EP1267805A2 - Compositions cosmetiques s'integrant a la chevelure pour en augmenter le gonflant - Google Patents

Compositions cosmetiques s'integrant a la chevelure pour en augmenter le gonflant

Info

Publication number
EP1267805A2
EP1267805A2 EP01926504A EP01926504A EP1267805A2 EP 1267805 A2 EP1267805 A2 EP 1267805A2 EP 01926504 A EP01926504 A EP 01926504A EP 01926504 A EP01926504 A EP 01926504A EP 1267805 A2 EP1267805 A2 EP 1267805A2
Authority
EP
European Patent Office
Prior art keywords
hair
leave
acid
extract
available
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01926504A
Other languages
German (de)
English (en)
Inventor
Sanjeev Midha
Shari Renee Thomson
Michael Albert Snyder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority claimed from PCT/US2001/010363 external-priority patent/WO2001074311A2/fr
Publication of EP1267805A2 publication Critical patent/EP1267805A2/fr
Withdrawn legal-status Critical Current

Links

Definitions

  • the present invention relates to leave-in hair cosmetic compositions comprising non-spherical microparticles and a water-soluble or water-swellable polymer for enhancement of the volume of the hair.
  • the compositions may optionally further comprise fluid-encapsulated, flexible microspheres.
  • Hair conditioners both leave-in and rinse-off, improve the wet and dry combing of hair and the feel of the hair.
  • Typical ingredients used in conditioner form a thin coating of low friction polymers or polymer-surfactant complexes on hair fibers. This results in good combing benefits because of reduced surface friction of hair fibers.
  • reduced friction has a negative impact on achieving and maintaining the desired hair volume. This happens particularly for people who have fine and thin hair. So there exists a need to have conditioning products that also increase or enhance hair volume. Styling products are used by consumers to create and maintain their hair style.
  • the present mvention is directed to leave-in hair cosmetic compositions, comprising non-spherical microparticles exhibiting a mean particle size of less than about lOO ⁇ m in its longest dimensions, a water-soluble or water-swellable polymer, and an aqueous carrier, wherein the combination of the polymer and the microparticles results in a film-forming network.
  • the compositions may further comprise fluid- encapsulated, flexible microspheres exhibiting a mean particle size of less than about 300 ⁇ m in diameter, which microspheres, in combination with the polymer and the microparticles, contribute to the film-forming network.
  • the present invention further relates to methods for enhancing hair volume, and more particularly for enhancing hair volume with leave-in aqueous cosmetic compositions which contain non-spherical microparticles of less than lOO ⁇ m in its longest dimension and a water-soluble or water-swellable polymer, and optionally fluid- encapsulated, flexible microspheres exhibiting a mean particle size of less than about 300 ⁇ m in diameter.
  • the leave-in hair cosmetic compositions of the present invention comprise select non-spherical microparticles in combination with a water-soluble or water- swellable polymer and may further comprise select fluid-encapsulated, flexible microspheres.
  • spherical refers to a body which is the set of points in a metric space whose distance from a fixed point is approximately constant.
  • the meaning of “approximately” is that the fixed points are within a distance of ⁇ 15%.
  • non-spherical refers to a body whose surface dimensions vary in excess of ⁇ 15%.
  • leave-in means that the product, after application unto hair, is not removed from the hair.
  • fluid means a liquid or a gas which tends to take the shape of its container, container being the wall ofthe flexible microspheres.
  • fluid-encapsulated means that the microspheres of the invention are structurally hollow. In accordance with the invention, the term “structurally hollow” nonetheless allows the hollow microspheres to contain at least one additional material therein.
  • continuous or semi-continuous film network means that the film feels dry when touched with fingers, can be lifted easily from the substrate, and it does not melt when held between the fingers.
  • compositions or components thereof so described are suitable for use in contact with human hair and the scalp and skin without undue toxicity, incompatibility, instability, allergic response, and the like.
  • water soluble means that the polymer is soluble in water in the present composition.
  • the copolymer should be soluble at 25° C at a concentration of 0.1% by weight of the water solvent, preferably at 1%, more preferably at 5%, most preferably at 15%.
  • water swellable means that polymer can absorb sufficient amounts of water.
  • a sufficient amount of water absorption means a water absorption of at least 1 ml/g, preferably at least 5 ml/g, more preferably at least 10 g/ml, most preferably at least 15 g/ml. All cited references are incorporated herein by reference in their entireties. Citation of nay reference is not an admission regarding any determination as to its availability as prior art to the claimed invention.
  • microparticles ofthe present invention have a size of less than about lOO ⁇ m in its longest dimension.
  • the microparticles range from about 1 ⁇ m to about 60 ⁇ m, more preferably from about 1 ⁇ m to about 20 ⁇ m, and most preferably from about 1 ⁇ m to about 10 ⁇ m in its longest dimension.
  • the microparticles of the present invention may be natural, processed or synthetic clays.
  • suitable natural clay microparticles are silicas, borosilicates and silicons such as Smectite, Bentonite, Laponite and Megnabrite clays. Particularly preferred natural clay microparticles are Bentone MA.
  • suitable synthetic microparticles are crosslinked polymeric ion exchange resins, cationic and anionic.
  • the clays may be selected from smectite, attapulgite and sepiolite clays. Please refer to Mineralogical Society Monograph No.5 "Crystal Structures of Clay Minerals and their X-ray identification", Brindley, G.
  • Processed clays are natural clays which have been processed to reduce impurities or to alter the balance of their constituents.
  • Synthetic clays having equivalent structures may be used. Synthetic clays may have the advantage of being made from pure materials, thus avoiding the presence of impurities which can cause gassing or other problems.
  • the smectite mineral known as hectorite is a magnesium silicate in which the anionic silicate may or may not contain lithium and/or fluorine atoms and is charge balanced by sodium or other cations.
  • the hectorites useful in the present invention include synthetic and natural minerals including magnesium silicate, sodium magnesium fluorosilicate, sodium lithium magnesium silicate and sodium lithium magnesium fluorosilicate.
  • the preparation of synthetic hectorites by precipitation techniques is described in patent number GB105411, GB1213122 and US4,049,780, all incorporated herein.
  • Synthetic hectorite is available commercially as LaponiteTM from Southern Clay Products. The synthetic hectorite following the general empirical formula may be suitable for use in the present invention:
  • the surface ofthe microparticles ofthe present invention can be modified with a charge or at least one functional group that is hydrophobic or hydrophilic or a combination thereof.
  • the surface charge can be through a static development or with the attachment of various ionic groups directly or linked via short, long or branched alkyl groups.
  • the surface charge can be anionic, cationic, zwitterionic or amphoteric in nature.
  • the functional groups comprise alkyl, hydroxy, alkoxy, amino, carboxy, sulfate and halide groups.
  • microparticles of the present invention exist in either dry or hydrated state.
  • the aforesaid materials are nontoxic and non-irritating to the skin.
  • compositions of the present invention it is preferable to incorporate from about 0.25% to about 15%, by weight ofthe composition, more specifically from about 0.1% to about 10% by weight ofthe composition, ofthe microparticles, more preferably from about 0.5% to about 5% by weight, and even more preferably from about 0.5% to about 3%, by weight ofthe composition.
  • the polymers useful in this invention may comprise any water-soluble or water- swellable polymer suitable for use in personal care products and for application to human hair.
  • the polymers may be hbmopolymers, copolymers or a blend of homopolymers and/or copolymers.
  • the polymers can be natural, synthetic, or semi- synthetic. Polymers can be straight chain or cross-linked. Polymers containing either ionic and non-ionic groups are contemplated. Ionic polymers include, but are not limited to, cationic, anionic, zwitterionic, and amphoteric polymers.
  • the polymers can be synthesized from a variety of monomers containing unsaturated groups or by synthetic mechanisms that result in a variety of linking groups, for example, polyurethanes, polyesters, polyamides, polyureas, in the polymer backbone.
  • the polymers of the present invention have a weight average molecular weight of at least about 5,000. There is no upper limit for molecular weight except that which limits applicability of the invention for practical reasons, such as viscosity, processing, aesthetic characteristics, formulation compatibility, etc.
  • the weight average molecular weight is less than about 5,000,000, more generally less than about 2,500,000, and typically less than about 1,500,000.
  • the weight average molecular weight is from about 10,000 to about 5,000,000, more preferably from about 75,000 to about 1,000,000, even more preferably from about 100,000 to about 850,000, and most preferably from about 125,000 to about 750,000.
  • polymers for use in the present invention include straight polymer chains consisting of one or more monomers.
  • a polymer containing two monomers can be represented by the following formula:
  • a and B are described herein; a is an integer of 1 or greater; and b is an integer of 0 or greater.
  • the "A" monomer unit is selected from polymerizable monomers, preferably ethylenically unsaturated monomers.
  • polymerizable as used herein, it is meant that the monomers can be polymerized using any conventional synthetic techniques. Monomers that are polymerizable using conventional free radical initiated techniques are preferred.
  • ethylenically unsaturated is used herein to mean monomers that contain at least one polymerizable carbon-carbon double bond (which can be mono- , di-, tri-, or tetra-substituted).
