EP1275417A1 - Fire extinguishing composition - Google Patents

Fire extinguishing composition Download PDF

Info

Publication number
EP1275417A1
EP1275417A1 EP01116661A EP01116661A EP1275417A1 EP 1275417 A1 EP1275417 A1 EP 1275417A1 EP 01116661 A EP01116661 A EP 01116661A EP 01116661 A EP01116661 A EP 01116661A EP 1275417 A1 EP1275417 A1 EP 1275417A1
Authority
EP
European Patent Office
Prior art keywords
ignition
fire extinguishing
heptane
group
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01116661A
Other languages
German (de)
French (fr)
Other versions
EP1275417B1 (en
Inventor
Kazunori Tanaka
Kenji Nagao
Yutaka Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to DE60140529T priority Critical patent/DE60140529D1/en
Priority to EP20010116661 priority patent/EP1275417B1/en
Publication of EP1275417A1 publication Critical patent/EP1275417A1/en
Application granted granted Critical
Publication of EP1275417B1 publication Critical patent/EP1275417B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • A62D1/0057Polyhaloalkanes
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0064Gels; Film-forming compositions
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0071Foams
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0071Foams
    • A62D1/0085Foams containing perfluoroalkyl-terminated surfactant

Definitions

  • the present invention relates to a fire extinguishing composition comprising polyethyleneimine or a derivative thereof, and more particularly to a fire extinguishing composition which is superior in terms of rapid extinguishing performance, flame resistance, fuel resistance, and reignition prevention performance.
  • fire extinguishing compositions of type (4) above are aqueous film forming foam compositions based on a fluorine based surfactant, to which a water soluble high molecular weight material (such as a polysaccharide) has been added to give thixotropic properties.
  • foams which consist of this type of composition lose water at the combustion interface, and the remaining water soluble high molecular weight material, incorporating air bubbles, forms a gel-like mat across the solvent surface, preventing direct contact between the upper part of foam and the solvent, and covering the entire combustion surface. It is believed that the fire is then extinguished by cooling and smothering effects.
  • compositions of type (4) offer better foam development on the combustion surface, and also offer an improved fire extinguishing effect.
  • fire extinguishing compositions of the type (4) above will display poor fire extinguishing effect on solvents such as alcohols (such as isopropyl alcohol and t-butanol) or propylene oxide which have large heats of combustion or are highly volatile, and so depending on the type of solvent, the dilution ratio of the composition concentrate may need to be increased, which makes handling somewhat troublesome.
  • solvents such as alcohols (such as isopropyl alcohol and t-butanol) or propylene oxide which have large heats of combustion or are highly volatile
  • these fire extinguishing compositions incorporate large amounts of water soluble high molecular weight material, and so the composition concentrate is extremely viscous (at least 1200 mm 2 /s), and moreover the viscosity value varies considerably with temperature. Consequently, considerable care needs to be taken with the fire extinguishing equipment (such as mixers and piping), and there are handling concerns associated with the practical application of these types of compositions to existing equipment. Furthermore, conventionally these type of fire extinguishing compositions have been prone to forming a thin membrane (skin) on the surface of the liquid and on the walls of the tank during storage, and moreover producing sedimentation on the bottom of the tank, and problems have also arisen over the life of the product with concerns that they do not cope with extended storage. In addition, these types of fire extinguishing compositions also have a relatively high freezing point of approximately 0°C, and because they are not reversible in terms of freezing and remelting, use or storage of such compositions in cold regions requires special considerations.
  • a fire extinguishing composition which displays superior fuel resistance, flame resistance (for example, reignition sealing) and heat resistance when compared with conventional compositions was disclosed by the present applicants in Japanese Unexamined Patent Application, First Publication No. Sho-59-230566, and comprises a surfactant with an anionic hydrophilic group and a cationic water soluble high molecular weight compound, mixed with a third constituent comprising a polybasic acid compound of 3 to 24 carbon atoms.
  • this fire extinguishing composition is able to be used for extinguishing both polar solvent fires and non-polar solvents, the time required to extinguish a fire is relatively long, and the composition could not be claimed to offer rapid fire extinguishing performance.
  • the composition also has problems in terms of flame resistance, and reignition prevention.
  • An object of the present invention is to provide a fire extinguishing composition which when compared with conventional fire extinguishing compositions displays superior rapid fire extinguishing performance, flame resistance, fuel resistance and reignition prevention performance, for both non-polar solvent fires and polar solvent fires, as well as displaying superior stability as a diluted solution.
  • the present invention is a fire extinguishing composition which comprises a cationic polyamine based high molecular weight compound (A) which has primary, secondary, and tertiary cationic groups within the molecular structure and moreover in which the primary cationic groups account for no more than 40% by weight of the total cationic groups within the molecule.
  • A cationic polyamine based high molecular weight compound
  • the fire extinguishing composition of the present invention forms a foam which is extremely stable with respect to polar solvents, and yet also forms an aqueous film on the surface of non-polar solvents such as petroleum, and offers flame resistance and fuel resistance properties which display markedly improved rapid fire extinguishing performance and reignition prevention.
  • the cationic polyamine based high molecular weight compound (A) used in the present invention refers to a high molecular weight compound which incorporates cationic groups such as amino groups, ammonium groups, pyridinium groups or quaternary ammonium groups, and is a water soluble high molecular weight compound with a solubility in conventional water of at least 0.1 % by weight.
  • the cationic groups described above comprise primary, secondary and tertiary groups, and the cationic groups can exist on either the main chain or a side chain of the polyamine based high molecular weight compound.
  • primary cationic groups must account for no more than 40% by weight of the total cationic groups.
  • the degree of polymerization of the water soluble high molecular weight compound is regulated by the water solubility of the compound, and from the oligomer region, degrees of polymerization of at least several tens of thousands, namely weight average molecular weights of 1,000 to 1,000,000 are typical, with values of 4,000 to 300,000 being preferred, and degrees of polymerization of 50,000 to 100,000 being the most desirable in terms of producing a composition with the most superior fire extinguishing performance, flame resistance and fuel resistance with respect to polar solvents.
  • cationic polyamine based high molecular weight compound (A) examples include those detailed below, although it should be noted that the present invention is in no way limited by these specific examples.
  • additional cationic polyamine based high molecular weight compounds may be used in conjunction with the cationic polyamine based high molecular weight compound (A) used as the essential constituent.
  • these compatible cationic polyamine based high molecular weight compounds include:
  • a fire extinguishing composition of the present invention must not only display the type of performance required of a foam type fire extinguishing composition with rapid fire extinguishing performance, flame resistance, and an ability to retain a layer of foam on the liquid surface of both non-water soluble hazardous materials and water soluble hazardous materials, namely fuel resistance, but must also satisfy certain basic properties of specific gravity, pour point, viscosity, hydrogen ion concentration, sedimentation, and corrosiveness and the like as stipulated in the national certification regulations, which are based on a ministerial ordinance (Ministry of Home Affairs Ordinance No. 26) brought into effect on December 9, 1975 and defining the technical specifications relating to foam type fire extinguishing compositions.
  • a variety of cationic polyamine based high molecular weight compounds can be used as the main constituent of a fire extinguishing composition which complies with the above requirements, but as mentioned above, it is a requirement that primary cationic groups within the compound account for no more than 40% by weight of the total cationic groups.
  • a cationic polyamine based high molecular weight compound in which the proportion of primary cationic groups exceeds 40% by weight is used, then not only does sedimentation occur in an aqueous solution produced by mixing 3 to 6 parts by weight of the foam fire extinguishing composition concentrate with 97 to 94 parts of fresh water or sea water, which raises a dilution stability problem in that the composition does not satisfy one of the technical specifications of the Ministry of Home Affairs Ordinance No. 26, but furthermore, sedimentation can block the tips of the various types of nozzles used in actual fire fighting activity, resulting in unexpected situations which inhibit effective fire fighting.
  • Cationic polyamine based high molecular weight compounds in which the proportion of primary cationic groups accounts for no more than 40% by weight of the total number of cationic groups, and the secondary cationic groups account for at least 35% by weight of the total cationic groups, display even more superior effects in terms of fire extinguishing performance and dilution stability, and are consequently preferred.
  • polyethyleneimine or partially modified polyethyleneimine being used in preference.
  • a typical method of manufacturing polyethyleneimine comprises synthesizing ethyleneimine by a direct cyclodehydration of gaseous mono ethanolamine in the presence of a solid acid-base catalyst, and then subjecting the ethyleneimine produced by this method to a ring-opening polymerization in the presence of an acid catalyst to form polyethyleneimine.
  • Reaction kinetics mean that polyethyleneimine manufactured in this manner will not be a perfectly linear macromolecule, but will rather be a high molecular weight compound with a branched structure comprising primary, secondary and tertiary amine groups, as shown in the chemical equation below.
  • the acid catalyst used in the ring-opening polymerization of ethyleneimine may utilize any of the mineral acid, inorganic or organometallic based Lewis acids, although the branched structure will vary depending on the catalyst used, as will the ratio of primary, secondary and tertiary amines within the produced molecule.
  • a surfactant (B) with an anionic hydrophilic group is also included in the fire extinguishing composition of the present invention.
  • a surfactant with an anionic hydrophilic group undergoes an electrostatic interaction with the cationic polyamine based high molecular weight compound (A), and the surfactant in the present invention is a compound with at least one anionic hydrophilic group within each molecule.
  • Preferred anionic hydrophilic groups include groups such as -COOH, -SO 3 H, -OSO 3 H, and -OP(OH) 2 , with -SO 3 H being particularly desirable. Furthermore, in terms of counter ions for the cationic groups, compounds with organic or inorganic anionic groups may also be used.
  • the hydrophilic group of the surfactant may incorporate one or more of the same, or different anionic groups, or alternatively, an amphoteric ion type surfactant which incorporates a cationic hydrophilic group and/or a nonionic group in addition to the anionic hydrophilic group, is also possible.
  • amphoteric ion type surfactants are preferred for compatibility reasons.
  • hydrophobic group of the surfactant examples include aliphatic hydrocarbon groups of 6 or more carbon atoms, dihydrocarbyl siloxane chains, or fluorinated aliphatic groups of 3 to 20 carbon atoms and preferably 6 to 16 carbon atoms. Of these hydrophobic groups, fluorinated aliphatic groups are particularly desirable as they offer improved fuel resistance. Furthermore, the surfactant may also comprise a mixture of different surfactants with different hydrophobic groups.
  • the surfactants with an anionic hydrophilic group (B) used in the fire extinguishing composition of the present invention can be broadly classified into: (B-1) fluorine containing amino acid type amphoteric surfactants, (B-2) fluorine containing aminosulfonate type surfactants, (B-3) fluorine containing aminocarboxylate type surfactants, (B-4) fluorine containing trianion type amphoteric surfactants, (B-5) fluorine containing tricarboxylic acid type amphoteric surfactants, (B-6) fluorine containing sulfobetaine type amphoteric surfactants, (B-7) fluorine containing aminosulfate type surfactants, (B-8) fluorine containing sulfatobetaine type surfactants, (B-9) fluorine containing sulfobetaine type surfactants, (B-10) fluorine containing amine oxide type surfactants, and (B-11) other surfactants.
  • the fluorine containing amino acid type amphoteric surfactants B-1 are compounds represented by the general formula (B-1): (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Y represents either -SO 2 - or -CO-, and Q 1 and Q 2 represent organic bivalent linking groups such as aliphatic hydrocarbon groups, aliphatic hydrocarbon groups substituted with hydroxyl groups, aromatic hydrocarbon groups, substituted aromatic hydrocarbon groups, or combinations thereof, with preferred groups including straight chain alkylene groups of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, the 2-methoxypropan-1,3-diyl group, the 2-ethoxypropan-1,3-diyl group, and the 2-propoxypropan-1,3-diyl group.
  • Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms
  • Y represents either -SO 2 - or -CO-
  • R 1 and R 2 represent hydrogen atoms, aliphatic hydrocarbon groups of 1 to 12 carbon atoms, or aliphatic hydrocarbon groups which have been substituted with hydrophilic groups, or R 1 and R 2 may be linked together forming a ring with the adjacent nitrogen atom.
  • A represents an anionic hydrophilic group such as -COO - , -SO 3 - , -OSO 3 - , or -OP(OH)O - .
  • M represents a hydrogen atom, an alkali metal, an alkali earth metal, an ammonium group, or an organic cationic group.
  • the fluorine containing aminosulfonate type surfactants (B-2) are compounds represented by the general formula (B-2): Rf-Z-Q 1 -N(R)-Q 2 -SO 2 M
  • Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms
  • Z represents a bivalent linking group such as -SO 2 N(R 1 )-, -CON(R 1 )-, -(CH 2 CH 2 ) i SO 2 N(R 1 )-, or compounds covered by the general formula or the general formula (where R 1 is a hydrogen atom or an alkyl group of 1 to 12 carbon atoms, and i is an integer from 1 to 10), and Q 1 represents a straight chain alkylene group of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, the 2-ethoxypropan-1,3-diyl group, or the 2-propoxypropan-1,3-diyl group.
  • R represents a hydrogen atom, an alkyl group of 1 to 3 carbon atoms, a hydroxyalkyl group, -Q 2 SO 3 M, or -(CH 2 ) k COOM (where k is an integer of 1 to 4), Q 2 represents a straight chain alkylene group of 1 to 5 carbon atoms, the 2-hydroxypropan-1,3-diyl group, the 2-ethoxypropan-1,3-diyl group, the 2-propoxypropan-1,3-diyl group, or a bivalent linking group represented by the general formula below.
  • M represents a hydrogen atom, an alkali metal, an alkali earth metal, or a cationic atom or group of atoms represented by the formula below.
  • -N(H) m (R 4 ) 4-m In the formula, R 4 represents an alkyl group of 1 to 3 carbon atoms, or a hydroxyalkyl group, and m is an integer of 0 to 4.)
  • the fluorine containing aminocarboxylate type surfactants (B-3) are compounds represented by the general formula (B-3):
  • Rf represents a polyfluoroalkyl group, a polyfluoroalkenyl group, a polyfluorocyclohexyl group, a polyfluorocyclohexyl alkyl group or a polyfluorocyclohexyl alkenyl group of 3 to 20 carbon atoms which may also incorporate oxygen atoms
  • Z represents a linking group of one of the formulae below.
  • R 1 represents an alkyl group, an alkenyl group or an aromatic ring containing monovalent group incorporating of 1 to 18 carbon atoms, and i represents an integer of 1 to 3.
  • Q represents a bivalent linking group of one of the formula below. or (In the formulae, l represents an integer of 1 to 6, m and n each represent an integer of 2 to 6, and p and q each represent the number 2 or 3 respectively.)
  • Q 1 and Q 2 each represent a alkylene group of 1 to 3 carbon atoms.
  • M 1 and M 2 each represent a hydrogen atom or an inorganic or an organic cation.
  • the fluorine containing trianion type amphoteric surfactants (B-4) are compounds represented by the general formula (B-4): (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents a bivalent linking group, Q represents a straight chain alkylene group of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, -(CH 2 ) m -O-(CH 2 ) n - (where m and n are each integers from 2 to 6) or -(CH 2 ) p -O-(CH 2 ) 2 -O-(CH 2 ) q - (where p and q each represent the number 2 or 3 respectively).
  • the fluorine containing tricarboxylic acid type amphoteric surfactants (B-5) are compounds represented by the general formula (B-5) : (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, and Z represents -SO 2 -, -CO-, -(CH 2 ) l -SO 2 -, -(CH 2 ) l -CO- (where l represents an integer from 1 to 6), or a bivalent group represented by either the formula or the formula R 1 represents the 2-hydroxyethyl group, a group represented by the general formula -(CH 2 ) a -O-(CH 2 ) b -CH 3 (where a represents an integer from 2 to 10, and b represents an integer from 1 to 9), or an alkyl group of 1 to 12 carbon atoms, Q 1 represents a straight chain alkylene group of 2 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, or
  • the fluorine containing sulfobetaine type amphoteric surfactants (B-6) are compounds represented by the general formula (B-6):
  • Rf represents a group comprising a fluorinated aliphatic group of 3 to 20 carbon atoms
  • Z represents a bivalent linking group incorporating a sulfonamide group or a carbonamide group
  • Q 1 , Q 2 and Q 3 each represent independently a bivalent aliphatic group of 1 to 12 carbon atoms, an aliphatic hydrocarbon group substituted with a hydroxyl group, an aromatic hydrocarbon group, or a bivalent group formed through a combination of the above groups.
  • R represents a hydrogen atom, a hydrocarbyl group of 1 to 12 carbon atoms, or a -(CH 2 CH 2 O) i H or a -(CH 2 CH(CH 3 )O) i H group (where i represents an integer of 1 to 20),
  • M 1 and M 2 each represent a hydrogen atom or an inorganic or an organic cation
  • X represents an inorganic or an organic anion.
  • the fluorine containing aminosulfate type surfactants (B-7) are compounds represented by the general formula (B-7): (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents -SO 2 -, -CO-, a bivalent group represented by one of the formulae or -(CH 2 ) a -CO- (where a represents an integer of 1 to 10), R 1 represents a hydrogen atom, an alkyl group of 1 to 12 carbon atoms, a -(CH 2 ) b -OR 3 group or a -(CH 2 CH 2 O) d -R 2 group (where b represents an integer from 1 to 10, d represents an integer of 1 to 20, and R 3 represents a lower alkyl group or alkoxyl group), and Y represents -(CH 2 ) e -, -(CH 2 ) p -O-(CH 2 ) 2 -O-(CH 2 ) q
  • R 2 represents a hydrogen atom, an alkyl group, alkenyl group, or hydroxyl substituted alkyl group of 1 to 18 carbon atoms, a -(CH 2 CH 2 ) m -H group (where m represents an integer of 2 to 20), Q 1 OSO 3 M, Q 1 SO 2 M or (CH 2 ) i COOM (where i represents an integer from 1 to 4).
  • Q 1 represents a straight chain alkyl group of 2 to 12 carbon atoms, the 2-hydroxypropan-1,3-diyl group or -(CH 2 CH 2 O) k -CH 2 CH 2 - (where k represents an integer from 1 to 50).
  • M represents a hydrogen atom or an inorganic or an organic cation.
