin in the cytoplasm. Oxygen is released from hemoglobin at sites throughout the organism and diffuses out from the erythrocyte to other target cells. The structure of the erythrocyte membrane as well as that of other non-erythrocyte cells must be maintained to enable efficient diffusion of oxygen to intracellular compartments.
- the erythrocyte membrane is comprised of i) a cholesterol-rich phosphoUpid bilayer in which many trans-bilayer proteins are embedded, U) external glycosylphosphatidyUnositol-anchored proteins (GPI-proteins), and ui) the erythrocyte or membrane skeleton that laminates the inner surface of the bilayer.
- the trans-bilayer proteins include anion exchangers, glycophorins, glucose transporters, and a variety of cation transporters and pumps.
- the erythrocyte GPI-proteins include acetylchoUnesterase and decay-accelerating factor (CD 55).
- the skeletal proteins are organized on the cortical, or cytoplasmic, face of the plasma membrane.
- proteins include protein 4.1 , protein p55 , ⁇ - and ⁇ - spectrin, actin, and actin-binding proteins such as dematin, tropomyosin, and tropomoduUn.
- ⁇ - and ⁇ - spectrin combine to form a heterotetramer in vivo.
- the spectrin heterotetramer organizes into a cortical bidimensional network with a hexagonal mesh.
- the network is Unked to trans-bilayer proteins through a protein complex comprising ⁇ -spectrin, ankyrin, anion exchanger, and protein 4.2 and through the "triangular" interaction between protein 4.1 , glycophorin C, and protein p55.
- erythrocyte membrane proteins have been found in a variety of tissues. Variants may be transcribed from multigene famiUes, e.g., anion exchanger, ankyrin, or spectrin, or from single gene famiUes, e.g., protein 4.1 or protein 4.2. mRNA transcripts undergo tissue-specific alternative spUcing. Many congenital hemolytic anemias result from mutations in the above-mentioned genes encoding erythrocyte membrane proteins.
- multigene famiUes e.g., anion exchanger, ankyrin, or spectrin
- single gene famiUes e.g., protein 4.1 or protein 4.2.
- mRNA transcripts undergo tissue-specific alternative spUcing.
- Many congenital hemolytic anemias result from mutations in the above-mentioned genes encoding erythrocyte membrane proteins.
- hereditary elUptocytosis stems from an array of mutations in the spectrin genes at or near the head-to-head self-association region of the spectrin tetramer , or from mutations in the protein 4.1 gene which reduce levels of protein 4.1.
- hereditary spherocytosis is associated with mutations in the ankyrin gene, the anion exchanger gene, the protein 4.2 gene, or the ⁇ - and ⁇ -spectrin genes.
- Protein 4.1 is an 80 kDa erythrocyte membrane protein with four functional domains. These domains include: i) a 30 kDa basic N-terminal domain, homologous to the ERM
- Protein 4.1 is a member of a structurally and functionally related protein 4.1 family.
- the protein 4.1 family is part of an evolutionarily related protein superfamily that includes many tyrosine phosphatases. (Baklouti, F. et al. (1997) Genomics 39:289-302.)
- protein 4.1 epitopes have been observed throughout the cytoplasmic compartment and the nucleoskeleton in nucleated cells.
- protein 4.1 is present in the nucleoskeleton during interphase, in the mitotic spindle during mitosis, in perichromatin during telophase, and in the midbody during cytokinesis. (Krauss, S.W. et al. (1997) J. Cell Biol. 137:275-289.)
- the cortical actin cytoskeleton participates in various membrane-based processes which necessitate a large amount of functional plasticity in the molecular components involved.
- a family of proteins homologous to band 4.1 is involved in the reorganization of the actin cytoskeleton in response to various stimuli and probably plays a role in transmembrane signaUng.
- This family includes tyrosine phosphatases, substrates of tyrosine kinases and a candidate for a tumor-suppressor gene. (Arpin M, et al. (1994) Curr. Opin. Cell Biol. 6:136-141.)
- Neurofibromatosis type 2 is an autosomal dominant disease of the nervous system.
- Schwann cells isolated from patients with neurofibromatosis type 2 have characteristic morphology and growth parameters which differ from control Schwann cells.
- a gene associated with neurofibromatosis type 2 has been identified and is termed NF2.
- the NF2 gene product known as schwannomin or erUn, is a member of the protein 4.1 superf amily, and mutations in the NF2 gene have been shown to be associated with the disease. (Rosenbaum, C. et al. (1998) Neurobiol. Dis.
- a form of psoriasis may be due to altered expression or distribution in epidermal epitheUum of analogs of erythrocyte protein 4.1.
- Erythrocytes carrying mutations in spectrin and protein 4.1 showed differing sensitivities to invasion by Plasmodium falciparum.
- antibodies raised against erythrocyte protein 4.1 stained the majority of neurofibrillary tangles in the prefrontal cortex and hippocampus of brain tissue from patients with Alzheimer's disease.
- a 68 kDa protein was identified as the most Ukely brain analog of erythrocyte protein 4.1.
- cytoskeleton-associated proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, autoimmune/inflammatory, vesicle trafficking, neurological, cell motiUty, reproductive, and muscle disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of cytoskeleton-associated proteins.
- the invention features purified polypeptides, cytoskeleton-associated proteins, referred to collectively as “CYSKP” and individually as “CYSKP-1,” “CYSKP-2,””CYSKP-3,” “CYSKP-4,” “CYSKP-5,” “CYSKP-6,” “CYSKP-7,” “CYSKP-8,” “CYSKP-9,” “CYSKP-10,” “CYSKP-11,” “CYSKP-12,” “CYSKP-13,” “CYSKP-14,” “CYSKP-15,” “CYSKP-16,” “CYSKP-17,” “CYSKP- 18,” “CYSKP-19,” “CYSKP-20,” “CYSKP-21,” “CYSKP-22,” “CYSKP-23,” “CYSKP-24,” “CYSKP-25,” “CYSKP-26,” “CYSKP-27,” “CYSKP-28,” “CYSKP-29,” “CYSKP-30,” “CYSKP- 31,” “CYSKP-32,” “CYSKP-33,” and “CYSKP-34
- the invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, c) a biologicaUy active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34.
- the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO: 1-34.
- the polynucleotide is selected from the group consisting of SEQ ID NO:35-68.
- the invention provides a recombinant polynucleotide comprising a promoter sequence operably Unked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34.
- the invention provides a cell transformed with the recombinant polynucleotide.
- the invention provides a transgenic organism comprising the recombinant polynucleotide.
- the invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34.
- the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably Unked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
- the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-34.
- the invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the polynucleotide comprises at least 60 contiguous nucleotides.
- the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
- the probe comprises at least 60 contiguous nucleotides.
- the invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO: 35 -68, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said ampUfied target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
- the invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1 -34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and a pharmaceutically acceptable excipient
- the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34.
- the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional CYSKP, comprising administering to a patient in need of such treatment the composition.
- the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1 -34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-34.
- the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
- the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
- the invention provides a method of treating a disease or condition associated with decreased expression of functional CYSKP, comprising administering to a patient in need of such treatment the composition.
- the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO : 1 -34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34.
- the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
- the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient
- the invention provides a method of treating a disease or condition associated with overexpression of functional CYSKP, comprising administering to a patient in need of such treatment the composition.
- the invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34.
- the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specificaUy binds to the polypeptide.
- the invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1 -34, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-34, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-34.
- the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
- the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:35-68, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
- the invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, ii) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, in) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of u), and v) an RNA equivalent of i)-iv).
- Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, ii) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:35-68, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of U), and v) an RNA equivalent of i)-iv).
- a target polynucleotide selected from the group consisting of i) a polynucleotide comprising
- the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
- Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
- Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probabiUty score for the match between each polypeptide and its GenBank homolog is also shown.
- Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
- Table 4 Usts the cDNA and genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
- Table 5 shows the representative cDNAUbrary for polynucleotides of the invention.
- Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA Ubraries shown in Table 5.
- Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with appUcable descriptions, references, and threshold parameters.
- CYSKP refers to the amino acid sequences of substantially purified CYSKP obtained from any species, particularly a mammaUan species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
- agonist refers to a molecule which intensifies or mimics the biological activity of CYSKP.
- Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of CYSKP either by directly interacting with CYSKP or by acting on components of the biological pathway in which CYSKP participates.
- AlleUc variant is an alternative form of the gene encoding CYSKP. AlleUc variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many alleUc variants of its naturaUy occurring form. Common mutational changes which give rise to alleUc variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
- altered nucleic acid sequences encoding CYSKP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as CYSKP or a polypeptide with at least one functional characteristic of CYSKP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding CYSKP, and improper or unexpected hybridization to alleUc variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding CYSKP.
- the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent CYSKP.
- DeUberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubiUty, hydrophobicity, hydrophilicity, and/or the ampl ⁇ pathic nature of the residues, as long as the biological or immunological activity of CYSKP is retained.
- negatively charged amino acids may include aspartic acid and glutamic acid
- positively charged amino acids may include lysine and arginine.
- Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
- Amino acids with uncharged side chains having similar hydrophiUcity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
- amino acid and amino acid sequence refer to an oUgopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and Uke terms are not meant to Umit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
- Amplification relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
- PCR polymerase chain reaction
- Antagonist refers to a molecule which inhibits or attenuates the biological activity of CYSKP.
- Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of CYSKP either by directly interacting with CYSKP or by acting on components of the biological pathway in which CYSKP participates.
- antibody refers to intact immunoglobuUn molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
- Antibodies that bind CYSKP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
- the polypeptide or oUgopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
- an animal e.g., a mouse, a rat, or a rabbit
- RNA Ribonucleic acid
- Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobuUn, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
- KLH keyhole limpet hemocyanin
- antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
- an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
- antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence.
- Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oUgonucleotides having modified backbone Unkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oUgonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oUgonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
- Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
- the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
- the term “biologically active” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
- immunologically active or “immunogenic” refers to the capabiUty of the natural, recombinant, or synthetic CYSKP, or of any oUgopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
- “Complementary” describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3 * pairs with its complement,
- composition comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
- the composition may comprise a dry formulation or an aqueous solution.
- compositions comprising polynucleotide sequences encoding CYSKP or fragments of CYSKP may be employed as hybridization probes.
- the probes may be stored in freeze-dried form and may be associated with a stabiUzing agent such as a carbohydrate.
- the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate;
- SDS Styrene-maleic anhydride copolymer
- other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
- Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated
- Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i. e. , the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
- the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
- Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha heUcal conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
- a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
- derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
- a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
- a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
- a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
- “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
- a “fragment” is a unique portion of CYSKP or the polynucleotide encoding CYSKP which is identical in sequence to but shorter in length than the parent sequence.
- a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
- a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
- a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
- a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
- these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
- a fragment of SEQ ID NO:35-68 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:35-68, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
- a fragment of SEQ ID NO: 35 -68 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:35-68 from related polynucleotide sequences.
- the precise length of a fragment of SEQ ID NO:35-68 and the region of SEQ ID NO:35-68 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
- a fragment of SEQ ID NO: 1-34 is encoded by a fragment of SEQ ID NO:35-68.
- a fragment of SEQ ID NO:l-34 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:l-34.
- a fragment of SEQ ID NO: 1-34 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:l-34.
- the precise length of a fragment of SEQ ID NO:l-34 and the region of SEQ ID NO:l-34 to which the fragment corresponds are routinely determinable by one of ordinary skUl in the art based on the intended purpose for the fragment.
- a “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
- a “full length” polynucleotide sequence encodes a "full length” polypeptide sequence.
- Homology refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
- percent identity and % identity refer to the percentage of residue matches between at least two polynucleotide sequences aUgned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize aUgnment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
- NCBI National Center for Biotechnology Information
- BLAST Basic Local AUgnment Search Tool
- NCBI National Center for Biotechnology Information
- BLAST Basic Local AUgnment Search Tool
- the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to aUgn a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
- BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example: Matrix: BLOSUM62 Reward for match: 1 Penalty for mismatch: -2 Open Gap: 5 and Extension Gap: 2 penalties
- Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
- Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
- nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
- percent identity and % identity refer to the percentage of residue matches between at least two polypeptide sequences aUgned using a standardized algorithm.
- Methods of polypeptide sequence aUgnment are well-known. Some aUgnment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and_hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
- Gap x drop-off 50
- Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
- Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
- HACs Human artificial chromosomes
- HACs are Unear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome repUcation, segregation and maintenance.
- humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding abiUty.
- Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive anneaUng conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
- Permissive conditions for anneaUng of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
- Permissive anneaUng conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA.
- stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out.
- Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T for the specific sequence at a defined ionic strength and pH.
- T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
- High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1 %.
- blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
- Organic solvent such as formamide at a concentration of about 35-50% v/v
- RNA:DNA hybridizations Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
- Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
- hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases.
- a hybridization complex may be formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobiUzed on a soUd support (e.g., paper, membranes, filters, chips, pins or glass sUdes, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
- soUd support e.g., paper, membranes, filters, chips, pins or glass sUdes, or any other appropriate substrate to which cells or their nucleic acids have been fixed.
- insertion and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
- Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokmes, chemokines, and other signaUng molecules, which may affect cellular and systemic defense systems.
- an "immunogenic fragment” is a polypeptide or oUgopeptide fragment of CYSKP which is capable of eUciting an immune response when introduced into a Uving organism, for example, a mammal.
- the term "immunogenic fragment” also includes any polypeptide or oUgopeptide fragment of CYSKP which is useful in any of the antibody production methods disclosed herein or known in the art.
- microarray refers to an arrangement of a plurahty of polynucleotides, polypeptides, or other chemical compounds on a substrate.
- element and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
- modulate refers to a change in the activity of CYSKP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of CYSKP.
- nucleic acid and nucleic acid sequence refer to a nucleotide, oUgonucleoti.de, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-Uke or RNA-Uke material.
- PNA peptide nucleic acid
- operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- Operably Unked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
- PNA protein nucleic acid
- PNA refers to an antisense molecule or anti-gene agent which comprises an oUgonucleoti.de of at least about 5 nucleotides in length Unked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubiUty to the composition.
- PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their Ufespan in the cell.
- Post-translational modification of an CYSKP may involve Upidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic miUeu of CYSKP.
- Probe refers to nucleic acid sequences encoding CYSKP, their complements, or fragments thereof which are used to detect identical, aUelic or related nucleic acid sequences.
- Probes are isolated oUgonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, Ugands, chemiluminescent agents, and enzymes.
- Probes are short nucleic acids, usually DNA oUgonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme.
- Primer pairs can be used for ampUfication (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
- Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
- PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
- OUgonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oUgonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabiUties. For example, the PrimOU primer selection program (available to the pubUc from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome- wide scope.
- Primer3 primer selection program (available to the pubUc from the Whitehead Institute MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming Ubrary," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays.
- the source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.
- the PrimeGen program (available to the pubUc from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence aUgnments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aUgned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oUgonucleotides and polynucleotide fragments.
- oUgonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of ohgonucleotide selection are not Umited to those described above.
- a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accompUshed by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra.
- the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
- a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
- Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
- such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
- a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stabiUty.
- Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionucUdes; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
- RNA equivalent in reference to a DNA sequence, is composed of the same Unear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
- sample is used in its broadest sense.
- a sample suspected of containing CYSKP, nucleic acids encoding CYSKP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
- binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
- substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
- substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
- Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, sUdes, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
- the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
- a “transcript image” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
- Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not Umited to, bacteriophage or viral infection, electroporation, heat shock, Upofection, and particle bombardment.
- transformed cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously repUcating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for Umited periods of time.
- a "transgenic organism,” as used herein, is any organism, including but not Umited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques weU known in the art.
- the nucleic acid is introduced into the ceU, directly or indirectly by introduction into a precursor of the cell, by way of deUberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
- the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
- the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
- the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
- a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
- Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
- a variant may be described as, for example, an "alleUc” (as defined above), "splice,” “species,” or “polymorphic” variant.
- a spUce variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative sphcing of exons during mRNA processing.
- the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
- Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generaUy have significant amino acid identity relative to each other.
- a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
- Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
- SNPs single nucleotide polymorphisms
- a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
- Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
- the invention is based on the discovery of new human cytoskeleton-associated proteins (CYSKP), the polynucleotides encoding CYSKP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proUferative, autoimmune/inflammatory, vesicle trafficking, neurological, cell motiUty, reproductive, and muscle disorders.
- CYSKP cytoskeleton-associated proteins
- Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown.
- polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.
- Table 2 shows sequences with homology to the polypeptides of the invention as identified by
- FIG. 1 shows the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention.
- Column 3 shows the GenBank identification number (GenbankID NO:) of the nearest GenBank homolog.
- Column 4 shows the probabiUty score for the match between each polypeptide and its GenBank homolog.
- Column 5 shows the annotation of the GenBank homolog along with relevant citations where appUcable, all of which are expressly incorporated by reference herein.
- Table 3 shows various structural features of the polypeptides of the invention.
- Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention.
- Column 3 shows the number of amino acid residues in each polypeptide.
- Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI).
- Column 6 shows amino acid residues comprising signature sequences, domains, and motifs.
- Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were appUed.
- SEQ ID NO:31 is 34% identical to a Caenorhabditis elegans protein similar to mouse ankyrin (GenBank ID g3879121) as determined by the Basic Local AUgnment Search Tool (BLAST). (See Table 2.)
- the BLAST probabiUty score is 1. le-146, which indicates the probabiUty of obtaining the observed polypeptide sequence aUgnment by chance.
- SEQ ID NO:31 also contains Ank repeats as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
- SEQ ID NO:34 is 96% identical over 97 amino acids to human Intermediate Filament Associated Protein (GenBank ID 1333846) as determined by the Basic Local AUgnment Search Tool (BLAST).