  • the ethylenically unsaturated A monomer units preferably can be described by the following formula
  • X - C(O) - CR 5 CHR 6
  • X is selected from the group consisting of -OH, -OM, -OR ⁇ , -NH2, -NHR.4, and -N(R4)2
  • M is a cation selected from the group consisting of Na+, K+, Mg++, Ca++, Zn++, NH +, alkylammonium, dialkylammonium, trialkylammonium, and
  • each R ⁇ is independently selected from the group consisting of H, Cj-Cg straight or branched chain alkyl, N,N-dimethylaminoethyl, methyl quatemized
  • R ⁇ and R6 are independently selected from the group consisting of H, Cj-Cs straight or branched chain alkyl, methoxy, ethoxy, 2-hydroxyethoxy, 2-methoxyethyl, and 2- ethoxyethyl.
  • Representative nonlimiting examples of monomers useful herein include acrylic acid and salts, esters, and amides thereof.
  • the salts can be derived from any of the common nontoxic metal, ammonium, or substituted ammonium counter ions.
  • the esters can be derived from C1-C40 straight chain, C3-C40 branched chain, or C3-C40 carbocyclic alcohols; from polyhydric alcohols having from about 2 to about 8 carbon atoms and from about 2 to about 8 hydroxy groups (nonlimiting examples of which include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, glycerin, and 1,2,6-hexanetriol); from amino alcohols (nonlimiting examples of which include aminoethanol, dimethylaminoethanol, and diethylaminoethanol, and their quatemized derivatives); or from alcohol ethers (nonlimiting examples of which include methoxyethanol, and ethoxy ethanol).
  • the amides can be unsubstituted, N-alkyl or N- alkylamino mono-substituted, or N,N-dialkyl or N,N-dialkylamino di-substituted, wherein the alkyl or alkylamino group can be derived from C ⁇ -C40 straight chain, C3-
  • alkylamino groups can be quatemized.
  • substituted acrylic acids and salts, esters, and amides thereof wherein the substituents are on the two and three carbon positions of the acrylic acid and are independently selected from the group consisting of C1.4 alkyl, -CN, -COOH (e.g., methacrylic acid, ethacrylic acid, and 3- cyano acrylic acid).
  • the salts, esters, and amides of these substituted acrylic acids can be defined as described above for the acrylic acid salts, esters, and amides.
  • Other useful monomers include vinyl and allyl esters of C 1.49 straight chain, C3-40 branched chain, or C3-40 carbocyclic carboxylic acids; vinyl and allyl halides (e.g., vinyl chloride and allyl chloride); vinyl and allyl substituted heterocyclic compounds (e.g., vinyl pyridine and allyl pyridine); vinylidene chloride; and hydrocarbons having at least one carbon- carbon double bond (e.g., styrene, alpha-methylstyrene, t-butylstyrene, butadiene, isoprene, cyclohexadiene, ethylene, propylene, 1-butene, 2-butene, isobutylene, vinyl toluene); and mixtures thereof.
  • vinyl and allyl esters of C 1.49 straight chain, C3-40 branched chain, or C3-40 carbocyclic carboxylic acids vinyl and allyl halides (e.g., vinyl
  • Monomer "B" Units B monomer units can be selected from the group comprising A monomer units or macromonomer units or a combination of the two.
  • a macromonomer is a large polymeric type of monomer unit which can be further polymerized with itself, with other conventional monomers, or with other macromonomers.
  • the term "macromonomer” is one that is familiar to the polymer chemist of ordinary skill in the art. Representative examples of various types of macromonomer units are listed in U.S. Pat. Nos. 5,622,694, 5,632,998, 5,919,439 and 5,929,173.
  • CTFA Cosmetic, Toiletry, and Fragrance Association, Inc.
  • Non-limiting examples are: vinylcaprolactam/PNP/dimethylamino-ethylmethacrylate copolymer (trade name: GafficTM, H2OLD, ISP Corp.), vinyl acetate/crotonic acid/vinyl propionate copolymer (trade name: LuvisetTM, BASF), vinyl acetate/crotonates copolymer (trade name: ResynTM, National Starch Corp.), vinyl acetate/butyl maleate/isobomyl acrylate copolymer (trade name: Advantage CPNTM; ISP), tyrene/vinylpyrrolidone copolymer (trade name: PolectronTM, ISP); vinylpyrrolidone/vinyl acetate copo
  • Examples of natural and modified natural polymers are: copolymer of hydroxyethyl-cellulose and dimethyldiallyl ammonium chloride (Polyquatemium-4;
  • Useful polymers include silicone graft copolymers as listed in U.S. Pat. Nos. 5,565,193 and 5,622,694; hydrophobic graft copolymers as listed in U.S. Pat. No. 5,622,694; silicone block copolymers as listed in U.S. Pat. No. 6,074,628.
  • the water-soluble or water-swellable polymers ofthe present invention may also encompass carboxylic acid/carboxylate copolymers.
  • the carboxylic acid/carboxylate copolymers herein are hydrophobically-modified cross-linked copolymers of carboxylic acid and alkyl carboxylate, and have an amphophilic property.
  • carboxylic acid/carboxylate copolymers are obtained by copolymerizing 1) a carboxylic acid monomer such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, fumaric acid, crotonic acid, or ⁇ -chloroacrylic acid, 2) a carboxylic ester having an alkyl chain of from 1 to about 30 carbons, and preferably 3) a crosslinking agent of the following formula:
  • R ⁇ 2 is a hydrogen or an alkyl group having from about 1 to about 30 carbons
  • Y 1 independently, is oxygen, CH2O, COO, OCO,
  • R ⁇ 3 is a hydrogen or an alkyl group having from about 1 to about 30 carbons; ' and Y 2 is selected from (CH 2 ) m '' 5 (CH 2 CH2 ⁇ ) m '> 5 or (CH 2 CH2CH 2 O) m '' wherein m" is an integer of from 1 to about 30.
  • the carboxylic acid/carboxylate copolymers herein are believed to provide appropriate viscosity and rheology properties to the composition, and to emulsify and stabilize certain conditioning agents in the composition. In the presence of microspheres, these polymers also aid in a solid film formation. It is further believed that, because of the alkyl group contained in the copolymer, the carboxylic acid/carboxylate copolymers do not make the composition undesirably sticky.
  • Suitable carboxylic acid/carboxylate copolymers herein are acrylic acid/alkyl acrylate copolymers having the following formula:
  • R ⁇ l independently, is a hydrogen or an alkyl of 1 to 30 carbons wherein at least one of R ⁇ l is a hydrogen, R ⁇ 2 is as defined above, n, n', m and m' are integers in which n+n'+m+m' is from about 40 to about 100, n" is an integer of from 1 to about 30, and £ is defined so that the copolymer has a molecular weight of about 500,000 to about 3,000,000.
  • carboxylic acid/carboxylate copolymers useful herein include: CTFA name Acrylates/C 10-30 Alkyl Acrylate Crosspolymer having tradenames Pemulene TR-1TM, Pemulene TR-2TM, Carbopol 1342TM, Carbopol 1382TM, and Carbopol ETD 2020TM, all available from B. F. Goodrich Company.
  • Neutralizing agents may be included to neutralize the carboxylic acid/carboxylate copolymers herein.
  • Nonlimiting examples of such neutralizing agents include sodium hydroxide, potassium hydroxide, ammonium hydroxide, monethanolamine, diethanolamine, triethanolamine, diisopropanolamine, aminomethylpropanol, tromethamine, tetrahydroxypropyl ethylenediamine, and mixtures thereof.
  • the concentration of the water-soluble or water-swellable polymer typically ranges from about 0.01% to about 10%, preferably from about 0.05% to about 5%, more preferably from about 0.1% to about 2%, by weight ofthe composition.
  • compositions of the present invention comprise an aqueous carrier.
  • the level and species of the carrier are selected according to the compatibility with other components, and other desired characteristic ofthe product.
  • Carriers useful in the present invention include water and water solutions of lower alkyl alcohols.
  • Lower alkyl alcohols useful herein are monohydric alcohols having 1 to 6 carbons, more preferably ethanol and isopropanol.
  • the aqueous carrier is substantially water.
  • Deionized water is preferably used.
  • Water from natural sources containing mineral cations can also be used, depending on the desired characteristic of the product.
  • the compositions of the present invention comprise from about 20% to about 99%, preferably from about 40% to about 98%, and more preferably from about 60% to about 98% aqueous carrier.
  • the pH of the present composition is preferably from about 4 to about 9, more preferably from about 4.5 to about 7.5. Buffers and other pH adjusting agents can be included to achieve the desirable pH.
  • the leave-in hair cosmetic compositions of the present invention further comprise fluid-encapsulated, flexible microspheres.
  • the microspheres are structurally hollow, however, they may contain various fluids, which encompass liquids and gases and their isomers.
  • the gases include, but are not limited to, butane, pentane, air, nitrogen, oxygen, carbon dioxide, and dimethyl ether. If used, liquids may only be partially filled in the microspheres.
  • the liquids include water and any compatible solvent.
  • the liquids may also contain vitamins, amino acids, proteins and protein derivatives, herbal extracts, pigments, dyes, antimicrobial agents, chelating agents, UN absorbers, optical brighteners, silicone compounds, perfumes, humectants which are generally water soluble, additional conditioning agents which are generally water insoluble, and mixtures thereof.
