EP1270877B1 - Heat transformation with repressurization - Google Patents

Heat transformation with repressurization Download PDF

Info

Publication number
EP1270877B1
EP1270877B1 EP02013142A EP02013142A EP1270877B1 EP 1270877 B1 EP1270877 B1 EP 1270877B1 EP 02013142 A EP02013142 A EP 02013142A EP 02013142 A EP02013142 A EP 02013142A EP 1270877 B1 EP1270877 B1 EP 1270877B1
Authority
EP
European Patent Office
Prior art keywords
steam
stream
heat
turbine
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02013142A
Other languages
German (de)
French (fr)
Other versions
EP1270877A1 (en
Inventor
Joachim Schwieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1270877A1 publication Critical patent/EP1270877A1/en
Application granted granted Critical
Publication of EP1270877B1 publication Critical patent/EP1270877B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating

Definitions

  • the invention has for its object in a corresponding Patent DE 199 16 684 working power plant in the exhaust steam Using energy better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Process for heat transformation comprises dividing a steam stream, especially a saturated steam stream, in a vortex device into a heated partial stream and a cooled partial stream. Condensation occurs in the cooled partial stream and after the pressure is increased the condensate absorbs the heat of the heated partial stream and evaporates. The steam after work output in a machine tool is recycled into the turbulent flow. A residual steam quantity consisting of the heated partial stream of the last vortex device (W3) and the spent steam of the last machine tool (T3) is compressed by a steam compressor (K) and fed to a vortex device (W). Preferred Features: The residual steam quantity is compressed to the starting value. Each transformation stage has a turbine (T1-T3).

Description

Die Erfindung bezieht sich auf ein Verfahren zur Wärmetransformation mittels eines Wirbelaggregats, z.B. eines Hilschrohres, bei dem ein Dampfstrom, insbesondere ein Sattdampfstrom, im Wirbelaggregat in einen erwärmten Teilstrom und in einen abgekühlten Teilstrom aufgeteilt wird und im abgekühlten Teilstrom eine Kondensation stattfindet, und das Kondensat nach Druckerhöhung durch eine Pumpe die Wärme des erwärmten Teilstromes aufnimmt und verdampft und der Dampf nach Arbeitsleistung in einer Arbeitsmaschine in die Wirbelströmung zurückgeführt wird entsprechend dem Patent DE 199 16 684.The invention relates to a method for heat transformation by means of a vortex unit, e.g. a Hilsch pipe, in which a Steam flow, in particular a saturated steam flow, into one in the vortex unit heated partial flow and is divided into a cooled partial flow and condensation takes place in the cooled partial stream, and the condensate after increasing the pressure by a pump, the heat of the heated partial flow absorbs and evaporates and the steam according to work performance in one Work machine is returned to the vortex flow accordingly the patent DE 199 16 684.

Der Erfindung liegt die Aufgabe zugrunde, bei einem entsprechend der Patentschrift DE 199 16 684 arbeitenden Kraftwerk die im Abdampf befindliche Energie besser zu nutzen.The invention has for its object in a corresponding Patent DE 199 16 684 working power plant in the exhaust steam Using energy better.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß eine Restdampfmenge mittels eines Dampfverdichters verdichtet einem Wirbelaggregat (W) zugeführt wird, wobei die Restdampfmenge aus dem Warmstromanteil des letzten Wirbelaggregates und der Abdampf der letzten Arbeitsmaschine besteht.This object is achieved in that a residual amount of steam using a steam compressor compresses a vortex unit (W) is supplied, the amount of residual steam from the warm current portion of the last vortex unit and the evaporation of the last machine consists.

In Abweichung von dem in der Patentschrift DE 199 16 684 beschriebenen Verfahren ist es nicht so sehr von Bedeutung, in einem einzigen Durchlauf durch das Transformations-System durch möglichst viele in Reihe geschalteter Trafostufen eine möglichst hohe Verringerung der im Kondensator niederzuschlagenden Abdampfmenge zu erreichen, da eine Rückverdichtung erfolgt.In deviation from that described in the patent DE 199 16 684 Procedure it doesn't matter so much in a single pass through the transformation system through as many as possible in series Transformer stages the highest possible reduction in the capacitor to achieve the amount of exhaust steam to be deposited, as a recompression he follows.