  • the fluorine containing sulfatobetaine type surfactants (B-8) are compounds represented by the general formula (B-8): (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents -SO 2 -, -CO-, or -(CH 2 ) a -CO- (where a represents an integer of 1 to 10), R 1 represents a hydrogen atom, an alkyl group of 1 to 12 carbon atoms, a -(CH 2 ) b -OR 3 group or a -(CH 2 CH 2 O) d -R 2 group (where b represents an integer from 1 to 10, d represents an integer of 1 to 20, and R 2 represents a lower alkyl group or alkoxyl group), and Y represents -(CH 2 ) e -, -(CH 2 ) p -O-(CH 2 ) 2 -O-(CH 2 ) q - or -(CH 2 )
  • R 2 and R 3 each represent independently an alkyl group, alkenyl group, hydroxyl substituted alkyl group, or aromatic substituted alkyl group of 1 to 18 carbon atoms, or a -(CH 2 CH 2 O) i -H group (where i represents an integer of 2 to 20), or alternatively R 2 and R 3 may be linked together to form a heterocyclic ring with the adjacent nitrogen atom, and Q 1 represents a straight chain alkylene chain of 2 to 12 carbon atoms, the 2-hydroxypropan-1,3-diyl group or-(CH 2 CH 2 O) k -CH 2 CH 2 - (where k represents an integer from 1 to 50).)
  • the fluorine containing sulfobetaine type surfactants (B-9) are compounds represented by the general formula (B-9):
  • Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms which may incorporate an oxygen atom, or a fluorinated alicyclic group
  • Z represents a bivalent linking group
  • Q 1 represents a straight chain alkylene chain of 1 to 6 carbon atoms, or -(CH 2 ) m -O-(CH 2 ) n - or -(CH 2 ) p -O-(CH 2 ) 2 -O-(CH 2 ) q - (where m and n each represent an integer of 2 to 6, and p and q each represent independently a value of 2 or 3)
  • Q 2 represents a straight chain alkylene chain of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group or -(CH 2 CH 2 O) r -CH 2 CH 2 - (
  • M 1 , M 2 and M 3 each represent independently a hydrogen atom or an inorganic or an organic cation.
  • examples of preferred inorganic or organic cations include Li + , Na + , K + , Ca + , Mg + , [N(H) s (R) 4-s ] + (where R is an alkyl group of 1 to 4 carbon atoms or a hydroxyethyl group, and s represents an integer from 0 to 4), or
  • X represents an inorganic or an organic anion.
  • Examples of preferred inorganic or organic anions include OH - , Cl - , Br - , I - , ClO 4 - , 1/2SO 4 - , CH 3 SO 4 - , NO 3 - , CH 3 COO - or the phosphate ion.
  • the fluorine containing amine oxide type surfactants (B-10) are compounds represented by the general formula (B-10):
  • Rf represents a fluorinated aliphatic group of 8 to 18 carbon atoms, or a fluorinated alicyclic group of 10 to 20 carbon atoms with either an ether oxygen atom or thioether linkage
  • Q represents -SO 2 - or -CO-
  • R 1 represents H, an alkyl group of 1 to 6 carbon atoms, a halogenated alkyl group of 1 to 6 carbon atoms, -OH, -SH, an alkoxyl group of 1 to 6 carbon atoms, a thioalkyl group of 1 to 6 carbon atoms, -NO 2 , -CN, or NRR'- (where R and R' each represent H or an alkyl group of 1 to 6 carbon atoms), R 2 and R 3 each represent H, an alkyl group of 1 to 6 carbon atoms, a halogen
  • this (B-10) compound is the compounds represented by the formulae (B-10-a) to (B-10-o) shown below, although the present invention is not limited to the compounds shown.
  • surfactants (B-11) other than the surfactants (B-1) to (B-10) which are able to be used in the fire extinguishing composition of the present invention include compounds represented by the formulae (B-11-a) to (B-11-g) shown below, although the present invention is not limited to the compounds shown.
  • the mixing proportions of the cationic polyamine based high molecular weight compound (A) and the surfactant (B) should preferably be within a weight ratio range from 5:1 to 1:3, with ratios within a range from 3:1 to 1:1 being even more desirable.
  • a polybasic acid compound (C) By adding a polybasic acid compound (C) to a fire extinguishing composition of the present invention, the polybasic acid compound undergoes an electrostatic interaction with the polyethyleneimine or derivative thereof, thereby improving the flame resistance and fuel resistance of the composition even further.
  • the polybasic acid compound (C) is a compound which incorporates an acid group within the molecule, there are no restrictions on the type or the number of acid groups, nor on the length of the carbon chain or the molecular weight, and any compound can be used. Furthermore, such a polybasic acid compound (C) is a compound with no surfactant properties, and suitable examples include dibasic, tribasic, tetrabasic, pentabasic or hexabasic acids of 3 to 24 carbon atoms with an aromatic group, an aliphatic group or a heterocyclic ring or the like, or the alkali metal salts or ammonium salts of such acids.
  • the acid group in the polybasic acid compound (C) may be a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group or the like. Furthermore, in those cases where polybasic acid compounds are used, either a single compound, or two or more different compounds may be used in combination. Of these various polybasic acid compounds (C), dibasic acid compounds of 4 to 18 carbon atoms are particularly desirable from the viewpoint of compatibility.
  • polybasic acid compound (C) examples include compounds represented by the formulae (C-1) to (C-32) shown below, as well as the alkali metal salts (Na salts, K salts, Li salts and the like) or ammonium salts thereof, although the present invention is not limited to these specific compounds.
  • the mixing proportions of the cationic polyamine based high molecular weight compound (A) and the polybasic acid compound (C) should preferably be within a weight ratio range from 5:1 to 1:3, with ratios within a range from 4:1 to 1:1 being even more desirable.
  • the mixing proportions of the cationic polyamine based high molecular weight compound (A) with the surfactant with an anionic hydrophilic group (B) and the polybasic acid compound (C) will vary depending on the combination of the constituents, although typically weight ratios (B):[(A)+(C)] within a range from 2:1 to 1:50 are preferable, with ratios within a range from 1:1 to 1:10 being even more desirable.
  • the fire extinguishing composition of the present invention displays superior solubility stability in both concentrated and diluted forms, and as such offers excellent extended storage. Furthermore, because of the superior solubility and low viscosity of the composition, a strong concentrate with a high dilution ratio can be easily manufactured. The kinematic viscosity of a concentrate with a 3% dilution ratio can be suppressed to a value of no more than 100 mm 2 /s at 20°C, which results in excellent handling properties.
  • the amount of the cationic polyamine based high molecular weight compound (A) added can be kept to a reasonably small amount, little deleterious effect is observed on the performance of the composition, and the freezing point of the fire extinguishing composition concentrate can be kept below -5°C.
  • a suitable amount of a surfactant (D) with a cationic hydrophilic group may also be included in the composition with the aim of effectively lowering the surface tension and the interfacial tension with petroleum of the aqueous solution of the fire extinguishing composition.
  • the surfactant with a cationic hydrophilic group (D) incorporates a cationic hydrophilic group.
  • the cationic hydrophilic group of the surfactant with a cationic hydrophilic group (D) include pyridinium salts, quaternary ammonium salts, imidazaolinium salts, and benzalkonium salts. Of these cationic hydrophilic groups, pyridinium salts and quaternary ammonium salts are preferred from the viewpoint of compatibility, and quaternary ammonium salts are particularly desirable.
  • suitable counter ions for the cationic group include organic and inorganic anions.
  • hydrophobic group of the surfactant (D) examples include aliphatic hydrocarbon groups of 6 or more carbon atoms, dihydrocarbyl siloxane chains, or fluorinated aliphatic groups of 3 to 20 carbon atoms and preferably 6 to 16 carbon atoms.
  • surfactants with fluorinated aliphatic groups are particularly desirable as they offer improved fire extinguishing performance.
  • Examples of the surfactant with a cationic hydrophilic group (D) include compounds represented by the general formula (D-1): (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms which may also incorporate oxygen atoms, and Y represents a bivalent group such as -(CH 2 CH 2 ) i -, -CH 2 CH 2 SCH 2 COO-, -(CH 2 CH 2 ) i -SO 2 -, -(CH 2 CH 2 ) i -CO-, or (where i represents an integer from 1 to 6).
  • R represents a hydrogen atom or an aliphatic hydrocarbon group of 1 to 6 carbon atoms
  • Q 1 represents an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with a hydroxyl group, an aromatic hydrocarbon group or a substituted aromatic hydrocarbon group, although a straight chain alkylene group of 1 to 6 carbon atoms is preferred.
  • R 1 to R 3 can represent the same group or different groups, and each represent a hydrogen atom or an aliphatic hydrocarbon group of 1 to 6 carbon atoms, and X - represents an organic or an inorganic anion.
  • additives may also be added to a fire extinguishing composition of the present invention.
  • additives include additional foam stabilizers, freezing point depressants, rust prevention agents, and pH regulators and the like.
  • Additional foam stabilizers are mainly additives used for adjusting the expansion ratio or drainage, and suitable examples include non-ionic surfactants such as glycerin aliphatic esters, propylene glycol fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene polyoxypropylene ethers, polyethylene glycol fatty acid esters, alkyl alkanol amides and alkyl polyglucosides; amphoteric surfactants such as betaine alkyl dimethylaminoacetate, alkyl dimethylamine oxides, alkyl carboxymethylhydroxyethyl imidazolium betaine, alkylamide propyl betaine, and alkylhydroxy sulfobetaine; as well as polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose, gum arabic, sodium alginate, polypropylene glycol and polyvin
  • suitable freezing point depressants include ethylene glycol, propylene glycol, the cellosolve compounds (ethyl cellosolve and butyl cellosolve), caribtol compounds (ethyl carbitol, butyl carbitol, hexyl carbitol and octyl carbitol), lower alcohols (isopropyl alcohol, butanol, octanol), and urea.
  • Rust prevention agents and pH regulators can utilize any of the various commonly known compounds, and there are no particular restrictions.
  • the fire extinguishing composition of the present invention can be used as a fire extinguishing agent by using known methods for blowing in, or mixing, air, carbon dioxide, nitrogen, a low boiling point fluorocarbon such as difluorodicholoromethane, or another suitable non-flammable gas with the composition.
  • the viscosity of the fire extinguishing composition concentrate of the present invention is comparatively low, a strong concentrate can be stored in a storage tank, and then at the time of use, normal methods can be used for introducing the composition into a water flow and adjusting the dilution ratio at some point before the mixture reaches a device such as a fire extinguishing apparatus or foam nozzle. Foam is then generated by blowing in, or mixing a non-flammable gas such as air, and the foam is discharged over the flame or sent under the surface of the flame.
  • the composition can be prediluted to a usable concentration, and then used to fill devices such as fire extinguishers, parking lot fire extinguishing equipment, fixed fire extinguishing equipment for hazardous materials, or packaged fire extinguishing equipment.
  • suitable methods for discharging the fire extinguishing composition of the present invention include the use of any of those discharge nozzles commonly used in the industry for delivering fire extinguishing compositions, and desired performance levels are able to be achieved.
  • suitable nozzles include the foam chamber and ISO standard compliant nozzle most widely used for petroleum tanks and the like, UL standard compliant nozzles, MIL standard compliant nozzles, hand nozzles attached to chemical fire engines and the like, air foam hand nozzles, SSI nozzles, the Japan Marine Standards Association specified HK nozzle, as well as foam heads used in driving lot fire extinguishing equipment, and spray heads and the like.
  • fire extinguishing compositions of the present invention can be used in a wide variety of discharge methods. Furthermore, a fire extinguishing composition of the present invention can also be applied to a wider range of fires than conventional fire extinguishing compositions.
  • Specific examples of the use of the compositions of this invention include deployment on chemical fire engines and concentrate carrier vehicles employed by public fire fighting organizations, as well as deployment at petroleum sites or industrial sites with crude oil tanks or other hazardous material facilities, airport facilities, harbor facilities or shipping vessels involved in the loading of hazardous materials, gas stands, underground parking lots, buildings, tunnels and bridges.
  • the compositions can also be used on general fires such as timber fires in housing, or rubber and plastic fires such as tire fires.
  • fire extinguishing compositions of the present invention display superior qualities of fuel resistance, flame resistance, heat resistance and foam forming properties
  • the strong concentrate or diluted aqueous solution can also be used for extinguishing cooking oil or salad oil fires by pouring directly onto the combustion surface to smother or cool the fire.
  • a fire extinguishing composition of the present invention also displays superior stability of the diluted solution, and so the diluted solution can be used for filling spray cans and then used as simple household fire extinguishers.
  • the foam generated from a fire extinguishing composition of the present invention is able to exist in a stable manner on aqueous solutions based on water, sol-gel type materials, sludge and pollutants, as well as various organic solvents and organic materials. Consequently, the volatilization of volatile materials from this wide range of materials can be suppressed, enabling the compositions of the present invention to also be used for preventing the ignition of flammable materials, and preventing the generation of odors.
  • fire extinguishing compositions of the present invention may also be used in combination with powdered fire extinguishing compositions, protein based foam fire extinguishing compositions and synthetic interface foam fire extinguishing compositions comprising materials such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, ammonium sulfate, ammonium phosphate, and calcium carbonate.
  • FIG. 1 is an NMR spectrum of a sample of a polyethyleneimine (A-I) representing the cationic polyamine based high molecular weight compound (A), which was measured using an EX-27 FT-NMR device manufactured by NEC Corporation, Ltd. The measurement conditions are listed below.
  • the ratios between the primary amine, secondary amine and tertiary amine groups were calculated from the integral curve for the peaks A to G in FIG. 1, using the following formulae.
  • Amount of primary amine (a) F+G
  • Amount of secondary amine (b) (F+D/2+E)/2
  • Amount of tertiary amine (c) (A+B+(C-F)/2)/3
  • Primary amine proportion (weight %) a/(a+b+c) x 100
  • Secondary amine proportion (weight %) b/(a+b+c) x 100
  • Tertiary amine proportion (weight %) c/(a+b+c) x 100
  • Table 1 shows the relative proportions of primary amine, secondary amine and tertiary amine groups measured by the above method for polyethyleneimine (A-I) samples representing the cationic polyamine based high molecular weight compound (A), including "EPOMIN P-1050” manufactured by Nippon Shokubai Co. Ltd. (hereafter abbreviated as (A-I-1)), “LUPASOL P” manufactured by BASF Corporation Ltd. of Germany (and hereafter abbreviated as (A-I-2)), N-acylated polyethyleneimine (A-II-1) and (A-II-2) produced by the synthetic example 1 and the synthetic example 2 respectively, as well as derivatives thereof.
  • A-I polyethyleneimine
  • Cationic polyamine based high molecular weight compound (A) Primary amines Secondary amines Tertiary amines A-I-1 38 % by 42 % by 20 % by weight weight weight A-I-2 44 % by 33 % by 23 % by weight weight weight A-II-1 35 % by 45 % by 20 % by weight weight weight A-II-2 50 % by 30 % by 20 % by weight weight weight
  • the external appearance, freezing point, kinematic viscosity as measured at -10°C, and the amount of sedimentation in a 3% solution diluted with water from the water supply, for the produced fire extinguishing compositions (3% concentrates), are shown in Table 2 and Table 3 in accordance with the technical specifications listed in the Ministry of Home Affairs Ordinance No. 26.
  • Example 4 A-II-1 B-1-e C-2 totally -17°C 100 cst trace transparent
  • Example 5 A-II-1 B-1-h C-4 totally -17°C 144 cst trace transparent
  • Example 6 A-II-1 B-1-n C-3 totally -18°C 122 cst trace transparent
  • Example 7 A-II-1 B-1-m C-13 totally -16°C 119 cst trace transparent
  • Example 8 A-I-1 B-1-u C-16 totally -19°C 136 cst trace transparent
  • Example 9 A-I-1 B-2-a C-23
  • Example 21 A-I-1 B-4-g C-14 totally -16°C 117 cst trace transparent
  • Example 23 A-I-1 B-5-i C-10 totally -17°C 128 cst trace transparent
  • Example 25 A-I-1 B-6-c C-11 totally -18°C 131 cst trace transparent
  • Example 26 A-I-1 B-6-b C-28 totally -19°C 113 cst trace transparent
  • Example 27 A-II-1 B-6-a C-16 totally -16°C 122 cst trace transparent
  • Example 28 A-II-1 B-6-f C-22 totally -20°C 137 cst trace transparent
  • Example 29 A-II-1 B-6-e C-3 totally -18°
  • Each dilute solution was then used for filling a pressurized tank with 100 liters of solution, and subsequent foam generation was carried out with a standard foam generation nozzle used for testing aqueous film forming foam fire extinguishing compositions (as per national certification), using a nitrogen pressure of 7 kg/cm 2 , a discharge speed of 10 liters/minute, and a total discharge time of 5 minutes.
  • the temperature of the dilute solution was adjusted to a value of 20°C ⁇ 2°C in each case.
  • Experiments were conducted on the time taken for a 90% coverage of the combustion surface area (90% control time) as an indication of the relative superiority of the foam expansion speed, and the time taken for complete fire extinguishing which represents the most salient measure of fire extinguishing speed.
  • fire extinguishing experiments were also conducted on a polar solvent (a solvent for which the solubility in 100 g of water at 20°C is at least 1 g) based on the methods described in the Fire Fighting Hazards No. 71, and the results of these experiments are shown in table 8, table 9, table 10 and table 11.
  • a polar solvent a solvent for which the solubility in 100 g of water at 20°C is at least 1 g
  • Table 8 a polar solvent for which the solubility in 100 g of water at 20°C is at least 1 g
  • Each dilute solution was then used for filling a pressurized tank with 100 liters of solution, and subsequent foam generation was carried out with a standard foam generation nozzle used for testing aqueous film forming foam fire extinguishing compositions (as per national certification), using a nitrogen pressure of 7 kg/cm 2 , a discharge speed of 10 liters/minute, and a total discharge time of 5 minutes.
  • the temperature of the dilute solution was adjusted to a value of 20°C ⁇ 2°C in each case.
  • This value represents the time period from commencement of the foam discharge, until 90% of the combustion surface area of the fire model (combustion surface area 4 m 2 : B-20 scale) was covered with foam.
  • This value represents the time period from commencement of the foam discharge until the flames on the fire model had been completely extinguished.
  • fire extinguishing compositions (3% concentrates) were prepared using the same compositions and mixing methods as the examples described above, but with the exception that a polyethyleneimine or an N-propyl polyethyleneimine in which the amount of primary amine groups exceeds 40% and the amount of secondary amine groups is less than 35%, was used as the cationic polyamine based high molecular weight compound (A) of the present invention.
  • the compounds used for the cationic polyamine based high molecular weight compound (A), the surfactant with an anionic hydrophilic group (B) and the polybasic acid compound (C) are shown in table 12, together with the external appearance, freezing point, kinematic viscosity, and the amount of sedimentation in a 3% solution diluted with water from the water supply, for the produced fire extinguishing compositions (3% concentrates) carried out in accordance with the technical specifications listed in the Ministry of Home Affairs Ordinance No. 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