- BLAST Basic Local AUgnment Search Tool
- the BLAST probabiUty score is 8.2e-45, which indicates the probabiUty of obtaining the observed polypeptide sequence aUgnment by chance.
- Data from BLAST analyses using the PRODOM database provide further corroborative evidence that SEQ ID NO:34 is a cytoskeleton protein.
- SEQ ID NO:1-30 and SEQ ID NO:32-33 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO: 1-34 are described in Table 7.
- the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
- Columns 1 and 2 Ust the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention.
- Column 3 shows the length of each polynucleotide sequence in basepairs.
- Column 4 Usts fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:35-68 or that distinguish between SEQ ID NO:35-68 and related polynucleotide sequences.
- Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention.
- Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and genomic sequences in column 5 relative to their respective full length sequences.
- the identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA Ubraries.
- 3824958H1 is the identification number of an Incyte cDNA sequence
- BRAXNOT01 is the cDNA Ubrary from which it is derived.
- Incyte cDNAs for which cDNA Ubraries are not indicated were derived from pooled cDNA Ubraries (e.g., 71263527V1).
- the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g2276318) which contributed to the assembly of the full length polynucleotide sequences.
- the identification numbers in column 5 may refer to coding regions predicted by Genscan analysis of genomic DNA. The Genscan-predicted coding sequences may have been edited prior to assembly. (See Example IV.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. (See Example V.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon- stretching" algorithm. (See Example V.) In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
- Table 5 shows the representative cDNA Ubraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences.
- the representative cDNA Ubrary is the Incyte cDNA Ubrary which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences.
- the tissues and vectors which were used to construct the cDNA Ubraries shown in Table 5 are described in Table 6.
- the invention also encompasses CYSKP variants.
- a preferred CYSKP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the CYSKP amino acid sequence, and which contains at least one functional or structural characteristic of CYSKP.
- the invention also encompasses polynucleotides which encode CYSKP.
- the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:35-68, which encodes CYSKP.
- the polynucleotide sequences of SEQ ID NO:35-68, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base fhymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
- the invention also encompasses a variant of a polynucleotide sequence encoding CYSKP.
- a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85 %, or even at least about 95 % polynucleotide sequence identity to the polynucleotide sequence encoding CYSKP.
- a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:35-68 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:35-68.
- Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of CYSKP.
- nucleotide sequences which encode CYSKP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring CYSKP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding CYSKP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
- RNA transcripts having more desirable properties such as a greater half-Ufe, than transcripts produced from the naturally occurring sequence.
- the invention also encompasses production of DNA sequences which encode CYSKP and
- CYSKP derivatives, or fragments thereof, entirely by synthetic chemistry After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding CYSKP or any fragment thereof.
- polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:35-68 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including anneaUng and wash conditions, are described in "Definitions.”
- Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
- the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (AppUed Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE ampUfication system (Life Technologies, Gaithersburg MD).
- sequence preparation is automated with machines such as the MICROLAB 2200 Uquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (AppUed Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (AppUed Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
- the nucleic acid sequences encoding CYSKP may be extended utiUzing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
- restriction-site PCR uses universal and nested primers to ampUfy unknown sequence from genomic DNA within a cloning vector.
- inverse PCR uses primers that extend in divergent directions to ampUfy unknown sequence from a circularized template.
- the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
- a third method, capture PCR involves PCR ampUfication of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
- capture PCR involves PCR ampUfication of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
- multiple restriction enzyme digestions and Ugations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
- Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al.
- primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
- Ubraries When screening for full length cDNAs, it is preferable to use Ubraries that have been size-selected to include larger cDNAs. In addition, random-primed Ubraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oUgo d(T) Ubrary does not yield a full-length cDNA. Genomic Ubraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
- Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
- capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
- Output/tight intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, AppUed Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
- Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in Umited amounts in.a particular sample.
- polynucleotide sequences or fragments thereof which encode CYSKP may be cloned in recombinant DNA molecules that direct expression of CYSKP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express CYSKP.
- nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter CYSKP-encoding sequences for a variety of purposes including, but not Umited to, modification of the cloning, processing, and or expression of the gene product.
- DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oUgonucleotides may be used to engineer the nucleotide sequences.
- oUgonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce spUce variants, and so forth.
- the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of CYSKP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
- MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C et al. (19
- DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
- genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized.
- sequences encoding CYSKP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)
- CYSKP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or soUd-phase techniques. (See, e.g.,
- the peptide may be substantially purified by preparative high performance Uquid chromatography. (See, e.g., Chiez, R.M. andF.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
- the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
- the nucleotide sequences encoding CYSKP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
- these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5 ' and 3 ' untranslated regions in the vector and in polynucleotide sequences encoding CYSKP.
- Such elements may vary in their strength and specificity.
- Specific initiation signals may also be used to achieve more efficient translation of sequences encoding CYSKP. Such signals include the ATG initiation codon and adjacent sequences, e.g.
- a variety of expression vector/host systems may be utilized to contain and express sequences encoding CYSKP. These include, but are not Umited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauUflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauUflower mosaic
- Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population.
- cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding CYSKP.
- routine cloning, subcloning, and propagation of polynucleotide sequences encoding CYSKP can be achieved using a multifunctional E. coU vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORTl plasmid (Life Technologies). Ligation of sequences encoding CYSKP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules.
- these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence.
- vectors which direct high level expression of CYSKP may be used.
- vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
- Yeast expression systems may be used for production of CYSKP.
- a number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomvces cerevisiae or Pichia pastoris.
- such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
- Plant systems may also be used for expression of CYSKP. Transcription of sequences encoding CYSKP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; BrogUe, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl.
- a number of viral-based expression systems may be utilized.
- sequences encoding CYSKP may be Ugated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses CYSKP in host cells.
- transcription enhancers such as theRous sarcoma virus (RSV) enhancer, may be used to increase expression in mammaUan host cells.
- SV40 or EBV- based vectors may also be used for high-level protein expression.
- HACs Human artificial chromosomes
- HACs may also be employed to deUver larger fragments of DNA than can be contained in and expressed from a plasmid.
- HACs of about 6 kb to 10 Mb are constructed and deUvered via conventional deUvery methods (Uposomes, polycationic amino polymers, or vesicles) for therapeutic purposes.
- deUvery methods Uposomes, polycationic amino polymers, or vesicles
- sequences encoding CYSKP can be transformed into cell Unes using expression vectors which may contain viral origins of repUcation and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
- the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
- Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
- Any number of selection systems may be used to recover transformed cell Unes. These include, but are not Umited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk ' and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetaboUte, antibiotic, or herbicide resistance can be used as the basis for selection.
- dhfr confers resistance to methofrexate
- neo confers resistance to the aminoglycosides neomycin and G-418
- als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
- Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metaboUtes.
- Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
- marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
- sequence encoding CYSKP is inserted within a marker gene sequence
- transformed cells containing sequences encoding CYSKP can be identified by the absence of marker gene function.
- a marker gene can be placed in tandem with a sequence encoding CYSKP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
- host cells that contain the nucleic acid sequence encoding CYSKP and that express
- CYSKP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not Umited to, DNA-DNA or DNA-RNA hybridizations, PCR ampUfication, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of CYSKP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-Unked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
- ELISAs enzyme-Unked immunosorbent assays
- RIAs radioimmunoassays
- FACS fluorescence activated cell sorting
- a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on CYSKP is preferred, but a competitive binding assay may be employed.
- assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual. APS Press, St. Paul MN, Sect. IV; CoUgan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D.
- Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding CYSKP include oUgolabeUng, nick translation, end-labeUng, or PCR ampUfication using a labeled nucleotide.
- the sequences encoding CYSKP, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
- RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
- T7, T3, or SP6 RNA polymerase
- reporter molecules or labels which may be used for ease of detection include radionucUdes, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the Uke.
- Host cells transformed with nucleotide sequences encoding CYSKP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
- the protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used.
- expression vectors containing polynucleotides which encode CYSKP may be designed to contain signal sequences which direct secretion of CYSKP through a prokaryotic or eukaryotic cell membrane.
- a host cell strain may be chosen for its abiUty to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
- modifications of the polypeptide include, but are not Umited to, acetylation, carboxylation, glycosylation, phosphorylation, Upidation, and acylation.
- Post-translational processing which cleaves a "prepro” or "pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
- Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
- ATCC American Type Culture Collection
- natural, modified, or recombinant nucleic acid sequences encoding CYSKP may be Ugated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
- a chimeric CYSKP protein containing a heterologous moiety that can be recognized by a commercially available antibody may faciUtate the screening of peptide Ubraries for inhibitors of CYSKP activity.
- Heterologous protein and peptide moieties may also faciUtate purification of fusion proteins using commercially available affinity matrices.
- Such moieties include, but are not Umited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmoduUn binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
- GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmoduUn, and metal-chelate resins, respectively.
- FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
- a fusion protein may also be engineered to contain a proteolytic cleavage site located between the CYSKP encoding sequence and the heterologous protein sequence, so that CYSKP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to faciUtate expression and purification of fusion proteins.