So kann auch eine lohnende Mehrleistung der Turbine gegenüber dem Verdichter einen einstufigen Transformations-Prozeß wirtschaftlich vertretbar machen. Allerdings steigt mit der Abnahme der Leistungsdifferenz zwischen Verdichter und Turbine bei nur einer Trafostufe die Anzahl der erforderlichen Durchläufe. This can also be a rewarding additional performance for the turbine Compressor a one-step transformation process economically justifiable do. However, as the difference in performance decreases between compressor and turbine with only one transformer stage the number of required runs.

Anstelle einer Dampfabgabe aus einer vorhandenen Anlage kann natürlich auch Dampf aus anderen Quellen bezogen bzw. über Dampfverdichter eingespeist werden. So kann aus einer thermischen Meerwasserentsalzungsanlage in der Dampfphase über Verdichtung eine Einspeisung erfolgen, wobei der Dampf nach Nutzung zur Energieerzeugung wieder als Kondensat abgegeben wird. Ähnlich kann bei solar, mittels Erdwärme oder sonstwie erzeugtem Heißwasser Dampf durch Ausdampfung gewonnen werden.Instead of delivering steam from an existing system, of course steam also obtained from other sources or via steam compressors be fed. So from a thermal seawater desalination plant feeding takes place in the vapor phase via compression, the steam being used as energy again as condensate is delivered. Similarly, with solar, geothermal or otherwise generated hot water steam can be obtained by evaporation.

Bei der Optimierung des Transformations-Prozesses bringt eine Abweichung der erreichbaren Turbinenleistung weniger eine Änderung des Prozeß-Wirkungsgrades als vielmehr eine Erhöhung der Zahl der Durchläufe über die Rückverdichtung, dadurch einen Anstieg der erforderlichen Anlagenkapazität und der Kosten, da ja die vorstehend einzeln betrachteten Durchläufe in Wirklichkeit gemeinsam gleichzeitig ablaufen.When optimizing the transformation process brings a deviation the achievable turbine performance is less a change in process efficiency rather than an increase in the number of passes over recompression, thereby increasing the required plant capacity and the costs, since the runs considered individually above actually run together at the same time.

Wesentlich ist also, daß die erzielte Turbinenleistung möglichst hoch über der Verdichterleistung liegt, um die Anzahl der Durchläufe und damit die Kapazität der Komponenten zu begrenzen. Eine Leistungsgleichheit würde den Trafo-Prozeß verhindern. Eine Unterschreitung der Bandbreite der vertretbaren Leistungsdifferenz würde durch eine zu hohe Umlaufzahl die Anlage bis zur Unwirtschaftlichkeit verteuern.It is therefore essential that the turbine power achieved is as high as possible the compressor capacity is the number of passes and thus the Limit component capacity. A performance equality would prevent the transformer process. Falling below the bandwidth of the acceptable performance difference would be due to a too high number of cycles Make the system expensive to inefficiency.

So liegt auch die vereinfachte Einbeziehung von drei Kondensationsturbinen ohne Vakuumentwässerung und des Verdichters ohne Zwischenkühlung im Rahmen der Bandbreite einer Überschlagsrechnung.This is also the simplified inclusion of three condensation turbines without vacuum drainage and the compressor without intermediate cooling in the The range of a rough calculation.

Da bei Fremd-Dampfeinspeisung die Wärmezufuhr infolge der Verdichtung nur gering ist gegenüber der weit größeren Dampfenthalpie, so ist sie meist wirtschaftlich lohnend, denn nicht Exergie, sondern Energie ist maßgebend. So kann auch das Druckniveau des Transformations-Prozesses zwecks optimaler Abmessungen angehoben werden.Because with external steam supply, the heat supply due to compression is only slight compared to the much larger steam enthalpy, so it is usually economically worthwhile, because not exergy, but energy is decisive. So the pressure level of the transformation process can also be used optimal dimensions can be raised.