A fire extinguishing composition is provided which, when compared with conventional fire extinguishing compositions, displays superior rapid fire extinguishing performance, flame resistance, fuel resistance and reignition prevention for both non-polar solvent fires and polar solvent fires, and also displays superior stability as a diluted solution. The fire extinguishing composition comprises a cationic polyamine based high molecular weight compound (A) which incorporates primary, secondary, and tertiary cationic groups within each molecule, and the primary cationic groups account for no more than 40% by weight of all the cationic groups.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a fire extinguishing composition comprising polyethyleneimine or a derivative thereof, and more particularly to a fire extinguishing composition which is superior in terms of rapid extinguishing performance, flame resistance, fuel resistance, and reignition prevention performance.
  • 2. Description of the Background Art
  • Generally, in the case of fires involving polar solvents such as alcohols, ketones, esters, ethers and amines, even if fire extinguishing is attempted with a typical petroleum fire extinguishing composition, the foam disappears soon after contacting the combustion surface, and the fire is unable to be extinguished. As a result, the following types of compositions have been proposed as polar solvent fire extinguishing compositions:
  • (1) protein hydrolysates to which a metallic soap has been added,
  • (2) synthetic surfactants to which a metallic soap has been added,
  • (3) protein hydrolysates to which a fluorine based surfactant has been added (a fluorinated protein), and
  • (4) fluorine based surfactants to which a water soluble high molecular weight material has been added to form a thixotropic liquid.
  • Of these compositions, fire extinguishing compositions of type (4) above are aqueous film forming foam compositions based on a fluorine based surfactant, to which a water soluble high molecular weight material (such as a polysaccharide) has been added to give thixotropic properties. On contact with a polar solvent, foams which consist of this type of composition lose water at the combustion interface, and the remaining water soluble high molecular weight material, incorporating air bubbles, forms a gel-like mat across the solvent surface, preventing direct contact between the upper part of foam and the solvent, and covering the entire combustion surface. It is believed that the fire is then extinguished by cooling and smothering effects. Compared with the fire extinguishing compositions of types (1), (2) and (3) above, compositions of type (4) offer better foam development on the combustion surface, and also offer an improved fire extinguishing effect.
  • However, assuming the mechanism above, wherein the gel-like mat of the water soluble high molecular weight material protects the foam from the solvent, fire extinguishing compositions of the type (4) above will display poor fire extinguishing effect on solvents such as alcohols (such as isopropyl alcohol and t-butanol) or propylene oxide which have large heats of combustion or are highly volatile, and so depending on the type of solvent, the dilution ratio of the composition concentrate may need to be increased, which makes handling somewhat troublesome. Moreover, because fire extinguishing compositions of the type (4) described above rely on smothering utilizing the covering effect of the gel-like mat, good effects are displayed in so-called soft running methods where the foam is poured gently onto the surface of the fuel along the side wall of a tank such as in a foam chamber, but in methods where the foam is shot directly onto the solvent surface from the foam discharge nozzle of a chemical fire engine or the like, a method which represents the most common fire fighting strategy, the surface of the fuel is disturbed, meaning the gel-like mat can sink and the fuel surface can reappear above the mat and reignite, and consequently problems still remain over the performance of these type (4) compositions in actual fire fighting situations.
  • Furthermore, these fire extinguishing compositions incorporate large amounts of water soluble high molecular weight material, and so the composition concentrate is extremely viscous (at least 1200 mm2/s), and moreover the viscosity value varies considerably with temperature. Consequently, considerable care needs to be taken with the fire extinguishing equipment (such as mixers and piping), and there are handling concerns associated with the practical application of these types of compositions to existing equipment. Furthermore, conventionally these type of fire extinguishing compositions have been prone to forming a thin membrane (skin) on the surface of the liquid and on the walls of the tank during storage, and moreover producing sedimentation on the bottom of the tank, and problems have also arisen over the life of the product with concerns that they do not cope with extended storage. In addition, these types of fire extinguishing compositions also have a relatively high freezing point of approximately 0°C, and because they are not reversible in terms of freezing and remelting, use or storage of such compositions in cold regions requires special considerations.
  • An example of a fire extinguishing composition which displays superior fuel resistance, flame resistance (for example, reignition sealing) and heat resistance when compared with conventional compositions was disclosed by the present applicants in Japanese Unexamined Patent Application, First Publication No. Sho-59-230566, and comprises a surfactant with an anionic hydrophilic group and a cationic water soluble high molecular weight compound, mixed with a third constituent comprising a polybasic acid compound of 3 to 24 carbon atoms.
  • However, although this fire extinguishing composition is able to be used for extinguishing both polar solvent fires and non-polar solvents, the time required to extinguish a fire is relatively long, and the composition could not be claimed to offer rapid fire extinguishing performance. In addition, the composition also has problems in terms of flame resistance, and reignition prevention. Furthermore, in actual fire fighting activity, when the fire extinguishing composition concentrate was diluted with either fresh water or sea water, problems arose in terms of the extended stability of the diluted solution, with cloudiness developing in the diluted solution.
  • BRIEF SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a fire extinguishing composition which when compared with conventional fire extinguishing compositions displays superior rapid fire extinguishing performance, flame resistance, fuel resistance and reignition prevention performance, for both non-polar solvent fires and polar solvent fires, as well as displaying superior stability as a diluted solution.
  • In order to achieve the above object, the present invention is a fire extinguishing composition which comprises a cationic polyamine based high molecular weight compound (A) which has primary, secondary, and tertiary cationic groups within the molecular structure and moreover in which the primary cationic groups account for no more than 40% by weight of the total cationic groups within the molecule.
  • The fire extinguishing composition of the present invention forms a foam which is extremely stable with respect to polar solvents, and yet also forms an aqueous film on the surface of non-polar solvents such as petroleum, and offers flame resistance and fuel resistance properties which display markedly improved rapid fire extinguishing performance and reignition prevention.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • FIG. 1 is a nuclear magnetic resonance spectrum of a polyethyleneimine.
  • FIG. 2 is a diagram showing the chemical structures corresponding with the peak numbers on the nuclear magnetic resonance spectrum shown in FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The cationic polyamine based high molecular weight compound (A) used in the present invention refers to a high molecular weight compound which incorporates cationic groups such as amino groups, ammonium groups, pyridinium groups or quaternary ammonium groups, and is a water soluble high molecular weight compound with a solubility in conventional water of at least 0.1 % by weight.
  • The cationic groups described above comprise primary, secondary and tertiary groups, and the cationic groups can exist on either the main chain or a side chain of the polyamine based high molecular weight compound.
  • There are no particular restrictions on the relative proportions of primary, secondary and tertiary cationic groups, although in the present invention, for the reasons outlined below, primary cationic groups must account for no more than 40% by weight of the total cationic groups.
  • The degree of polymerization of the water soluble high molecular weight compound is regulated by the water solubility of the compound, and from the oligomer region, degrees of polymerization of at least several tens of thousands, namely weight average molecular weights of 1,000 to 1,000,000 are typical, with values of 4,000 to 300,000 being preferred, and degrees of polymerization of 50,000 to 100,000 being the most desirable in terms of producing a composition with the most superior fire extinguishing performance, flame resistance and fuel resistance with respect to polar solvents.
  • Specific examples of the cationic polyamine based high molecular weight compound (A) include those detailed below, although it should be noted that the present invention is in no way limited by these specific examples.
  • A-I
    polyethyleneimine
    A-II
    N-substituted polyethyleneimine
    Examples of the N-substituted group
    include -CnH2n+1, -CONHCnH2n+1, -COCnH2n+1, and -(CH2CH2O)n-H (where n represents an integer of 1 to 6).
    A-III
    condensation products of melamine and formaldehyde
    A-IV
    condensation products of guanidine and formaldehyde
  • In the fire extinguishing composition of the present invention, additional cationic polyamine based high molecular weight compounds may be used in conjunction with the cationic polyamine based high molecular weight compound (A) used as the essential constituent. Examples of these compatible cationic polyamine based high molecular weight compounds include:
    Figure 00080001
    Figure 00080002
    Figure 00080003
    Figure 00080004
    Figure 00080005
    Figure 00080006
    Figure 00080007
  • A fire extinguishing composition of the present invention must not only display the type of performance required of a foam type fire extinguishing composition with rapid fire extinguishing performance, flame resistance, and an ability to retain a layer of foam on the liquid surface of both non-water soluble hazardous materials and water soluble hazardous materials, namely fuel resistance, but must also satisfy certain basic properties of specific gravity, pour point, viscosity, hydrogen ion concentration, sedimentation, and corrosiveness and the like as stipulated in the national certification regulations, which are based on a ministerial ordinance (Ministry of Home Affairs Ordinance No. 26) brought into effect on December 9, 1975 and defining the technical specifications relating to foam type fire extinguishing compositions. Consequently, in order to reach compatibility between fire extinguishing performance and basic performance, it is necessary to mix the main constituent of the fire extinguishing composition with a variety of other additives such as additional foam stabilizers, freezing point depressants, rust prevention agents, and pH regulators and the like.
  • A variety of cationic polyamine based high molecular weight compounds, such as those described above, can be used as the main constituent of a fire extinguishing composition which complies with the above requirements, but as mentioned above, it is a requirement that primary cationic groups within the compound account for no more than 40% by weight of the total cationic groups.
  • If a cationic polyamine based high molecular weight compound in which the proportion of primary cationic groups exceeds 40% by weight is used, then not only does sedimentation occur in an aqueous solution produced by mixing 3 to 6 parts by weight of the foam fire extinguishing composition concentrate with 97 to 94 parts of fresh water or sea water, which raises a dilution stability problem in that the composition does not satisfy one of the technical specifications of the Ministry of Home Affairs Ordinance No. 26, but furthermore, sedimentation can block the tips of the various types of nozzles used in actual fire fighting activity, resulting in unexpected situations which inhibit effective fire fighting.
  • Moreover, in terms of fire extinguishing performance, using a compound in which the proportion of primary cationic groups accounts for no more than 40% by weight of the total number of cationic groups results in even superior performance in terms of rapid fire extinguishing performance, flame resistance, fuel resistance, and reignition prevention performance.
  • Cationic polyamine based high molecular weight compounds in which the proportion of primary cationic groups accounts for no more than 40% by weight of the total number of cationic groups, and the secondary cationic groups account for at least 35% by weight of the total cationic groups, display even more superior effects in terms of fire extinguishing performance and dilution stability, and are consequently preferred.
  • Furthermore, in selecting a suitable cationic polyamine based high molecular weight compound, consideration of compatibility with additives such as additional foam stabilizers, freezing point depressants, rust prevention agents, and pH regulators, as well as consideration of other factors such as cost merit, safety with regards to both personnel and the environment, and the availability of the raw materials, results in polyethyleneimine or partially modified polyethyleneimine being used in preference.
  • Identification of the relative proportions of primary, secondary and tertiary cationic groups within the cationic polyamine based high molecular weight compound can be determined by using nuclear magnetic resonance spectroscopy to record a 13C-NMR spectrum, and then using the spectral peaks, chemical shift values, and integration curves to calculate the relative weight proportions of primary, secondary and tertiary cationic groups (-NH2, -NH-, -N= in the case of polyethyleneimine) within the molecule.
  • There are no particular restrictions on the method of manufacturing the cationic polyamine based high molecular weight compound according to the present invention, although a typical method of manufacturing polyethyleneimine comprises synthesizing ethyleneimine by a direct cyclodehydration of gaseous mono ethanolamine in the presence of a solid acid-base catalyst, and then subjecting the ethyleneimine produced by this method to a ring-opening polymerization in the presence of an acid catalyst to form polyethyleneimine. Reaction kinetics mean that polyethyleneimine manufactured in this manner will not be a perfectly linear macromolecule, but will rather be a high molecular weight compound with a branched structure comprising primary, secondary and tertiary amine groups, as shown in the chemical equation below. Furthermore, the acid catalyst used in the ring-opening polymerization of ethyleneimine may utilize any of the mineral acid, inorganic or organometallic based Lewis acids, although the branched structure will vary depending on the catalyst used, as will the ratio of primary, secondary and tertiary amines within the produced molecule.
    Figure 00120001
  • Furthermore, in order to improve fuel resistance, it is preferable that a surfactant (B) with an anionic hydrophilic group is also included in the fire extinguishing composition of the present invention. A surfactant with an anionic hydrophilic group undergoes an electrostatic interaction with the cationic polyamine based high molecular weight compound (A), and the surfactant in the present invention is a compound with at least one anionic hydrophilic group within each molecule.
  • Preferred anionic hydrophilic groups include groups such as -COOH, -SO3H, -OSO3H, and -OP(OH)2, with -SO3H being particularly desirable. Furthermore, in terms of counter ions for the cationic groups, compounds with organic or inorganic anionic groups may also be used.
  • The hydrophilic group of the surfactant may incorporate one or more of the same, or different anionic groups, or alternatively, an amphoteric ion type surfactant which incorporates a cationic hydrophilic group and/or a nonionic group in addition to the anionic hydrophilic group, is also possible. Of these various options, amphoteric ion type surfactants are preferred for compatibility reasons.
  • Examples of the hydrophobic group of the surfactant include aliphatic hydrocarbon groups of 6 or more carbon atoms, dihydrocarbyl siloxane chains, or fluorinated aliphatic groups of 3 to 20 carbon atoms and preferably 6 to 16 carbon atoms. Of these hydrophobic groups, fluorinated aliphatic groups are particularly desirable as they offer improved fuel resistance. Furthermore, the surfactant may also comprise a mixture of different surfactants with different hydrophobic groups.
  • The surfactants with an anionic hydrophilic group (B) used in the fire extinguishing composition of the present invention can be broadly classified into: (B-1) fluorine containing amino acid type amphoteric surfactants, (B-2) fluorine containing aminosulfonate type surfactants, (B-3) fluorine containing aminocarboxylate type surfactants, (B-4) fluorine containing trianion type amphoteric surfactants, (B-5) fluorine containing tricarboxylic acid type amphoteric surfactants, (B-6) fluorine containing sulfobetaine type amphoteric surfactants, (B-7) fluorine containing aminosulfate type surfactants, (B-8) fluorine containing sulfatobetaine type surfactants, (B-9) fluorine containing sulfobetaine type surfactants, (B-10) fluorine containing amine oxide type surfactants, and (B-11) other surfactants.
  • The fluorine containing amino acid type amphoteric surfactants B-1 are compounds represented by the general formula (B-1):
    Figure 00140001
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Y represents either -SO2- or -CO-, and Q1 and Q2 represent organic bivalent linking groups such as aliphatic hydrocarbon groups, aliphatic hydrocarbon groups substituted with hydroxyl groups, aromatic hydrocarbon groups, substituted aromatic hydrocarbon groups, or combinations thereof, with preferred groups including straight chain alkylene groups of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, the 2-methoxypropan-1,3-diyl group, the 2-ethoxypropan-1,3-diyl group, and the 2-propoxypropan-1,3-diyl group. R1 and R2 represent hydrogen atoms, aliphatic hydrocarbon groups of 1 to 12 carbon atoms, or aliphatic hydrocarbon groups which have been substituted with hydrophilic groups, or R1 and R2 may be linked together forming a ring with the adjacent nitrogen atom. A represents an anionic hydrophilic group such as -COO-, -SO3 -, -OSO3 -, or -OP(OH)O-. M represents a hydrogen atom, an alkali metal, an alkali earth metal, an ammonium group, or an organic cationic group.)
  • Specific examples of this (B-1) compound are shown below, although the present invention is not limited to the specific examples shown.
    Figure 00160001
    Figure 00160002
    Figure 00160003
    Figure 00160004
    Figure 00160005
    Figure 00160006
    Figure 00170001
    Figure 00170002
    Figure 00170003
    Figure 00170004
    Figure 00170005
    Figure 00170006
    Figure 00180001
    Figure 00180002
    Figure 00180003
    Figure 00180004
    Figure 00180005
    Figure 00180006
    Figure 00180007
    >
    Figure 00190001
    Figure 00190002
    Figure 00190003
  • The fluorine containing aminosulfonate type surfactants (B-2) are compounds represented by the general formula (B-2): Rf-Z-Q1-N(R)-Q2-SO2M (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents a bivalent linking group such as -SO2N(R1)-, -CON(R1)-,
    -(CH2CH2)iSO2N(R1)-, or compounds covered by the general formula
    Figure 00190004
