EP1272992A1 - Fire detector - Google Patents
Fire detectorInfo
- Publication number
- EP1272992A1 EP1272992A1 EP01919696A EP01919696A EP1272992A1 EP 1272992 A1 EP1272992 A1 EP 1272992A1 EP 01919696 A EP01919696 A EP 01919696A EP 01919696 A EP01919696 A EP 01919696A EP 1272992 A1 EP1272992 A1 EP 1272992A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cover
- detector according
- optical
- printed circuit
- circuit board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
Definitions
- the present invention relates to a fire detector.
- BACKGROUND ART Commercially available fire alarm systems generally comprise a control unit which manages peripheral units, usually sensors/detectors, over a two- wire line or by means of radio systems.
- optical-thermal detectors ensure better coverage of a broader range of types of fire.
- Optical sensors particularly photoelectric ones, use the principle according to which an electromagnetic radiation which is incident to a particle suspended in a fluid is partly absorbed and partly diffused by the particle.
- the structure of these detectors comprises an optical chamber which has a box-like structure and is perimetrically formed by access ducts for the fluid; a light source, advantageously an LED, and a light receiver, advantageously a photodiode, are arranged in said chamber.
- the fluid access ducts are provided so as to block as much as possible the penetration of ambient light in the optical chamber, in order to avoid affecting the sensing of the photodiode.
- the transmitter is constituted by an LED which emits a light pulse in which the ratio between the width and the period is very low.
- the light emitted by the LED is partially diffused by the particles suspended in the fluid, is detected by the photodiode, and is converted into an electrical signal which is then amplified and processed by an electronic circuit.
- the LED and the photodiode are arranged so as to avoid a line-of-sight configuration but are arranged so that their respective emission and reception fields mutually intersect in a point which lies inside the optical chamber.
- the aim of the present invention is to eliminate or substantially reduce the problems of conventional fire detectors.
- an important object of the invention is to provide a fire detector which ensures manufacturing and assembly at high speed and low cost.
- Another object is to provide a detector characterized by low sensitivity to radio-frequency noise.
- Another important object is to provide a fire detector whose overall quality at least equals or exceeds that of conventional detectors.
- Another object is to provide a detector by virtue of which the presence of dust inside the optical chamber, particularly dust settled on the cover, has a marginal effect on efficiency.
- Another object is to provide a fire detector whose total height is modest and comparable with that of conventional ones.
- a fire detector characterized in that it comprises a printed circuit board on which at least one optical transmitter and at least one optical receiver are surface-mounted with a method known commercially as SMD, said transmitter and said receiver being arranged so as to avoid a line-of-sight arrangement, their respective emission and reception fields intersecting each other, said board being associated with a box-like optical chamber which is composed of a fluid detection portion and a fluid circulation portion, said detection portion being arranged through a corresponding through hole formed in the printed circuit board and being provided with openings which are formed in the perimetric wall for the corresponding transmitters and receivers, whose respective emission and reception fields mutually intersect inside it, said circulation portion being arranged on the opposite side with respect to the detection portion and being formed perimetrically by a plurality of partitions which form access ducts for the fluid.
- Figure 1 is a view of a fire detector according to the invention
- Figure 2 is a sectional view of the fire detector of Figure 1
- Figure 3 is a perspective view of the assembled internal components of the detector
- Figure 4 is an exploded view of the components of Figure 3;
- Figure 5 is a view of one of the components shown in Figures 3 and 4;
- Figures 6, 7 and 8 are various views of another one of the components shown in Figures 3 and 4.
- a fire detector according to the invention is generally designated by the reference numeral 10.
- the detector 10 comprises a box-like body 11 which is constituted by two complementary components 11a and lib connected by a bayonet coupling and has a substantially cylindrical shape which tapers upward.
- the tapering upper portion 12 is provided with lateral openings 13.
- An assembly, generally designated by the reference numeral 14, is contained in the box-like body 11.
- the assembly 14 comprises a printed circuit board 15 on which a transmitter 17, advantageously constituted by an LED, and a receiver 16, advantageously constituted by a photodiode, are surface-mounted; said receiver and said transmitter operate in the infrared part of the spectrum.
- the transmitter 17 and the receiver 16 are arranged on the board 15 so as to avoid a line-of-sight configuration but so that the emission and reception fields mutually intersect.
- the emission and reception fields are arranged at 45° with respect to the line-of-sight position.
- a second LED 18, which is visible from outside, and a thermistor 19 are further arranged on the printed circuit board 15.