Bei den allgemeinen Rückverdichtungskreisläufen und den Projektuntersuchungen war die Effektivität vorwiegend bestimmt durch den Temperaturunterschied zwischen Expansion und Kompression. Bei der Rückverdichtung in Verbindung mit einem Wärmetransformator findet der Arbeitsprozeß jedoch überwiegend im Satt- und Naßdampfgebiet statt. Auch wird hier keine Wärme zugeführt, sondern die vorhandene latente Wärme des Arbeitsmediums umgesetzt, bis der Dampf weitgehend kondensiert ist.For the general recompression cycles and project studies the effectiveness was mainly determined by the temperature difference between expansion and compression. With recompaction the work process takes place in connection with a heat transformer however mostly in the saturated and wet steam area. Also here no heat supplied, but the existing latent heat of the working medium implemented until the steam is largely condensed.

Der Wirkungsgrad der Transformation ohne Rückverdichtung erhöht sich gleitend in Abhängigkeit von der Güte der Randbedingungen, wie Anzahl und Druckverlust der Trafostufen, Höhe, der Größe des Kaltstromanteils und dessen Temperaturdifferenz zum Warmstrom.The efficiency of the transformation without recompression increases sliding depending on the quality of the boundary conditions, such as number and pressure loss of the transformer stages, height, the size of the cold current component and its temperature difference to the hot current.

Diese Kriterien beeinflussen bei einem nach dem erfindungsgemäßen Verfahren arbeitenden Kraftwerk vorrangig die Kosten. Das Maß der Leistungsdifferenz zwischen Turbine und Verdichter ist dabei allein entscheidend für die Ausführbarkeit, da hiervon das Maß der Umläufe, also die Kapazität der Anlage und somit deren Kosten abhängen. Lassen diese eine Rückverdichtungsanlage wirtschaftlich erscheinen, dann rückt ein innerer Wirkungsgrad nahe an 100% in Reichweite.These criteria affect one according to the invention Process power plant primarily the cost. The measure of The difference in output between the turbine and compressor is the only decisive factor for the feasibility, since of this the measure of the circulations, that is the Capacity of the plant and thus its costs depend. Leave this one Recompression plant appear economical, then an internal one moves Efficiency close to 100% within reach.

Zur Frage der Ausführbarkeit folgendes: Beim Hilschrohr ist die Wärmetrennung mit Luft experimentell nachgewiesen. Es ist zu erwarten, daß auch mit Dampf und eingepaßtem Wirbelaggregat ein entsprechender Effekt eintritt. Schließlich zeigt die Natur, daß beim Tornado eine Kondensation erfolgt. Diese Wirkungsweise wäre technisch zu erfassen und nachzuahmen.Regarding the feasibility, the following: With Hilsch pipe is the heat separation experimentally proven with air. It is expected that too with steam and a fitted vortex unit a corresponding effect entry. Finally, nature shows that the tornado is a condensation he follows. This mode of action would have to be recorded and imitated technically.

Die Abwärme eines Kraftwerkes kann dann statt in einem Kondensator und Kühlturm in ein neues Kraftwerk mit stufenweiser Transformation und Rückverdichtung eingeleitet werden und eine Leistung ohne zusätzlichen Brennstoffeinsatz erzeugen.The waste heat from a power plant can then take place in a condenser and Cooling tower in a new power plant with gradual transformation and Recompression can be initiated and a performance without additional Generate fuel input.

Fig. 1 zeigt eine Prinzipskizze eines nach dem erfindungsgemäßen Verfahren arbeitenden Kraftwerkes.Fig. 1 shows a schematic diagram of a method according to the invention working power plant.