  • water soluble components are preferred encompassed material.
  • components selected from the group consisting of vitamins, amino acids, proteins, protein derivatives, herbal extracts, and mixtures thereof are preferred encompassed materials.
  • components selected from the group consisting of vitamin E, pantothenyl ethyl ether, panthenol, Polygonum multiflori extracts, and mixtures thereof are preferred encompassed materials.
  • the microspheres typically have a size of less than about 300 ⁇ m in diameter.
  • the microspheres range from about 4 ⁇ m to about 200 ⁇ m, more preferably from about 5 ⁇ m to about 100 ⁇ m, and most preferably from about 8 ⁇ m to about 60 ⁇ m in diameter.
  • the microspheres typically have a density ranging from about 5 kg/m 3 to about 200 kg/m 3 and, preferably, greater than about 10 kg/m 3 and/or less than about 100 kg/m 3 , and in particular ranging from about 15 kg/m 3 to about 80 kg/m 3 . Microspheres of such low densities provide greater volume enhancement.
  • the fluid-encapsulated microspheres can have surface charges or their surface can be modified with organic or inorganic materials such as surfactants, polymers, and inorganic materials.
  • Microsphere complexes are also useful. ⁇ on-limiting examples of complexes of gas-encapsulated microspheres are DSPCS-I2TM (silica modified ethylene/methacrylate copolymer microsphere) and SPCAT-I2TM (talc modified ethylene/methacrylate copolymer microsphere). Both of these are available from Kobo Products, Inc.
  • the surface ofthe microsphere may be charged through a static development or with the attachment of various ionic groups directly or linked via short, long or branched alkyl groups.
  • the surface charge can be anionic, cationic, zwitterionic or amphoteric in nature.
  • the wall of the microspheres of the present invention is typically formed from a thermoplastic material.
  • the thermoplastic material may be a polymer or copolymer of at least one monomer selected from the following groups: acrylates, methacrylates, styrene, substituted styrene, unsaturated dihalides, acrylonitriles, methacrylonitrile.
  • the thermoplastic materials may contain amide, ester, urethane, urea, ether, carbonate, acetal, sulfide, phosphate, phosphonate ester, and siloxane linkages.
  • the microspheres comprise from 1% to 60% of recurring structural units derived from vinylidene chloride, from 20% to 90% of recurring structural units derived from acrylonitrile and from 1% to 50% of recurring structural units derived from a (meth)acrylic monomer, the sum ofthe percentages (by weight) being equal to 100.
  • the (meth)acrylic monomer is, for example, a methyl acrylate or methacrylate, and especially the methacrylate.
  • the microspheres comprise of a polymer or copolymer of at least one monomer selected from expanded or non-expanded vinylidene chloride, acrylic, styrene, and (meth)acrylonitrile. More preferably, the microspheres comprise ofa copolymer of acrylonitrile and methacrylonitrile.
  • Microspheres comprising polymers and copolymers obtained from esters, such as, for example, vinyl acetate or lactate, or acids, such as, for example, itaconic, citraconic, maleic or fumaric acids may also be used. See, in this regard, Japanese Patent Application No. JP-A-2-112304, the full disclosure of which is incorporated herein by reference.
  • Non-limiting examples of commercially available suitable low density microspheres are 551 DE (particle size range of approximately 30-50 ⁇ m and density of approximately 42 kg/m 3 ), 551 DE 20 (particle size range of approximately 15-25 ⁇ m and density of approximately 60 kg/m 3 ), 551 DE (particle size of approximately 40 ⁇ m and density of approximately 42 kg/m 3 ), 461 DE (particle size range of approximately 20-40 ⁇ m and density 60 kg/m 3 ), 551 DE 80 (particle size of approximately 50-80 ⁇ m and density of approximately 42 kg/m 3 ), 091 DE (particle size range of approximately 35-55 ⁇ m and density of approximately 30 kg/m 3 ), all of which are marketed under the trademark EXPANCELTM by Akzo Nobel.
  • PM 6545 particle size range of approximately 110 ⁇ m and density of approximately 10 kg/m 3
  • Plastic MicrospheresTM marketed under the trademark Plastic MicrospheresTM by PQ Corporation
  • Particularly preferred microspheres are 551 DE 20, 55 IDE 50 and 6545.
  • the microspheres of the present invention exist in either dry or hydrated state.
  • the aforesaid copolymers are nontoxic and non irritating to the skin.
  • microspheres can be prepared, for example, via the processes described in EP-56,219, EP-348,372, EP-486,080, EP-320,473, EP-112,807 and U.S. Pat. No. 3,615,972, the full disclosure of each of which is incorporated herein by reference.
  • the wall of the microspheres is flexible. "Flexible”, as used herein, means that the microspheres are easy to compress. When pressure is reduced the microspheres regain their original volume. The flexible microspheres could alter their shape under an applied stress, or thermal expansion and contraction due to temperature change. Thus, the microspheres could expand upon heating.
  • the volumizing benefits of the compositions of the present invention can be attributed to the flexibility of the microspheres.
  • microspheres of the invention may be permeable or non-permeable.
  • Permeable means that they permit a liquid to pass through them under given conditions.
  • the present invention which include the micropheres, it is preferable to incorporate from about 0.25% to about 15%, by weight ofthe composition, more specifically from about 0.1% to about 10% by weight of the composition, of microspheres, more preferably from about 0.5% to about 5% by weight, and even more preferably from about 0.5% to about 2% of microspheres, by weight ofthe composition.
  • compositions of the present invention may further contain an amphoteric conditioning polymer.
  • amphoteric conditioning polymers herein are those compatible with the carboxylic acid/carboxylate copolymers and which provide conditioning benefit to the hair. Although some of the amphoteric conditioning polymers herein may have some hair holding or hair fixative properties, such hair holding or hair fixative properties are not a requirement for the amphoteric conditioning polymers herein.
  • the amphoteric conditioning polymers useful herein are those including at least one cationic monomer and at least one anionic monomer; the cationic monomer being quaternary ammonium, preferably dialkyl diallyl ammonium chloride or carboxylamidoalkyl trialkyl ammonium chloride; and the anionic monomer being carboxylic acid.
  • the amphoteric conditioning polymers herein may include nonionic monomers such as acrylamine, methacrylate, or ethacrylate. Further, the amphoteric conditioning polymers useful herein do not contain betanized monomers.
  • compositions of the present invention preferably comprise the amphoteric conditioning polymer at a level by weight of from about 0.01% to about 10%, more preferably from about 0.1% to about 5%.
  • polymers with the CTFA name Polyquatemium 22, Polyquatemium 39, and Polyquatemium 47 are, for example, copolymers consisting of dimethyldiallyl ammonium chloride and acrylic acid, terpolymers consisting of dimethyldiallyl ammonium chloride and acrylamide, and terpolymers consisting of acrylic acid methaciylamidopropyl trimethyl-ammonium chloride and methyl acrylate such as those of the following formula wherein the ratio of n 6 :n 7 :n 8 is 45:45:10.
  • polymers resulting from the copolymerization of a vinyl monomer carrying at least one carboxyl group such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, crotonic acid, or alphachloroacrylic acid, and a basic monomer which is a substituted vinyl compound containing at least one basic nitrogen atom, such as dialkylaminoalkyl methacrylates and acrylates and dialkylaminoalkylmethacrylamides and acrylamides.
  • N-substituted acrylamides or methacrylamides which are most particularly preferred are the groups in which the alkyl radicals contain from 2 to 12 carbon atoms, especially N-ethylacrylamide, N-tert.-butylacrylamide, N-tert. -octylacrylamide, N- octylacrylamide, N-decyl-acrylamide and N-dodecylacrylamide and also the corresponding methacrylamides.
  • the acid comonomers are chosen more particularly from amongst acrylic, methacrylic, crotonic, itaconic, maleic and fumaric acids and also the alkyl monoesters of maleic acid or fumaric acid in which alkyl has 1 to 4 carbon atoms.
  • the preferred basic comonomers are aminoethyl, butylaminoethyl, N,N'- dimethyl-aminoethyl and N-tert. -butylaminoethyl methacrylates.
  • amphoteric conditioning polymers herein include octylacryl-amine/acrylates ⁇ tylaminoethyl methoacrylate copolymers with the tradenames AMPHOMERTM, AMPHOMER SH701TM, AMPHOMER 28-4910TM, AMPHOMER LV71TM, and AMPHOMER LV47TM supplied by National Starch &
  • compositions of the present invention may comprise a thickening system which comprises at least 2 thickening agents selected from the group consisting of a hydrophobically modified cellulose ether, an acrylate copolymer, and a crosslinked polymer, all described below.
  • the thickening system useful herein is believed to provide improved conditioning benefits to the hair such as smoothness, softness, and reduction of friction, be easy to apply on the hair, and leave the hair and hands with a clean feeling.
  • the thickening system useful herein can also provide appropriate viscosity and rheology properties to the composition, so that the composition of the present composition has a suitable viscosity, preferably from about 1,000 cps to about 100,000 cps, more preferably from about 2,000 cps to about 50,000cps.
  • the viscosity herein can be suitably measured by Brookfield RNT at 20rpm at 20°C using either spindle #4, 5, 6 or 7 depending on the viscosity and the characteristic ofthe composition.