- the board 15 is associated, by means of a removable interlocking coupling, with a first cover 20 for protecting the electronic components which lies perimetrically and is monolithic with an optical chamber 21.
- the optical chamber 21 is constituted by a lower portion 22 for detection of the fluid and by an upper portion 23 for circulation of the fluid.
- the optical chamber 21 is substantially cylindrical.
- the detection portion 22 extends downward beyond the dimensions of the first cover 20, through a corresponding through hole 24 formed in the printed circuit board 15.
- the detection portion 22 is further provided with two openings 25 provided in the perimetric wall 26 for the LED 17 and the photodiode 16, whose emission and reception fields accordingly intersect inside the portion 22.
- the internal perimetric wall 26 of the lower portion 22 has tooth-like projections 27 so as to minimize the signal produced by internal reflections collected by the photodiode 16.
- the lower portion 22 While having a substantially cylindrical configuration, the lower portion 22 is shaped with lateral recesses 28 at the openings 25 for advantageously accommodating the LED 17 and the photodiode 16.
- the upper circulation portion 23 lies on the opposite side to where the lower portion 22 lies with respect to the first cover 20, is substantially cylindrical and is formed perimetrically by a plurality of access ducts 29 for the fluid.
- the ducts 29 are formed by partitions 30 having a substantially V-shaped cross-section, which are arranged so that their vertices are arranged one after the other along the circular perimeter of the optical chamber 21 and lie in a direction which is substantially perpendicular to the plane of arrangement of the first cover 20.
- the upper ends 31 of the partitions 30 are accommodated in corresponding seats 32 formed in the flat inner portion of a second cover 33 for the upper portion 23.
- the second cover 33 has a perimetric portion 34 which lies at right angles to its plane of arrangement and is made of mesh, as required by the standards, adapted to cover the plurality of ducts 29 for controlled access of fluid inside the optical chamber 21.
- the flat inner portion of the second cover 33 is also provided with toothlike projections 35.
- the printed circuit board 15 is associated, with a removable interlocking coupling, with the first cover 20; the removable interlocking coupling is allowed by flexible elastic teeth 36 which protrude monolithically with respect to the first cover 20 and at right angles to its plane of arrangement.
- the printed circuit board 15 has, in addition to the photodiode 16 and the LED 17, a second LED 18 and a thermistor 19.
- the second LED 18 does not face the inside of the optical chamber 21 but is visible from the outside of the detector 10 because it is arranged at through holes 37 formed in the first cover 20 and in the box-like body 11.
- the thermistor 19 is constituted by a sensitive portion 38, which in this embodiment is made of a material having a negative temperature coefficient, and is associated with a support 39 which lies at right angles to the printed circuit board 15 and passes through the optical chamber 21 and finally through a through hole 40 of the second cover 33.
- the sensitive portion 38 is external to the optical chamber 21 but is contained within the box-like body 11 at its upper portion 12 provided with lateral openings 13.
- the above-described detector 10 is a detector of the optical-thermal type.
- the sensor detects the presence of the smoke by means of the emitter- receiver pair, which operates in the infrared part of the spectrum.
- the transmitter 17 (LED) and the receiver 16 (photodiode) are arranged in the optical chamber 21 so that they are not in a line-of-sight configuration: when smoke enters the volume that corresponds to the intersection of the beam emitted by the LED 17 and of the viewing field of the photodiode 16, it diffuses part of the incident light emitted by the transmitter 17, which is detected and converted into an electrical signal (current) by the photodiode 16.
- the thermistor 19, supported by a support 39, is arranged outside the profile of the optical chamber 21.
- the LED 17 and the photodiode 16 can be replaced with a transmitter and a receiver which operate in the visible part of the spectrum.
- the present invention has achieved its intended aim and objects.
- the mechanical configuration ensures a high production and assembly rate and low-cost production, using standard electronic components.
- this particular embodiment also allows to obtain a detector whose sensitivity to radio-frequency noise is particularly low, since the length of the connections of the various electronic components is very limited.
- the efficiency of the production process and the low cost of the procedure do not affect the overall quality of the detector.
- the total height of the optical chamber has been kept as great as possible, to the extent allowed by the bounding mechanical constraints, so as to space the active volume from the second cover of said chamber.
- the materials employed, as well as the dimensions, so long as they are compatible with the contingent use may be any according to requirements.