In den Zeichnungen bedeuten

A =
Altanlage
N =
Neuanlage
G =
Generator
T =
Turbine
W =
Wirbelaggregat
P =
Pumpe
V =
Verdampfer
K =
Kompressor
m =
(kg/s ) relativ
1m =
100 % Zudampf
p =
(bar) Druck
pi =
Staudruck
t =
(°C) Temperatur
h =
(kJ/kg) Enthalpie
B =
Kondensatbehälter
Mean in the drawings
A =
Old system
N =
new plant
G =
generator
T =
turbine
W =
whirling unit
P =
pump
V =
Evaporator
K =
compressor
m =
(kg / s) relative
1m =
100% steam
p =
(bar pressure
pi =
backpressure
t =
(° C) temperature
h =
(kJ / kg) enthalpy
B =
condensate tank

Bei dem Kondensationskraftwerk nach Fig. 1 strömt Dampf aus einer Turbine T0 einer vorhandenen Altanlage A über eine Leitung 1 einem Wirbelaggregat W1 zu und wird in zwei Teilströme unterschiedlicher Temperatur aufgeteilt. Der kältere Teilstrom kondensiert, und das Kondensat wird über eine Leitung 2 einer Pumpe P1 zur Druckerhöhung zugeführt. Anschließend nimmt das Kondensat im Verdampfer V1 die vom Warmstrom aufgenommene und transportierte Kondensationswärme des Kaltstroms auf und verdampft. Der Dampf strömt über eine Leitung 5 der Turbine T1 zu. Nach Arbeitsleistung wird der Dampf über eine Leitung 7 in das Wirbelaggregat W2 der nächst niederen Stufe eingeführt.In the condensation power plant according to FIG. 1, steam flows from a turbine T 0 of an existing plant A through a line 1 to a vortex unit W 1 and is divided into two partial flows of different temperatures. The colder partial flow condenses and the condensate is fed via a line 2 to a pump P 1 to increase the pressure. The condensate in the evaporator V 1 then absorbs and transports the heat of condensation of the cold flow, which is absorbed and transported, and evaporates. The steam flows to the turbine T 1 via a line 5. After work, the steam is introduced via a line 7 into the vortex unit W 2 of the next lower stage.

Der im Verdampfer V1 bereits auf seine Eingangsenthalpie abgekühlte Warmstromanteil des Wirbelaggregats W1 wird über eine Leitung 8 dem Wirbelaggregat W2 zugeführt. Es können eine oder mehrere Wirbelaggregat-Stufen vorgesehen sein, in denen sich die Aufteilung in jeweils zwei Teilströme wiederholt.The warm current component of the vortex unit W 1 which has already cooled to its input enthalpy in the evaporator V 1 is fed to the vortex unit W 2 via a line 8. One or more vortex unit stages can be provided, in which the division into two partial streams is repeated.

In einer Berechnung eines Kraftwerkes mit Rückverdichtung gemäß Fig. 1 wurde in Fig. 2 das Verhältnis von Kalt- zu Warmstrom auf 2:1 gesetzt und zum Teil angenommene Ausgangsdaten bei den einzelnen Wärmetransformationsstufen eingetragen. Es wird ein in sich geschlossener Kreislauf dargestellt als Grundlage für eine Überschlagsrechnung an einem Beispiel.In a calculation of a power plant with recompression according to FIG. 1 the ratio of cold to warm current was set to 2: 1 in FIG. 2 and partially assumed initial data for the individual heat transformation stages entered. A closed cycle is shown as a basis for a rough calculation using an example.