    or the general formula
    Figure 00190005
    (where R1 is a hydrogen atom or an alkyl group of 1 to 12 carbon atoms, and i is an integer from 1 to 10), and Q1 represents a straight chain alkylene group of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, the 2-ethoxypropan-1,3-diyl group, or the 2-propoxypropan-1,3-diyl group.
  • R represents a hydrogen atom, an alkyl group of 1 to 3 carbon atoms, a hydroxyalkyl group, -Q2SO3M, or -(CH2)kCOOM (where k is an integer of 1 to 4), Q2 represents a straight chain alkylene group of 1 to 5 carbon atoms, the 2-hydroxypropan-1,3-diyl group, the 2-ethoxypropan-1,3-diyl group, the 2-propoxypropan-1,3-diyl group, or a bivalent linking group represented by the general formula below.
    Figure 00200001
    M represents a hydrogen atom, an alkali metal, an alkali earth metal, or a cationic atom or group of atoms represented by the formula below. -N(H)m(R4)4-m (In the formula, R4 represents an alkyl group of 1 to 3 carbon atoms, or a hydroxyalkyl group, and m is an integer of 0 to 4.))
  • Specific examples of this (B-2) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00210001
    Figure 00220001
  • The fluorine containing aminocarboxylate type surfactants (B-3) are compounds represented by the general formula (B-3):
    Figure 00230001
    (In the formula, Rf represents a polyfluoroalkyl group, a polyfluoroalkenyl group, a polyfluorocyclohexyl group, a polyfluorocyclohexyl alkyl group or a polyfluorocyclohexyl alkenyl group of 3 to 20 carbon atoms which may also incorporate oxygen atoms, and Z represents a linking group of one of the formulae below.
    Figure 00240001
    Figure 00240002
    Figure 00240003
    or
    Figure 00240004
    (In the formulae, R1 represents an alkyl group, an alkenyl group or an aromatic ring containing monovalent group incorporating of 1 to 18 carbon atoms, and i represents an integer of 1 to 3.) Q represents a bivalent linking group of one of the formula below.
    Figure 00250001
    Figure 00250002
    or
    Figure 00250003
    (In the formulae, l represents an integer of 1 to 6, m and n each represent an integer of 2 to 6, and p and q each represent the number 2 or 3 respectively.) Q1 and Q2 each represent a alkylene group of 1 to 3 carbon atoms. M1 and M2 each represent a hydrogen atom or an inorganic or an organic cation.)
  • Specific examples of this (B-3) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00260001
    Figure 00260002
    Figure 00260003
    Figure 00260004
    Figure 00260005
    Figure 00260006
    Figure 00270001
    Figure 00270002
    Figure 00270003
    Figure 00270004
    Figure 00270005
  • The fluorine containing trianion type amphoteric surfactants (B-4) are compounds represented by the general formula (B-4):
    Figure 00270006
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents a bivalent linking group, Q represents a straight chain alkylene group of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl
    group, -(CH2)m-O-(CH2)n- (where m and n are each integers from 2 to 6) or -(CH2)p-O-(CH2)2-O-(CH2)q- (where p and q each represent the number 2 or 3 respectively). Q1, Q2 and Q3 represent bivalent groups such as aliphatic hydrocarbon groups of 1 to 8 carbon atoms, aliphatic hydrocarbon groups of 1 to 8 carbon atoms with substituted hydroxyl groups, or bivalent groups represented by the general formula
    Figure 00280001
    (where in the formula, r represents either the number 1 or the number 2), A1 represents an anionic atom grouping
    of -SO3 - or -OSO3 -, A2 and A3 also represents an anionic atom grouping of -SO3 - or -OSO3 -, -COO-, or -OP(=O)(OH)O-, M1, M2 and M3 each represent a hydrogen atom or an inorganic or an organic cation, and X- represents an inorganic or an organic anion such as OH-, Cl-, Br-, I-, ClO4 -, 1/2SO4 2-, CH3SO4 -, NO3 -, CH3COO- or the phosphate ion.)
  • Specific examples of this (B-4) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00290001
    Figure 00300001
    Figure 00310001
    Figure 00320001
  • The fluorine containing tricarboxylic acid type amphoteric surfactants (B-5) are compounds represented by the general formula (B-5) :
    Figure 00330001
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, and Z
    represents -SO2-, -CO-, -(CH2)l-SO2-, -(CH2)l-CO- (where l represents an integer from 1 to 6), or a bivalent group
    represented by either the formula
    Figure 00330002
    or the formula
    Figure 00330003
    R1 represents the 2-hydroxyethyl group, a group represented by the general formula -(CH2)a-O-(CH2)b-CH3 (where a represents an integer from 2 to 10, and b represents an integer from 1 to 9), or an alkyl group of 1 to 12 carbon atoms, Q1 represents a straight chain alkylene group of 2 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group, or a bivalent group represented by the general formula -(CH2)d-O-(CH2)e- (where d and e each represent an integer from 2 to 6), X represents an inorganic or an organic anion, m1, m2 and m3 each represent an independent integer from 1 to 3, and M1, M2 and M3 each represent independently a hydrogen atom, or an inorganic or an organic cation.)
  • Specific examples of this (B-5) compound are shown below, although the present invention is not limited by the specific example shown.
    Figure 00340001
    Figure 00340002
    Figure 00340003
    Figure 00340004
    Figure 00340005
    Figure 00350001
    Figure 00350002
    Figure 00350003
    Figure 00350004
    Figure 00350005
    Figure 00350006
    Figure 00350007
    Figure 00350008
  • The fluorine containing sulfobetaine type amphoteric surfactants (B-6) are compounds represented by the general formula (B-6):
    Figure 00360001
    (In the formula, Rf represents a group comprising a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents a bivalent linking group incorporating a sulfonamide group or a carbonamide group, Q1, Q2 and Q3 each represent independently a bivalent aliphatic group of 1 to 12 carbon atoms, an aliphatic hydrocarbon group substituted with a hydroxyl group, an aromatic hydrocarbon group, or a bivalent group formed through a combination of the above groups. R represents a hydrogen atom, a hydrocarbyl group of 1 to 12 carbon atoms, or a -(CH2CH2O)iH or a -(CH2CH(CH3)O)iH group (where i represents an integer of 1 to 20), A represents an anionic atom grouping of -SO2 -, -COO-, -OSO2 -, or -OP(=O) (OH)O-, M1 and M2 each represent a hydrogen atom or an inorganic or an organic cation, and X represents an inorganic or an organic anion.)
  • Specific examples of this (B-6) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00370001
    Figure 00380001
  • The fluorine containing aminosulfate type surfactants (B-7) are compounds represented by the general formula (B-7):
    Figure 00390001
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents -SO2-, -CO-, a bivalent group represented by one of the formulae
    Figure 00390002
    Figure 00390003
    or -(CH2)a-CO- (where a represents an integer of 1 to 10), R1 represents a hydrogen atom, an alkyl group of 1 to 12 carbon atoms, a -(CH2)b-OR3 group or a -(CH2CH2O)d-R2 group (where b represents an integer from 1 to 10, d represents an integer of 1 to 20, and R3 represents a lower alkyl group or alkoxyl group), and Y represents -(CH2)e-, -(CH2)p-O-(CH2)2-O-(CH2)q- or -(CH2)g-O-(CH2)h- (where e represents an integer of 2 to 12, p and q each represent independently a value of 2 or 3, and g and h each represent independently an integer of 1 to 6). R2 represents a hydrogen atom, an alkyl group, alkenyl group, or hydroxyl substituted alkyl group of 1 to 18 carbon atoms, a -(CH2CH2)m-H group (where m represents an integer of 2 to 20), Q1OSO3M, Q1SO2M or (CH2)iCOOM (where i represents an integer from 1 to 4).
    Q1 represents a straight chain alkyl group of 2 to 12 carbon atoms, the 2-hydroxypropan-1,3-diyl group
    or -(CH2CH2O)k-CH2CH2- (where k represents an integer from 1 to 50). M represents a hydrogen atom or an inorganic or an organic cation.)
  • Specific examples of this (B-7) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00410001
    Figure 00420001
  • The fluorine containing sulfatobetaine type surfactants (B-8) are compounds represented by the general formula (B-8):
    Figure 00430001
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms, Z represents -SO2-, -CO-,
    Figure 00430002
    Figure 00430003
    or -(CH2)a-CO- (where a represents an integer of 1 to 10), R1 represents a hydrogen atom, an alkyl group of 1 to 12 carbon atoms, a -(CH2)b-OR3 group or a -(CH2CH2O)d-R2 group (where b represents an integer from 1 to 10, d represents an integer of 1 to 20, and R2 represents a lower alkyl group or alkoxyl group), and Y represents -(CH2)e-, -(CH2)p-O-(CH2)2-O-(CH2)q- or -(CH2)g-O-(CH2)h- (where e represents an integer of 2 to 12, p and q each represent independently a value of 2 or 3, and g and h each represent independently an integer of 1 to 6). R2 and R3 each represent independently an alkyl group, alkenyl group, hydroxyl substituted alkyl group, or aromatic substituted alkyl group of 1 to 18 carbon atoms, or a -(CH2CH2O)i-H group (where i represents an integer of 2 to 20), or alternatively R2 and R3 may be linked together to form a heterocyclic ring with the adjacent nitrogen atom, and Q1 represents a straight chain alkylene chain of 2 to 12 carbon atoms, the 2-hydroxypropan-1,3-diyl group
    or-(CH2CH2O)k-CH2CH2- (where k represents an integer from 1 to 50).)
  • Specific examples of this (B-8) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00450001
    Figure 00450002
    Figure 00450003
    Figure 00450004
    Figure 00460001
    Figure 00460002
    Figure 00460003
    Figure 00460004
  • The fluorine containing sulfobetaine type surfactants (B-9) are compounds represented by the general formula (B-9):
    Figure 00460005
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms which may incorporate an oxygen atom, or a fluorinated alicyclic group, Z represents a bivalent linking group, Q1 represents a straight chain alkylene chain of 1 to 6 carbon atoms, or -(CH2)m-O-(CH2)n- or -(CH2)p-O-(CH2)2-O-(CH2)q- (where m and n each represent an integer of 2 to 6, and p and q each represent independently a value of 2 or 3), Q2 represents a straight chain alkylene chain of 1 to 6 carbon atoms, the 2-hydroxypropan-1,3-diyl group or -(CH2CH2O)r-CH2CH2- (where r represents an integer from 1 to 3), and
    R1 and R2 each represent independently an alkyl group of 1 to 8 carbon atoms, an alkyl group or alkenyl group which incorporates 1 to 3 ether oxygen atoms, a benzyl group or a -(CH2CH2O)s-H group (where s represents an integer from 1 to 11).)
  • Specific examples of this (B-9) compound are shown below, although the present invention is not limited by the specific examples shown.
    Figure 00480001
    Figure 00480002
    Figure 00480003
    Figure 00480004
    Figure 00480005
    Figure 00490001
    Figure 00490002
    Figure 00490003
    Figure 00490004
    Figure 00500001
    Figure 00500002
    Figure 00500003
    Figure 00500004
    Figure 00500005
    Figure 00500006
  • In the compounds from B-1 to B-9 described above, M1, M2 and M3 each represent independently a hydrogen atom or an inorganic or an organic cation. Examples of preferred inorganic or organic cations include Li+, Na+, K+, Ca+, Mg+, [N(H)s(R)4-s]+ (where R is an alkyl group of 1 to 4 carbon atoms or a hydroxyethyl group, and s represents an integer from 0 to 4), or
    Figure 00510001
    In contrast, X represents an inorganic or an organic anion. Examples of preferred inorganic or organic anions include OH-, Cl-, Br-, I-, ClO4 -, 1/2SO4 -, CH3SO4 -, NO3 -, CH3COO- or the phosphate ion.
  • Furthermore, the fluorine containing amine oxide type surfactants (B-10) are compounds represented by the general formula (B-10):
    Figure 00510002
    (In the formula, Rf represents a fluorinated aliphatic group of 8 to 18 carbon atoms, or a fluorinated alicyclic group of 10 to 20 carbon atoms with either an ether oxygen atom or thioether linkage, Q represents -SO2- or -CO-, R1 represents H, an alkyl group of 1 to 6 carbon atoms, a halogenated alkyl group of 1 to 6 carbon atoms, -OH, -SH, an alkoxyl group of 1 to 6 carbon atoms, a thioalkyl group of 1 to 6 carbon atoms, -NO2, -CN, or NRR'- (where R and R' each represent H or an alkyl group of 1 to 6 carbon atoms), R2 and R3 each represent H, an alkyl group of 1 to 6 carbon atoms, a halogenated alkyl group of 1 to 6 carbon atoms, -OH, -SH, an alkoxyl group of 1 to 6 carbon atoms, a thioalkyl group of 1 to 6 carbon atoms, -NO2, -CN, NRR'- (where R and R' each represent H or an alkyl group of 1 to 6 carbon atoms), or an alicyclic group which incorporates a hetero atom, an alicyclic group which does not incorporate a hetero atom, or an alicyclic group in which either the entire alicyclic ring, or a portion thereof, is substituted with alkyl groups, and finally n is an integer from 2 to 6).
  • Specific examples of this (B-10) compound are the compounds represented by the formulae (B-10-a) to (B-10-o) shown below, although the present invention is not limited to the compounds shown.
    Figure 00530001
    Figure 00530002
    Figure 00530003
    Figure 00530004
    Figure 00530005
    Figure 00530006
    Figure 00530007
    Figure 00530008
    Figure 00540001
    Figure 00540002
    Figure 00540003
    Figure 00540004
    Figure 00540005
    Figure 00540006
    Figure 00540007
  • Examples of surfactants (B-11) other than the surfactants (B-1) to (B-10) which are able to be used in the fire extinguishing composition of the present invention include compounds represented by the formulae (B-11-a) to (B-11-g) shown below, although the present invention is not limited to the compounds shown.
    Figure 00550001
    B-11-b   C11H23CONHCH2CH2N(CH2COONa)2
    Figure 00550002
    Figure 00550003
    B-11-e   C8F17SO2N(C3H7)CH2COOK B-11-f   C8F17SO2N(C3H7)CH2CH2OSO3Na B-11-g   C7F15CON(C3H7)(CH2)3SO3Na
  • In those cases where a surfactant (B) is included in the fire extinguishing composition of the present invention, the mixing proportions of the cationic polyamine based high molecular weight compound (A) and the surfactant (B) should preferably be within a weight ratio range from 5:1 to 1:3, with ratios within a range from 3:1 to 1:1 being even more desirable.
  • By adding a polybasic acid compound (C) to a fire extinguishing composition of the present invention, the polybasic acid compound undergoes an electrostatic interaction with the polyethyleneimine or derivative thereof, thereby improving the flame resistance and fuel resistance of the composition even further.
  • Provided the polybasic acid compound (C) is a compound which incorporates an acid group within the molecule, there are no restrictions on the type or the number of acid groups, nor on the length of the carbon chain or the molecular weight, and any compound can be used. Furthermore, such a polybasic acid compound (C) is a compound with no surfactant properties, and suitable examples include dibasic, tribasic, tetrabasic, pentabasic or hexabasic acids of 3 to 24 carbon atoms with an aromatic group, an aliphatic group or a heterocyclic ring or the like, or the alkali metal salts or ammonium salts of such acids. The acid group in the polybasic acid compound (C) may be a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group or the like. Furthermore, in those cases where polybasic acid compounds are used, either a single compound, or two or more different compounds may be used in combination. Of these various polybasic acid compounds (C), dibasic acid compounds of 4 to 18 carbon atoms are particularly desirable from the viewpoint of compatibility.
  • Specific examples of the polybasic acid compound (C) include compounds represented by the formulae (C-1) to (C-32) shown below, as well as the alkali metal salts (Na salts, K salts, Li salts and the like) or ammonium salts thereof, although the present invention is not limited to these specific compounds.
    Figure 00570001
       (n is an integer of 2 to 12)
    Figure 00570002
    Figure 00570003
    Figure 00570004
    Figure 00570005
    Figure 00570006
    Figure 00570007
    Figure 00580001
    Figure 00580002
    Figure 00580003
    Figure 00580004
    Figure 00580005
    Figure 00580006
    C-14   HOOC―CH2―O―CH2―COOH C-15   HOOC―CH2―O―CH2CH2―O―CH2―COOH
    Figure 00590001
    Figure 00590002
    Figure 00590003
    Figure 00590004
       (m is an integer of 2 of 6)
    Figure 00590005
    Figure 00590006
    Figure 00600001
    Figure 00600002
    Figure 00600003
    Figure 00600004
    Figure 00600005
    Figure 00600006
    Figure 00610001
    Figure 00610002
       (l is an integer of 2 of 6)
    Figure 00610003
       (p is an integer of 2 of 6)
    Figure 00610004
       (q is an integer of 2 of 6)
    Figure 00610005
       (R1 is a hydrogen atom or methyl group, and n is an integer of 5 to 11)
  • In those cases where a polybasic acid compound (C) is included in the fire extinguishing composition of the present invention, the mixing proportions of the cationic polyamine based high molecular weight compound (A) and the polybasic acid compound (C) should preferably be within a weight ratio range from 5:1 to 1:3, with ratios within a range from 4:1 to 1:1 being even more desirable.
  • In those cases where a surfactant with an anionic hydrophilic group (B) and a polybasic acid compound (C) are included in the fire extinguishing composition of the present invention, the mixing proportions of the cationic polyamine based high molecular weight compound (A) with the surfactant with an anionic hydrophilic group (B) and the polybasic acid compound (C) will vary depending on the combination of the constituents, although typically weight ratios (B):[(A)+(C)] within a range from 2:1 to 1:50 are preferable, with ratios within a range from 1:1 to 1:10 being even more desirable. By maintaining the mixing ratio of the other constituents relative to the surfactant with an anionic hydrophilic group (B) within the above range, a water insoluble complex does not form with the surfactant with an anionic hydrophilic group (B), and so the foaming properties can be maintained. Even if the mixing ratio is greater than the above range, no marked deterioration is observed in foaming ability, flame resistance, heat resistance or fuel resistance, but by maintaining the mixing ratio within the above range, large increases in the viscosity of the fire extinguishing composition concentrate can be avoided, and corresponding reductions in the commercial value of the composition can be prevented.
  • The fire extinguishing composition of the present invention displays superior solubility stability in both concentrated and diluted forms, and as such offers excellent extended storage. Furthermore, because of the superior solubility and low viscosity of the composition, a strong concentrate with a high dilution ratio can be easily manufactured. The kinematic viscosity of a concentrate with a 3% dilution ratio can be suppressed to a value of no more than 100 mm2/s at 20°C, which results in excellent handling properties. Furthermore, because the amount of the cationic polyamine based high molecular weight compound (A) added can be kept to a reasonably small amount, little deleterious effect is observed on the performance of the composition, and the freezing point of the fire extinguishing composition concentrate can be kept below -5°C.
  • According to the present invention, in order to improve the fire extinguishing performance against non-polar solvents such as petroleum, a suitable amount of a surfactant (D) with a cationic hydrophilic group may also be included in the composition with the aim of effectively lowering the surface tension and the interfacial tension with petroleum of the aqueous solution of the fire extinguishing composition.
  • There are no restrictions on the surfactant with a cationic hydrophilic group (D) provided the surfactant incorporates a cationic hydrophilic group. Examples of the cationic hydrophilic group of the surfactant with a cationic hydrophilic group (D) include pyridinium salts, quaternary ammonium salts, imidazaolinium salts, and benzalkonium salts. Of these cationic hydrophilic groups, pyridinium salts and quaternary ammonium salts are preferred from the viewpoint of compatibility, and quaternary ammonium salts are particularly desirable. Furthermore, examples of suitable counter ions for the cationic group include organic and inorganic anions.