  • the thickening systems of the composition of the present invention preferably comprise all of these 3 thickening agents.
  • the thickening system is preferably a nonionic or cationic system, more preferably a cationic system.
  • the thickening system useful herein has improved compatibility with cationic hair conditioning agents.
  • a nonionic system is that the system comprises only nonionic thickening agents, but no cationic thickening agents.
  • a cationic system is that the system comprises at least one cationic thickening agent.
  • the cationic system can include nonionic thickening agents.
  • the hydrophobically modified cellulose ether useful herein is preferably a nonionic thickening agent, and the acrylates copolymer and the crosslinked polymer useful herein are preferably independently a nonionic or cationic thickening agent. More preferably, the hydrophobically modified cellulose ether useful herein is a nonionic thickening agent, and the acrylates copolymer and the crosslinked polymer useful herein are cationic thickening agents. Cationic thickening agents useful herein may provide conditioning benefits.
  • the thickening system is typically included in the composition of the present invention at a level by weight of preferably from about 0.05% to about 10%, more preferably from about 0.1% to about 8%, still preferably from about 0.1% to about 5%.
  • Hydrophobically Modified Cellulose Ether preferably from about 0.05% to about 10%, more preferably from about 0.1% to about 8%, still preferably from about 0.1% to about 5%.
  • composition of the present invention may comprise a hydrophobically modified cellulose ether as a thickening agent.
  • the hydrophobically modified cellulose ether can be included in the composition of the present invention at a level by weight of preferably from about 0.01% to about 10%, more preferably from about 0.01% to about
  • the hydrophobically modified cellulose ethers useful herein are preferably nonionic polymers.
  • the hydrophobically modified cellulose ethers useful herein comprise a hydrophilic cellulose backbone and a hydrophobic substitution group.
  • the hydrophilic cellulose backbone has a sufficient degree of nonionic substitution to cellulose to be water soluble.
  • Such hydrophilic cellulose backbone is selected from the group consisting of methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxyethyl ethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and mixtures thereof.
  • the amount of nonionic substitution is not critical, so long as there is an amount sufficient to assure that the hydrophilic cellulose backbone is water- soluble.
  • the hydrophilic cellulose backbone has a molecular weight of about less than 800,000, preferably from about 20,000 to about 700,000, or from about 75 to about 2500. Further, where a high viscosity building effect is not desirable, a lower molecular weight cellulose backbone is preferred.
  • One of the preferred hydrophilic cellulose backbone is hydroxyethyl cellulose having a molecular weight of from about 50,000 to about 700,000. Hydroxyethyl cellulose of this molecular weight is known to be one of the most hydrophilic of the materials contemplated. Thus, hydroxyethyl cellulose can be modified 'to a greater extent than other hydrophilic cellulose backbones.
  • the hydrophilic cellulose backbone is further substituted with a hydrophobic substitution group via an ether linkage to render the hydrophobically modified cellulose ether to have less than 1% water solubility, preferably less than 0.2% water solubility.
  • the hydrophobic substitution group is selected from a straight or branched chain alkyl group of from about 10 to about 22 carbons; wherein the ratio ofthe hydrophilic groups in the hydrophilic cellulose backbone to the hydrophobic substitution group being from about 2:1 to about 1000:1, preferably from about 10:1 to about 100:1.
  • hydrophobically modified cellulose ethers useful herein include: cetyl hydroxyethylcellulose having tradenames NATROSOL PLUS 330CSTM and POLYSURF 67TM, both available from Aqualon Company, Del, USA, having cetyl group substitution of about 0.4% to about 0.65% by weight ofthe entire polymer.
  • compositions of the present invention may comprise an acrylate copolymer as a thickening agent.
  • the acrylate copolymer can be included in the compositions of the present invention at a level by weight of preferably from about 0.01% to about 10%, more preferably from about 0.01% to about 5%, still more preferably from about 0.05% to about 2%.
  • the acrylate copolymers useful herein are preferably nonionic or cationic polymers, more preferably cationic polymers especially when the composition of the present invention has an acidic pH.
  • the copolymers useful herein comprise by weight: (a) from about 5% to about 80% of an acrylate monomer selected from the group consisting of a C r C 6 alkyl ester of acrylic acid, a C r C 6 alkyl ester of methacrylic acid, and mixtures thereof; (b) from about 5% to about 80% of a monomer selected from the group consisting of a vinyl-substituted heterocyclic compound containing at least one of a nitrogen or sulfur atom, (meth)acrylamide, a mono- or di-(C 1 -C 4 )alkylamino(C 1 - C 4 )alkyl(meth)acrylate, a mono- or di-(C 1 -C 4 )alkylamino(C 1 -C 4 )alky
  • the acrylate monomers (a) are selected from the group consisting of esters prepared from acrylic acid and C r C 6 alcohols such as methyl, ethyl, or propyl alcohol, and esters prepared from methacrylic acid and C r C 6 alcohols. Preferred are C 2 -C 6 alkyl esters of acrylic acid, and more preferred is ethyl acrylate.
  • the acrylate monomers (a) are included in the acrylates copolymer at a level by weight of from about 5% to about 80%, preferably from about 15% to about 70%, and more preferably from about 40% to about 70%.
  • the monomer (b) are selected from the group consisting of a vinyl-substituted heterocyclic compound containing at least one of a nitrogen or sulfur atom, (meth)acrylamide, a mono- or di-(C,-C 4 )alkylamino(C 1 -C 4 )alkyl(meth)acrylate, a mono- or di-(C 1 -C 4 )alkylamino(C 1 -C 4 )alkyl(meth)acryl-amide.
  • Preferred are mono- or di-(C,- C 4 )alkylamino(C r C 4 )alkyl(meth)-acrylates.
  • Exemplary monomers (b) include N,N- dimethylamino ethyl methacrylate (DMAEMA), N,N-diethylamino ethyl acrylate, N,N- diethylamino ethyl methacrylate, N-t-butylamino ethyl acrylate, N-t-butylamino ethyl methacrylate, N,N-dimethylamino propyl acrylamide, N,N-dimethylamino propyl methacrylamide, N,N-diethylamino propyl acrylamide, and N,N-diethylamino propyl methacrylamide.
  • DMAEMA N,N- dimethylamino ethyl methacrylate
  • N,N-diethylamino ethyl acrylate N,N-diethylamino ethyl methacrylate
  • the monomers (b) are included in the acrylate copolymer at a level by weight of from about 5% to about 80%, preferably from about 10% to about 70%, and more preferably from about 20% to about 60%.
  • the associative monomers (c) are preferably selected from the group consisting of:
  • an ethylenically unsaturated copolymerizable surfactant monomer obtained by condensing a nonionic surfactant with an acid wherein the acid is selected from the group consisting of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, anhydrides of ⁇ , ⁇ - ethylenically unsaturated carboxylic acids, and mixtures thereof, preferably, selected from the group consisting of a C 3 -C 4 mono- or di-carboxylic acid, anhydrides of C 3 -C 4 mono- or di-carboxylic acids, and mixtures thereof, more preferably, selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, and mixtures thereof, as disclosed in U.S.
  • an allyl ether of the formula: CH 2 CR'CH 2 OA m B n A p R, wherein R' is hydrogen or methyl, A is propyleneoxy or butyleneoxy, B is ethyleneoxy, n is zero or an integer, m and p are independently zero or an integer less than n, and R is a hydrophobic group having at least 8 carbon atoms;
  • a nonionic urethane monomer which is the urethane reaction product of a monohydric nonionic surfactant with a monoethylenically unsaturated isocyanate, preferably one lacking ester groups such as alpha, alpha-dimethyl-m-iso-propenyl benzyl isocyanate as disclosed in U.S. Pat. No. Re. 33,156; and (vi) mixtures thereof.
  • Such associative monomers (c) include those disclosed in U.S. Pat. Nos. 3,657,175, 4,384,096, 4,616,074, 4,743,698, 4,792,343, 5,011,978, 5,102,936, 5,294,692, and Re. 33,156.
  • Particularly preferred associative monomers (c) are those described in above (ii), i.e., the ethylenically unsaturated copolymerizable surfactant monomer obtained by condensing a nonionic surfactant with an acid, wherein the acid is selected from the group consisting of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, anhydrides of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, and mixtures thereof. More preferred associative monomers (c) are ethylenically unsaturated copolymerizable surfactant monomers obtained by condensing a nonionic surfactant with itaconic acid.
  • the associative monomers (c) are included in the acrylate copolymer at a level by weight of from 0% to about 30%, preferably from about 0.1% to about 10%.
  • monomers which provide cross-linking in the polymer also may be utilized in relatively low amounts, preferably less than about 2%, more preferably from about 0.1% to about 1.0% by weight, based on the total weight of monomers used to prepare the polymer.
  • Cross-linking monomers include multi-vinyl-substituted aromatic monomers, multi- vinyl-substituted alicyclic monomers, id-functional esters of phthalic acid, di-functional esters of methacrylic acid, multi-functional esters of acrylic acid, N-methylene-bis- acrylamide and multi-vinyl-substituted aliphatic monomers such as dienes, trienes, and tetraenes.