Mit den eingesetzten Werten ergibt sich bei einer Zudampfmenge von 1m (1m = 1 kg/s - symbolisch für 100 %) eine innere Dampfturbinenleistung von insgesamt ca. 940 KWi bei drei Transformationsstufen mit den jeweils zugeordneten Teilturbinen. Dabei beträgt die Minderleistung der vorhandenen Entnahmeturbine T0 Δ N = 1m · (2545 - 2340) h · 0,98 = 200 KWi (h = kJ/kg) bei einer an das System abgegebenen Wärmemenge von Q = 1m (2545 - 163) h = 2382 KW th, d.h. der fiktive Teilwirkungsgrad für die Entnahmedampfmenge zu 1m würde unter Berücksichtigung der Kondensationswärme lediglich betragen η = 200 KWi : 2382 KWth = 0,084, With the values used, an internal steam turbine output of a total of approx. 940 KWi with three transformation stages with the respectively assigned sub-turbines results with an inflow quantity of 1 m (1 m = 1 kg / s - symbolically for 100%). The reduced output of the existing extraction turbine is T 0 Δ N = 1m · (2545 - 2340) h · 0.98 = 200 KWi (h = kJ / kg) with a quantity of heat given off to the system Q = 1m (2545 - 163) h = 2382 KW th, ie the fictitious partial efficiency for the extraction steam quantity of 1m would only be taking into account the heat of condensation η = 200 KWi: 2382 KWth = 0.084,

Demgegenüber zeigt das erfindungsgemäße Konzept gemäß Fig. 2 die gleiche Gesamtleistung von 940 KWi. Nach Abzug von 200 KWi Minderleistung verbleiben 740 KWi bzw. Ne = ca. 740 KWi 0,96 = 710 KWe.In contrast, the inventive concept according to FIG. 2 shows the same total output of 940 KWi. After deducting 200 KWi underperformance 740 KWi or Ne = approx. 740 KWi 0.96 = 710 KWe remain.

Zur Kontrolle beträgt die umgesetzte Wärmemenge beim ersten Durchlauf gemäß Fig. 2 1. Durchlauf Q ein = 1 m · 2545 h = 2545 KW th Q aus = o,702 m · 2171 h = 1524 KW th Q Kondensat = 0,298 m · 212 h = 63 KW th Differenz = 958 KW th    Ni = 940 KW i    Nel = 910 KW e As a control, the amount of heat converted during the first pass is shown in FIG. 2 1st pass Q a = 1 m2545 h = 2545 KW th Q off = 0.702 m2171 h = 1524 KW th Q condensate = 0.298 m x 212 h = 63 KW th difference = 958 KW th N i = 940 KW i N el = 910 KW e

Das erfindungsgemäße Konzept besteht nun darin, daß die dem Kondensator zuströmende Abdampfmenge von 0,702 m bei 0,07 bar durch Rückverdichtung bei vorheriger Entwässerung und nachfolgender Einspritzkühlung auf den ursprünglichen Eingangswert von 0,56 bar bei 2545 h wieder eingespeist wird. Dabei beträgt die hierfür erforderliche Verdichterleistung 280 KW.The concept according to the invention now consists in that the capacitor incoming steam quantity of 0.702 m at 0.07 bar by recompression with previous drainage and subsequent injection cooling the original input value of 0.56 bar was fed in again at 2545 h becomes. The compressor output required for this is 280 KW.

Allerdings sinkt nun die verdichtete Zudampfmenge auf 0,71 m gegenüber ursprünglich 1,0 m. Nach diesem ersten Durchlauf beginnt ein sich mit der Rückverdichtung wiederholender Umlauf, wobei sich der jeweilige Massenstrom auf 71% des vorherigen Umlaufs verringert. 2. Umlauf - Bilanz Q zu = 0,71 m · 2545 h = 1800 KW th Q aus = 0,71 m (0,702 m · 2171 h - 63 h) = 1145 KW th    Differenz Q = 655 KW th zum Vergleich: N = 0,71 · 910 KW - 280 KW = 646-280 = 366KWe However, the compressed amount of vapor now drops to 0.71 m compared to the original 1.0 m. After this first run, a recurrence of recompression begins, with the respective mass flow decreasing to 71% of the previous run. 2. Circulation - balance Q to = 0.71 m x 2545 h = 1800 KW th Q off = 0.71 m (0.702 m2171 h - 63 h) = 1145 KW th Difference Q = 655 KW th for comparison: N = 0.71.910 KW - 280 KW = 646-280 = 366KWe