  • Examples of the hydrophobic group of the surfactant (D) include aliphatic hydrocarbon groups of 6 or more carbon atoms, dihydrocarbyl siloxane chains, or fluorinated aliphatic groups of 3 to 20 carbon atoms and preferably 6 to 16 carbon atoms. Of these surfactants (D), surfactants with fluorinated aliphatic groups are particularly desirable as they offer improved fire extinguishing performance.
  • Examples of the surfactant with a cationic hydrophilic group (D) include compounds represented by the general formula (D-1):
    Figure 00640001
    (In the formula, Rf represents a fluorinated aliphatic group of 3 to 20 carbon atoms which may also incorporate oxygen atoms, and Y represents a bivalent group such as -(CH2CH2)i-, -CH2CH2SCH2COO-, -(CH2CH2)i-SO2-, -(CH2CH2)i-CO-,
    Figure 00640002
    or
    Figure 00650001
    (where i represents an integer from 1 to 6). R represents a hydrogen atom or an aliphatic hydrocarbon group of 1 to 6 carbon atoms, and Q1 represents an aliphatic hydrocarbon group, an aliphatic hydrocarbon group substituted with a hydroxyl group, an aromatic hydrocarbon group or a substituted aromatic hydrocarbon group, although a straight chain alkylene group of 1 to 6 carbon atoms is preferred. R1 to R3 can represent the same group or different groups, and each represent a hydrogen atom or an aliphatic hydrocarbon group of 1 to 6 carbon atoms, and X- represents an organic or an inorganic anion.)
  • In addition, a variety of additives may also be added to a fire extinguishing composition of the present invention. Such additives include additional foam stabilizers, freezing point depressants, rust prevention agents, and pH regulators and the like.
  • Additional foam stabilizers are mainly additives used for adjusting the expansion ratio or drainage, and suitable examples include non-ionic surfactants such as glycerin aliphatic esters, propylene glycol fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene polyoxypropylene ethers, polyethylene glycol fatty acid esters, alkyl alkanol amides and alkyl polyglucosides; amphoteric surfactants such as betaine alkyl dimethylaminoacetate, alkyl dimethylamine oxides, alkyl carboxymethylhydroxyethyl imidazolium betaine, alkylamide propyl betaine, and alkylhydroxy sulfobetaine; as well as polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, carboxymethyl cellulose, gum arabic, sodium alginate, polypropylene glycol and polyvinyl resin.
  • Examples of suitable freezing point depressants include ethylene glycol, propylene glycol, the cellosolve compounds (ethyl cellosolve and butyl cellosolve), caribtol compounds (ethyl carbitol, butyl carbitol, hexyl carbitol and octyl carbitol), lower alcohols (isopropyl alcohol, butanol, octanol), and urea.
  • Rust prevention agents and pH regulators can utilize any of the various commonly known compounds, and there are no particular restrictions.
  • As follows is a description of a method of using a fire extinguishing composition of the present invention.
  • The fire extinguishing composition of the present invention can be used as a fire extinguishing agent by using known methods for blowing in, or mixing, air, carbon dioxide, nitrogen, a low boiling point fluorocarbon such as difluorodicholoromethane, or another suitable non-flammable gas with the composition.
  • In other words, because the viscosity of the fire extinguishing composition concentrate of the present invention is comparatively low, a strong concentrate can be stored in a storage tank, and then at the time of use, normal methods can be used for introducing the composition into a water flow and adjusting the dilution ratio at some point before the mixture reaches a device such as a fire extinguishing apparatus or foam nozzle. Foam is then generated by blowing in, or mixing a non-flammable gas such as air, and the foam is discharged over the flame or sent under the surface of the flame. Alternatively, the composition can be prediluted to a usable concentration, and then used to fill devices such as fire extinguishers, parking lot fire extinguishing equipment, fixed fire extinguishing equipment for hazardous materials, or packaged fire extinguishing equipment.
  • Furthermore, examples of suitable methods for discharging the fire extinguishing composition of the present invention include the use of any of those discharge nozzles commonly used in the industry for delivering fire extinguishing compositions, and desired performance levels are able to be achieved.
  • Examples of suitable nozzles include the foam chamber and ISO standard compliant nozzle most widely used for petroleum tanks and the like, UL standard compliant nozzles, MIL standard compliant nozzles, hand nozzles attached to chemical fire engines and the like, air foam hand nozzles, SSI nozzles, the Japan Marine Standards Association specified HK nozzle, as well as foam heads used in driving lot fire extinguishing equipment, and spray heads and the like.
  • As described above, fire extinguishing compositions of the present invention can be used in a wide variety of discharge methods. Furthermore, a fire extinguishing composition of the present invention can also be applied to a wider range of fires than conventional fire extinguishing compositions. Specific examples of the use of the compositions of this invention include deployment on chemical fire engines and concentrate carrier vehicles employed by public fire fighting organizations, as well as deployment at petroleum sites or industrial sites with crude oil tanks or other hazardous material facilities, airport facilities, harbor facilities or shipping vessels involved in the loading of hazardous materials, gas stands, underground parking lots, buildings, tunnels and bridges. Furthermore, in addition to hazardous liquid material fires, the compositions can also be used on general fires such as timber fires in housing, or rubber and plastic fires such as tire fires.
  • In addition, because fire extinguishing compositions of the present invention display superior qualities of fuel resistance, flame resistance, heat resistance and foam forming properties, the strong concentrate or diluted aqueous solution can also be used for extinguishing cooking oil or salad oil fires by pouring directly onto the combustion surface to smother or cool the fire. Furthermore, a fire extinguishing composition of the present invention also displays superior stability of the diluted solution, and so the diluted solution can be used for filling spray cans and then used as simple household fire extinguishers.
  • Moreover, the foam generated from a fire extinguishing composition of the present invention is able to exist in a stable manner on aqueous solutions based on water, sol-gel type materials, sludge and pollutants, as well as various organic solvents and organic materials. Consequently, the volatilization of volatile materials from this wide range of materials can be suppressed, enabling the compositions of the present invention to also be used for preventing the ignition of flammable materials, and preventing the generation of odors.
  • Furthermore, the fire extinguishing compositions of the present invention may also be used in combination with powdered fire extinguishing compositions, protein based foam fire extinguishing compositions and synthetic interface foam fire extinguishing compositions comprising materials such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, ammonium sulfate, ammonium phosphate, and calcium carbonate.
  • EXAMPLES
  • As follows is a more detailed description of the present invention with reference to examples. In the following examples and comparative examples, all % values refer to weight percentage values.
  • Synthetic Example 1
  • In a stainless steel flask equipped with a thermometer, a nitrogen gas inlet tube, a stirrer, and a reflux condenser fitted with a dehydration tube, was placed 60 g of acetic acid, and 473 g of polyethyleneimine with a weight ratio between the primary amine, secondary amine, and tertiary amine groups of 39:45:16, and a dehydration reaction was then permitted to proceed under an atmosphere of nitrogen for 10 hours at a temperature of 180 to 240°C. Following completion of the reaction, ion exchange water was added to the reaction products to yield solid matter which was 50% by weight N-acylated polyethyleneimine (A-II-1). Analysis of the N-acylated polyethyleneimine (A-II-1) revealed that 10% of the total cationic groups had been acylated.
  • Synthetic Example 2
  • In a stainless steel flask equipped with a thermometer, a nitrogen gas inlet tube, a stirrer, and a reflux condenser fitted with a dehydration tube, was placed 60 g of acetic acid, and 473 g of polyethyleneimine with a weight ratio between the primary amine, secondary amine, and tertiary amine groups of 55:33:12, and a dehydration reaction was then permitted to proceed under an atmosphere of nitrogen for 10 hours at a temperature of 180 to 240°C. Following completion of the reaction, ion exchange water was added to the reaction products to yield solid matter which was 50% by weight N-acylated polyethyleneimine (A-II-2). Analysis of the N-acylated polyethyleneimine (A-II-2) revealed that 10% of the total cationic groups had been acylated.
  • Analysis Example
  • FIG. 1 is an NMR spectrum of a sample of a polyethyleneimine (A-I) representing the cationic polyamine based high molecular weight compound (A), which was measured using an EX-27 FT-NMR device manufactured by NEC Corporation, Ltd. The measurement conditions are listed below.
  • Solvent: D2O
  • Measurement temperature: 28°C
  • Measurement mode: COM
  • Nucleus observed: 13C
  • Illuminating nucleus: 1H (67.70 MHz)
  • Pulse width: 4.1 µs
  • The ratios between the primary amine, secondary amine and tertiary amine groups were calculated from the integral curve for the peaks A to G in FIG. 1, using the following formulae. Amount of primary amine (a) = F+G Amount of secondary amine (b) = (F+D/2+E)/2 Amount of tertiary amine (c) = (A+B+(C-F)/2)/3 Primary amine proportion (weight %) = a/(a+b+c) x 100 Secondary amine proportion (weight %) = b/(a+b+c) x 100 Tertiary amine proportion (weight %) = c/(a+b+c) x 100
  • Table 1 shows the relative proportions of primary amine, secondary amine and tertiary amine groups measured by the above method for polyethyleneimine (A-I) samples representing the cationic polyamine based high molecular weight compound (A), including "EPOMIN P-1050" manufactured by Nippon Shokubai Co. Ltd. (hereafter abbreviated as (A-I-1)), "LUPASOL P" manufactured by BASF Corporation Ltd. of Germany (and hereafter abbreviated as (A-I-2)), N-acylated polyethyleneimine (A-II-1) and (A-II-2) produced by the synthetic example 1 and the synthetic example 2 respectively, as well as derivatives thereof.
    Cationic polyamine based high molecular weight compound (A) Primary amines Secondary amines Tertiary amines
    A-I-1 38 % by 42 % by 20 % by
    weight weight weight
    A-I-2 44 % by 33 % by 23 % by
    weight weight weight
    A-II-1 35 % by 45 % by 20 % by
    weight weight weight
    A-II-2 50 % by 30 % by 20 % by
    weight weight weight
  • Examples 1 to 40 Composition
  • Cationic polyamine based high molecular weight compound (A)   6%
  • Surfactant with an anionic hydrophilic group (B)   3%
  • Polybasic acid compound (C)   4%
  • Butyl carbitol   15%
  • Ethylene glycol   15%
  • Water   57%
  • A cationic polyamine based high molecular weight compound (A), a surfactant with an anionic hydrophilic group (B), and a polybasic acid compound (C) as shown in table 2 and table 3 below, were mixed together in the proportions listed above, and a small amount of 5(N) hydrochloric acid was added to adjust the pH to 7.5. The external appearance, freezing point, kinematic viscosity as measured at -10°C, and the amount of sedimentation in a 3% solution diluted with water from the water supply, for the produced fire extinguishing compositions (3% concentrates), are shown in Table 2 and Table 3 in accordance with the technical specifications listed in the Ministry of Home Affairs Ordinance No. 26.
    Example No. (A) (B) (C) External appearance Freezing point Kinematic viscosity Sedimentation amount
    Example 1 A-I-1 B-1-a C-1 (n=4) totally -19°C 126 cst trace
    transparent
    Example 2 A-I-1 B-1-m C-1 (n=4) totally -18°C 133 cst trace
    transparent
    Example 3 A-I-1 B-1-t C-1 (n=6) totally -17°C 132 cst trace
    transparent
    Example 4 A-II-1 B-1-e C-2 totally -17°C 100 cst trace
    transparent
    Example 5 A-II-1 B-1-h C-4 totally -17°C 144 cst trace
    transparent
    Example 6 A-II-1 B-1-n C-3 totally -18°C 122 cst trace
    transparent
    Example 7 A-II-1 B-1-m C-13 totally -16°C 119 cst trace
    transparent
    Example 8 A-I-1 B-1-u C-16 totally -19°C 136 cst trace
    transparent
    Example 9 A-I-1 B-2-a C-23 totally -18°C 140 cst trace
    transparent
    Example 10 A-I-1 B-2-c C-1 (n=4) totally -18°C 97 cst trace
    transparent
    Example 11 A-I-1 B-2-j C-24 totally -17°C 111 cst trace
    transparent
    Example 12 A-I-1 B-2-o C-31 (q=2) totally -20°C 125 cst trace
    transparent
    Example 13 A-II-1 B-2-g C-28 totally -16°C 133 cst trace
    transparent
    Example 14 A-II-1 B-2-c C-1 (n=6) totally -18°C 124 cst trace
    transparent
    Example 15 A-II-1 B-2-c C-16 totally -17°C 129 cst trace
    transparent
    Example 16 A-II-1 B-2-k C-10 totally -17°C 130 cst trace
    transparent
    Example 17 A-I-1 B-3-i C-17 totally -16°C 117 cst trace
    transparent
    Example 18 A-II-1 B-3-d C-7 totally -16°C 140 cst trace
    transparent
    Example 19 A-I-1 B-4-b C-1 (n=4) totally -19°C 118 cst trace
    transparent
    Example 20 A-I-1 B-4-e C-14 totally -18°C 123 cst trace
    transparent
    Example No. (A) (B) (C) External appearance Freezing point Kinematic viscosity Sedimentation amount
    Example 21 A-I-1 B-4-g C-14 totally -16°C 117 cst trace
    transparent
    Example 22 A-I-1 B-5-c C-1 (n=2) totally -17°C 134 cst trace
    transparent
    Example 23 A-I-1 B-5-i C-10 totally -17°C 128 cst trace
    transparent
    Example 24 A-I-1 B-6-d D-1 (n=4) totally -18°C 139 cst trace
    transparent
    Example 25 A-I-1 B-6-c C-11 totally -18°C 131 cst trace
    transparent
    Example 26 A-I-1 B-6-b C-28 totally -19°C 113 cst trace
    transparent
    Example 27 A-II-1 B-6-a C-16 totally -16°C 122 cst trace
    transparent
    Example 28 A-II-1 B-6-f C-22 totally -20°C 137 cst trace
    transparent
    Example 29 A-II-1 B-6-e C-3 totally -18°C 140 cst trace
    transparent
    Example 30 A-II-1 B-6-a C-26 totally -17°C 117 cst trace
    transparent
    Example 31 A-II-1 B-7-g C-16 totally -18°C 130 cst trace
    transparent
    Example 32 A-I-1 B-7-k C-18 totally -16°C 109 cst trace
    transparent
    Example 33 A-I-1 B-8-d C-23 totally -17°C 122 cst trace
    transparent
    Example 34 A-I-1 B-8-e C-24 totally -18°C 150 cst trace
    transparent
    Example 35 A-I-1 B-9-a C-28 totally -18°C 149 cst trace
    transparent
    Example 36 A-II-1 B-9-e C-31 totally -17°C 128 cst trace
    transparent
    Example 37 A-I-1 B-9-I C-1 (n=8) totally -17°C 134 cst trace
    transparent
    Example 38 A-I-1 B-9-a C-1 (n=4) totally -16°C 133 cst trace
    transparent
    Example 39 A-I-1 B-10-a C-1 (n=4) totally -18°C 162 cst trace
    transparent
    Example 40 A-I-1 B-10-b C-10 totally -19°C 169 cst trace
    transparent
  • In addition, fire extinguishing experiments were conducted on a non-polar solvent (a solvent for which the solubility in 100 g of water at 20°C is less than 1 g) based on the methods described in the Ministry of Home Affairs Ordinance No. 26, and the results of these experiments are shown in table 4, table 5, table 6 and table 7. Specifically, 200 L of n-heptane was used as fuel in a fire model with a combustion surface area of 4 m2 (B-20 scale), and the precombustion period was set at 1 minute. The dilute solutions for use in the fire extinguishing experiments were generated by diluting the concentrated solutions shown in each of the examples with water by a factor of 33.3 times. Each dilute solution was then used for filling a pressurized tank with 100 liters of solution, and subsequent foam generation was carried out with a standard foam generation nozzle used for testing aqueous film forming foam fire extinguishing compositions (as per national certification), using a nitrogen pressure of 7 kg/cm2, a discharge speed of 10 liters/minute, and a total discharge time of 5 minutes. The temperature of the dilute solution was adjusted to a value of 20°C±2°C in each case. Experiments were conducted on the time taken for a 90% coverage of the combustion surface area (90% control time) as an indication of the relative superiority of the foam expansion speed, and the time taken for complete fire extinguishing which represents the most salient measure of fire extinguishing speed. In addition, a vapor seal experiment which acts as an indication of reignition prevention, and a burn back experiment which acts as an indication of flame resistance were also performed.
    Diluting water used Dilution ratio Combustion solvent 90% control time Extinguishing time (seconds) Vapor seal experiment Burn back experiment
    Example 1 fresh water 3% n-heptane 30 seconds 71 no ignition 5 cm2
    sea water 3% n-heptane 31 seconds 86 no ignition 20 cm2
    Example 2 fresh water 3% n-heptane 30 seconds 78 no ignition 10 cm2
    sea water 3% n-heptane 36 seconds 84 no ignition 10 cm2
    Example 3 fresh water 3% n-heptane 33 seconds 68 no ignition 6 cm2
    sea water 3% n-heptane 34 seconds 80 no ignition 15 cm2
    Example 4 fresh water 3% n-heptane 31 seconds 73 no ignition 20 cm2
    sea water 3% n-heptane 36 seconds 79 no ignition 30 cm2
    Example 5 fresh water 3% n-heptane 36 seconds 80 no ignition 0 cm2
    sea water 3% n-heptane 33 seconds 85 no ignition 0 cm2
    Example 6 fresh water 3% n-heptane 33 seconds 73 no ignition 8 cm2
    sea water 3% n-heptane 37 seconds 78 no ignition 11 cm2
    Example 7 fresh water 3% n-heptane 30 seconds 69 no ignition 0 cm2
    sea water 3% n-heptane 32 seconds 76 no ignition 20 cm2
    Example 8 fresh water 3% n-heptane 31 seconds 72 no ignition 0 cm2
    sea water 3% n-heptane 31 seconds 78 no ignition 0 cm2
    Example 9 fresh water 3% n-heptane 29 seconds 67 no ignition 2 cm2
    sea water 3% n-heptane 28 seconds 72 no ignition 3 cm2
    Example 10 fresh water 3% n-heptane 36 seconds 80 no ignition 30 cm2
    sea water 3% n-heptane 34 seconds 82 no ignition 35 cm2
    Example 11 fresh water 3% n-heptane 35 seconds 79 no ignition 0 cm2
    sea water 3% n-heptane 36 seconds 87 no ignition 0 cm2
    Example 12 fresh water 3% n-heptane 30 seconds 84 no ignition 10 cm2
    sea water 3% n-heptane 33 seconds 88 no ignition 20 cm2
    Diluting water used Dilution ratio Combustion solvent 90% control time Extinguishing time (seconds) Vapor seal experiment Burn back experiment
    Example 13 fresh water 3% n-heptane 29 seconds 73 no ignition 0 cm2
    sea water 3% n-heptane 28 seconds 79 no ignition 0 cm2
    Example 14 fresh water 3% n-heptane 37 seconds 86 no ignition 10 cm2
    sea water 3% n-heptane 35 seconds 93 no ignition 0 cm2
    Example 15 fresh water 3% n-heptane 35 seconds 77 no ignition 20 cm2
    sea water 3% n-heptane 34 seconds 81 no ignition 30 cm2
    Example 16 fresh water 3% n-heptane 34 seconds 82 no ignition 0 cm2
    sea water 3% n-heptane 35 seconds 78 no ignition 0 cm2
    Example 17 fresh water 3% n-heptane 38 seconds 90 no ignition 50 cm2
    sea water 3% n-heptane 39 seconds 96 no ignition 10 cm2
    Example 18 fresh water 3% n-heptane 37 seconds 87 no ignition 0 cm2
    sea water 3% n-heptane 38 seconds 91 no ignition 0 cm2
    Example 19 fresh water 3% n-heptane 29 seconds 71 no ignition 18 cm2
    sea water 3% n-heptane 29 seconds 74 no ignition 31 cm2
    Example 20 fresh water 3% n-heptane 31 seconds 75 no ignition 22 cm2
    sea water 3% n-heptane 33 seconds 77 no ignition 0 cm2
    Example 21 fresh water 3% n-heptane 29 seconds 70 no ignition 0 cm2
    sea water 3% n-heptane 28 seconds 75 no ignition 0 cm2
    Example 22 fresh water 3% n-heptane 35 seconds 88 no ignition 45 cm2
    sea water 3% n-heptane 36 seconds 86 no ignition 30 cm2