- synthesis of radio-labeled CYSKP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
- CYSKP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to CYSKP. At least one and up to a plurahty of test compounds may be screened for specific binding to CYSKP. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
- the compound thus identified is closely related to the natural ligand of CYSKP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner.
- the compound can be closely related to the natural receptor to which CYSKP binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate ceUs which express CYSKP, either as a secreted protein or on the cell membrane.
- Preferred ceUs include cells from mammals, yeast, Drosophila. or R coli. Cells expressing CYSKP or cell membrane fractions which contain CYSKP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either CYSKP or the compound is analyzed.
- An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
- the assay may comprise the steps of combining at least one test compound with CYSKP, either in solution or affixed to a solid support, and detecting the binding of CYSKP to the compound.
- the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
- the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a soUd support.
- CYSKP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of CYSKP.
- Such compounds may include agonists, antagonists, or partial or inverse agonists.
- an assay is performed under conditions permissive for CYSKP activity, wherein CYSKP is combined with at least one test compound, and the activity of CYSKP in the presence of a test compound is compared with the activity of CYSKP in the absence of the test compound. A change in the activity of CYSKP in the presence of the test compound is indicative of a compound that modulates the activity of CYSKP.
- a test compound is combined with an in vitro or cell-free system comprising CYSKP under conditions suitable for CYSKP activity, and the assay is performed.
- a test compound which modulates the activity of CYSKP may do so indirectly and need not come in direct contact with the test compound.
- At least one and up to a plurahty of test compounds may be screened.
- polynucleotides encoding CYSKP or their mammaUan homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease.
- mouse ES cells such as the mouse 129/SvJ cell Une
- the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
- the vector integrates into the corresponding region of the host genome by homologous recombination.
- homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) CUn. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
- Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
- Polynucleotides encoding CYSKP may also be manipulated in vitro in ES cells derived from human blastocysts.
- Human ES cells have the potential to differentiate into at least eight separate cell Uneages including endoderm, mesoderm, and ectodermal cell types. These cell Uneages differentiate into, for example, neural cells, hematopoietic Uneages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
- Polynucleotides encoding CYSKP can also be used to create "knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
- knockin technology a region of a polynucleotide encoding CYSKP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
- Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
- Transgenic progeny or inbred Unes are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
- a mammal inbred to overexpress CYSKP may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
- THERAPEUTICS Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of CYSKP and cytoskeleton-associated proteins.
- the expression of CYSKP is closely associated with lung, reproductive (including placenta), neural (including brain), adrenal, endothelial, kidney, and spleen tissue, as well as with ovarian, breast, and testicular tumor tissue.
- CYSKP appears to play a role in cell proUferative, autoimmune/inflammatory, vesicle trafficking, neurological, cell motiUty, reproductive, and muscle disorders.
- CYSKP appears to play a role in cell proUferative, autoimmune/inflammatory, vesicle trafficking, neurological, cell motiUty, reproductive, and muscle disorders.
- CYSKP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CYSKP.
- disorders include, but are not limited to, a cell proUferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, gangUa, gastrointestinal tract, heart, kidney, U
- a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endomefrial or ovarian tumor, a uterine fibroid, autoimmune disorders, ectopic pregnancy, teratogenesis, cancer of the breast, fibrocystic breast disease, galactorrhea, a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, gynecomastia, hypergonadotropic and hypogonadotropic hypogonadism, pseudohermaphrodit
- composition comprising a substantially purified CYSKP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CYSKP including, but not Umited to, those provided above.
- an agonist which modulates the activity of CYSKP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of CYSKP including, but not Umited to, those Usted above.
- an antagonist of CYSKP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CYSKP. Examples of such disorders include, but are not Umited to, those cell proUferative, autoimmune/inflainmatory, vesicle trafficking, neurological, cell motiUty, reproductive, and muscle disorders described above.
- an antibody which specifically binds CYSKP may be used directly as an antagonist or indirectly as a targeting or deUvery mechanism for bringing a pharmaceutical agent to cells or tissues which express CYSKP.
- a vector expressing the complement of the polynucleotide encoding CYSKP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of CYSKP including, but not Umited to, those described above.
- any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
- the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
- An antagonist of CYSKP may be produced using methods which are generally known in the art.
- purified CYSKP may be used to produce antibodies or to screen Ubraries of pharmaceutical agents to identify those which specifically bind CYSKP.
- Antibodies to CYSKP may also be generated using methods that are well known in the art.
- Such antibodies may include, but are not Umited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression Ubrary.
- NeutraUzing antibodies i.e., those which inhibit dimer formation
- various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with CYSKP or with any fragment or oUgopeptide thereof which has immunogenic properties.
- various adjuvants may be used to increase immunological response.
- adjuvants include, but are not Umited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinifrophenol.
- BCG BacilU Calmette-Guerin
- Corynebacterium parvum are especially preferable.
- the oUgopeptides, peptides, or fragments used to induce antibodies to CYSKP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oUgopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of CYSKP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
- Monoclonal antibodies to CYSKP may be prepared using any technique which provides for the production of antibody molecules by continuous cell Unes in culture. These include, but are not Umited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique.
- the hybridoma technique the human B-cell hybridoma technique
- the EBV-hybridoma technique See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol.
- chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used.
- techniques developed for the production of single chain antibodies may be adapted, using methods known in the art, to produce CYSKP-specific single chain antibodies.
- Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobuUn Ubraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
- Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobuUn Ubraries or panels of highly specific binding reagents as disclosed in theUterature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
- Antibody fragments which contain specific binding sites for CYSKP may also be generated.
- such fragments include, but are not Umited to, F(ab') 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
- Fab expression Ubraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
- immunoassays may be used for screening to identify antibodies having the desired specificity.
- Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with estabUshed specificities are well known in the art.
- Such immunoassays typically involve the measurement of complex formation between CYSKP and its specific antibody.
- a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering CYSKP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
- K ⁇ is defined as the molar concentration of CYSKP-antibody complex divided by the molar concentrations of free antigen and free antibody under equiUbrium conditions.
- the L determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple CYSKP epitopes, represents the average affinity, or avidity, of the antibodies for CYSKP.
- the K ⁇ determined for a preparation of monoclonal antibodies, which are monospecific for a particular CYSKP epitope, represents a true measure of affinity.
- High-affinity antibody preparations with K ⁇ ranging from about 10 9 to 10 12 L/mole are preferred for use in immunoassays in which the CYSKP-antibody complex must withstand rigorous manipulations.
- Low-affinity antibody preparations with K-. ranging from about 10 ⁇ to 10 7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of CYSKP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
- polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream appUcations.
- a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of CYSKP-antibody complexes.
- Procedures for evaluating antibody specificity, titer, and avidity, and guideUnes for antibody quaUty and usage in various appUcations, are generally available. (See, e.g., Catty, supra, and CoUgan et al. supra.)
- the polynucleotides encoding CYSKP may be used for therapeutic purposes.
- modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oUgonucleotides) to the coding or regulatory regions of the gene encoding CYSKP.
- complementary sequences or antisense molecules DNA, RNA, PNA, or modified oUgonucleotides
- antisense oUgonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding CYSKP.
- Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein.
- Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors.
- viral vectors such as retrovirus and adeno-associated virus vectors.
- Other gene deUvery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art.
- polynucleotides encoding CYSKP may be used for somatic or germUne gene therapy.
- Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-Xl disease characterized by X-Unked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C et al.
- SCID severe combined immunodeficiency
- ADA adenosine deaminase
- CYSKP hepatitis B or C virus
- fungal parasites such as Candida albicans and Paracoccidioides brasiUensis
- protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi
- diseases or disorders caused by deficiencies in CYSKP are treated by constructing mammaUan expression vectors encoding CYSKP and introducing these vectors by mechanical means into CYSKP-deficient cells.
- Mechanical transfer technologies for use with cells in vivo or ex vifro include (i) direct DNA microinjection into individual cells, (U) balUstic gold particle deUvery, (in) Uposome-mediated fransfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191- 217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L.
- Expression vectors that may be effective for the expression of CYSKP include, but are not Umited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invifrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG. PEGSH PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
- CYSKP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (U) an inducible promoter (e.g., the tefracycUne-regulated promoter (Gossen, M. andH. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. andH.M. Blau (1998) Curr. Opin. Biotechnol.
- a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -act
- FK506/rapamycin inducible promoter or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. supra)), or (Ui) a tissue-specific promoter or the native promoter of the endogenous gene encoding CYSKP from a normal individual.
- Uposome transformation kits allow one with ordinary skill in the art to deUver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters.
- transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1 :841-845).
- the introduction of DNA to primary cells requires modification of these standardized mammaUan tr ansf ection protocols .
- diseases or disorders caused by genetic defects with respect to CYSKP expression are treated by constructing a refrovirus vector consisting of (i) the polynucleotide encoding CYSKP under the control of an independent promoter or the refrovirus long terminal repeat (LTR) promoter, (U) appropriate RNA packaging signals, and (Ui) a Rev-responsive element (RRE) along with additional refrovirus ds-acting RNA sequences and coding sequences required for efficient vector propagation.