Da die Wärmemenge in wiederholten Umläufen mit Rückverdichtung (280 KW) abgearbeitet wird, ergeben sich abhängig von der jeweiligen Umlaufzahl die folgenden Werte: Umlauf 1 2 3 4 5 6 10 Ne des Umlaufs (KW) 710 366 260 184 131 93 24 Ne gesamt (KW) 710 1076 1336 1520 1651 1744 1914 Wirkungsgrad ( % ) 29,8 43,6 56,1 63,8 69,3 73,2 80,3 bezogen auf 2382 h /kJ/kg).Since the amount of heat is processed in repeated cycles with recompression (280 KW), the following values result depending on the number of cycles: circulation 1 2 3 4 5 6 10 N e of circulation (KW) 710 366 260 184 131 93 24 N e total (KW) 710 1076 1336 1520 1651 1744 1914 Efficiency (%) 29.8 43.6 56.1 63.8 69.3 73.2 80.3 based on 2382 h / kJ / kg).

Nach dem zehnten Umlauf wird ein Wirkungsgrad von etwa 80% erreicht. Somit steht der durch die Dampfentnahme entstandenen Minderleistung von 200 KW eine Leistung im Trafosystem von nunmehr ca. 1900 KWe gegenüber. Die kursierende Umlaufdampfmenge erreicht hierbei fast den dreifachen Wert der Eintrittsdampfmenge, was eine entsprechend große Kapazität der Anlage erfordert.After the tenth round, an efficiency of about 80% is achieved. Thus, the underperformance resulting from the steam extraction stands at 200 KW compared to a power in the transformer system of approx. 1900 KWe. The circulating amount of circulating steam reached almost three times Value of the amount of inlet steam, which is a correspondingly large capacity the system requires.

Diese Überschlagsrechnung soll lediglich die Tendenz veranschaulichen. Die angenommenen Randbedingungen können sich je nach Versuchsergebnis noch ändern.This rough calculation is only intended to illustrate the trend. The assumed boundary conditions can vary depending on the test result still change.

Die Wärmeübertragung bei der Transformation ist ein kontinuierlicher Prozeß, wobei die Kondensationswärme des Kaltstromes nicht auf die Warmstromenthalpie aufgestockt wird, sondern die Wärmeübertragung kontinuierlich gleitend erfolgt und zur Verdampfung dient. Nachstehend soll der Zusammenhang aufgezeigt werden, daß letztlich die erzeugte Turbinenleistung der Verdampfungswärme des abgeführten Kondensates entspricht. Am Turbinenaustritt ist die Dampfenthalpie infolge der Arbeitsleistung verringert, wodurch dieser Dampf nur eine geringere Menge an sekundärem Sattdampf erzeugen kann. Das überflüssige Kondensat, das ohne externe Wärmeabfuhr kondensiert, wird über die Entwässerung abgeführt. The heat transfer during the transformation is continuous Process, wherein the heat of condensation of the cold stream is not on the Warm current enthalpy is increased, but the heat transfer continuously sliding and used for evaporation. Below is supposed to the relationship can be shown that ultimately the generated turbine power corresponds to the heat of vaporization of the discharged condensate. At the turbine outlet is the enthalpy of steam due to the work performed decreases, which makes this vapor only a smaller amount of secondary Can produce saturated steam. The superfluous condensate without external Heat dissipation condensed, is dissipated via the drainage.

Die erzeugte Leistung von ca. 940 KWi entspricht in der Größenordnung jener Wärmemenge, die bei der Kondensation der aus dem System abgegebenen Kondensatmenge frei wird, und zwar