    Example 23 fresh water 3% n-heptane 33 seconds 90 no ignition 0 cm2
    sea water 3% n-heptane 34 seconds 93 no ignition 10 cm2
    Example 24 fresh water 3% n-heptane 29 seconds 75 no ignition 0 cm2
    sea water 3% n-heptane 28 seconds 74 no ignition 0 cm2
    Diluting water used Dilution ratio Combustion solvent 90% control time Extinguishing time (seconds) Vapor seal experiment Burn back experiment
    Example 25 fresh water 3% n-heptane 32 seconds 76 no ignition 20 cm2
    sea water 3% n-heptane 31 seconds 76 no ignition 30 cm2
    Example 26 fresh water 3% n-heptane 35 seconds 82 no ignition 26 cm2
    sea water 3% n-heptane 36 seconds 90 no ignition 12 cm2
    Example 27 fresh water 3% n-heptane 31 seconds 71 no ignition 0 cm2
    sea water 3% n-heptane 29 seconds 76 no ignition 0 cm2
    Example 28 fresh water 3% n-heptane 29 seconds 74 no ignition 30 cm2
    sea water 3% n-heptane 28 seconds 76 no ignition 35 cm2
    Example 29 fresh water 3% n-heptane 31 seconds 82 no ignition 10 cm2
    sea water 3% n-heptane 33 seconds 85 no ignition 0 cm2
    Example 30 fresh water 3% n-heptane 31 seconds 81 no ignition 38 cm2
    sea water 3% n-heptane 30 seconds 87 no ignition 25 cm2
    Example 31 fresh water 3% n-heptane 36 seconds 95 no ignition 50 cm2
    sea water 3% n-heptane 38 seconds 98 no ignition 60 cm2
    Example 32 fresh water 3% n-heptane 37 seconds 97 no ignition 5 cm2
    sea water 3% n-heptane 35 seconds 93 no ignition 0 cm2
    Example 33 fresh water 3% n-heptane 36 seconds 99 no ignition 0 cm2
    sea water 3% n-heptane 36 seconds 91 no ignition 0 cm2
    Example 34 fresh water 3% n-heptane 31 seconds 93 no ignition 14 cm2
    sea water 3% n-heptane 31 seconds 92 no ignition 15 cm2
    Example 35 fresh water 3% n-heptane 30 seconds 80 no ignition 10 cm2
    sea water 3% n-heptane 33 seconds 83 no ignition 30 cm2
    Example 36 fresh water 3% n-heptane 31 seconds 80 no ignition 20 cm2
    sea water 3% n-heptane 33 seconds 79 no ignition 26 cm2
    Diluting water used Dilution ratio Combustion solvent 90% control time Extinguishing time (seconds) Vapor seal experiment Burn back experiment
    Example 37 fresh water 3% n-heptane 29 seconds 83 no ignition 50 cm2
    sea water 3% n-heptane 28 seconds 85 no ignition 35 cm2
    Example 38 fresh water 3% n-heptane 33 seconds 78 no ignition 48 cm2
    sea water 3% n-heptane 35 seconds 76 no ignition 25 cm2
    Example 39 fresh water 3% n-heptane 40 seconds 102 no ignition 50 cm2
    sea water 3% n-heptane 39 seconds 99 no ignition 0 cm2
    Example 40 fresh water 3% n-heptane 38 seconds 100 no ignition 60 cm2
    sea water 3% n-heptane 38 seconds 103 no ignition 45 cm2
  • Furthermore, fire extinguishing experiments were also conducted on a polar solvent (a solvent for which the solubility in 100 g of water at 20°C is at least 1 g) based on the methods described in the Fire Fighting Hazards No. 71, and the results of these experiments are shown in table 8, table 9, table 10 and table 11. Specifically, 400 L of each solvent was used as fuel in a fire model with a combustion surface area of 4 m2 (B-20 scale: coefficient 1), and the precombustion period was set at 1 minute. The dilute solutions for use in the fire extinguishing experiments were generated by diluting the concentrated solutions shown in each of the examples with water by a factor of 33.3 times. Each dilute solution was then used for filling a pressurized tank with 100 liters of solution, and subsequent foam generation was carried out with a standard foam generation nozzle used for testing aqueous film forming foam fire extinguishing compositions (as per national certification), using a nitrogen pressure of 7 kg/cm2, a discharge speed of 10 liters/minute, and a total discharge time of 5 minutes. The temperature of the dilute solution was adjusted to a value of 20°C±2°C in each case. Experiments were conducted on the time taken for a 90% coverage of the combustion surface area (90% control time) as an indication of the relative superiority of the foam expansion speed (and also as a measure of the fuel resistance of the foam relative to the polar solvent), and the time taken for complete fire extinguishing which represents the most salient measure of fire extinguishing speed. In addition, a vapor seal experiment which acts as an indication of reignition prevention, and a burn back experiment which acts as an indication of flame resistance were also performed in the same manner as for the non-polar solvents described above.
    Example No. Diluting water used Dilution ratio Combustion solvent Foam magnification (times) 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2)
    Example 1 fresh water 3% 2-propanol 6.2 42 111 no ignition 65
    sea water 3% 2-propanol 6.4 44 112 no ignition 70
    Example 2 fresh water 3% 2-propanol 6.3 45 115 no ignition 68
    sea water 3% 2-propanol 6.3 46 113 no ignition 75
    Example 3 fresh water 3% methanol 6.3 34 70 no ignition 10
    sea water 3% methanol 6.3 38 65 no ignition 15
    Example 4 fresh water 3% acetone 6.2 30 81 no ignition 45
    sea water 3% acetone 6.2 30 85 no ignition 36
    Example 5 fresh water 3% acetone 6.0 33 79 no ignition 33
    sea water 3% acetone 6.0 33 77 no ignition 31
    Example 6 fresh water 3% propylene oxide 6.1 29 55 no ignition 20
    sea water 3% propylene oxide 6.1 27 54 no ignition 26
    Example 7 fresh water 3% 2-propanol 6.3 41 111 no ignition 75
    sea water 3% 2-propanol 6.4 45 108 no ignition 68
    Example 8 fresh water 3% acetone 6.1 30 75 no ignition 20
    sea water 3% acetone 6.3 29 81 no ignition 18
    Example 9 fresh water 3% methanol 6.2 29 68 no ignition 14
    sea water 3% methanol 6.3 28 62 no ignition 10
    Example 10 fresh water 3% methanol 6.1 30 74 no ignition 20
    sea water 3% methanol 6.1 31 72 no ignition 33
    Example No. Diluting water used Dilution ratio Combustion solvent Foam magnification (times) 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2)
    Example 11 fresh water 3% acetone 6.3 35 82 no ignition 36
    sea water 3% acetone 6.2 38 77 no ignition 17
    Example 12 fresh water 3% methanol 5.9 26 61 no ignition 5
    sea water 3% methanol 6.0 29 63 no ignition 14
    Example 13 fresh water 3% propylene oxide 6.4 26 57 no ignition 20
    sea water 3% propylene oxide 6.3 24 56 no ignition 26
    Example 14 fresh water 3% 2-propanol 6.2 39 119 no ignition 64
    sea water 3% 2-propanol 6.2 33 104 no ignition 62
    Example 15 fresh water 3% acetone 6.0 39 87 no ignition 40
    sea water 3% acetone 6.0 41 81 no ignition 39
    Example 16 fresh water 3% acetone 6.3 44 90 no ignition 24
    sea water 3% acetone 6.4 43 95 no ignition 27
    Example 17 fresh water 3% acetone 6.1 37 88 no ignition 75
    sea water 3% acetone 6.3 34 79 no ignition 66
    Example 18 fresh water 3% 2-propanol 5.8 45 131 no ignition 76
    sea water 3% 2-propanol 5.7 47 122 no ignition 80
    Example 19 fresh water 3% acetone 6.1 38 83 no ignition 33
    sea water 3% acetone 6.1 37 80 no ignition 44
    Example 20 fresh water 3% propylene oxide 6.1 24 61 no ignition 10
    sea water 3% propylene oxide 6.2 26 59 no ignition 11
    Example No. Diluting water used Dilution ratio Combustion solvent Foam magnification (times) 90% control time (seconds) Extinguishing time (seconds) Burn back Vapor seal experiment experiment (cm2)
    Example 21 fresh water 3% acetone 5.9 31 94 no ignition 32
    sea water 3% acetone 6.0 35 98 no ignition 36
    Example 22 fresh water 3% propylene oxide 6.2 24 55 no ignition 20
    sea water 3% propylene oxide 6.2 23 54 no ignition 22
    Example 23 fresh water 3% acetone 6.1 29 82 no ignition 18
    sea water 3% acetone 6.1 28 80 no ignition 19
    Example 24 fresh water 3% 2-propanol 6.1 47 122 no ignition 55
    sea water 3% 2-propanol 6.0 44 126 no ignition 74
    Example 25 fresh water 3% methanol 6.3 25 59 no ignition 10
    sea water 3% methanol 6.2 24 57 no ignition 13
    Example 26 fresh water 3% acetone 6.0 30 86 no ignition 33
    sea water 3% acetone 6.0 29 83 no ignition 31
    Example 27 fresh water 3% acetone 6.1 32 85 no ignition 29
    sea water 3% acetone 6.1 33 86 no ignition 22
    Example 28 fresh water 3% methanol 6.2 22 58 no ignition 22
    sea water 3% methanol 6.2 23 56 no ignition 18
    Example 29 fresh water 3% 2-propanol 6.5 43 119 no ignition 80
    sea water 3% 2-propanol 6.3 46 112 no ignition 68
    Example 30 fresh water 3% acetone 6.0 26 91 no ignition 40
    sea water 3% acetone 6.0 24 98 no ignition 35
    Example No. Diluting water used Dilution ratio Combustion solvent Foam magnification (times) 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2)
    Example 31 fresh water 3% methanol 5.7 24 89 no ignition 36
    sea water 3% methanol 6.1 28 91 no ignition 17
    Example 32 fresh water 3% acetone 6.2 27 89 no ignition 34
    sea water 3% acetone 6.2 29 84 no ignition 44
    Example 33 fresh water 3% methanol 6.0 27 91 no ignition 33
    sea water 3% methanol 6.0 31 90 no ignition 32
    Example 34 fresh water 3% methanol 5.9 23 64 no ignition 13
    sea water 3% methanol 6.2 24 67 no ignition 15
    Example 35 fresh water 3% 2-propanol 6.1 45 139 no ignition 77
    sea water 3% 2-propanol 6.1 47 136 no ignition 69
    Example 36 fresh water 3% 2-propanol 6.2 44 113 no ignition 77
    sea water 3% 2-propanol 6.2 45 117 no ignition 61
    Example 37 fresh water 3% 2-propanol 6.2 49 131 no ignition 76
    sea water 3% 2-propanol 6.1 48 134 no ignition 71
    Example 38 fresh water 3% methanol 6.5 21 61 no ignition 22
    sea water 3% methanol 6.4 24 69 no ignition 23
    Example 39 fresh water 3% methanol 6.3 26 76 no ignition 9
    sea water 3% methanol 6.1 27 79 no ignition 6
    Example 40 fresh water 3% methanol 6.0 33 85 no ignition 20
    sea water 3% methanol 6.0 31 84 no ignition 35
  • Experimental methods and Evaluation standards Foam magnification:
  • Foam generated from an experimental standard foam generation nozzle used for testing aqueous film forming foam fire extinguishing compositions (as per national certification) was used to fill a foam collection tank (volume V: 1400 ml, weight W1 g) as prescribed in the Ministry of Home Affairs Ordinance No. 26, and the total weight (W2 g) of the foam filled collection tank was measured. The foam magnification was then calculated using the formula below. Expansion ratio = VW2 - W1
  • 90% Control time:
  • This value represents the time period from commencement of the foam discharge, until 90% of the combustion surface area of the fire model (combustion surface area 4 m2: B-20 scale) was covered with foam.
  • Extinguishing time:
  • This value represents the time period from commencement of the foam discharge until the flames on the fire model had been completely extinguished.
  • Vapor seal experiment:
  • On three occasions, namely 1 minute, 7 minutes and 11 minutes after the completion of the foam discharge, a torch was ignited and the flame brought close enough to touch the foam surface. The flame was then moved across the entire foam surface to observe whether or not the fuel would reignite.
  • Burn back experiment:
  • 15 minutes after the completion of the foam discharge, a 225 cm2 hole was opened up in the center of the fire model, and the fuel thereunder was forcibly reignited. Five minutes after this ignition, the degree to which the combustion surface had expanded was evaluated.
  • Comparative Examples 1 to 21
  • For comparative purposes, fire extinguishing compositions (3% concentrates) were prepared using the same compositions and mixing methods as the examples described above, but with the exception that a polyethyleneimine or an N-propyl polyethyleneimine in which the amount of primary amine groups exceeds 40% and the amount of secondary amine groups is less than 35%, was used as the cationic polyamine based high molecular weight compound (A) of the present invention.
  • The compounds used for the cationic polyamine based high molecular weight compound (A), the surfactant with an anionic hydrophilic group (B) and the polybasic acid compound (C) are shown in table 12, together with the external appearance, freezing point, kinematic viscosity, and the amount of sedimentation in a 3% solution diluted with water from the water supply, for the produced fire extinguishing compositions (3% concentrates) carried out in accordance with the technical specifications listed in the Ministry of Home Affairs Ordinance No. 26.
  • In addition, fire extinguishing experiments were conducted for thixotropic water soluble high molecular weight material containing fire extinguishing compositions (incorporating a fluorine based surfactant, a commercially available product), and the results of the experiments for non-polar solvents are shown in table 13, table 14 and table 15, whereas the results of the experiments for polar solvents are shown in table 16, table 17 and table 18. In these tables the number in the right hand most column refers to the example corresponding with that particular comparative example.
    Comparative Example No. (A) (B) (C) External appearance Freezing point Kinematic viscosity Sedimentation amount
    1 A-I-2 B-1-a C-1 (n=4) totally transparent -19°C 126 cst 0.5 v%
    2 A-I-2 B-1-t C-1 (n=6) totally transparent -17°C 132 cst 0.5 v%
    3 A-II-2 B-1-h C-4 totally transparent -17°C 144 cst 0.3 v%
    4 A-II-2 B-1-m C-13 totally transparent -16°C 119 cst 0.4 v%
    5 A-I-2 B-2-a C-23 totally transparent transparent -18°C 140 cst 0.5 v%
    6 A-I-2 B-2-j C-24 totally transparent -17°C 111 cst 0.6 v%
    7 A-II-2 B-2-g C-28 totally transparent -16°C 133 cst 0.3 v%
    8 A-II-2 B-2-c C-16 totally transparent -17°C 129 cst 0.2 v%
    9 A-I-2 B-3-i C-17 totally transparent -16°C 117 cst 0.5 v%
    10 A-I-2 B-4-b C-1 (n=4) totally transparent -19°C 118 cst 0.5 v%
    11 A-I-2 B-4-g C-14 totally transparent -16°C 117 cst 0.5 v%
    12 A-I-2 B-5-i C-10 totally transparent -17°C 128 cst 0.4 v%
    13 A-I-2 B-6-c C-11 totally transparent -18°C 131 cst 0.5.%
    14 A-II-2 B-6-a C-16 totally transparent -16°C 122 cst 0.5 v%
    15 A-II-2 B-6-e C-3 totally transparent -18°C 140 cst 0.4 v%
    16 A-II-2 B-7-g C-16 totally transparent -18°C 130 cst 0.3 v%
    17 A-I-2 B-8-d C-23 totally transparent -17°C 122 cst 0.5 v%
    18 A-I-2 B-9-a C-28 totally transparent -18°C 149 cst 0.5 v%
    19 A-I-2 B-9-I C-1 (n=8) totally transparent -17°C 134 cst 0.4 v%
    20 A-I-2 B-10-b C-1 (n=4) totally transparent -18°C 162 cst 0.5 v%
    21 A-I-2 B-10-b C-10 totally transparent -19°C 169 cst trace
    Comparative Example Diluting water used Dilution ratio Combustion solvent 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2) Corresponding Example
    1 fresh water 3% n-heptane 46 111 no ignition 100 1
    sea water 3% n-heptane 50 127 no ignition 97
    2 fresh water 3% n-heptane 44 119 no ignition 50 3
    sea water 3% n-heptane 45 135 no ignition 120
    3 fresh water 3% n-heptane 50 131 no ignition 100 5
    sea water 3% n-heptane 48 133 no ignition 122
    4 fresh water 3% n-heptane 41 108 no ignition 90 7
    sea water 3% n-heptane 43 125 no ignition 80
    5 fresh water 3% n-heptane 39 150 no ignition 90 9
    sea water 3% n-heptane 44 177 no ignition 154
    6 fresh water 3% n-heptane 50 164 no ignition 99 11
    sea water 3% n-heptane 47 172 no ignition 112
    7 fresh water 3% n-heptane 45 156 no ignition 130 13
    sea water 3% n-heptane 43 168 no ignition 140
    Comparative Example Diluting water used Dilution ratio Combustion solvent 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2) Corresponding Example
    8 fresh water 3% n-heptane 42 129 no ignition 100 15
    sea water 3% n-heptane 44 146 no ignition 122
    9 fresh water 3% n-heptane 53 153 no ignition 166 17
    sea water 3% n-heptane 55 176 no ignition 177
    10 fresh water 3% n-heptane 38 131 no ignition 188 19
    sea water 3% n-heptane 40 148 no ignition 130
    11 fresh water 3% n-heptane 42 120 no ignition 98 21
    sea water 3% n-heptane 41 125 no ignition 70
    12 fresh water 3% n-heptane 42 142 no ignition 120 23
    sea water 3% n-heptane 45 144 no ignition 129
    13 fresh water 3% n-heptane 37 114 no ignition 189 25
    sea water 3% n-heptane 38 115 no ignition 150
    14 fresh water 3% n-heptane 46 164 no ignition 123 27
    sea water 3% n-heptane 48 152 no ignition 144
    Comparative
    Example
    Diluting
    water used
    Dilution ratio Combustion
    solvent
    90% control
    time
    (seconds)
    Extinguishing time
    (seconds)
    Vapor seal
    experiment
    Burn back
    experiment
    (cm2)
    Corresponding
    Example
    15 fresh water 3% n-heptane 43 153 no ignition 118 29
    sea water 3% n-heptane 42 160 no ignition 150
    16 fresh water 3% n-heptane 49 180 no ignition 200 31
    sea water 3% n-heptane 46 197 no ignition 120
    17 fresh water 3% n-heptane 43 142 no ignition 120 33
    sea water 3% n-heptane 48 157 no ignition 102
    18 fresh water 3% n-heptane 45 141 no ignition 111 35
    sea water 3% n-heptane 47 149 no ignition 122
    19 fresh water 3% n-heptane 39 163 no ignition 167 37
    sea water 3% n-heptane 40 174 no ignition 155
    20 fresh water 3% n-heptane 59 181 no ignition 180 39
    sea water 3% n-heptane 53 191 no ignition 168
    21 fresh water 3% n-heptane 71 253 no ignition 235
    sea water 3% n-heptane 77 283 no ignition 250
    Comparative
    Example
    Diluting
    water used
    Dilution
    ratio
    %
    Combustion
    solvent
    Foam magnification
    (times)
    90% control time
    (seconds)
    Extinguishing time
    (seconds)
    Vapor seal
    experiment
    Burn back
    experiment
    (cm2)
    Corresponding
    Example
    1 fresh water 3% 2-propanol 6.3 56 171 no ignition 211 1
    sea water 3% 2-propanol 6.1 59 187 no ignition 153
    2 fresh water 3% methanol 6.2 45 114 no ignition 95 3
    sea water 3% methanol 6.3 44 118 no ignition 75
    3 fresh water 3% acetone 5.9 50 137 no ignition 100 5
    sea water 3% acetone 6.1 51 142 no ignition 90
    4 fresh water 3% 2-propanol 6.2 66 205 no ignition 185 7
    sea water 3% 2-propanol 6.2 70 194 no ignition 154
    5 fresh water 3% methanol 6.2 47 135 no ignition 99 9
    sea water 3% methanol 6.3 46 123 no ignition 77
    6 fresh water 3% acetone 6.3 52 143 no ignition 112 11
    sea water 3% acetone 6.3 51 133 no ignition 123
    7 fresh water 3% propylene oxide 6.3 41 126 no ignition 95 13
    sea water 3% propylene oxide 6.3 42 127 no ignition 90
    Comparative Example Diluting water used Dilution ratio % Combustion solvent Foam magnification (times) 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2) Corresponding Example
    8 fresh water 3% acetone 6.1 50 142 no ignition 123 15
    sea water 3% acetone 6.2 49 163 no ignition 115
    9 fresh water 3% acetone 6.0 49 178 no ignition 203 17
    sea water 3% acetone 6.1 50 193 no ignition 177
    10 fresh water 3% acetone 6.0 51 135 no ignition 180 19
    sea water 3% acetone 6.1 52 131 no ignition 175
    11 fresh water 3% acetone 6.1 46 142 no ignition 235 21
    sea water 3% acetone 6.0 48 139 no ignition 201
    12 fresh water 3% acetone 6.0 44 141 no ignition 154 23
    sea water 3% acetone 6.0 43 164 no ignition 132
    13 fresh water 3% methanol 6.2 40 106 no ignition 94 25
    sea water 3% methanol 6.1 41 115 no ignition 88
    14 fresh water 3% acetone 6.0 45 139 no ignition 120 27
    sea water 3% acetone 6.0 43 135 no ignition 116
    Comparative Example Diluting water used Dilution ratio % Combustion solvent Foam magnification (times) 90% control time (seconds) Extinguishing time (seconds) Vapor seal experiment Burn back experiment (cm2) Corresponding Example
    15 fresh water 3% 2-propanol 6.3 53 181 no ignition 200 29
    sea water 3% 2-propanol 6.3 57 170 no ignition 185
    16 fresh water 3% methanol 5.9 40 200 no ignition 160 31
    sea water 3% methanol 6.0 39 216 no ignition 144
    17 fresh water 3% methanol 5.9 41 149 no ignition 120 33
    sea water 3% methanol 6.0 43 146 no ignition 109
    18 fresh water 3% 2-propanol 6.1 61 202 no ignition 277 35
    sea water 3% 2-propanol 6.0 58 200 no ignition 255
    19 fresh water 3% 2-propanol 6.3 58 180 no ignition 188 37
    sea water 3% 2-propanol 6.3 55 131 no ignition 164
    20 fresh water 3% acetone 6.2 37 174 no ignition 70 39
    sea water 3% acetone 6.2 37 169 no ignition 65
    21 fresh water 3% 2-propanol 6.2 80 not performed -
    sea water 3% 2-propanol 6.0 78 not performed -

