EP1275007A1 - Device for detecting the position and/or rotational speed and/or rotational direction of a rotating part - Google Patents

Device for detecting the position and/or rotational speed and/or rotational direction of a rotating part

Info

Publication number
EP1275007A1
EP1275007A1 EP01929312A EP01929312A EP1275007A1 EP 1275007 A1 EP1275007 A1 EP 1275007A1 EP 01929312 A EP01929312 A EP 01929312A EP 01929312 A EP01929312 A EP 01929312A EP 1275007 A1 EP1275007 A1 EP 1275007A1
Authority
EP
European Patent Office
Prior art keywords
segment
rotating part
length
type
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01929312A
Other languages
German (de)
French (fr)
Inventor
Joachim Schenk
Mario Peters
Steffen Hofmann
Lambros Dalakuras
Volker Breunig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1275007A1 publication Critical patent/EP1275007A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2492Pulse stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor

Definitions

  • the invention is based on a device for position and / or speed detection of a rotating part.
  • a generic device is already known in which two magnetic field sensors are arranged offset by a certain angle depending on the number of magnetic poles.
  • the magnetic rotating part has four equally large magnetic poles in an alternating north-south distribution. Since there is no absolute self-locking with an adjustment drive, the motor shaft can be rotated via its drive. If the respective magnetic poles are of the same length with respect to their circumferential length, use with only one Hall sensor for determining the direction of rotation on the basis of a Hall sensor signal is not possible. The unique position information is lost.
  • the object of the invention is to obtain further information, in particular with regard to the position and direction of rotation of the rotating part, with only one sensor with a simple structure of the arrangement.
  • the task is solved by the features of the independent claim.
  • the device according to the invention for position detection of a rotating part contains at least one rotating part which comprises at least four segments, at least two segments consisting of a first segment type and the at least two further segments consisting of a second segment type, the two segment types being distinguished by a sensor.
  • the segment types can preferably differ in their magnetic or optical properties or in terms of resistance, voltage level, polarity, etc.
  • the rotating part contains at least four magnetic or optical poles, which form at least two pole pairs, and are arranged alternately in the circumferential direction.
  • this rotational position of the turned part is directly recognizable when turning. Due to the different circumferential length of the respective (magnetically or optically coded) segments of the two segment types, the direction of rotation and the rotational position of the turned part can be determined with the aid of a sensor. The speed can be estimated over the segment duration and calculated over the period, which is based on the symmetrically arranged segment types. The direction of rotation results from the change in the duty cycle, which is based on the asymmetrical segments (segments of the same type of segment of different circumferential length or segments of different circumferential length). The rotational position can be determined directly from the duty cycle, which goes back to the asymmetrical segments.
  • This additional information can be obtained by exchanging the conventional rotary part symmetrically coded in accordance with the invention can be achieved in a particularly simple manner without having to change the complete mechanical construction, in particular of the motor.
  • This also saves any second sensor that may be present, which usually provides additional information for detecting the direction of rotation or for position detection.
  • moving to the final adjustment position or additional position detection, for example via a limit switch can be dispensed with.
  • the additional information of the asymmetrical pole lengths can be used to determine the rotational position with minimal inaccuracy when energized again.
  • FIG. 1 shows a first
  • FIG. 2 shows a second structure of the rotating part with the associated sensor arrangement
  • FIG. 3 shows typical signal profiles
  • FIGS. 4 to 9 flow diagrams for signal evaluation.
  • a rotating part 10 is designed as an asymmetrically polarized ring magnet.
  • the rotating part 10 has eight pole pairs, each of which is formed from a magnetic south pole (S1-S8) and an associated magnetic north pole (N1-N8). All subsequent polarity-related information can also be assigned to the other polarity.
  • a first magnetic south pole S1 and a first magnetic north pole N1 form the first pole pair.
  • the first magnet Tische Sudpol Sl has a circumferential length LSI
  • the first magnetic north pole Nl has a circumferential length LNl.
  • the total circumferential length L1 of the first pole pair results from the circumferential length LSI and LNl.
  • a second magnetic south pole S2 has a circumferential length LS2
  • a second magnetic north pole N2 has a circumferential length LN2.
  • the circumferential length L1 of the first pole pair is the same as the circumferential length L2 of the second pole pair.
  • the circumferential length LNx of the associated magnetic north poles Nx increases to the same extent. However, the circumferential length Lx of the pole pairs x is constant.
  • a magnetic field sensor 12 is provided, which detects the magnetic field of the rotating part 10 and emits a corresponding output signal to the signal processor 14.
  • an adjusting drive 16 which moves the rotating part 10 is controlled, the characteristic sizes of which are fed to the signal processing 14.
  • the round, rotating part 10 consists of three pole pairs.
  • the first magnetic south pole S1 is at an angle of 45 °
  • the first magnetic north pole N1 is at an angle of 75 °
  • the second magnetic south pole S2 is at an angle of 50 °
  • the second magnetic north pole N2 is at an angle of 70 °
  • the third magnetic south pole S3 limited by an angle of 55 ° and the third magnetic north pole N3 by an angle of 65 °.
  • the individual south or north poles are also referred to below as segments.
  • Figure 3 is the time course of the output signal of the magnetic field sensor 12 for the arrangement shown in FIG. 2, for left-hand rotation LL above, for right-hand rotation RL below.