  • Exemplary cross-linking monomers include divinylbenzene, trivinylbenzene, 1,2,4-trivinylcyclohexane, 1,5-hexadiene, 1,5,9-decatriene, 1,9-decadiene, 1,5- heptadiene, di-allyl phthalate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, penta- and tetra-acrylates, triallyl pentaerythritol, octaallyl sucrose, cycloparaffins, cycloolefins and N-methylene-bis-acrylamide.
  • the polyethylene glycol dimethacrylates are preferred in view of thickening benefit particularly in aqueous compositions having an acidic pH.
  • compositions of the present invention may comprise a crosslinked polymer as a thickening agent.
  • the crosslinked polymer can be included in the compositions of the present invention at a level by weight of preferably from about 0.01% to about 10%, more preferably from about 0.01% to about 5%, still more preferably from about 0.05% to about 2%.
  • Crosslinked polymers useful herein are generally described in U.S. Pat. Nos.
  • the crosslinked polymers useful herein are preferably nonionic or cationic polymers, more preferably cationic polymers.
  • the crosslinked polymer useful herein comprises the monomer units and has the formula (A) m (B) n (C) p wherein: (A) is a dialkylaminoalkyl methacrylate, a quatemized dialkylaminoalkyl methacrylate, an acid addition salt of a quatemized dialkylaminoalkyl methacrylate, or mixtures thereof;
  • (B) is a dialkylaminoalkyl methacrylate, a quatemized dialkylaminoalkyl methacrylate, an acid addition salt of a quatemized dialkylaminoalkyl methacrylate, or mixtures thereof;
  • (C) is a nonionic monomer polymerizable with (A) or (B); and m, n, and p are independently zero or greater, but at least one of m or n is one or greater.
  • the monomer (C) can be selected from any of the commonly used monomers.
  • Non-limiting examples of these monomers include ethylene, propylene, butylene, isobutylene, eicosene, maleic anhydride, acrylamide, methacrylamide, maleic acid, acrolein, cyclohexane, ethyl vinyl ether, and methyl vinyl ether.
  • the monomer (C) is preferably acrylamide.
  • the alkyl portions of the monomers (A) and (B) are preferably short chain length alkyls such as C r C 8 , more preferably C r C 5 , still more preferably C r C 3 , even still more preferably C r C 2 .
  • the polymers are preferably quatemized with short chain alkyls, i.e., C r C 8 , more preferably C r C 5 , still more preferably C r C 3 , even still more preferably C r C 2 .
  • the acid addition salts refer to polymers having protonated amino groups. Acid addition salts can be performed through the use of halogen (e.g.
  • the molar proportion of the monomer (C) can be from 0% to about 99% based on the total molar proportions ofthe monomers (A), (B), and (C).
  • the molar proportions of (A) and (B) can independently be from 0% to about 100%.
  • acrylamide is used as the monomer (C), it will preferably be included at a level of from about 20% to about 99%, more preferably from about 50% to about 99% based on the total molar proportions ofthe monomers (A), (B), and (C).
  • the molar ratio of monomer (A): monomer (B) in the final polymer is preferably from about 95:5 to about 15:85, more preferably from about 80:20 to about 20:80.
  • the molar ratio of monomer (B): monomer (C) in the final polymer is preferably from about 30:70 to about 70:30, more preferably from about 40:60 to about 60:40, still more preferably from about 45:55 to about 55:45.
  • the crosslinked polymers may also contain a crosslinking agent, which is typically a material containing two or more unsaturated functional groups.
  • the crosslinking agent is reacted with the monomer units ofthe polymer and is incorporated into the polymer, forming either links or covalent bonds between two or more individual polymer chains or between two or more sections of the same polymer chain.
  • suitable crosslinking agents include those selected from the group consisting of methylenebisacrylamides, diacrylates, dimethacrylates, di-vinyl aryl (e.g. di-vinyl phenyl ring) compounds, polyalkenyl polyethers of polyhydric alcohols, allyl acrylates, vinyloxyalkylacrylates, and polyfunctional vinylidenes.
  • crosslinking agents useful herein include those selected from the group consisting of methylenebisacrylamide, ethylene glycol, propylene glycol, butylene glycol, di-(meth)acrylate, di-(meth)acrylamide, cyanomethylacrylate, vinyloxyethyleneacrylate, vinyloxyethylenemethacrylate, allyl pentaerythritol, trimethylolpropane, diallylether, allyl sucrose, butadiene, isoprene, 1,4-di-ethylene benzene, divinyl naphthalene, ethyl vinyl ether, methyl vinyl ether, and allyl acrylate.
  • crosslinking agents include formaldehyde and glyoxal. Preferred herein is methylenebisacrylamide. Widely varying amounts of the crosslinking agents can be employed depending upon the properties desired in the final polymer, e.g. viscosifying effect.
  • the crosslinking agents will typically comprise from about lppm to about 10,000ppm, preferably from about 5ppm to about 750ppm, more preferably from about 25ppm to about 500ppm, even more preferably from about lOOppm to about 500ppm, and preferably from about 250ppm to about 500ppm ofthe total weight ofthe polymer on a weight/weight basis.
  • crosslinked polymers useful herein include those conforming to the general structure (A)m(B)n(C)p wherein m is zero, (B) is methyl quatemized dimethylaminoethyl methacrylate, the molar ratio of monomers (B):(C) is about 45:55 to about 55:45, and the crosslinking agent is methylenebisacrylamide.
  • An example of such a crosslinking polymer is one that is commercially available as a mineral oil dispersion (which can be include various dispersing aids such as PPG-1 trideceth-6) under the trademark Salcare® SC92 available from Allied Colloids Ltd. This polymer has the CTFA designation, "Polyquatemium 32 (and) Mineral Oil".
  • crosslinked polymers useful herein include those not containing acrylamide or other monomer (C), i.e. p is zero.
  • the monomers (A) and (B) are as described above.
  • An especially preferred group of these polymers is one in which m is also zero.
  • the polymer is essentially a homopolymer of dialkylaminoalkyl methacrylate monomer or its quaternary ammonium or acid addition salt.
  • dialkylaminoalkyl methacrylate copolymers and homopolymers also contain a crosslinking agent as described above.
  • the homopolymer which does not contain acrylamide or other monomer (C) is used in the composition of the present invention.
  • the homopolymers useful herein can be those conforming to the general structure (A) m (B) n (C) p wherein m is zero, (B) is methyl quatemized dimethylaminoethyl methacrylate, p is zero, and the crosslinking agent is methylenebis-acrylamide.
  • An example of such a homopolymer is one that is commercially available as a mineral oil dispersion (which can include various dispersing aids such as PPG-1 trideceth-6) under the trademark Salcare® SC95 available from Allied Colloids Ltd.
  • This polymer has the CTFA designation, "Polyquatemium 37 (and) Mineral Oil (and) PPG-1 Trideceth-6".
  • Another example of such a homopolymer is one that is commercially available as an ester dispersion, wherein the ester can be Propylene Glycol Dicaprylate/Dicaprate and the dispersion can include various dispersing aids such as PPG-1 trideceth-6, under the trademark Salcare® SC96 available from Allied Colloids Ltd.
  • This polymer has the CTFA designation, "Polyquatemium 37 (and) Propylene Glycol Dicaprylate/Dicaprate (and) PPG-1 Trideceth-6". Silicone Compound
  • the compositions of the present invention contain a silicone compound.
  • the silicone compounds useful herein include volatile soluble or insoluble, or nonvolatile soluble or insoluble silicone conditioning agents.
  • soluble what is meant is that the silicone compound is miscible with the carrier ofthe composition so as to form part of the same phase.
  • insoluble what is meant is that the silicone forms a separate, discontinuous phase from the carrier, such as in the form of an emulsion or a suspension of droplets ofthe silicone.
  • the silicone compounds herein may be made by any suitable method known in the art, including emulsion polymerization.
  • the silicone compounds may further be incorporated in the present composition in the form of an emulsion, wherein the emulsion is made my mechanical mixing, or in the stage of synthesis through emulsion polymerization, with or without the aid of a surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, and mixtures thereof.
  • the silicone compounds when used herein, are preferably used at levels by weight of the composition of from about 0.1% to about 40%, more preferably from about 0.1% to about 10%, still more preferably from about 0.1% to about 5%.
  • silicone gum means a polyorganosiloxane material having a viscosity at 25° C of greater than or equal to 1,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. Silicone gums are described by Petrarch, and others including U.S. Pat. No. 4,152,416, to Spitzer et al, issued May 1, 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968.
  • silicone gums will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1,000,000. Specific examples include polydimethylsiloxane, poly(dimethylsiloxane methylvinylsiloxane) copolymer, poly(dimethyl-siloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof.
  • silicone resins which are highly crosslinked polymeric siloxane systems.
  • the crosslinking is introduced through the incorporation of tri-functional and tetra-functional silanes with mono-functional or di-functional, or both, silanes during manufacture of the silicone resin.
  • the degree of crosslinking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin.
  • silicone materials which have a sufficient level of trifunctional and tetrafunctional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins.
  • the ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material.
  • Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein.
  • the ratio of oxyge silicon atoms is at least about 1.2:1.0.
  • Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinylchlorosilanes, and tetrachlorosilane, with the methyl substituted silanes being most commonly utilized.
  • Preferred resins are offered by General Electric as GE SS4230 and SS4267.
  • silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid.
  • the silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicone compounds on the hair and can enhance the glossiness of hair with high refractive index volumes.
  • Other useful silicone resins are silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane, which is commercially available as TospearlTM from Toshiba Silicones.
  • Silicone materials and silicone resins in particular, can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the mono-functional unit (CH 3 ) 3 SiO 05 ; D denotes the difimctional unit (CH 3 ) 2 SiO; T denotes the trifunctional unit (CH 3 )Si ⁇ ! 5 ; and Q denotes the quadri- or tetra-functional unit SiO2.
  • Primes of the unit symbols denote substituents other than methyl, and must be specifically defined for each occurrence. Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc.
  • the molar ratios of the various units either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system. Higher relative molar amounts of T, Q, T' and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking. As discussed before, however, the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
  • the silicone resins for use herein which are preferred are MQ, MT, MTQ, MQ and MDTQ resins.
  • the preferred silicone substituent is methyl.
  • MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weight ofthe resin is from about 1000 to about 10,000.
  • silicone compounds herein also include polyalkyl or polyaryl siloxanes with the following structure (I)
  • R 93 is alkyl or aryl
  • x is an integer from about 7 to about 8,000.
  • Z 8 represents groups which block the ends ofthe silicone chains.
  • the alkyl or aryl groups substituted on the siloxane chain (R 93 ) or at the ends of the siloxane chains Z 8 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
  • Suitable Z 8 groups mclude hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
  • the two R 93 groups on the silicon atom may represent the same group or different groups.
  • the two R 93 groups represent the same group.
  • Suitable R 93 groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
  • the preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethyl-siloxane, which is also known as dimethicone, is especially preferred.
  • the polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes. These silicone compounds are available, for example, from the General Electric Company in their Niscasil® and SF 96 series, and from Dow Corning in their Dow Coming 200 series.
  • Polyalkylaryl siloxane fluids can also be used and include, for example, polymethyl-phenylsiloxanes. These siloxanes are available, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Coming as 556 Cosmetic Grade Fluid.
  • highly arylated silicone compounds such as highly phenylated polyethyl silicone having refractive index of about 1.46 or higher, especially about 1.52 or higher.
  • a spreading agent such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability ofthe material.
  • the silicone compounds that can be used include, for example, a polypropylene oxide modified polydimethylsiloxane although ethylene oxide or mixtures of ethylene oxide and propylene oxide can also be used.
  • the ethylene oxide and polypropylene oxide level should be sufficiently low so as not to interfere with the dispersibility characteristics ofthe silicone. These material are also known as dimethicone copolyols.
  • Suitable alkylamino substituted silicone compounds include those represented by the following structure (II)
  • R 94 is H, CH 3 or OH, p 1 , p 2 , q 1 and q 2 are integers which depend on the molecular weight, the average molecular weight being approximately between 5,000 and 10,000.
  • This polymer is also known as "amodimethicone".
  • Suitable amino substituted silicone fluids include those represented by the formula (III)
  • R 96 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and X' denotes a halide ion.
  • An especially preferred amino substituted silicone corresponding to formula (II) is the polymer known as "trimethylsilylamodimethicone" wherein R 94 is CH 3 .
  • Other amino substituted silicone polymers which can be used are represented by the formula (V):
  • R 98 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl
  • R 99 denotes a hydrocarbon radical, preferably a C r C 18 alkylene radical or a - g, and more preferably -Cg, alkyleneoxy radical
  • Q " is a halide ion, preferably chloride
  • p 5 denotes an average statistical value from 2 to 20, preferably from 2 to 8
  • p 6 denotes an average statistical value from 20 to 200, and preferably from 20 to 50.
  • a preferred polymer of this class is available from Union Carbide under the name "UCAR SILICONE ALE 56.”
  • the silicone compounds for use herein will preferably have a viscosity of from about 1,000 to about 2,000,000 centistokes at 25° C, more preferably from about 10,000 to about 1,800,000, and even more preferably from about 100,000 to about 1,500,000.
  • the viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Coming Corporate Test Method CTM0004, July 20, 1970.
  • Silicone compound of high molecular weight may be made by emulsion polymerization.
  • Suitable silicone fluids include polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and mixtures thereof. Other nonvolatile silicone compounds having hair conditioning properties can also be used.
  • Particularly suitable silicone compounds herein are non-volatile silicone oils having a molecular weight of from about 200,000 to about 600,000 such as Dimethicone, and Dimethiconol. These silicone compounds can be incorporated in the composition as silicone oils solutions; the silicone oils being volatile or non-volatile.
  • silicone compounds which are useful herein include Dimethicone with tradename DC345 available from Dow Coming Corporation, Dimethicone gum solutions with tradenames SE 30, SE 33, SE 54 and SE 76 available from General Electric, Dimethiconol with tradenames DCQ2-1403 and DCQ2-1401 available from Dow Coming Corporation, Mixture of Dimethicone and Dimethiconol with tradename DC 1403 available from Dow Coming Corporation, and emulsion polymerized Dimethiconol available from Toshiba Silicone as described in GB application 2,303,857. Humectant
  • compositions of the present invention may contain a humectant.
  • the humectants herein are selected from the group consisting of polyhydric alcohols, water soluble alkoxylated nonionic polymers, and mixtures thereof.
  • the humectants, when used herein, are preferably used at levels by weight of the composition of from about 0.1% to about 20%, more preferably from about 0.5% to about 5%.
  • Polyhydric alcohols useful herein include glycerin, sorbitol, propylene glycol, butylene glycol, hexylene glycol, ethoxylated glucose, 1, 2-hexane diol, hexanetriol, dipropylene glycol, erythritol, trehalose, diglycerin, xylitol, maltitol, maltose, glucose, fructose, sodium chondroitin sulfate, sodium hyaluronate, sodium adenosine phosphate, sodium lactate, pyrrolidone carbonate, glucosamine, cyclodextrin, and mixtures thereof.
  • Water soluble alkoxylated nonionic polymers useful herein include polyethylene glycols and polypropylene glycols having a molecular weight of up to about 1000 such as those with CTFA names PEG-200, PEG-400, PEG-600, PEG- 1000, and mixtures thereof.
  • humectants herein include: glycerin with tradenames STARTM and SUPEROLTM available from The Procter & Gamble Company, CRODEROL GA7000TM available from Croda Universal Ltd., PRECERINTM series available from Unichema, and a same tradename as the chemical name available from NOF; propylene glycol with tradename LEXOL PG-865/855TM available from Inolex, 1,2-PROPYLENE GLYCOL USP available from BASF; sorbitol with tradenames LIPONICTM series available from Lipo, SORBOTM, ALEXTM, A-625TM, and A-641TM available from ICI, and UNISWEET 70TM, UNISWEET CONCTM available from UPI; dipropylene glycol with the same tradename available from BASF; diglycerin with tradename DIGLYCEROLTM available from Solvay GmbH; xylitol with the same tradename available from Kyowa and Eizai; maltitol with tradename
  • compositions of the present invention may contain an additional viscosity modifier.
  • the additional viscosity modifiers herein are water soluble or water miscible polymers, have the ability to increase the viscosity of the composition, and are compatible with the carboxylic acid/carboxylate copolymers.
  • the additional viscosity modifier is selected so that the composition of the present composition has a suitable viscosity, preferably from about 1,000 cps to about 100,000 cps, more preferably from about 2,000 cps to about 50,000cps. If such a viscosity is achieved without the additional viscosity modifier, the additional viscosity modifier may not be necessary.
  • the viscosity herein can be suitably measured by Brookfield RVT at 20rpm at 20° C using either spindle #4, 5, 6 or 7 depending on the viscosity and the characteristic ofthe composition.
  • the additional viscosity modifiers herein are preferably used at levels by weight of the composition of from about 0.001% to about 5%, more preferably from about 0.05%) to about 3%.
  • Additional viscosity modifiers useful herein include anionic polymers and nonionic polymers.
  • vinyl polymers such as cross linked acrylic acid polymers with the CTFA name Carbomer, cellulose derivatives and modified cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabia gum, tragacanth, galactan, carob gum, guar gum, karaya gum, carragheenin, pectin, agar, quince seed (Cydonia oblonga Mill), starch (rice, com, potato, wheat), algae colloids (algae extract), microbiological polymers such as dextran, succinoglucan,
  • R 95 is selected from the group consisting of H, methyl, and mixtures thereof.
  • these materials are polymers of ethylene oxide, which are also known as polyethylene oxides, polyoxyethylenes, and polyethylene glycols.
  • R 95 is methyl these materials are polymers of propylene oxide, which are also known as polypropylene oxides, polyoxypropylenes, and polypropylene glycols.
  • R 95 is methyl it is also understood that various positional isomers of the resulting polymers can exist.
  • x3 has an average value of from about 1500 to about 25,000, preferably from about 2500 to about 20,000, and more preferably from about 3500 to about 15,000.