Claims (7)

  1. A fire extinguishing composition comprising a cationic polyamine based high molecular weight compound (A) which incorporates primary, secondary, and tertiary cationic groups within each molecule and wherein said primary cationic groups account for no more than 40% by weight of all cationic groups.
  2. A fire extinguishing composition according to claim 1 further comprising a surfactant with an anionic hydrophilic group (B).
  3. A fire extinguishing composition according to claim 1 further comprising a polybasic acid compound (C).
  4. A fire extinguishing composition according to claim 1, wherein secondary cationic groups in said cationic polyamine based high molecular weight compound (A) account for at least 35% by weight of all cationic groups.
  5. A fire extinguishing composition according to claim 1, wherein said cationic polyamine based high molecular weight compound (A) is polyethyleneimine or a derivative thereof.
  6. A fire extinguishing composition according to claim 1, wherein said polybasic acid compound (C) is a dibasic acid compound of 4 to 18 carbon atoms.
  7. A fire extinguishing composition according to claim 1, wherein said surfactant with an anionic hydrophilic group (B) is a fluorine based surfactant with a fluorinated aliphatic group of 3 to 20 carbon atoms as a hydrophobic group.
EP20010116661 2001-07-13 2001-07-13 Fire extinguishing composition Expired - Lifetime EP1275417B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60140529T DE60140529D1 (en) 2001-07-13 2001-07-13 Fire-extinguishing composition
EP20010116661 EP1275417B1 (en) 2001-07-13 2001-07-13 Fire extinguishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20010116661 EP1275417B1 (en) 2001-07-13 2001-07-13 Fire extinguishing composition