  • the circumferential length LNx of the respective north pole Nx corresponds to the segment length of a segment of a first segment type
  • the circumferential length LSx of the respective south pole Sx corresponds to the segment length of a segment of a second segment type.
  • the length LSx, LNx of the magnetic south or north poles Sx, Nx is preferably selected so that the respective magnetic pole can be clearly assigned on the basis of this length.
  • the circumferential length Lx of a pole pair x is for everyone
  • the rotating part 10 is preferably a magnetic ring which is usually arranged on the motor shaft of the electromotive adjusting drive 16 or is connected to a part moved by the adjusting drive 16, so that the adjusting drive 16 moves the magnetic ring.
  • step 90 the polarity of the current magnetic pole is determined on the basis of the output signal of the magnetic field sensor 12, query 93. In the signal curve shown in FIG. field sensor 12 the value logic one, with a Sudpol the value logic zero.
  • a loss of position can be detected in the event of a deviation. In this case, corresponding information is stored in step 95.
  • step 101 The program sequence “motor status” is then processed, step 101, as detailed in FIG. 5.
  • the status of the adjustment drive 16 is queried, query 103. If the adjustment drive 16 is not activated, this suggests a passive motor adjustment or external adjustment, step 105.
  • the program sequence following step 105 is shown and will be described later in Figure 6.
  • the adjusting drive 16 has been specifically controlled, the direction of rotation is determined in step 107. The direction of rotation of the motor is known based on the targeted control If the adjusting drive 16 rotates to the right, the reciprocal of the time between the rising edges is used as the rotational speed, step 109. If the adjusting drive 16 rotates to the left, the reciprocal of the time between the falling edges is used as the rotational speed, step 111.
  • the criterion for this is a signal change of the magnetic field sensor 12. If an impulse (change) occurred, the activation counter and the edge counter are incremented, step 133.
  • the edge counter detects every further edge for the later position determination.
  • the activation payer recognizes the start of a movement of the adjusting drive 16. If, after a minimum pause to be defined, there is another edge change without a change of edges, the activation payer is incremented.
  • query 135 whether the edge type of the magnetic field sensor pulse occurring (rising, falling) deviates from the previous edge type. If the flank types do not match, the direction of rotation detection follows immediately, step 139. If the currently occurring flank type matches the last flank type (ie in non-regular operation), a loss of position is concluded, step 137. In this case, for example, the adjustment drive could 16 as a precaution at slower speeds.
  • Step 137 follows step 137.
  • step 139 The direction of rotation detection, step 139, is explained in more detail in FIG.
  • the speed as described below in FIG. 8, is determined, step 151.
  • FIG. 8 shows the program sequence with the detection of the exceeding of the minimum speed.
  • the absolute segment cycle time measured namely the time between two edge changes (for example the time period TS1 as shown in FIG. 3), step 155.
  • the measured time is determined by the polarity-correct (LS or LN) average segment length (in this example LS2 or LN2 ) divided by the geometry of the rotating part 10, step 157.
  • the mean segment length of the north poles Nx is that of the second norpol N2, since its length LN2 lies between the first length L1 of the first north pole Nl and the third long LN3 of the third north pole N3.
  • the length LS2 of the second south pole S2 is that of the second norpol N2, since its length LN2 lies between the first length L1 of the first north pole Nl and the third long LN3 of the third north pole N3. The same applies to the length LS2 of the second south pole S2.
  • the error in determining the rotational speed is minimized.
  • the type of the first flank change is used to determine the polarity-correct middle segment length LS2, LN2.
  • a north pole Nx is traversed on a first rising flank, so that that of the second north pole N2 is used as the middle segment length LN2. With a falling first edge, this suggests a Sudpol Sx to be traversed.
  • the associated polarity-correct average segment length is that of the second south pole S2, LS2.
  • the tolerance / error of the calculated rotational speed is a maximum of 12% in the arrangement according to FIG. 2, so that a sufficiently precise rotational speed can be determined.
  • an edge counter must also be used for safety reasons, for later checking / correction.
  • step 161 After the subroutine "rotation speed determination" shown in FIG. 8 has been processed, a jump is made in step 161 in FIG. 7.
  • the segment angle is measured in step 161.
  • the first motor angle position can be Known of the rotating part 10 known segment lengths and the speed, step 163. This is carried out for a second segment, steps 165, 167.
  • the direction of rotation can be determined by changing the angular position, step 169. This is followed by the position determination according to step 171 , which is shown in more detail in Figure 9.
  • the current position of the adjusting drive 16 results from the angular position plus the number of flanks paid, which the flank counter determined in step 133, step 173. Further detection of the direction of rotation is possible via the sequences of the same levels, the same flanks and / or flank-related period duration measurement / comparison.
  • any other coding of the movable part 10 is possible, for example optical coding with the corresponding sensors.
  • the movable part 10 has an asymmetrical arrangement of dark and light-coded sections.
  • the north poles Nx according to FIGS. 1 and 2 corresponded, for example, to dark sections, the south poles Sx to light sections or vice versa.
  • the optical sensor outputs binary information depending on whether a light or a dark segment has just been run through.
  • All sensor arrangements can be operated according to this principle, which can distinguish the sensors from having to go through two different segment types. In particular, the segment change must be reliably recognized.