  • Polyethylene glycol polymers useful herein are PEG-2M wherein R 95 equals H and x3 has an average value of about 2,000 (PEG-2M is also known as Polyox WSR ® N-10, which is available from Union Carbide and as PEG- 2,000); PEG-5M wherein R 95 equals H and x3 has an average value of about 5,000 (PEG-5M is also known as Polyox WSR ® N-35 and Polyox WSR ® N-80, both available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M wherein R 95 equals H and x3 has an average value of about 7,000 (PEG-7M is also known as Polyox WSR ® N-750 available from Union Carbide); PEG-9M wherein R 95 equals H and x3
  • Additional viscosity modifiers highly useful herein include Carbomers with tradenames Carbopol 934, Carbopol 940, Carbopol 950, Carbopol 980, and Carbopol 981, all available from B. F.
  • UV Absorber acrylates/steareth-20 methacrylate copolymer with tradename ACRYSOL 22 available from Rohm and Hass, nonoxynyl hydroxyethylcellulose with tradename AMERCELL POLYMER HM-1500 available from Amerchol, methylcellulose with tradename BENECEL, hydroxyethyl cellulose with tradename NATROSOL, hydroxypropyl cellulose with tradename KLUCEL, cetyl hydroxyethyl cellulose with tradename POLYSURF 67, all supplied by Hercules, ethylene oxide and/or propylene oxide based polymers with tradenames CARBOWAX PEGs, POLYOX WASRs, and UCON FLUIDS, all supplied by Amerchol.
  • compositions of the present invention may further contain a UV (ultraviolet) absorber.
  • a UV absorber substantially transparent UV absorbers are particularly useful in the compositions herein.
  • the UV absorbers are preferably used at levels of from about 0.01% to about 10%, by weight ofthe composition.
  • UV absorbers useful herein can be water soluble or water insoluble, including: p-aminobenzoic acid, its salts and its derivatives (ethyl, isobutyl, glyceryl esters; p- dimethylaminobenzoic acid); anhranilates (i.e., o-aminobenzoates; methyl, menthyl, phenyl, benzyl, phenylethyl, linalyl, terpinyl, and cyclohexenyl esters); salicylates (amyl, phenyl, benzyl, menthyl, glyceryl, and dipropyleneglycol esters); cinnamic acid derivatives (menthyl and benzyl esters, -phenyl cinnamonitrile; butyl cinnamoyl pyruvate; trihydroxycinnamic acid derivatives (esculetin, methylesculetin, daphnetin,
  • Preferred sunscreens useful in the compositions ofthe present invention are 2-ethylhexyl p-methoxy-cinnamate, butyl- methoxydibenzoylmethane, 2-hydroxy-4-methoxy-benzo-phenone, octyl-dimethyl p- aminobenzoic acid and mixtures thereof.
  • Herbal Extracts 2-ethylhexyl p-methoxy-cinnamate, butyl- methoxydibenzoylmethane, 2-hydroxy-4-methoxy-benzo-phenone, octyl-dimethyl p- aminobenzoic acid and mixtures thereof.
  • compositions of the present invention may further contain herbal extracts.
  • Herbal extracts useful herein include those which are water soluble and those which are water insoluble.
  • Useful herbal extracts herein include: Polygonum multiflori Extract, Houttuynia cordate extract, Phellodendron Bark extract, melilot extract, white dead nettle extract, licorice root extract, herbaceous peony extract, soapwort extract, dishcloth gourd extract, cinchona extract, creeping saxifrage extract, Sophora angustifolia extract, candock extract, common fennel extract, primrose extract, rose extract, Rehmannia glutinosa extract, lemon extract, shikon extract, aloe extract, iris bulb extract, eucalyptus extract, field horsetail extract, sage extract, thyme extract, tea extract, laver extract, cucumber extract, clove extract, raspberry extract, melissa extract, ginseng extract, carrot extract, horse chestnut extract, peach extract, peach
  • herbal extracts useful herein include Polygonum multiflori extracts which are water soluble, and available from Institute of Occupational Medicine, CAPM, China National Light Industry, and Maruzen, and other herbal extracts listed above available from Maruzen. Additional Conditioning Agent
  • compositions of the present invention may further contain an additional conditioning agent selected from the group consisting of high melting point compounds, cationic surfactants, high molecular weight ester oils, cationic polymers, additional oily compounds, and mixtures thereof.
  • Additional conditioning agents are selected according to the compatibility with other components, and the desired characteristic of the product. For example, components of cationic nature will be included in an amount which would not cause separation in view of the essential components of anionic nature.
  • the additional conditioning agents herein are preferably used at levels by weight ofthe composition of from about 0.01% to about 10%.
  • High melting point compound useful herein have a melting point of at least about 25° C selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, hydrocarbons, steroids, and mixtures thereof. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature.
  • certain compounds having certain required carbon atoms may have a melting point of less than about 25° C. Such compounds of low melting point are not intended to be included in this section.
  • Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary and Handbook, Eight Edition, 2000.
  • the high melting point compound is preferably included in the composition at a level by weight of from about 0.01% to about 5%, more preferably from about 0.1% to about 1%.
  • the weight of the carboxylic acid/carboxylate copolymer is preferably greater than about 0.5 times, more preferably 1.0 times, the weight of the high melting point compound.
  • the fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated. Nonlimiting examples of fatty alcohols include, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
  • the fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Also included are diacids, triacids, and other multiple acids which meet the requirements herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, sebacic acid, and mixtures thereof.
  • the fatty alcohol derivatives and fatty acid derivatives useful herein include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols, fatty acid esters of compounds having esterifiable hydroxy groups, hydroxy-substituted fatty acids, and mixtures thereof.
  • Nonlimiting examples of fatty alcohol derivatives and fatty acid derivatives include materials such as methyl stearyl ether; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e.
  • High melting point compounds of a single compound of high purity are preferred.
  • Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred.
  • pure herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%.
  • high melting point compounds useful herein include: cetyl alcohol, stearyl alcohol, and behenyl alcohol having tradenames KONOLTM series available from Shin Nihon Rika (Osaka, Japan), and NAATM series available from NOF (Tokyo, Japan); pure behenyl alcohol having tradename 1-DOCOSANOLTM available from WAKO (Osaka, Japan), various fatty acids having tradenames NEO-FATTM available from Akzo (Chicago Illinois, USA), HYSTRENETM available from Witco Corp. (Dublin Ohio, USA), and DERMATM available from Vevy (Genova, Italy); and cholesterol having tradename NIKKOL AGUASOME LATM available from Nikko.
  • cationic surfactants useful herein are those corresponding to the general formula (I):
  • R 74 R CD wherein at least one of R 71 , R 72 , R 73 and R 74 is selected from an aliphatic group of from 8 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms, the remainder of R 71 , R 72 , R 73 and R 74 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g.
  • the aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
  • the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. Preferred is when R 71 , R 72 , R 73 and R 74 are independently selected from C, to about C 22 alkyl.
  • Nonlimiting examples of cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium- 8, quaternium-14, quaternium-18, quaternium-18 methosulfate, quaternium-24, and mixtures thereof.
  • cationic surfactants of general formula (I) preferred are those containing in the molecule at least one alkyl chain having at least 16 carbons.
  • preferred cationic surfactants include: behenyl trimethyl ammonium chloride available, for example, with tradename INCROQUAT TMC-80TM from Croda and ECONOL TM22TM from Sanyo Kasei; cetyl trimethyl ammonium chloride available, for example, with tradename CA-2350TM from Nikko Chemicals, hydrogenated tallow alkyl trimethyl ammonium chloride, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, dicetyl dimethyl ammonium chloride, di(behenyl/arachidyl) dimethyl ammonium chloride, dibehenyl dimethyl ammonium chloride, stearyl di
  • hydrophilically substituted cationic surfactants in which at least one ofthe substituents contain one or more aromatic, ether, ester, amido, or amino moieties present as substituents or as linkages in the radical chain, wherein at least one of the R 71 -R 74 radicals contain one or more hydrophilic moieties selected from alkoxy (preferably C r C 3 alkoxy), polyoxyalkylene (preferably C r C 3 polyoxyalkylene), alkylamido, hydroxyalkyl, alkylester, and combinations thereof.
  • the hydrophilically substituted cationic conditioning surfactant contains from 2 to about 10 nonionic hydrophile moieties located within the above stated ranges.