Publications (2)

Publication Number Publication Date
EP1275417A1 true EP1275417A1 (en) 2003-01-15
EP1275417B1 EP1275417B1 (en) 2009-11-18

Family

ID=8177991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010116661 Expired - Lifetime EP1275417B1 (en) 2001-07-13 2001-07-13 Fire extinguishing composition

Country Status (2)

Country Link
EP (1) EP1275417B1 (en)
DE (1) DE60140529D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777764B1 (en) * 2001-07-11 2007-11-20 다이니혼 잉키 가가쿠 고교 가부시키가이샤 Fire extinguishing agent
CN110124243A (en) * 2018-02-08 2019-08-16 浙江睦田消防科技开发有限公司 A kind of sea water resistance high-expansion foam extinguishing agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654579B1 (en) * 2016-04-11 2016-09-06 주식회사 라인안전산업 Neutral reinforced fire extinguishing agent composition having excellent fire extinguishing property and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230566A (en) * 1983-05-31 1984-12-25 大日本インキ化学工業株式会社 Composition for compounding fire extinguishing agent and aqueous foam fire extinguishing agent
US4536298A (en) * 1983-03-30 1985-08-20 Dainippon Ink And Chemicals, Inc. Aqueous foam fire extinguisher
WO1996005889A1 (en) * 1994-08-25 1996-02-29 Dynax Corporation Fluorochemical foam stabilizers and film formers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536298A (en) * 1983-03-30 1985-08-20 Dainippon Ink And Chemicals, Inc. Aqueous foam fire extinguisher
JPS59230566A (en) * 1983-05-31 1984-12-25 大日本インキ化学工業株式会社 Composition for compounding fire extinguishing agent and aqueous foam fire extinguishing agent
WO1996005889A1 (en) * 1994-08-25 1996-02-29 Dynax Corporation Fluorochemical foam stabilizers and film formers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002183659, retrieved from STN-INTERNATIONAL accession no. 102:206152 CA *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777764B1 (en) * 2001-07-11 2007-11-20 다이니혼 잉키 가가쿠 고교 가부시키가이샤 Fire extinguishing agent
CN110124243A (en) * 2018-02-08 2019-08-16 浙江睦田消防科技开发有限公司 A kind of sea water resistance high-expansion foam extinguishing agent
CN110124243B (en) * 2018-02-08 2021-05-11 浙江睦田消防科技开发有限公司 Seawater-resistant high-expansion foam extinguishing agent

Also Published As

Publication number Publication date
DE60140529D1 (en) 2009-12-31
EP1275417B1 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US6518345B2 (en) Fire extinguishing composition
US4049556A (en) Foam fire extinguishing agent
JP3678735B2 (en) Foam extinguishing agent that does not contain fluorine-based surfactant
EP3218070B1 (en) Fire fighting foaming compositions
EP0774998B1 (en) Synergistic surfactant compositions and fire fighting concentrates thereof
US5833874A (en) Fire extinguishing gels and methods of preparation and use thereof
US4042522A (en) Aqueous wetting and film forming compositions
JPWO2018066538A1 (en) Fire extinguishing agent
US4090967A (en) Aqueous wetting and film forming compositions
CA2063992C (en) Alcohol resistant aqueous film forming firefighting foam
KR100852964B1 (en) Fire-extinguishing chemical
US11712592B2 (en) Wetting agent composition for extinguishing fires
JPH06506614A (en) Alcohol-resistant water-based film-forming firefighting foam
CA2351344A1 (en) Aqueous foaming compositions, foam compositions, and preparation of foam compositions
AU655518B2 (en) Fire retarding and extinguishing composite
US6231778B1 (en) Aqueous foaming fire extinguishing composition
EP1275417B1 (en) Fire extinguishing composition
CA1065327A (en) Fluorinated compounds
JPS61100266A (en) Fire extinguishing drug compounding composition and aqueous foam fire extinguishing agent
KR100777764B1 (en) Fire extinguishing agent
JP2001079108A (en) Fire extinguishing chemical
JPH0112503B2 (en)
US6814880B1 (en) Water based liquid foam extinguishing formulation
JP4524503B2 (en) Fire extinguishing agent
JPS5838571A (en) Fire fighting agent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030415

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20050301

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIC CORPORATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60140529

Country of ref document: DE

Date of ref document: 20091231

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200611

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200701

Year of fee payment: 20

Ref country code: DE

Payment date: 20200630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60140529

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210712