- Refrovirus vectors e.g., PFB and PFBNEO
- PFB and PFBNEO are commercially available (Stratagene) and are based onpubUshed data (Riviere, I. et al. (1995) Proc. Natl.
- the vector is propagated in an appropriate vector producing cell Une (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R.
- VSVg vector producing cell Une
- U.S. Patent Number 5,910,434 to Rigg discloses a method for obtaining refrovirus packaging cell Unes and is hereby incorporated by reference. Propagation of refrovirus vectors, transduction of a population of cells (e.g., CD4 + T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G.
- an adenovirus-based gene therapy deUvery system is used to deUver polynucleotides encoding CYSKP to cells which have one or more genetic abnormaUties with respect to the expression of CYSKP.
- the construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art.
- RepUcation defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S.
- Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference.
- adenoviral vectors see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
- a herpes-based, gene therapy deUvery system is used to deliver polynucleotides encoding CYSKP to target cells which have one or more genetic abnormaUties with respect to the expression of CYSKP.
- the use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing CYSKP to cells of the central nervous system, for which HSV has a fropism.
- the construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art.
- a repUcation-competent herpes simplex virus (HSV) type 1 -based vector has been used to deUver a reporter gene to the eyes of primates (Liu, X. et al.
- HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
- U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
- HSV vectors see also Goins, W.F. et al.
- an alphavirus (positive, single-stranded RNA virus) vector is used to deUver polynucleotides encoding CYSKP to target cells.
- SFV SemUki Forest Virus
- alphavirus RNA repUcation a subgenomic RNA is generated that normally encodes the viral capsid proteins.
- This subgenomic RNA repUcates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
- enzymatic activity e.g., protease and polymerase.
- inserting the coding sequence for CYSKP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of CYSKP- coding RNAs and the synthesis of high levels of CYSKP in vector transduced cells.
- alphavirus infection is typically associated with cell lysis within a few days
- the abiUty to estabUsh a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic repUcation of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
- the wide host range of alphaviruses will allow the introduction of CYSKP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
- a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
- Ribozymes enzymatic RNA molecules
- Ribozymes may also be used to catalyze the specific cleavage of RNA.
- the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
- engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding CYSKP.
- RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oUgonucleotide inoperable.
- the suitabiUty of candidate targets may also be evaluated by testing accessibiUty to hybridization with complementary oUgonucleotides using ribonuclease protection assays.
- RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oUgonucleotides such as soUd phase phosphoramidite chemical synthesis.
- RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding CYSKP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
- these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell Unes, cells, or tissues.
- RNA molecules may be modified to increase intracellular stabiUty and half-Ufe. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5 ' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase Urikages within the backbone of the molecule.
- An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding CYSKP.
- Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oUgonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non- macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
- a compound which specifically inhibits expression of the polynucleotide encoding CYSKP may be therapeutically useful, and in the treament of disorders associated with decreased CYSKP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding CYSKP may be therapeutically useful.
- test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
- a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
- a sample comprising a polynucleotide encoding CYSKP is exposed to at least one test compound thus obtained.
- the sample may comprise, for example, an intact or permeabilized cell, or an in vifro cell-free or reconstituted biochemical system.
- Alterations in the expression of a polynucleotide encoding CYSKP are assayed by any method commonly known in the art.
- the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding CYSKP.
- the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
- a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun.
- a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691). Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vifro. and ex vivo.
- oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
- vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.
- DeUvery by fransfection, by Uposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
- any of the therapeutic methods described above may be appUed to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
- An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
- Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
- Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack PubUshing, Easton PA).
- Such compositions may consist of CYSKP, antibodies to CYSKP, and mimetics, agonists, antagonists, or inhibitors of CYSKP.
- compositions utilized in this invention may be administered by any number of routes including, but not Umited to, oral, intravenous, intramuscular, infra-arterial, inframedullary, infrathecal, infravenfricular, pulmonary, transdermal* subcutaneous, infraperitoneal, infranasal, enteral, topical, subUngual, or rectal means.
- compositions for pulmonary administration may be prepared in tiquid or dry powder form. These compositions are generally aerosoUzed immediately prior to inhalation by the patient.
- aerosol deUvery of fast-acting formulations is well-known in the art.
- macromolecules e.g. larger peptides and proteins
- Pulmonary deUvery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
- compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
- the determination of an effective dose is well within the capabiUty of those skilled in the art. SpeciaUzed forms of compositions may be prepared for direct intracellular deUvery of macromolecules comprising CYSKP or fragments thereof.
- Uposome preparations containing a cell-impermeable macro-molecule may promote cell fusion and intracellular deUvery of the macro-molecule.
- CYSKP or a fragment thereof may be joined to a short cationic N- terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to fransduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
- the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
- An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- a therapeutically effective dose refers to that amount of active ingredient, for example CYSKP or fragments thereof, antibodies of CYSKP, and agonists, antagonists or inhibitors of CYSKP, which ameUorates the symptoms or condition.
- Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
- the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 ED 50 ratio. Compositions which exhibit large therapeutic indices are preferred.
- the data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
- the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with Uttle or no toxicity.
- the dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in Ught of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combinations), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-Ufe and clearance rate of the particular formulation.
- Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
- Guidance as to particular dosages and methods of deUvery is provided in the Uterature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
- antibodies which specifically bind CYSKP may be used for the diagnosis of disorders characterized by expression of CYSKP, or in assays to monitor patients being treated with CYSKP or agonists, antagonists, or inhibitors of CYSKP.
- Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for CYSKP include methods which utihze the antibody and a label to detect CYSKP in human body fluids or in extracts of cells or tissues.
- the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
- a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
- a variety of protocols for measuring CYSKP including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of CYSKP expression.
- Normal or standard values for CYSKP expression are estabUshed by combining body fluids or cell extracts taken from normal mammaUan subjects, for example, human subjects, with antibodies to CYSKP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of CYSKP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values estabUshes the parameters for diagnosing disease.
- the polynucleotides encoding CYSKP may be used for diagnostic purposes.
- the polynucleotides which may be used include oUgonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
- the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of CYSKP may be correlated with disease.
- the diagnostic assay may be used to determine absence, presence, and excess expression of CYSKP, and to monitor regulation of CYSKP levels during therapeutic intervention.
- hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding CYSKP or closely related molecules may be used to identify nucleic acid sequences which encode CYSKP.
- the specificity of the probe whether it is made from a highly specific region, e.g., the 5 'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or ampUfication will determine whether the probe identifies only naturally occurring sequences encoding CYSKP, alleUc variants, or related sequences.
- Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the CYSKP encoding sequences.
- the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:35-68 or from genomic sequences including promoters, enhancers, and introns of the CYSKP gene.
- Means for producing specific hybridization probes for DNAs encoding CYSKP include the cloning of polynucleotide sequences encoding CYSKP or CYSKP derivatives into vectors for the production of mRNA probes.
- Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
- Hybridization probes may be labeled by a variety of reporter groups, for example, by radionucUdes such as 32 P or 35 S, or by enzymatic labels, such as alkaUne phosphatase coupled to the probe via avidin/biotin coupUng systems, and the Uke.
- Polynucleotide sequences encoding CYSKP may be used for the diagnosis of disorders associated with expression of CYSKP.
- disorders include, but are not limited to, a cell proUferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, gangUa, gastrointestinal tract, heart, kidney, Uver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, saUvary glands, skin, spleen, testis,
- the polynucleotide sequences encoding CYSKP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-Uke assays; and in microarrays utilizing fluids or tissues from patients to detect altered CYSKP expression. Such quaUtative or quantitative methods are well known in the art.
- the nucleotide sequences encoding CYSKP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
- the nucleotide sequences encoding CYSKP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a confrol sample then the presence of altered levels of nucleotide sequences encoding CYSKP in the sample indicates the presence of the associated disorder.
- Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in cUnical trials, or to monitor the treatment of an individual patient. In order to provide a basis for the diagnosis of a disorder associated with expression of
- CYSKP a normal or standard profile for expression is estabUshed. This may be accompUshed by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding CYSKP, under conditions suitable for hybridization or ampUfication. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to estabUsh the presence of a disorder.
- hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
- the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
- the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual cUnical symptoms.
- a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment eariier thereby preventing the development or further progression of the cancer.
- Additional diagnostic uses for oUgonucleotides designed from the sequences encoding CYSKP may involve the use of PCR. These oUgomers may be chemically synthesized, generated enzymatically, or produced in vitro.
- OUgomers will preferably contain a fragment of a polynucleotide encoding CYSKP, or a fragment of a polynucleotide complementary to the polynucleotide encoding CYSKP, and will be employed under optimized conditions for identification of a specific gene or condition. OUgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
- oUgonucleotide primers derived from the polynucleotide sequences encoding CYSKP may be used to detect single nucleotide polymorphisms (SNPs).
- SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.