Abstract

The invention relates to a device for detecting the position and/or rotational speed and/or rotational direction a rotating part. The inventive device comprises at least one rotating part (10) having at least four segments (Nx, Sx), whereby at least two segments (Nx) are of a first segment type (N) and the at least two other segments (Sx) are of another segment type (S), whereby both segment types (N, S) can be differentiated by a sensor (12). The device is characterized in that the segment length (LN1, LS1) of a first segment (N1, S1) of the first segment type (N, S) significantly differs from the segment length (LN2, LS2) of a second segment (NS, S2) of the first and/or second segment type (N, S). The rotational direction can be detected due to the asymmetry of the segments.

Description

VORRICHTUNG ZUR POSITIONS- UND/ODER DREHZAHL- UND/ODER DREHRICHTUNGS-ERKENNUNG EINES ROTIERENDEN TEILSDEVICE FOR DETECTING THE POSITION AND / OR SPEED AND / OR DIRECTION OF A ROTATING PART
Stand der TechnikState of the art
Die Erfindung geht aus von einer Vorrichtung zur Positions- und/oder Drehzahlerkennung eines rotierenden Teils. Aus der DE 196 23 101 AI ist bereits eine gattungsgemaße Vorrichtung bekannt, bei der zwei Magnetfeldsensoren in Abhängigkeit von der magnetischen Polzahl um einen bestimmten Winkel versetzt angeordnet sind. Das magnetische Drehteil weist vier gleich große magnetische Pole in abwechselnder Nord-Sud-Verteilung auf. Da bei einem VerStellantrieb keine absolute Selbsthemmung bestehen muss, kann die Motorwelle über ihren Antrieb verdreht werden. Sind die jeweiligen Magnetpole bezüglich ihrer Umfangslange gleich lang, so ist eine Anwendung mit nur einem Hallsensor zur Bestimmung der Drehrichtung anhand eines Hallsensorsignals nicht möglich. Die eindeutige Positionsinformation geht verloren.The invention is based on a device for position and / or speed detection of a rotating part. From DE 196 23 101 AI a generic device is already known in which two magnetic field sensors are arranged offset by a certain angle depending on the number of magnetic poles. The magnetic rotating part has four equally large magnetic poles in an alternating north-south distribution. Since there is no absolute self-locking with an adjustment drive, the motor shaft can be rotated via its drive. If the respective magnetic poles are of the same length with respect to their circumferential length, use with only one Hall sensor for determining the direction of rotation on the basis of a Hall sensor signal is not possible. The unique position information is lost.
Der Erfindung liegt die Aufgabe zugrunde, mit nur einem Sensor bei einem einfachen Aufbau der Anordnung noch weitergehende Informationen, insbesondere bezüglich der Lage und Drehrichtung des Drehteils, zu erhalten. Die Aufgabe wird gelost durch die Merkmale des unabhängigen Anspruchs. Vorteile der ErfindungThe object of the invention is to obtain further information, in particular with regard to the position and direction of rotation of the rotating part, with only one sensor with a simple structure of the arrangement. The task is solved by the features of the independent claim. Advantages of the invention
Die erfindungsgemaße Vorrichtung zur Positionserkennung ei- nes rotierenden Teils enthalt zumindest ein Drehteil, das zumindest vier Segmente umfasst, wobei zumindest zwei Segmente aus einer ersten Segmentart und die zumindest zwei weiteren Segmente aus einer zweiten Segmentart bestehen, wobei die beiden Segmentarten durch einen Sensor unterscheid- bar sind. Sie zeichnet sich dadurch aus, dass sich die Segmentlange eines ersten Segments der ersten Segmentart signifikant von der Segmentlange eines zweiten Segments der ersten Segmentart beziehungsweise aller weiteren Segmente unterscheidet. Die Segmentarten können sich vorzugsweise in ihren magnetischen oder optischen Eigenschaften oder hinsichtlich des Widerstands, der Spannungshohe, der Polarität etc. unterscheiden. Das Drehteil enthalt zumindest vier magnetische oder optische Pole, die zumindest zwei Polpaare bilden, und in Umfangsrichtung abwechselnd angeordnet sind. Hierdurch ist diese Drehlage des Drehteils beim Drehen direkt erkennbar. Durch die unterschiedliche Umfangslange der jeweiligen (magnetisch oder optisch codierten) Segmente der beiden Segmentarten kann mit Hilfe eines Sensors die Drehrichtung und die Drehlage des Drehteils ermittelt werden. Die Drehzahl kann über die Segmentdauer eingeschätzt und über die Periodendauer errechnet werden, die auf den symmetrisch angeordneten Segmentartenubergangen basiert. Die Drehrichtung ergibt sich aus der Änderung des Tastverhalt- nisses, das auf den asymmetrischen Segmenten (Segmente glei- eher Segmentart unterschiedlicher Umfangslange bzw. Segmente unterschiedlicher Umfangslange) basiert. Die Drehlage kann direkt aus dem Tastverhaltnis ermittelt werden, das auf die asymmetrischen Segmente zurückgeht. Diese Zusatzinformationen können durch Austausch des herkömmlichen symmetrisch durch das erfmdungsgemaß unsymmetrisch codierte Drehteil in besonders einfacher Weise erzielt werden, ohne dass die komplette mechanische Konstruktion insbesondere des Motors geändert werden musste. Damit lasst sich auch ein eventuell vorhandener zweiter Sensor einsparen, der in der Regel zu- satzliche Informationen zur Drehrichtungserkennung oder zur Positionserkennung liefert. Bei Motoren mit nur einem Sensor kann auf das Anfahren der Verstellendposition oder auf eine zusatzliche Positionserkennung beispielsweise über einen Endschalter verzichtet werden. Bei einer Fremdverstellung mit unversorgtem Steuergerat ist über die Zusatzinformation der unsymmetrischen Pollangen bei Wiederbestromung eine Drehlagenermittlung mit minimaler Ungenauigkeit möglich.The device according to the invention for position detection of a rotating part contains at least one rotating part which comprises at least four segments, at least two segments consisting of a first segment type and the at least two further segments consisting of a second segment type, the two segment types being distinguished by a sensor. are cash. It is characterized by the fact that the segment length of a first segment of the first segment type differs significantly from the segment length of a second segment of the first segment type or of all further segments. The segment types can preferably differ in their magnetic or optical properties or in terms of resistance, voltage level, polarity, etc. The rotating part contains at least four magnetic or optical poles, which form at least two pole pairs, and are arranged alternately in the circumferential direction. As a result, this rotational position of the turned part is directly recognizable when turning. Due to the different circumferential length of the respective (magnetically or optically coded) segments of the two segment types, the direction of rotation and the rotational position of the turned part can be determined with the aid of a sensor. The speed can be estimated over the segment duration and calculated over the period, which is based on the symmetrically arranged segment types. The direction of rotation results from the change in the duty cycle, which is based on the asymmetrical segments (segments of the same type of segment of different circumferential length or segments of different circumferential length). The rotational position can be determined directly from the duty cycle, which goes back to the asymmetrical segments. This additional information can be obtained by exchanging the conventional rotary part symmetrically coded in accordance with the invention can be achieved in a particularly simple manner without having to change the complete mechanical construction, in particular of the motor. This also saves any second sensor that may be present, which usually provides additional information for detecting the direction of rotation or for position detection. In the case of motors with only one sensor, moving to the final adjustment position or additional position detection, for example via a limit switch, can be dispensed with. In the case of a third-party adjustment with an uncontrolled control unit, the additional information of the asymmetrical pole lengths can be used to determine the rotational position with minimal inaccuracy when energized again.