  • 1. aus den Trafostufen mit Q Kond = 0,298 m · (2545-212) h = 695 KW th und
  • 2. aus der Entwässerung vor Verdichter: Q Kond = 0,117 · (2545-163) h = 278 KW th Σ Q Kond = 695 + 278 = 973 KW th.
  • The output of approx. 940 KWi corresponds to the amount of heat that is released when the amount of condensate released from the system is condensed
  • 1. from the transformer stages with Q Kond = 0.298 m · (2545-212) h = 695 KW th and
  • 2. from the drainage before the compressor: Q Kond = 0.117 · (2545-163) h = 278 KW th Σ Q Kond = 695 + 278 = 973 KW th.
  • Die innere Turbinenleistung beträgt 940 KWi. Der erste Umlauf nach Verdichtung hat bei 71 % der Zudampfmenge auch entsprechend 71 % der obigen Werte, wobei statt der Turbinenminderleistung von 200 KWi die Verdichterleistung (280 KW im zweiten Umlauf) abzuziehen ist.The internal turbine output is 940 KWi. The first round after At 71% of the amount of vaporization, compression also corresponds to 71% of the Above values, whereby instead of the turbine underpower of 200 KWi Compressor output (280 KW in the second cycle) must be deducted.

    Da infolge der Erhöhung von Temperatur und Enthalpie des Sekundärdampfes (210°C, 2800 kJ/kg) gegenüber dem zuströmenden Primärdampf (84°C, 2545 h) die Wärme im Verdampfer V1 nicht zur Verdampfung der gesamten Kondensatmenge ausreicht, wird der Überschuß in den Kondensatsammelbehälter B abgeführt.Since due to the increase in temperature and enthalpy of the secondary steam (210 ° C, 2800 kJ / kg) compared to the incoming primary steam (84 ° C, 2545 h) the heat in the evaporator V 1 is not sufficient to evaporate the entire amount of condensate, the excess becomes the condensate collector B discharged.

    Eine nicht kondensierte Restdampfmenge, die sich aus den beiden Abdampfmengen der letzten Transformationsstufe (Leitung 10) und der letzten Turbine T3 (Leitung 11) zusammensetzt, wird nach Entwässerung in einem Dampfkompressor K verdichtet und nach Wassereinspritzung zwecks Kühlung - zur rechnerischen Vereinfachung - wieder auf Zudampfzustand der Leitung 1 gebracht und dort bei Y dem Prozeß wieder eingegeben. Der Kondensator wird hierdurch entbehrlich.An uncondensed amount of residual steam, which is made up of the two evaporation amounts of the last transformation stage (line 10) and the last turbine T 3 (line 11), is compressed in a steam compressor K after dewatering and re-opened after water injection for cooling purposes - to simplify the calculation Evaporated state of line 1 and entered the process again at Y there. This makes the capacitor unnecessary.

    Claims (3)

    1. A method of heat transformation using a vortex unit, e.g. a Hilsch tube, in which a steam stream, in particular a saturated steam stream, is subdivided in the vortex unit into a heated sub-stream and a cooled sub-stream and condensation takes place in the cooled sub-stream and the condensate, after the pressure is increased by a pump, absorbs the heat from the heated sub-stream and vaporises and the steam is recycled to the vortex flow after performing its work in a working machine, characterised in that a residual steam quantity, compressed by means of a steam compressor (K), is fed to a vortex unit (W), wherein the residual steam quantity consists of the hot stream fraction of the last vortex unit (W3) and the exhaust steam of the last working machine (T3).
    2. A method according to claim 1, characterised in that the residual steam quantity is compressed to the starting value.
    3. A method according to claim 1 or claim 2, characterised in that a turbine (T1, T2, T3) is associated with each transformation stage.
    EP02013142A 2001-06-27 2002-06-14 Heat transformation with repressurization Expired - Lifetime EP1270877B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10131072A DE10131072C1 (en) 2001-06-27 2001-06-27 Process for heat transformation comprises dividing a steam stream, especially a saturated steam stream, in a vortex device into a heated partial stream and a cooled partial stream
    DE10131072 2001-06-27

    Publications (2)

    Publication Number Publication Date
    EP1270877A1 EP1270877A1 (en) 2003-01-02
    EP1270877B1 true EP1270877B1 (en) 2004-12-22

    Family

    ID=7689689

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02013142A Expired - Lifetime EP1270877B1 (en) 2001-06-27 2002-06-14 Heat transformation with repressurization

    Country Status (4)