Landscapes
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Fire-Detection Mechanisms (AREA)
- Fire Alarms (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Induction Machinery (AREA)
- Exchange Systems With Centralized Control (AREA)
- Eye Examination Apparatus (AREA)
- Camera Bodies And Camera Details Or Accessories (AREA)
- Studio Devices (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT2000PD000083A IT1315417B1 (en) | 2000-04-11 | 2000-04-11 | FIRE DETECTOR STRUCTURE |
ITPD000083 | 2000-04-11 | ||
PCT/IB2001/000591 WO2001078031A1 (en) | 2000-04-11 | 2001-04-10 | Fire detector |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1272992A1 true EP1272992A1 (en) | 2003-01-08 |
EP1272992B1 EP1272992B1 (en) | 2003-09-10 |
Family
ID=11451906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01919696A Expired - Lifetime EP1272992B1 (en) | 2000-04-11 | 2001-04-10 | Fire detector |
Country Status (14)
Country | Link |
---|---|
EP (1) | EP1272992B1 (en) |
CN (1) | CN100438308C (en) |
AT (1) | ATE249668T1 (en) |
AU (1) | AU2001246755A1 (en) |
CA (1) | CA2405713A1 (en) |
CZ (1) | CZ20023374A3 (en) |
DE (1) | DE60100756T2 (en) |
DK (1) | DK1272992T3 (en) |
ES (1) | ES2206415T3 (en) |
IT (1) | IT1315417B1 (en) |
NO (1) | NO20024896L (en) |
PT (1) | PT1272992E (en) |
RU (1) | RU2002129506A (en) |
WO (1) | WO2001078031A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1903524A1 (en) | 2006-09-22 | 2008-03-26 | Elkron S.p.A. | Smoke detector |
US9157808B2 (en) | 2010-09-07 | 2015-10-13 | Utc Fire & Security Corporation | Detector assembly |
EP3018640A3 (en) * | 2014-10-14 | 2016-07-27 | Ningbo Sentek Electronics Co. Ltd | A smoke alarm |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2404731B (en) * | 2003-07-31 | 2006-08-09 | Apollo Fire Detectors Ltd | Smoke detector with compact light source |
DE502005008318D1 (en) * | 2005-03-31 | 2009-11-26 | Grundfos Management As | submersible |
EP2166520A4 (en) * | 2007-06-18 | 2011-01-12 | Panasonic Elec Works Co Ltd | Smoke sensor |
CN102436712B (en) * | 2008-03-31 | 2014-10-15 | 能美防灾株式会社 | Combination smoke and heat detector |
GB201006683D0 (en) | 2010-04-21 | 2010-06-09 | Fireangel Ltd | Smoke alarm |
JP5853143B2 (en) * | 2011-03-11 | 2016-02-09 | パナソニックIpマネジメント株式会社 | Fire detector |
DE102012209100A1 (en) | 2012-05-30 | 2013-12-05 | Robert Bosch Gmbh | Optical fire detector for use in building, has LED and photodiode arranged on sections of printed circuit board, where sections of printed circuit board are arranged in angled position relative to surface extension of printed circuit board |
JP6392094B2 (en) * | 2014-11-19 | 2018-09-19 | 能美防災株式会社 | Photoelectric smoke detector |
CN105245074A (en) * | 2015-11-13 | 2016-01-13 | 乐山三缘电机有限公司 | Three-phase asynchronous motor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3117475A1 (en) * | 1981-05-02 | 1982-11-18 | Robert Bosch Gmbh, 7000 Stuttgart | Electrical drive device |
DE8708891U1 (en) * | 1987-06-26 | 1987-08-20 | Siemens AG, 1000 Berlin und 8000 München | Cuboid-shaped optical smoke detector |
GB2306218B (en) * | 1995-10-11 | 1999-06-23 | Amlani Manhar | Combined detector & sounder device for fire alarm system |
US5751218A (en) * | 1996-07-19 | 1998-05-12 | Simplex Time Recorder Company | Smoke detector housing for improved smoke collection |
-
2000
- 2000-04-11 IT IT2000PD000083A patent/IT1315417B1/en active
-
2001
- 2001-04-06 CN CNB018077420A patent/CN100438308C/en not_active Expired - Fee Related
- 2001-04-10 EP EP01919696A patent/EP1272992B1/en not_active Expired - Lifetime
- 2001-04-10 RU RU2002129506/09A patent/RU2002129506A/en not_active Application Discontinuation
- 2001-04-10 WO PCT/IB2001/000591 patent/WO2001078031A1/en active IP Right Grant
- 2001-04-10 PT PT01919696T patent/PT1272992E/en unknown
- 2001-04-10 CA CA002405713A patent/CA2405713A1/en not_active Abandoned
- 2001-04-10 AU AU2001246755A patent/AU2001246755A1/en not_active Abandoned
- 2001-04-10 DK DK01919696T patent/DK1272992T3/en active
- 2001-04-10 AT AT01919696T patent/ATE249668T1/en not_active IP Right Cessation
- 2001-04-10 ES ES01919696T patent/ES2206415T3/en not_active Expired - Lifetime
- 2001-04-10 DE DE60100756T patent/DE60100756T2/en not_active Expired - Fee Related
- 2001-04-10 CZ CZ20023374A patent/CZ20023374A3/en unknown
-
2002