Weitere zweckmäßige Weiterbildungen ergeben sich aus den ab- hangigen Ansprüchen und aus der Beschreibung.Further expedient further developments result from the dependent claims and from the description.
Zeichnungdrawing
Ein Ausfuhrungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden naher beschrieben. Es zeigen die Figur 1 einen ersten, die Figur 2 einen zweiten Aufbau des rotierenden Teils mit zugehöriger Sensoranordnung, die Figur 3 typische Signalverlaufe sowie die Figuren 4 bis 9 Flussdiagramme für die Signalauswertung.An exemplary embodiment of the invention is shown in the drawing and is described in more detail below. FIG. 1 shows a first, FIG. 2 shows a second structure of the rotating part with the associated sensor arrangement, FIG. 3 shows typical signal profiles and FIGS. 4 to 9 flow diagrams for signal evaluation.
Beschreibungdescription
Ein rotierendes Teil 10 ist als asymmetrisch gepolter Ringmagnet ausgeführt. Das rotierende Teil 10 weist acht Polpaa- re auf, die jeweils aus einem magnetischen Sudpol (S1-S8) und einem zugehörigen magnetischen Nordpol (N1-N8) gebildet werden. Alle nachfolgenden polaritatsbezogenen Angaben können auch der jeweils anderen Polarität zugeordnet werden. Ein erster magnetischer Sudpol Sl und ein erster magneti- scher Nordpol Nl bilden das erste Polpaar. Der erste magne- tische Sudpol Sl besitzt eine Umfangslange LSI, der erste magnetische Nordpol Nl eine Umfangslange LNl. Aus der Umfangslange LSI und LNl ergibt sich die Gesamtumfangslange Ll des ersten Polpaars . Entsprechend weist ein zweiter magneti- scher Sudpol S2 eine Umfangslange LS2, ein zweiter magnetischer Nordpol N2 eine Umfangslange LN2 auf. Im Ausfuhrungsbeispiel ist die Umfangslange Ll des ersten Polpaars genauso groß wie die Umfangslange L2 des zweiten Polpaars. Die Lange LSx (x = 1 bis 8) der magnetischen Sudpole Sx nimmt mit zu- nehmender Polpaarzahl x ab . In gleichem Maße nimmt die Umfangslange LNx der zugehörigen magnetischen Nordpole Nx zu. Die Umfangslange Lx der Polpaare x ist jedoch konstant.A rotating part 10 is designed as an asymmetrically polarized ring magnet. The rotating part 10 has eight pole pairs, each of which is formed from a magnetic south pole (S1-S8) and an associated magnetic north pole (N1-N8). All subsequent polarity-related information can also be assigned to the other polarity. A first magnetic south pole S1 and a first magnetic north pole N1 form the first pole pair. The first magnet Tische Sudpol Sl has a circumferential length LSI, the first magnetic north pole Nl has a circumferential length LNl. The total circumferential length L1 of the first pole pair results from the circumferential length LSI and LNl. Correspondingly, a second magnetic south pole S2 has a circumferential length LS2, a second magnetic north pole N2 has a circumferential length LN2. In the exemplary embodiment, the circumferential length L1 of the first pole pair is the same as the circumferential length L2 of the second pole pair. The length LSx (x = 1 to 8) of the magnetic south poles Sx decreases with an increasing number of pole pairs x. The circumferential length LNx of the associated magnetic north poles Nx increases to the same extent. However, the circumferential length Lx of the pole pairs x is constant.
Es ist ein Magnetfeldsensor 12 vorgesehen, der das Magnet- feld des rotierenden Teils 10 erfasst und ein entsprechendes Ausgangssignal an die Signalverarbeitung 14 abgibt. In Abhängigkeit von dem Ausgangssignal der Signalverarbeitung 14 wird ein das rotierende Teil 10 bewegender VerStellantrieb 16 angesteuert, dessen charakteristische Grossen der Signal- Verarbeitung 14 zugeführt sind.A magnetic field sensor 12 is provided, which detects the magnetic field of the rotating part 10 and emits a corresponding output signal to the signal processor 14. Depending on the output signal of the signal processing 14, an adjusting drive 16 which moves the rotating part 10 is controlled, the characteristic sizes of which are fed to the signal processing 14.
In dem Ausfuhrungsbeispiel gemass Figur 2 besteht das runde, rotierende Teil 10 aus drei Polpaaren. Der erste magnetische Sudpol Sl wird von einem Winkel von 45°, der erste magneti- sehe Nordpol Nl von einem Winkel von 75°, der zweite magnetische Sudpol S2 von einem Winkel von 50°, der zweite magnetische Nordpol N2 von einem Winkel von 70° sowie der dritte magnetische Sudpol S3 von einem Winkel von 55° und der dritte magnetische Nordpol N3 von einem Winkel von 65° begrenzt. In Übereinstimmung zu den Winkelverhaltnissen ergeben sich auch die jeweiligen Umfangslangen LSx, LNx (x = 1 bis 3) . Die einzelnen Sud- oder Nordpole werden nachfolgend auch als Segmente bezeichnet.In the exemplary embodiment according to FIG. 2, the round, rotating part 10 consists of three pole pairs. The first magnetic south pole S1 is at an angle of 45 °, the first magnetic north pole N1 is at an angle of 75 °, the second magnetic south pole S2 is at an angle of 50 °, the second magnetic north pole N2 is at an angle of 70 ° and the third magnetic south pole S3 limited by an angle of 55 ° and the third magnetic north pole N3 by an angle of 65 °. The respective circumferential lengths LSx, LNx (x = 1 to 3) also correspond to the angular relationships. The individual south or north poles are also referred to below as segments.
In Figur 3 ist der zeitliche Verlauf des Ausgangssignals des Magnetfeldsensors 12 für die in Figur 2 gezeigte Anordnung dargestellt, für den Linkslauf LL oben, für den Rechtslauf RL unten.In Figure 3 is the time course of the output signal of the magnetic field sensor 12 for the arrangement shown in FIG. 2, for left-hand rotation LL above, for right-hand rotation RL below.
In der verallgemeinernden Terminologie der Ansprüche entspricht der Umfangslange LNx der jeweiligen Nordpole Nx (ge- mass Ausfuhrungsbeispiel) die Segmentlange eines Segments einer ersten Segmentart, der Umfangslange LSx der jeweiligen Sudpole Sx (gemass Ausfuhrungsbeispiel) die Segmentlange ei- nes Segments einer zweiten Segmentart.In the generalized terminology of the claims, the circumferential length LNx of the respective north pole Nx (according to the exemplary embodiment) corresponds to the segment length of a segment of a first segment type, the circumferential length LSx of the respective south pole Sx (according to the exemplary embodiment) corresponds to the segment length of a segment of a second segment type.
Die Lange LSx, LNx der magnetischen Sud- bzw. Nordpole Sx, Nx ist vorzugsweise so gewählt, dass sich anhand dieser Lange eindeutig der jeweilige magnetische Pol zuordnen lasst. Die Umfangslange Lx eines Polpaars x ist jedoch für alleThe length LSx, LNx of the magnetic south or north poles Sx, Nx is preferably selected so that the respective magnetic pole can be clearly assigned on the basis of this length. However, the circumferential length Lx of a pole pair x is for everyone
Polpaare gleich. Dadurch kann das übliche Ermittlungsverfahren für die Drehzahl des rotierenden Teils 10 beibehalten werden.Pole pairs the same. As a result, the usual determination method for the rotational speed of the rotating part 10 can be retained.