- Methods of SNP detection include, but are not Umited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
- SSCP single-stranded conformation polymorphism
- fSSCP fluorescent SSCP
- oUgonucleotide primers derived from the polynucleotide sequences encoding CYSKP are used to ampUfy DNA using the polymerase chain reaction (PCR).
- the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the Uke.
- SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
- the oligonucleotide primers are fluorescently labeled, which allows detection of the ampUmers in high-throughput equipment such as DNA sequencing machines.
- sequence database analysis methods termed in siUco SNP (isSNP) are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
- SNPs may be detected and characterized by mass spectromefry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
- Methods which may also be used to quantify the expression of CYSKP include radiolabeUng or biotinylating nucleotides, coampUfication of a confrol nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem.
- the speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oUgomer or polynucleotide of interest is presented in various dilutions and a specfrophotomefric or colorimefric response gives rapid quantitation.
- oUgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray.
- the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
- the microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
- this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient.
- therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
- CYSKP, fragments of CYSKP, or antibodies specific for CYSKP may be used as elements on a microarray.
- the microarray may be used to monitor or measure protein- protein interactions, drug-target interactions, and gene expression profiles, as described above.
- a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type.
- a franscript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al, "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.)
- a franscript image may be generated by hybridizing the polynucleotides of the present invention or their complements to thetotaUty of transcripts or reverse transcripts of a particular tissue or cell type.
- the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray.
- the resultant transcript image would provide a profile of gene activity.
- Transcript images may be generated using transcripts isolated from tissues, cell Unes, biopsies, or other biological samples.
- the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vifro, as in the case of a cell Une.
- Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vifro model systems and precUnical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is Ukely to share those toxic properties.
- the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound.
- Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified.
- the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the franscript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
- Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type.
- proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell' s proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type.
- the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelecfric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel elecfrophoresis in the second dimension (Steiner and Anderson, supra).
- the proteins are visuaUzed in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
- the optical density of each protein spot is generally proportional to the level of the protein in the sample.
- the optical densities of equivalently positioned protein spots from different samples are compared to identify any changes in protein spot density related to the treatment.
- the proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass specfromefry.
- the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
- a proteomic profile may also be generated using antibodies specific for CYSKP to quantify the levels of CYSKP expression.
- the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino- reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
- Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the franscript level.
- There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the franscript image, but which alter the proteomic profile.
- the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiting may be more reUable and informative in such cases.
- the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound.
- Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified.
- the amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
- Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
- the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the freated sample.
- Microarrays may be prepared, used, and analyzed using methods known in the art.
- methods known in the art See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT appUcation W095/251116; Shalon, D. et al. (1995) PCT appUcation WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150- 2155; and Heller, M.J.
- nucleic acid sequences encoding CYSKP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
- sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA Ubraries.
- HACs human artificial chromosomes
- YACs yeast artificial chromosomes
- BACs bacterial artificial chromosomes
- PI constructions or single chromosome cDNA Ubraries.
- the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
- RFLP restriction fragment length polymorphism
- FISH Fluorescent in situ hybridization
- Examples of genetic map data can be found in various scientific journals or at the OnUne MendeUan Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding CYSKP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
- OMIM OnUne MendeUan Inheritance in Man
- In situ hybridization of chromosomal preparations and physical mapping techniques such as Unkage analysis using estabUshed chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammaUan species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely locaUzed by genetic Unkage to a particular genomic region, e.g., ataxia-telangiectasia to 1 lq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
- Unkage analysis using estabUshed chromosomal markers may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammaUan species, such as mouse, may reveal associated markers even if the exact
- the nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to fr anslocation, inversion, etc. , among normal, carrier, or affected individuals.
- CYSKP its catalytic or immunogenic fragments, or oUgopeptides thereof can be used for screening Ubraries of compounds in any of a variety of drug screening techniques.
- the fragment employed in such screening may be free in solution, affixed to a soUd support, borne on a cell surface, or located infracellularly. The formation of binding complexes between CYSKP and the agent being tested may be measured.
- Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
- This method large numbers of different small test compounds are synthesized on a sohd substrate. The test compounds are reacted with CYSKP, or fragments thereof, and washed. Bound CYSKP is then detected by methods well known in the art. Purified CYSKP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutraUzing antibodies can be used to capture the peptide and immobiUze it on a soUd support.
- the nucleotide sequences which encode CYSKP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not Umited to, such properties as the triplet genetic code and specific basepair interactions.
- Incyte cDNAs were derived from cDNA Ubraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
- poly(A)+ RNA was isolated using oUgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
- Stratagene was provided with RNA and constructed the corresponding cDNA Ubraries. Otherwise, cDNA was synthesized and cDNA Ubraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oUgo d(T) or random primers. Synthetic oUgonucleotide adapters were Ugated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
- cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis.
- cDNAs were Ugated into compatible restriction enzyme sites of the polyUnker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORTl plasmid (Life Technologies), PCDNA2.1 plasmid (Invifrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), or pINCY (Incyte Genomics, Palo Alto CA), or derivatives thereof.
- PBLUESCRIPT plasmid (Stratagene)
- PSPORTl plasmid (Life Technologies)
- PCDNA2.1 plasmid Invifrogen, Carlsbad CA
- PBK-CMV plasmid (Stratagene)
- Recombinant plasmids were transformed into competent E. coU cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Life Technologies. II. Isolation of cDNA Clones
- Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E. A.L. PREP 96 plasmid purification kit from QIAGEN.
- a Magic or WIZARD Minipreps DNA purification system Promega
- an AGTC Miniprep purification kit Edge Biosystems, Gaithersburg MD
- Plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophiUzation, at 4°C Alternatively, plasmid DNA was ampUfied from host cell lysates using direct tink PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycUng steps were carried out in a single reaction mixture.
- Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (AppUed Biosystems) thermal cycler or the PTC -200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) Uquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or suppUed in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (AppUed Biosystems).
- Elecfrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (AppUed Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.
- the polynucleotide sequences derived from Incyte cDNAs were vaUdated by removing vector, tinker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleoti.de nearest neighbor analysis.
- the Incyte cDNA sequences or franslations thereof were then queried against a selection of pubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM.
- PubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases
- BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM.
- HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)
- the queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
- the Incyte cDNA sequences were assembled to produce full length polynucleotide sequences.
- GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences were used to extend Incyte cDNA assemblages to full length.
- Polynucleotide and polypeptide sequence aUgnments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence aUgnment program (DNASTAR), which also calculates the percent identity between aUgned sequences.
- Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides appUcable descriptions, references, and threshold parameters.
- the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where appUcable, the scores, probabiUty values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probabiUty value, the greater the identity between two sequences).
- Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (SeeBurge, C and S. KarUn (1997) J. Mol. Biol. 268:78-94, an Burge, C and S. Kariin (1998) Curr. Opia Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a mefhionine to a stop codon.
- Genscan is a FASTA database of polynucleotide and polypeptide sequences.
- the maximum range of sequence for Genscan to analyze at once was set to 30 kb.
- the encoded polypeptides were analyzed by querying against PFAM models for cytoskeleton-associated proteins. Potential cytoskeleton-associated proteins were also identified by homology to Incyte cDNA sequences that had been annotated as cytoskeleton- associated proteins. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri pubUc databases.
- Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons.
- BLAST analysis was also used to find any Incyte cDNA or pubUc cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence.
- Full length polynucleotide sequences were obtained by assembUng Genscan-predicted coding sequences with Incyte cDNA sequences and/or pubUc cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences. V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences
- Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible spUce variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity.
- Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis.
- the nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV.
- a chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
- HSPs high-scoring segment pairs
- GenBank protein homolog The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubUc human genome databases. Partial DNA sequences were therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene. VI. Chromosomal Mapping of CYSKP Encoding Polynucleotides The sequences which were used to assemble SEQ ID NO:35-68 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith- Waterman algorithm.
- pubUc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
- Map locations are represented by ranges, or intervals, of human chromosomes.
- the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome' s p- arm.
- centiMorgan cM
- centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
- the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
- SEQ ID NO:44 was mapped to chromosome 17 within the interval from 62.90 to 64.20 centiMorgans
- SEQ ID NO:49 was mapped to chromosome 14 within the interval from 73.70 to 76.40 centiMorgans
- SEQ ID NO:50 was mapped to chromosome 8 within the interval from 25.80 to 40.30 centiMorgans
- SEQ ID NO:54 was mapped to chromosome 1 within the interval from 117.6 to 132.4 centiMorgans
- SEQ ID NO:64 was mapped to chromosome 4 within the interval from 56.7 to 60.5 centiMorgans
- SEQ ID NO:65 was mapped to chromosome 5 within the interval from 141.40 to 142.60 centiMorgans.
- Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)
- the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
- the product score is a normaUzed value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
- the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
- the product score represents a balance between fractional overlap and quatity in a BLAST aUgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
- polynucleotide sequences encoding CYSKP are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III).
- Each cDNA sequence is derived from a cDNA Ubrary constructed from a human tissue.
- Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitatia*. female; genitaUa, male; germ cells; hemic and immune system; Uver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified mixed; or urinary tract.