    Country Link
    EP (1) EP1270877B1 (en)
    AT (1) ATE285511T1 (en)
    DE (2) DE10131072C1 (en)
    ES (1) ES2236395T3 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004037934B4 (en) * 2004-08-04 2009-08-27 Deutsche Energie Holding Gmbh working procedures
    CN105484810B (en) * 2016-01-11 2017-03-29 苟仲武 The apparatus and method that a kind of exhaust steam mechanical compress is recycled
    CN113146817B (en) * 2021-03-04 2022-12-13 贵州迪森元能源科技有限公司 Automatic control system for residual gas utilization

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4479354A (en) * 1979-08-20 1984-10-30 Thomas Cosby Limited expansion vapor cycle
    DE19916684C2 (en) * 1999-04-14 2001-05-17 Joachim Schwieger Process for heat transformation using a vortex unit

    Also Published As

    Publication number Publication date
    EP1270877A1 (en) 2003-01-02
    DE10131072C1 (en) 2002-12-12
    ATE285511T1 (en) 2005-01-15
    ES2236395T3 (en) 2005-07-16
    DE50201822D1 (en) 2005-01-27

    Similar Documents

    Publication Publication Date Title
    DE3213837C2 (en) Exhaust steam generator with degasser, in particular for combined gas turbine-steam power plants
    DE102008037410B4 (en) Combined cycle and method using supercritical steam
    AT517535B1 (en) Steam power plant
    EP1816397B1 (en) Method and device for heat recovery, from humid exhaust air
    EP3158130B1 (en) Method and apparatus for drying stock and industrial plant
    WO2006058845A1 (en) Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electric power, and corresponding steam power station
    DE1808966C3 (en) Thermal power plant for generating electrical energy and fresh water from salt water
    EP1169551B1 (en) Method for transforming heat using a vortex aggregate
    DE1805652C3 (en) Process for obtaining fresh water from an aqueous salt solution and device for carrying out the process
    DE3600560A1 (en) METHOD FOR GENERATING MECHANICAL ENERGY FROM HEATING ENERGY
    EP1870646B1 (en) Method and device for recovery of condensation heat from a thermodynamic cyclical process
    DE19943782C5 (en) Gas and steam turbine plant
    EP1270877B1 (en) Heat transformation with repressurization
    DE102012110579B4 (en) Plant and process for generating process steam
    DE102020131706A1 (en) System and method for storing and delivering electrical energy with its storage as thermal energy
    WO2011045047A2 (en) (o) rc-method for utilizing waste heat from biomass combustion for generating electricity and corresponding system
    DE3020297A1 (en) PLANT FOR PRODUCING OVERHEATED PROCESS STEAM FROM SALTY RAW WATER
    WO2007144285A2 (en) Steam power plant
    DE4025023A1 (en) METHOD FOR EVAPORATING LIQUID NATURAL GAS
    DE102012100645B4 (en) ORC - Organic Rankine cycle
    EP3728800A1 (en) Power plant
    AT521050B1 (en) Process for increasing energy efficiency in Clausius-Rankine cycle processes
    CH707913A2 (en) Circuit for preheating feedwater in a steam turbine plant.
    DE102010048292A1 (en) Method for operating low temperature power plant utilized to convert heat energy of low temperature mass flow into electricity, involves changing state of working fluid by increasing temperature, and vaporizing fluid in partial streams
    DE1551263A1 (en) Cycle for steam power plants

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030410

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041222

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041222

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041222

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041222

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50201822

    Country of ref document: DE

    Date of ref document: 20050127

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050322

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050322

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050322

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050518

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050614

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050614

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050614

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2236395

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050923

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 14.03.2007 REAKTIVIERT WORDEN.

    BERE Be: lapsed

    Owner name: *SCHWIEGER JOACHIM

    Effective date: 20050630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050522

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20100923

    Year of fee payment: 9

    Ref country code: ES

    Payment date: 20100921

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100924

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110614

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110630

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110630

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20131029

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110615

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20180628

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180827

    Year of fee payment: 17

    Ref country code: GB

    Payment date: 20180626

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50201822

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20190614

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20200101

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190614

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190630