Als Magnetfeldsensor 12 ist beispielsweise ein Hallsensor verwendet. Dieser Hallsensor gibt ein binares Ausgangssignal ab. Eine Binaranderung erfolgt dann, wenn ein Wechsel der Magnetisierung (von Sud auf Nord bzw. umgekehrt) erfolgt. Bei dem rotierenden Teil 10 handelt es sich vorzugsweise um einen Magnetring, der üblicherweise auf der Motorwelle des elektromotorischen Versteilantriebs 16 angeordnet ist oder mit einem vom Versteilantrieb 16 bewegten Teil verbunden wird, so dass der VerStellantrieb 16 den Magnetring bewegt.For example, a Hall sensor is used as the magnetic field sensor 12. This Hall sensor emits a binary output signal. A binarization occurs when the magnetization changes (from south to north or vice versa). The rotating part 10 is preferably a magnetic ring which is usually arranged on the motor shaft of the electromotive adjusting drive 16 or is connected to a part moved by the adjusting drive 16, so that the adjusting drive 16 moves the magnetic ring.
Nachfolgend wird der in der Signalverarbeitung 14 hinterlegte Programmablauf beschrieben. Bei Programmbeginn (Start), Schritt 90, wird anhand des Ausgangssignals des Magnetfeldsensors 12 die Polarität des aktuellen Magnetpols bestimmt, Abfrage 93. Bei dem in Figur 3 dargestellten Signalverlauf nimmt bei einem Nordpol das Ausgagnssignal 13 des Magnet- feldsensors 12 den Wert logisch Eins, bei einem Sudpol den Wert logisch Null an. Anhand des Vergleichs der Polarität des aktuellen Magnetpols (bei Programmbeginn) mit der Polarität des Magnetpols beim Deaktivieren des Versteilantriebs 16 (auf dem der Versteilantrieb 16 zum Stehen kam) kann bei Abweichung ein Positionsverlust erkannt werden. Für diesen Fall wird eine entsprechende Information in Schritt 95 gespeichert .The program sequence stored in signal processing 14 is described below. At the start of the program (start), step 90, the polarity of the current magnetic pole is determined on the basis of the output signal of the magnetic field sensor 12, query 93. In the signal curve shown in FIG. field sensor 12 the value logic one, with a Sudpol the value logic zero. By comparing the polarity of the current magnetic pole (at the start of the program) with the polarity of the magnetic pole when deactivating the adjusting drive 16 (on which the adjusting drive 16 came to a standstill), a loss of position can be detected in the event of a deviation. In this case, corresponding information is stored in step 95.
Anschließend wird der Programmablauf „Motorzustand" bearbeitet, Schritt 101, wie in Figur 5 naher ausgeführt. Zunächst wird der Zustand des Versteilantriebs 16 abgefragt, Abfrage 103. Wird der VerStellantrieb 16 nicht angesteuert, lasst dies auf eine passive Motorverstellung bzw. Fremdverstellung schliessen, Schritt 105. Der sich an Schritt 105 anschließende Programmablauf ist in Figur 6 dargestellt und wird spater beschrieben. Wurde der Versteilantrieb 16 gezielt angesteuert, so erfolgt in Schritt 107 die Drehrichtungsermittlung. Anhand der gezielten Ansteuerung ist die Mo- tordrehrichtung vorbekannt. Die Drehrichtungserkennung be- einflusst die Drehzahlermittlung. Dreht sich der Versteilantrieb 16 rechts, so wird als Drehzahl der Reziprokwert der Zeit zwischen den steigenden Flanken verwendet, Schritt 109. Dreht sich der Versteilantrieb 16 links, wird als Drehzahl der Reziprokwert der Zeit zwischen den fallenden Flanken verwendet, Schritt 111. Damit ist für die in Figur 2 gezeigte Anordnung sichergestellt, dass die Zeitspanne ermittelt wird, die für das Durchlaufen der konstanten Umfangslange Lx der Polpaare x benotigt wird. In Verbindung mit der konstan- ten Umfangslange Lx ist der Kehrwert der ermittelten Zeitspanne ein Maß für die Drehzahl. Über die Drehrichtungserkennung wird auch eine der ursprunglichen Motoransteuerung entgegenwirkende Fremdverstellung erkannt. Nachfolgend wird der Programmablauf in Anschluss an Schritt 105 beschrieben, Figur 6. Der Versteilantrieb 16 wurde nicht durch eine gezielte Bestromung oder trotz Bestromung in entgegengesetzter Richtung bewegt, sondern passiv oder aktiv fremdverstellt, wie in Abfrage 103 ermittelt. Die bisherige Position des VerStellantriebs 16 (vor der Fremdverstellung) sei bekannt. In Abfrage 131 wird ermittelt, ob der Versteilantrieb 16 seine bisherige Position verlassen hat. Als Kriterium hierfür dient eine Signalanderung des Magnetfeldsen- sors 12. Falls ein Impuls (Änderung) auftrat, werden der Aktivierungszahler und der Flankenzahler inkrementiert, Schritt 133. Der Flankenzahler erfasst jede weitere Flanke für die spatere Positionsermittlung . Der Aktivierungszahler erkennt den Beginn einer Bewegung des Versteilantriebs 16. Sofern nach einer zu definierenden Mindestpause ohne Flankenwechsel ein erneuter Flankenwechsel erfolgt, wird der Aktivierungszahler inkrementiert. Daran schließt sich Abfrage 135 an, ob die Flankenart des auftretenden Magnetfeldsensorimpulses (steigend, fallend) von der vorhergehenden Flan- kenart abweicht. Stimmen die Flankenarten nicht uberein, schließt sich sofort die Drehrichtungserkennung an, Schritt 139. Bei einer Übereinstimmung der aktuell auftretenden mit der zuletzt aufgetretenen Flankenart (also im nicht regulären Betrieb) wird auf einen Positionsverlust geschlossen, Schritt 137. In diesem Fehlerfall konnte beispielsweise der VerStellantrieb 16 als Vorsichtsmaßnahme mit geringerer Geschwindigkeit verfahren werden. An Schritt 137 schließt sich Schritt 139 an.The program sequence “motor status” is then processed, step 101, as detailed in FIG. 5. First, the status of the adjustment drive 16 is queried, query 103. If the adjustment drive 16 is not activated, this suggests a passive motor adjustment or external adjustment, step 105. The program sequence following step 105 is shown and will be described later in Figure 6. If the adjusting drive 16 has been specifically controlled, the direction of rotation is determined in step 107. The direction of rotation of the motor is known based on the targeted control If the adjusting drive 16 rotates to the right, the reciprocal of the time between the rising edges is used as the rotational speed, step 109. If the adjusting drive 16 rotates to the left, the reciprocal of the time between the falling edges is used as the rotational speed, step 111. This is geze for in Figure 2 The correct arrangement ensures that the time period is determined which is required for the constant circumferential length Lx of the pole pairs x to pass through. In conjunction with the constant circumferential length Lx, the reciprocal of the determined period is a measure of the speed. An external adjustment that counteracts the original motor control is also recognized via the direction of rotation detection. The program sequence is described below in connection with step 105, FIG. 6. The adjusting drive 16 was not moved by a specific energization or despite energization in the opposite direction, but was passively or actively externally adjusted, as determined in query 103. The previous position of the adjusting drive 16 (before the external adjustment) is known. In query 131 it is determined whether the adjusting drive 16 has left its previous position. The criterion for this is a signal change of the magnetic field sensor 12. If an impulse (change) occurred, the activation counter and the edge counter are incremented, step 133. The edge counter detects every further edge for the later position determination. The activation payer recognizes the start of a movement of the adjusting drive 16. If, after a minimum pause to be defined, there is another edge change without a change of edges, the activation payer is incremented. This is followed by query 135 whether the edge type of the magnetic field sensor pulse occurring (rising, falling) deviates from the previous edge type. If the flank types do not match, the direction of rotation detection follows immediately, step 139. If the currently occurring flank type matches the last flank type (ie in non-regular operation), a loss of position is concluded, step 137. In this case, for example, the adjustment drive could 16 as a precaution at slower speeds. Step 137 follows step 137.