- the number of Ubraries in each category is counted and divided by the total number of Ubraries across all categories.
- each human tissue is classified into one of the following disease/condition categories: cancer, cell Une, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of Ubraries in each category is counted and divided by the total number of Ubraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding CYSKP. cDNA sequences and cDNA Ubrary/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA). VIII.
- the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72°C Any stretch of nucleotides which would result in hairpin structures and primer-primer dirnerizations was avoided.
- Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. High fideUty ampUfication was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.).
- the reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg 2 " , (NH 4 ) 2 S0 4 , and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1 : 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C
- the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68
- the plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
- a 5 ⁇ l to 10 ⁇ l atiquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
- the extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to reUgation into pUC 18 vector (Amersham Pharmacia Biotech).
- CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
- sonicated or sheared prior to reUgation into pUC 18 vector
- the digested nucleotides were separated on low concenfration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
- Extended clones were reUgated using T4 Ugase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), freated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coU cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb tiquid media.
- the cells were lysed, and DNA was ampUfied by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1 : 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampUfied using the same conditions as described above.
- Hybridization probes derived from SEQ ID NO:35-68 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oUgonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. OUgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oUgomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine friphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
- the labeled oUgonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An atiquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
- the DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nyfran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40 °C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visuaUzed using autoradiography or an alternative imaging means and compared. X.
- Microarrays The Unkage or synthesis of array elements upon a microarray can be achieved utilizing photoUthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspottmg technologies, and derivatives thereof.
- the substrate in each of the aforementioned technologies should be uniform and soUd with a non-porous surface (Schena (1999), supra).
- Suggested subsfrates include siUcon, siUca, glass sUdes, glass chips, and silicon wafers.
- a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
- a typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
- Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oUgomers thereof may comprise the elements of the microarray. Fragments or oUgomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR).
- the array elements are hybridized with polynucleotides in a biological sample.
- the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
- a fluorescence scanner is used to detect hybridization at each array element.
- laser desorbtion and mass specfromefry may be used for detection of hybridization.
- the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed.
- microarray preparation and usage is described in detail below.
- Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) cellulose method.
- Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-franscriptase, 0.05 pg/ ⁇ l oUgo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech).
- the reverse franscription reaction is performed in a 25 ml volume containing 200 ng poly (A) + RNA with GEMB RIGHT kits (Incyte).
- Specific control poly(A) + RNAs are synthesized by in vifro franscription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
- Microarray Preparation Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR ampUfication uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
- Purified array elements are immobilized on polymer-coated glass slides.
- Glass microscope sUdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
- Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.
- Array elements are appUed to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference.
- 1 ⁇ l of the array element DNA is loaded into the open capillary printing element by a high-speed robotic apparatus.
- the apparatus then deposits about 5 nl of array element sample per slide.
- Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distflled water.
- Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C followed by washes in 0.2% SDS and distilled water as before.
- PBS phosphate buffered saline
- Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
- the sample mixture is heated to 65° C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm 2 coverslip.
- the arrays are fransferred to a waterproof chamber having a cavity just sUghtiy larger than a microscope sUde.
- the chamber is kept at 100% humidity internally by the addition of 140 ⁇ l of 5X SSC in a corner of the chamber.
- the chamber containing the arrays is incubated for about 6.5 hours at 60° C
- the arrays are washed for 10 min at 45° C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried. Detection
- Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral Unes at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
- the excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY).
- the slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective.
- the 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
- a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultipUer tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultipUer tubes are used to filter the signals.
- the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
- Each array is typically scanned twice, one scan per fiuorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
- the sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA confrol species added to the sample mixture at a known concentration.
- a specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1 : 100,000.
- the calibration is done by labeling samples of the caUbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
- the output of the photomultiplier tube is digitized using a 12-bit RTT-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer.
- the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
- the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fiuorophore' s emission spectrum.
- a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
- the fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal.
- the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).
- XI Complementary Polynucleotides Sequences complementary to the CYSKP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring CYSKP. Although use of oUgonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of CYSKP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5 ' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the CYSKP-encoding franscript.
- CYSKP is achieved using bacterial or virus-based expression systems.
- cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
- promoters include, but are not Umited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
- Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
- Antibiotic resistant bacteria express CYSKP upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
- CYSKP in eukaryotic cells is achieved by infecting insect or mammaUan cell Unes with recombinant Autographiea californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus.
- AcMNPV Autographiea californica nuclear polyhedrosis virus
- the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding CYSKP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA franscription.
- Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
- CYSKP is synthesized as a fusion protein with, e.g., glutathione S- fransferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.
- GST a 26-kilodalton enzyme from Schistosoma iaponicum. enables the purification of fusion proteins on immobiUzed glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from CYSKP at specifically engineered sites.
- FLAG an 8-amino acid peptide
- 6- His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins
- CYSKP function is assessed by expressing the sequences encoding CYSKP at physiologically elevated levels in mammaUan cell culture systems.
- cDNA is subcloned into a mammaUan expression vector containing a strong promoter that drives high levels of cDNA expression.
- Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invifrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter.
- recombinant vector 5-10 g of recombinant vector are transiently transfected into a human cell Une, for example, an endotheUal or hematopoietic cell Une, using either Uposome formulations or electroporation.
- 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-fransfected.
- Expression of a marker protein provides a means to distinguish transfected cells from nonfransfected cells and is a reUable predictor of cDNA expression from the recombinant vector.
- Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein.
- FCM Flow cytomefry
- CYSKP The influence of CYSKP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding CYSKP and either CD64 or CD64-GFP.
- CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobuUn G (IgG).
- Transfected cells are efficiently separated from nonfransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
- mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding CYSKP and other genes of interest can be analyzed by northern analysis or microarray techniques.
- PAGE polyacrylamide gel electrophoresis
- CYSKP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oUgopeptide is synthesized and used to raise antibodies by means known to those of skill in the art.
- LASERGENE software DNASTAR
- Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophiUc regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
- oUgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (AppUed Biosystems) using FMOC chemistry and coupled to KLH (Sigma-
- Naturally occurring or recombinant CYSKP is substantially purified by immunoaffinity chromatography using antibodies specific for CYSKP.
- An immunoaffinity column is constructed by covalently coupUng anti-CYSKP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupUng, the resin is blocked and washed according to the manufacturer's instructions.
- Media containing CYSKP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of CYSKP (e.g. , high ionic strength buffers in the presence of detergent).
- the column is eluted under conditions that disrupt antibody/CYSKP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaofrcpe, such as urea or thiocyanate ion), and CYSKP is collected.
- CYSKP or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent.
- Bolton-Hunter reagent See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.
- Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled CYSKP, washed, and any wells with labeled CYSKP complex are assayed. Data obtained using different concentrations of CYSKP are used to calculate values for the number, affinity, and association of CYSKP with the candidate molecules.
- molecules interacting with CYSKP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
- CYSKP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large Ubraries of genes (Nandabalan, K. et al. (2000) U.S. Patent
- a microtubule motiUty assay for CYSKP measures motor protein activity.
- recombinant CYSKP is immobilized onto a glass slide or similar substrate.
- Taxol-stabilized bovine brain microtubules (commercially available) in a solution containing ATP and cytosolic exfract are perfused onto the sUde. Movement of microtubules as driven by CYSKP motor activity can be visualized and quantified using video-enhanced light microscopy and image analysis techniques.
- CYSKP activity is directly proportional to the frequency and velocity of microtubule movement.
- an assay for CYSKP measures the formation of protein filaments in vitro.
- a solution of CYSKP at a concenfration greater than the "critical concentration" for polymer assembly is applied to carbon-coated grids. Appropriate nucleation sites may be suppUed in the solution.
- the grids are negative stained with 0.7% (w/v) aqueous uranyl acetate and examined by electron microscopy. The appearance of filaments of approximately 25 nm (microtubules), 8 nm (actin), or 10 nm (intermediate filaments) is a demonstration of protein activity.
- an assay for CYSKP measures the binding affinity of CYSKP for actin as described by Hammell, R.L.
- CYSKP and actin are prepared from in vifro recombinant cDNA expression systems and the N- terminus of CYSKP is acetylated using methods well known in the art. Binding of N-terminal acetyl- CYSKP to actin is measured by cosedimentation at 25 °C in a Beckman model TL-100 centrifuge as described. The bound and free CYSKP are determined by quantitative densitomefry of SDS- polyacrylamide gels stained with Coomassie Blue.
- Apparent binding constants (K ⁇ ,) and Hill coefficients (H) are determined by using methods well known in the art to fit the data to the equation as described by Hammell and Hitchcock-DeGregori (1997, supra).
- the CYSKP:actin ratio determined using densitomefry, is normaUzed.
- Hammell and Hitchcock-DeGregori (1997, supra) have shown that saturation of binding corresponds to a CYSKP:actin molar ratio of 0.14, a stoichiomefry of 1 CYSKP:7 actin.
- the binding of CYSKP to actin is proportional to the CYSKP activity.
- CYSKP activity is measured as abiUty to bind to microtubules.