- 2002-10-10 NO NO20024896A patent/NO20024896L/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO0178031A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1903524A1 (en) | 2006-09-22 | 2008-03-26 | Elkron S.p.A. | Smoke detector |
US9157808B2 (en) | 2010-09-07 | 2015-10-13 | Utc Fire & Security Corporation | Detector assembly |
EP3018640A3 (en) * | 2014-10-14 | 2016-07-27 | Ningbo Sentek Electronics Co. Ltd | A smoke alarm |
Also Published As
Publication number | Publication date |
---|---|
DE60100756T2 (en) | 2004-03-18 |
NO20024896L (en) | 2002-12-03 |
NO20024896D0 (en) | 2002-10-10 |
AU2001246755A1 (en) | 2001-10-23 |
EP1272992B1 (en) | 2003-09-10 |
DE60100756D1 (en) | 2003-10-16 |
PT1272992E (en) | 2004-02-27 |
CA2405713A1 (en) | 2001-10-18 |
CN100438308C (en) | 2008-11-26 |
CN1422453A (en) | 2003-06-04 |
WO2001078031A1 (en) | 2001-10-18 |
CZ20023374A3 (en) | 2003-06-18 |
RU2002129506A (en) | 2004-03-10 |
DK1272992T3 (en) | 2004-01-26 |
ES2206415T3 (en) | 2004-05-16 |
IT1315417B1 (en) | 2003-02-10 |
ATE249668T1 (en) | 2003-09-15 |
ITPD20000083A1 (en) | 2001-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2561496B1 (en) | Smoke detector | |
EP1272992B1 (en) | Fire detector | |
US6756905B2 (en) | Photoelectric smoke detector and chamber therefor | |
KR100998373B1 (en) | Scattered light smoke detector | |
EP2936464B1 (en) | Integrated smoke cell | |
AU2003233745B2 (en) | Fire detector | |
AU2011244148A1 (en) | Smoke detector | |
US5670947A (en) | Light scattering smoke sensor | |
JP2012190306A (en) | Fire sensor | |
EP1146492A2 (en) | Multi-sensor | |
CN216670897U (en) | Smoke detector | |
CN116577250A (en) | Combined smoke and air quality detection | |
JP5523203B2 (en) | smoke detector | |
CN213149942U (en) | Smoke sensing device | |
CN211697618U (en) | Condensation detection device | |
CN111540159B (en) | Smoke alarm capable of directionally eliminating condensation interference and use method | |
CN111077188A (en) | Condensation detection device | |
CN210006175U (en) | Smoke alarm | |
CN216053228U (en) | Microwave mobile detector | |
JPH04322397A (en) | Smoke sensor with confirmation lamp | |
JPH0215187Y2 (en) | ||
GB2401936A (en) | Light sensor for smoke detector | |
JP5972730B2 (en) | smoke detector | |
JP3032443B2 (en) | Photoelectric smoke detector | |
JP4999812B2 (en) | Fire alarm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021002 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030910 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030910 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030910 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20030403355 Country of ref document: GR |
|
REF | Corresponds to: |
Ref document number: 60100756 Country of ref document: DE Date of ref document: 20031016 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20030910 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2206415 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040614 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060314 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060324 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20060425 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070313 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20070315 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20070402 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070410 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20070418 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20070405 Year of fee payment: 7 |
|
BERE | Be: lapsed |
Owner name: *SYSTEM SENSOR DIVISION OF PITTWAY CORP. Effective date: 20070430 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20071101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080430 Year of fee payment: 8 Ref country code: ES Payment date: 20080421 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080418 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20081010 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080403 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20080411 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080410 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091222 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080411 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080410 |