Die Drehrichtungserkennung, Schritt 139, wird in Figur 7 naher erläutert. Zu diesem Zweck wird die Drehzahl, wie nachfolgend in Figur 8 beschrieben, ermittelt, Schritt 151.The direction of rotation detection, step 139, is explained in more detail in FIG. For this purpose, the speed, as described below in FIG. 8, is determined, step 151.
In Figur 8 ist der Programmablauf mit der Erkennung der Überschreitung der Mindestdrehzahl gezeigt. Hierzu wird die absolute Segmentdurchlaufzeit gemessen, nämlich die Zeit zwischen zwei Flankenwechseln (beispielsweise die Zeitspanne TSl wie in Figur 3 dargestellt), Schritt 155. Zur Berechnung der Drehgeschwindigkeit wird die gemessene Zeit durch die polaritatsrichtige (LS oder LN) mittlere Segmentlange (in diesem Beispiel LS2 oder LN2 ) dividiert, die durch die Geometrie des rotierenden Teils 10 vorgegeben ist, Schritt 157. Bei dem Beispiel gemäß Figur 2 ist die mittlere Segmentlange der Nordpole Nx die des zweiten Norpols N2, da dessen Lange LN2 zwischen der ersten Lange Ll des ersten Nordpols Nl und der dritten Lange LN3 des dritten Nordpols N3 liegt. Entsprechendes gilt für die Lange LS2 des zweiten Sudpols S2. Mit dieser Wahl wird der Fehler bei der Drehgeschwindigkeitsermittlung minimiert. Zur Ermittlung der polaritats- richtigen mittleren Segmentlange LS2, LN2 wird beispielsweise die Art des ersten Flankenwechsels herangezogen. Bei einer ersten steigenden Flanke wird ein Nordpol Nx durchlaufen, so dass als mittlere Segmentlange LN2 die des zweiten Nordpols N2 herangezogen wird. Bei einer fallenden ersten Flanke lasst dies auf einen zu durchlaufenden Sudpol Sx schliessen. Die zugehörige polaritatsrichtige mittlere Segmentlange ist gemäß Figur 2 die des zweiten Sudpols S2, LS2. Die Toleranz/der Fehler der berechneten Drehgeschwindigkeit betragt in der Anordnung gemäß Figur 2 maximal 12%, so dass eine ausreichend genaue Drehzahl ermittelt werden kann.FIG. 8 shows the program sequence with the detection of the exceeding of the minimum speed. For this, the absolute segment cycle time measured, namely the time between two edge changes (for example the time period TS1 as shown in FIG. 3), step 155. To calculate the rotational speed, the measured time is determined by the polarity-correct (LS or LN) average segment length (in this example LS2 or LN2 ) divided by the geometry of the rotating part 10, step 157. In the example according to FIG. 2, the mean segment length of the north poles Nx is that of the second norpol N2, since its length LN2 lies between the first length L1 of the first north pole Nl and the third long LN3 of the third north pole N3. The same applies to the length LS2 of the second south pole S2. With this choice, the error in determining the rotational speed is minimized. For example, the type of the first flank change is used to determine the polarity-correct middle segment length LS2, LN2. A north pole Nx is traversed on a first rising flank, so that that of the second north pole N2 is used as the middle segment length LN2. With a falling first edge, this suggests a Sudpol Sx to be traversed. According to FIG. 2, the associated polarity-correct average segment length is that of the second south pole S2, LS2. The tolerance / error of the calculated rotational speed is a maximum of 12% in the arrangement according to FIG. 2, so that a sufficiently precise rotational speed can be determined.
Liegt die Drehgeschwindigkeit unter einem vorgebbaren Wert - wie in Abfrage 159 ermittelt, ist aus Sicherheitsgründen zusatzlich ein Flankenzahler, zur spateren Uberpru- fung/Korreketur, zu verwenden.If the speed of rotation is below a predeterminable value - as determined in query 159, an edge counter must also be used for safety reasons, for later checking / correction.
Nach Abarbeitung des in Figur 8 gezeigten Unterprogramms „Drehgeschwindigkeitsermittlung" wird in Schritt 161 in Figur 7 gesprungen. In Schritt 161 wird der Segmentwinkel gemessen. Nach der Messung des Segmentwinkels (über eine Zei- terfassung) kann die erste Motorwinkellage aufgrund der Geo- metrie des rotierenden Teils 10 bekannten Segmentlangen und der Drehzahl ermittelt werden, Schritt 163. Dies wird für ein zweites Segment durchgeführt, Schritte 165, 167. Die Drehrichtung kann durch die Winkellagenanderung ermittelt werden, Schritt 169. Daran schließt sich die Positionsermittlung gemäß Schritt 171 an, die in Figur 9 naher dargestellt ist.After the subroutine "rotation speed determination" shown in FIG. 8 has been processed, a jump is made in step 161 in FIG. 7. The segment angle is measured in step 161. After measuring the segment angle (via a time recording), the first motor angle position can be Known of the rotating part 10 known segment lengths and the speed, step 163. This is carried out for a second segment, steps 165, 167. The direction of rotation can be determined by changing the angular position, step 169. This is followed by the position determination according to step 171 , which is shown in more detail in Figure 9.
Die aktuelle Position des Versteilantriebs 16 ergibt sich aus der Winkellage plus die Anzahl der gezahlten Flanken, die der Flankenzahler in Schritt 133 ermittelte, Schritt 173. Weitere Drehrichtungserkennungen sind über die Abfolgen gleicher Pegel, gleicher Flanken und/oder flankenbezogener Periodendauermessung/vergleich möglich.The current position of the adjusting drive 16 results from the angular position plus the number of flanks paid, which the flank counter determined in step 133, step 173. Further detection of the direction of rotation is possible via the sequences of the same levels, the same flanks and / or flank-related period duration measurement / comparison.
Anstelle einer magnetischen Codierung sind beliebige weitere Codierungen des beweglichen Teils 10 möglich, so beispielsweise eine optische Codierung mit der entsprechenden Senso- rik. In diesem Zusammenhang weist das bewegliche Teil 10 ei- ne asymmetrische Anordnung von dunkel und hell codierten Abschnitten auf. Den Nordpolen Nx gemäß den Figuren 1 und 2 entsprachen hierbei beispielsweise dunkle Abschnitte, den Sudpolen Sx helle oder umgekehrt. Der optische Sensor gibt eine binare Information aus abhangig davon, ob gerade ein helles oder ein dunkles Segment durchlaufen wurde. An dem prinzipiellen Aufbau der zugehörigen Signalauswertung ändert sich jedoch nichts. Grundsatzlich sind alle Sensoranordnungen nach diesem Prinzip betreibbar, die denen Sensoren ein Durchlaufen zweier unterschiedlicher Segmenttypen voneinan- der unterscheiden können. Insbesondere muss der Segmentwechsel sicher erkannt werden. Instead of a magnetic coding, any other coding of the movable part 10 is possible, for example optical coding with the corresponding sensors. In this connection, the movable part 10 has an asymmetrical arrangement of dark and light-coded sections. The north poles Nx according to FIGS. 1 and 2 corresponded, for example, to dark sections, the south poles Sx to light sections or vice versa. The optical sensor outputs binary information depending on whether a light or a dark segment has just been run through. However, nothing changes in the basic structure of the associated signal evaluation. In principle, all sensor arrangements can be operated according to this principle, which can distinguish the sensors from having to go through two different segment types. In particular, the segment change must be reliably recognized.