- Microtubules are purified from adult rat brain by reversible assembly (Vallee, R. B. (1982) Methods Enzymol. 134:89-104) or the taxol method (Vallee, R. B. (1982) J. Cell Biol. 92:435-442) using PEM buffer
- CYSKP 250 mg/ml
- 80 ml of whole microtubules 450 mg/ml
- tubutin 300 mg/ml
- the suspension is centrifuged, the supernatant is removed, and the microtubule pellet is resuspended to the original reaction volume in PEM buffer.
- CYSKP activity is associated with its abiUty to form protein-protein complexes and is measured by its abiUty to regulate growth characteristics of NIH3T3 mouse fibroblast cells.
- a cDNA encoding CYSKP is subcloned into an appropriate eukaryotic expression vector. This vector is transfected into NIH3T3 cells using methods known in the art. Transfected cells are compared with non-fransfected cells for the following quantifiable properties: growth in culture to high density, reduced attachment of cells to the substrate, altered cell morphology, and abiUty to induce tumors when injected into immunodeficient mice.
- the activity of CYSKP is proportional to the extent of increased growth or frequency of altered cell morphology in NIH3T3 cells transfected with CYSKP.
- ABI FACTURA A program that removes vector sequences and Applied Biosystems, Foster City, CA. masks ambiguous bases in nucleic acid sequences.
- ABI/PARACEL FDF A Fast Data Finder useful in comparing and Applied Biosystems, Foster City, CA; Mismatch ⁇ 50% annotating amino acid or nucleic acid sequences. Paracel Inc., Pasadena, CA.
- ABI AutoAssembler A program that assembles nucleic acid sequences. Applied Biosystems, Foster City, CA.
- fastx score 100 or greater
- HMM hidden Markov model
- Phred A base-calling algorithm that examines automated Ewing, B. et al. (1998) Genome Res. sequencer traces with high sensitivity and probability. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.
- TMHMMER A program that uses a hidden Markov model (HMM) to Sonnhammer, E.L. et al. (1998) Proc. Sixth Intl. delineate transmembrane segments on protein sequences Conf. on Intelligent Systems for Mol. Biol., and determine orientation. Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.
- HMM hidden Markov model
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
- Physical Education & Sports Medicine (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Immunology (AREA)
- Rheumatology (AREA)
- Pulmonology (AREA)
- Oncology (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Urology & Nephrology (AREA)
- Reproductive Health (AREA)
- Pain & Pain Management (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Psychology (AREA)
- Obesity (AREA)
- Dermatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
Abstract
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20196000P | 2000-05-05 | 2000-05-05 | |
US201960P | 2000-05-05 | ||
US20272900P | 2000-05-08 | 2000-05-08 | |
US202729P | 2000-05-08 | ||
US20970500P | 2000-06-05 | 2000-06-05 | |
US209705P | 2000-06-05 | ||
US21014900P | 2000-06-07 | 2000-06-07 | |
US210149P | 2000-06-07 | ||
US21321500P | 2000-06-21 | 2000-06-21 | |
US213215P | 2000-06-21 | ||
PCT/US2001/014355 WO2001085942A2 (fr) | 2000-05-05 | 2001-05-03 | Proteines associees au cytosquelette |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1278846A2 true EP1278846A2 (fr) | 2003-01-29 |
Family
ID=27539460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01932973A Withdrawn EP1278846A2 (fr) | 2000-05-05 | 2001-05-03 | Proteines associees au cytosquelette |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1278846A2 (fr) |
JP (1) | JP2003532419A (fr) |
AU (1) | AU2001259450A1 (fr) |
CA (1) | CA2407850A1 (fr) |
WO (1) | WO2001085942A2 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020137890A1 (en) * | 1997-03-31 | 2002-09-26 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
US20030166300A1 (en) * | 2000-08-30 | 2003-09-04 | Tang Y. Tom | Growth-related inflammatory and immune response protein |
WO2004005487A2 (fr) * | 2002-07-09 | 2004-01-15 | Bristol-Myers Squibb Company | Polynucleotides codant une nouvelle proteine tubuline tyrosine ligase bgs42 specifique aux testicules |
WO2004072285A1 (fr) * | 2003-02-14 | 2004-08-26 | Garvan Institute Of Medical Research | Polypeptides associes au cancer « goblin », reactifs associes, et procedes d'utilisation associes |
WO2005026362A2 (fr) * | 2003-09-08 | 2005-03-24 | Ludwig Institute For Cancer Reserach | Genes des cellules endotheliales du systeme lymphatique et du systeme sanguin |
EP2129688A4 (fr) * | 2007-02-01 | 2010-03-24 | Univ Florida | Compositions et procedes pour detecter des cancers chez un sujet |
US20140273033A1 (en) * | 2007-04-12 | 2014-09-18 | Universiteit Hasselt | Biomarkers for multiple sclerosis |
BR112013029704A2 (pt) * | 2011-05-19 | 2017-08-29 | Toray Industries | Agente de indutor de imunidade e uso de um agente indutor de imunidade |
US9687538B2 (en) * | 2012-07-10 | 2017-06-27 | Oncotherapy Science, Inc. | CDCA1 epitope peptides for Th1 cells and vaccines containing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998045436A2 (fr) * | 1997-04-10 | 1998-10-15 | Genetics Institute, Inc. | Marqueurs secretes de sequence exprimee (sest) |
CA2371006A1 (fr) * | 1999-04-22 | 2000-11-02 | Myriad Genetics, Inc. | Interactions proteine-proteine |
EP1074617A3 (fr) * | 1999-07-29 | 2004-04-21 | Research Association for Biotechnology | Amorces pour la synthèse de cADN de pleine longueur et leur utilisation |
AU7680300A (en) * | 1999-08-18 | 2001-03-13 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Human dna sequences |
-
2001
- 2001-05-03 AU AU2001259450A patent/AU2001259450A1/en not_active Abandoned
- 2001-05-03 WO PCT/US2001/014355 patent/WO2001085942A2/fr not_active Application Discontinuation
- 2001-05-03 EP EP01932973A patent/EP1278846A2/fr not_active Withdrawn
- 2001-05-03 JP JP2001582531A patent/JP2003532419A/ja active Pending
- 2001-05-03 CA CA002407850A patent/CA2407850A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0185942A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP2003532419A (ja) | 2003-11-05 |
AU2001259450A1 (en) | 2001-11-20 |
CA2407850A1 (fr) | 2001-11-15 |
WO2001085942A2 (fr) | 2001-11-15 |
WO2001085942A3 (fr) | 2002-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1266001A2 (fr) | Facteurs de transcription | |
EP1278846A2 (fr) | Proteines associees au cytosquelette | |
WO2002024895A2 (fr) | Facteurs de transcription et protéines à doigt de zinc | |
WO2002053719A2 (fr) | Proteines associees au cytosquelette | |
EP1214337A2 (fr) | Proteines associees a la differenciation cellulaire | |
US6962799B2 (en) | Microtubule-associated proteins and tubulins | |
EP1334192A2 (fr) | Proteines associees a un cystosquelette | |
WO2002002610A2 (fr) | Molecules de circulation et de secretion | |
WO2001046256A2 (fr) | Proteines circulant par l'intermediaire de vesicules | |
WO2002048362A2 (fr) | Proteines associees a l'embryogenese | |
WO2002046413A2 (fr) | Molecules pour la detection et le traitement de maladies | |
US20040043452A1 (en) | Embryogenesis associated proteins | |
EP1196568A1 (fr) | Proteines humaines de domaine lim | |
US20030186379A1 (en) | Secretion and trafficking molecules | |
WO2001094587A2 (fr) | Messagers extracellulaires | |
US20040029144A1 (en) | Transcription factors and zinc finger proteins | |
EP1265919A2 (fr) | Molecules associees a la proteine g | |
WO2002059312A2 (fr) | Proteines d'adhesion cellulaire | |
EP1265918A1 (fr) | Proteines de reponse immunitaire humaines | |
EP1180144A2 (fr) | Proteines associees au cytosquelette | |
EP1192250A2 (fr) | Proteines du metabolisme de l'arn | |
EP1325128A2 (fr) | Lipocalines | |
US20030208040A1 (en) | G-protein associated molecules | |
WO2002012339A2 (fr) | Integrines | |
US20040023251A1 (en) | Cell cycle proteins and mitosis-associated molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021119 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: POLICKY, JENNIFER, L. Inventor name: KEARNEY, LIAM Inventor name: BATRA, SAJEEV Inventor name: BURFORD, NEIL Inventor name: BANDMAN, OLGA Inventor name: YAO, MONIQUE, G. Inventor name: LAL, PREETI Inventor name: AZIMZAI, YALDA Inventor name: HILLMAN, JENNIFER, L. Inventor name: BAUGHN, MARIAH, R. Inventor name: LU, DYUNG, AINA, M. Inventor name: AU-YOUNG, JANICE Inventor name: TANG, Y., TOM Inventor name: YUE, HENRY |
|
17Q | First examination report despatched |
Effective date: 20040129 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040810 |