Claims

Ansprüche Expectations
1. Vorrichtung zur Positionserkennung eines rotierenden Teils, mit mindestens einem rotierenden Teil (10), das zumindest vier Segmente (Nx, Sx) umfasst, wobei zumindest zwei Segmente (Nx) aus einer ersten Segmentart (N) und die zumindest zwei weiteren Segmente (Sx) aus einer zweiten Segmentart (S) bestehen, wobei die beiden Segmentarten (N, S) durch einen Sensor (12) unterscheidbar sind, dadurch gekennzeichnet, dass sich die Segmentlange (LNl,1. Device for position detection of a rotating part, with at least one rotating part (10), which comprises at least four segments (Nx, Sx), at least two segments (Nx) from a first segment type (N) and the at least two further segments ( Sx) consist of a second segment type (S), the two segment types (N, S) being distinguishable by a sensor (12), characterized in that the segment length (LN1,
LSI) eines ersten Segments (Nl, Sl) der ersten Segmentart (N, S) signifikant von der Segmentlange (LN2, LS2) eines zweiten Segments (N2, S2) der ersten und/oder zweiten Segmentart (N, S) unterscheidet.LSI) of a first segment (Nl, Sl) of the first segment type (N, S) differs significantly from the segment length (LN2, LS2) of a second segment (N2, S2) of the first and / or second segment type (N, S).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Summe der Segmentlange (LN1+LS1) des ersten Segments (Nl) der ersten Segmentart (N) und eines ersten Segments (Sl) der zweiten Segmentart (S) in etwa gleich der Summe der Segmentlange (LN2+LS2) des zweiten Segments (N2) der ersten Segmentart (N) und eines zweiten Segments (S2) der zweiten Segmentart (S) ist.2. Device according to claim 1, characterized in that the sum of the segment length (LN1 + LS1) of the first segment (Nl) of the first segment type (N) and a first segment (Sl) of the second segment type (S) is approximately equal to the sum the segment length (LN2 + LS2) of the second segment (N2) of the first segment type (N) and a second segment (S2) of the second segment type (S).
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor (12) gegenüber dem rotierenden Teil (10) feststehend angeordnet ist, und ein Ausgangssignal des Sensors (12) einer Signalverarbeitung (14) zugeführt ist. 3. Device according to one of the preceding claims, characterized in that the sensor (12) with respect to the rotating part (10) is arranged stationary, and an output signal of the sensor (12) is fed to a signal processing (14).
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signalverarbeitung (14) eine Zeitermittlung umfasst zur Ermittlung einer Zeitspanne, innerhalb derer sich zumindest ein Segment (Nx, Sx) im Erfassungsbereich des Sensors (10) befindet, als4. Device according to one of the preceding claims, characterized in that the signal processing (14) comprises a time determination for determining a time period within which at least one segment (Nx, Sx) is in the detection range of the sensor (10) as
Maß für die Segmentlange (LNx, LSx) .Measure of the segment length (LNx, LSx).
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zeitspanne anhand eines Wechsels der Segmentart (N, S) erfasst ist.5. Device according to one of the preceding claims, characterized in that the time period is detected on the basis of a change in the segment type (N, S).
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Maß für die Drehgeschwindigkeit des rotierenden Teils der Quotient aus Segment- lange (LNx, LSx) und der Zeitspanne verwendet ist.6. Device according to one of the preceding claims, characterized in that the quotient of segment length (LNx, LSx) and the time period is used as a measure of the rotational speed of the rotating part.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Maß für die Drehgeschwindigkeit des rotierenden Teils der Quotient aus einer mittleren Segmentlange (LN2, LS2) und der Zeitspanne verwendet ist.7. Device according to one of the preceding claims, characterized in that the quotient of an average segment length (LN2, LS2) and the time period is used as a measure of the rotational speed of the rotating part.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Auswahlmittel zur Auswahl der Segmentlange (LNx, LSx) für die Drehgeschwindigkeitsermittlung in Abhängigkeit von der Segmentart (N, S) vorgesehen sind.8. Device according to one of the preceding claims, characterized in that selection means for selecting the segment length (LNx, LSx) for determining the rotational speed as a function of the segment type (N, S) are provided.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass sich die Segmentarten (N, S) durch optische und/oder magnetische Eigenschaften unterscheiden.9. Device according to one of the preceding claims, characterized in that the segment types (N, S) differ by optical and / or magnetic properties.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Positionsermittung die Signalverarbeitung (14) die Zeitspanne erfasst und unter Verwendung der Drehgeschwindigkeit daraus ein Maß für die Position des rotierenden Teils (10) bildet.10. Device according to one of the preceding claims, characterized in that the position determination Signal processing (14) recorded the time period and using the rotational speed forms a measure of the position of the rotating part (10).
11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signalverarbeitung (14) eine weitere Zeitspanne erfasst und unter Verwendung der Drehgeschwindigkeit daraus ein Maß für eine ermittelte Segementlange des rotierenden Teils (10) bildet.11. Device according to one of the preceding claims, characterized in that the signal processing (14) detects a further period of time and using the rotational speed forms a measure for a determined segment length of the rotating part (10).
12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Drehrichtung des rotierenden Teils (10) durch Vergleich der ermittelten Segmentlange mit der bekannten tatsachlichen Segmentlange (LNx, LSx) erkannt ist. 12. Device according to one of the preceding claims, characterized in that the direction of rotation of the rotating part (10) is recognized by comparing the determined segment length with the known actual segment length (LNx, LSx).
EP01929312A 2000-04-08 2001-04-05 Device for detecting the position and/or rotational speed and/or rotational direction of a rotating part Withdrawn EP1275007A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2000117542 DE10017542A1 (en) 2000-04-08 2000-04-08 Device for position and / or speed detection of a rotating part
DE10017542 2000-04-08
PCT/DE2001/001315 WO2001077693A1 (en) 2000-04-08 2001-04-05 Device for detecting the position and/or rotational speed and/or rotational direction of a rotating part

Publications (1)

Publication Number Publication Date
EP1275007A1 true EP1275007A1 (en) 2003-01-15

Family

ID=7638065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929312A Withdrawn EP1275007A1 (en) 2000-04-08 2001-04-05 Device for detecting the position and/or rotational speed and/or rotational direction of a rotating part

Country Status (3)

Country Link
EP (1) EP1275007A1 (en)
DE (1) DE10017542A1 (en)
WO (1) WO2001077693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019094334A1 (en) 2017-11-07 2019-05-16 Cts Corporation Rotary position sensor including switch and patterned magnet

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979287B2 (en) 2002-08-19 2005-12-27 Avi Elbaz Proprioceptive and kinesthetic footwear
DE10246806A1 (en) * 2002-10-08 2004-04-22 Daimlerchrysler Ag Sender wheel for measuring crankshaft revolution rate, angle has variable widths of individual teeth for defined number of successive teeth, limited number of different widths over whole circumference
DE10330912A1 (en) * 2003-07-07 2005-02-03 E.G.O. Elektro-Gerätebau GmbH Sensor device for detecting a triggering movement
US7285949B2 (en) 2003-07-25 2007-10-23 Timken Us Corporation Transmission input shaft speed measuring assembly
FR2859784B1 (en) * 2003-09-17 2006-01-20 Siemens Vdo Automotive METHOD FOR DETERMINING THE POSITION OF A ROTATING PIECE WITH A VIEW, IN PARTICULAR, OF ITS AUTO-SYNCHRONIZATION
DE10343974A1 (en) * 2003-09-23 2005-04-14 Valeo Motoren Und Aktuatoren Gmbh Shaft rotation direction determination device has a disk mounted on the shaft with asymmetrically arranged magnetic segments of varying polarity whose movement is detected by a magnetic field sensor
EP1674831A1 (en) * 2004-12-23 2006-06-28 Carl Freudenberg KG Method for the transmission of angle information and apparatus implementing the method
FR2882140B1 (en) 2005-02-11 2007-05-11 Electricfil Automotive Soc Par POSITION SENSOR WITH COMPENSATED MAGNETIC POLES
DE102005047366A1 (en) 2005-10-04 2007-04-05 Siemens Ag Rotary drive`s e.g. window lift drive, reversal of rotation direction determining device for motor vehicle, has sensor wheel with coded structure that is formed by coded sector of width and reference coded sector pair with another width
FR2901019B1 (en) * 2006-05-15 2010-04-23 Electricfil Automotive ENCODER FOR POSITION SENSOR WITH STABILIZER EFFECT FOR ZERO PASSING THE MAGNETIC FIELD
DE102008058650B4 (en) * 2008-11-22 2021-06-10 Kostal Automobil Elektrik Gmbh & Co. Kg Rotary position sensor system
CN104597278A (en) * 2015-02-15 2015-05-06 昆山德拉特兰传动科技有限公司 Detection wheel with directionality and method for detecting running speed and running direction of vehicle at same time
DE102016119571A1 (en) * 2016-10-13 2018-04-19 Ebm-Papst St. Georgen Gmbh & Co. Kg electric motor
EP3653997B1 (en) 2017-12-12 2022-04-13 SZ DJI Technology Co., Ltd. Rotation parameter detection method, encoder, laser radar and unmanned aerial vehicle
DE102019119880A1 (en) * 2019-07-23 2021-01-28 Minebea Mitsumi Inc. POSITION DETECTION DEVICE
FR3101704B1 (en) * 2019-10-08 2021-09-24 Robert Bosch Automotive Steering Vendome Method for detecting an absolute angular position or an absolute angular displacement stroke of a rotating member
DE102020208101A1 (en) 2020-06-30 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Position-determining device for a hand-held material examination device, a method for operating the position-determining device and a hand-held material examination device with a position-determining device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2933516A1 (en) * 1979-08-18 1981-03-26 Robert Bosch Gmbh, 70469 Stuttgart DEVICE FOR SPEED DETECTION AND ANGLE SEGMENT DETECTION OF A SHAFT, IN PARTICULAR THE CRANKSHAFT OF AN INTERNAL COMBUSTION ENGINE
GB8322886D0 (en) * 1983-08-25 1983-09-28 Lucas Ind Plc Transducer means
US4972332A (en) * 1987-07-28 1990-11-20 Caterpillar Inc. Apparatus for determining the speed, angular position and direction of rotation of a rotatable shaft
US5371460A (en) * 1992-09-21 1994-12-06 Caterpillar Inc. Speed and direction sensor for a rotating shaft having a rotor with teeth of alternating widths
DE19623101A1 (en) * 1996-06-10 1997-10-02 Bosch Gmbh Robert Position identifying system for rotating part
DE19750304A1 (en) * 1997-11-13 1999-05-20 Bosch Gmbh Robert Device to detect rotation and rotation direction of part for engine crankshaft
US5977765A (en) * 1997-12-05 1999-11-02 Ford Global Technologies, Inc. Speed, direction, and acceleration sensor for a rotating shaft having a rotor with teeth having unequal spacing
DE19839281B4 (en) * 1998-08-28 2008-04-30 Siemens Ag Method and device for amount and direction detection of an object movement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0177693A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019094334A1 (en) 2017-11-07 2019-05-16 Cts Corporation Rotary position sensor including switch and patterned magnet

Also Published As

Publication number Publication date
DE10017542A1 (en) 2001-10-11
WO2001077693A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
EP1275007A1 (en) Device for detecting the position and/or rotational speed and/or rotational direction of a rotating part
EP2659232B1 (en) Method and apparatus for determining a recognition threshold
EP1630363B1 (en) Method to determine the phase of a camshaft in an internal combustion engine
DE10048911C1 (en) Method and device for determining the absolute position in position and angle encoders
EP1615332B1 (en) Method for operating an electronically commutated motor
DE102005047366A1 (en) Rotary drive`s e.g. window lift drive, reversal of rotation direction determining device for motor vehicle, has sensor wheel with coded structure that is formed by coded sector of width and reference coded sector pair with another width
EP0955522B1 (en) Method and circuit for checking the airgap of a revolution sensor
DE102009034664A1 (en) Method and device for determining the parking position of an adjusting element of a motor vehicle
EP0974479A2 (en) Method for the regulation of motor driven adjusting device in motor vehicle
DE102009029431A1 (en) Multi-turn encoders
EP0880013A1 (en) Operating method for a positioning sensor
WO2017045930A1 (en) Steering angle sensor with functional security
EP0685061B1 (en) Method and device for determining the position of rotating shafts
DE102013221056A1 (en) Clutch sensor system
EP1125406B1 (en) Method and device for processing a received signal transmitting coded data
EP1175598B1 (en) Method and device for determining the actual reversal of a follow-on rotary drive
EP1203932A1 (en) Angular position sensor
DE10061004A1 (en) Method for determining speed of a shaft based on interval between sensors passing same transition point N and S poles of shaft mounted magnets
DE4012880C2 (en) Steering device for motor vehicles
DE3815530C2 (en)
DE102006017146A1 (en) Determination of number of revolutions of electrically commuted (EC) motor used in motor vehicle, involves determining common value that characterizes number of revolutions of EC motor from measured values of Hall sensors
EP2616300B1 (en) Method for operating a position indicator for a moveable mechanical component and position indicator for a moveable mechanical component
DE19612597A1 (en) Stop and block detection in a stepper motor
EP1914522B1 (en) Device and method for recording the position of a drive unit
EP0407654B1 (en) Indicator device and method of determining the absolute position of a pointer in the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030718

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

18D Application deemed to be withdrawn

Effective date: 20031129