  • Preferred hydrophilically substituted cationic surfactants include those ofthe formula (II) through (VIII) below:
  • n 1 is from 8 to about 28, n ⁇ +m 2 is from 2 to about 40, Z 1 is a short chain alkyl, preferably a C r C 3 alkyl, more preferably methyl, or (CH 2 CH 2 O) m3 H wherein m'+m 2 +m 3 is up to 60, and X is a salt forming anion as defined above;
  • n 2 is 1 to 5
  • R 75 , R 76 , and R 77 are independently an C r C 30 alkyl, the remainder are CH 2 CH 2 OH
  • one or two of R 78 , R 79 , and R 80 are independently an C C 30 alkyl, and remainder are CH 2 CH 2 OH
  • X is a salt forming anion as mentioned above;
  • Z 2 is an alkyl, preferably C,-C 3 alkyl, more preferably methyl
  • Z 3 is a short chain hydroxyalkyl, preferably hydroxymethyl or hydroxyethyl
  • n 3 and n 4 independently are integers from 2 to 4, inclusive, preferably from 2 to 3, inclusive, more preferably 2, R 81 and R 82 , independently, are substituted or unsubstituted hydrocarbyls, C 12 -C 20 alkyl or alkenyl
  • X is a salt forming anion as defined above;
  • R 83 is a hydrocarbyl, preferably a C r C 3 alkyl, more preferably methyl
  • Z 4 and Z 5 are, independently, short chain hydrocarbyls, preferably C 2 -C 4 alkyl or alkenyl, more preferably ethyl
  • m 4 is from 2 to about 40, preferably from about 7 to about 30, and
  • X is a salt forming anion as defined above;
  • R 84 and R 85 are C r C 3 alkyl, preferably methyl
  • Z 6 is a C 12 -C 22 hydrocarbyl, alkyl carboxy or alkylamido
  • A is a protein, preferably a collagen, keratin, milk protein, silk, soy protein, wheat protein, or hydrolyzed forms thereof
  • X is a salt forming anion as defined above;
  • Nonlimiting examples of hydrophilically substituted cationic surfactants useful in the present invention include the materials having the following CTFA designations: quatemium-16, quatemium-26, quaternium-27, quatemium-30, quaternium-33, quaternium-43, quaternium-52, quaternium-53, quaternium-56, quaternium-60, quatemium-61, quatemium-62, quaternium-70, quatemium-71, quatemium-72, quatemium-75, quatemium-76 hydrolyzed collagen, quaternium-77, quatemium-78, quatemium-79 hydrolyzed collagen, quatemium-79 hydrolyzed keratin, quatemium-79 hydrolyzed milk protein
  • hydrophilically substituted cationic surfactants include dialkylamido ethyl hydroxyethylmonium salt, dialkylamidoethyl dimonium salt, dialkyloyl ethyl hydroxyethylmonium salt, dialkyloyl ethyldimonium salt, and mixtures thereof; for example, commercially available under the following tradenames; VARISOFT 110TM, VARISOFT 222TM, VARIQUAT K1215TM and VARIQUAT 638TM from Witco Chemical, MACKPRO KLPTM, MACKPRO WLWTM, MACKPRO MLPTM, MACKPRO NSPTM, MACKPRO NLWTM, MACKPRO WWPTM, MACKPRO NLPTM, MACKPRO SLPTM from Mclntyre, ETHOQUAD 18/25TM, ETHOQUAD O/12PGTM, ETHOQUAD C/25TM, ETHOQUAD S/25TM, and ETHODUOQUADTM from Akzo,
  • Amines are suitable as cationic surfactants.
  • Primary, secondary, and tertiary fatty amines are useful. Particularly useful are tertiary amido amines having an alkyl group of from about 12 to about 22 carbons.
  • Exemplary tertiary amido amines include: stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmit-amidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethyl-amine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamido- ethyldiethylamine, behenamidoethyldimethylamine, arachida
  • dimethylstearamine dimethyl-soyamine, soyamine, myristylamine, tridecylamine, ethylstearylamine, N- tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxyethylstearylamine, and arachidylbehenylamine.
  • Useful amines in the present invention are disclosed in U.S. Pat. No. 4,275,055, Nachtigal, et al.
  • amines can also be used in combination with acids such as ⁇ -glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, ⁇ -glutamic hydrochloride, maleic acid, and mixtures thereof; more preferably -glutamic acid, lactic acid, citric acid.
  • the amines herein are preferably partially neutralized with any of the acids at a molar ratio of the amine to the acid of from about 1 : 0.3 to about 1 : 2, more preferably from about 1 : 0.4 to about 1 : 1.
  • High molecular weight ester oils are useful herein.
  • the high molecular weight ester oils useful herein are those which are water insoluble, have a molecular weight of at least about 500, preferably at least about 800, and are in liquid form at 25° C.
  • Useful high molecular weight ester oils herein include pentaethytritol ester oils, trimethylol ester oils, poly ⁇ -olefin oils, citrate ester oils, glyceryl ester oils, and mixtures thereof.
  • water insoluble means the compound is substantially not soluble in water at 25° C; when the compound is mixed with water at a concentration by weight of above 1.0%, preferably at above 0.5%, the compound is temporarily dispersed to form an unstable colloid in water, then is quickly separated from water into two phases.
  • the high molecular weight ester oil herein provides conditioning benefits such as moisturized feel, smooth feel, and manageability control to the hair when the hair is dried, yet not leave the hair feeling greasy. It is believed that water insoluble oily material in general are capable of being deposited on the hair. Without being bound by theory, it is believed that, because of its bulkiness, the high molecular weight ester oil covers the surface of the hair and, as a result, the high molecular weight ester oil reduces hair friction to deliver smoothness and manageability confrol to the hair. It is also believed that, because it has some hydrophilic groups, the high molecular weight ester oil provides moisturized feel, yet, because it is liquid, does not leave the hair feeling greasy. The high molecular weight ester oil is chemically stable under normal use and storage conditions. Pentaerythritol ester oils useful herein are those having the following formula:
  • R 1 , R 2 , R 3 , and R 4 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 1 , R 2 , R 3 , and R 4 independently, are branched, straight, saturated, or unsaturated alkyl groups having from about 8 to about 22 carbons. More preferably, R 1 , R 2 , R 3 and R 4 are defined so that the molecular weight of the compound is from about 800 to about 1200.
  • Trimethylol ester oils useful herein are those having the following formula:
  • R 11 is an alkyl group having from 1 to about 30 carbons
  • R 12 , R 13 , and R 14 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R u is ethyl and R 12 , R 13 , and R 14 , independently, are branched, straight, saturated, or unsaturated alkyl groups having from 8 to about 22 carbons. More preferably, R 11 , R 12 , R 13 and R 14 are defined so that the molecular weight ofthe compound is from about 800 to about 1200.
  • Poly ⁇ -olefin oils useful herein are those having the following formula and having a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3;
  • R 31 is an alkyl having from about 4 to 14 carbons, preferably 4 to 10 carbons.
  • Poly ⁇ -olefin oils having a molecular weight of at least about 800 are useful herein. Such high molecular weight poly ⁇ -olefin oils are believed to provide long lasting moisturized feel to the hair. Poly ⁇ -olefin oils having a molecular weight of less than about 800 are useful herein. Such low molecular weight poly ⁇ -olefin oils are believed to provide a smooth, light, clean feel to the hair.
  • Citrate ester oils useful herein are those having a molecular weight of at least about 500 having the following formula: wherein R 21 is OH or CH 3 COO, and R 22 , R 23 , and R 24 , independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 21 is OH
  • R 22 , R 23 , and R 24 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R 21 , R 22 , R 23 and R 24 are defined so that the molecular weight ofthe compound is at least about 800.
  • Glyceryl ester oils useful herein are those having a molecular weight of at least about 500 and having the following formula:
  • R 41 , R 42 , and R 43 are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 41 , R 42 , and R 43 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R 41 , R 42 , and R 43 are defined so that the molecular weight ofthe compound is at least about 800.
  • pentaerythritol ester oils and trimethylol ester oils herein include pentaerythritol tetraisostearate, pentaerythritol tetraoleate, trimethylolpropane triisostearate, trimethylolpropane trioleate, and mixtures * thereof.
  • Such compounds are available from Kokyo Alcohol with tradenames KAKPTITM, KAKTTITM, and Shin- nihon Rika with tradenames PTOTM, ENUJERUBU TP3SOTM.
  • Particularly useful poly ⁇ -olefin oils herein include polydecenes with tradenames PURESYN 6TM having a number average molecular weight of about 500 and PURESYN 100TM having a number average molecular weight of about 3000 and PURESYN 300TM having a number average molecular weight of about 6000 available from Mobil Chemical Co.
  • Particularly useful citrate ester oils herein include triisocetyl citrate with tradename CITMOL 316TM available from Bemel, triisostearyl citrate with tradename PELEMOL TISCTM available from Phoenix, and trioctyldodecyl citrate with tradename CITMOL 320TM available from Bemel.
  • Particularly useful glyceryl ester oils herein include triisostearin with tradename SUN ESPOL G-318TM available from Taiyo Kagaku, triolein with tradename CITHROL GTOTM available from Croda Surfactants Ltd., frilinolein with fradename EFADERMA- FTM available from Vevy, or tradename EFA-GLYCERIDESTM from Brooks.
  • polyol fatty acid polyesters are also suitable for use as conditioning agents in the inventive compositions described herein.
  • a "polyol” is a polyhydric alcohol containing at least 4, preferably from 4 to 11 hydroxyl groups.
  • a "polyol fatty acid polyester” is a polyol having at least 4 fatty acid ester groups. Typically, at least about 85%, of the hydroxyl groups of the polyol are esterified. In the case of sucrose polyesters, typically from 7 to 8 ofthe hydroxyl groups ofthe polyol are esterified.
  • the polyol fatty acid esters typically contain C 4 to C 26 fatty acid radicals.
  • sucrose polyester for use herein is olestra, sold under the trade name OLEAN®, available from The Procter and Gamble Company.
  • This oil which is a blend of sucrose ester fatty acids (predominantly C 16 to C 18 , and about 1% to about 2% C 14 to C 18 ), is described in U.S. Pat. Nos. 5,085,884, (Young, et al.) issued 4 February, 1992, and 5,422,131, (Elsen, et al.) issued 6 June, 1995, both of which descriptions are incorporated herein by reference.
  • Cationic polymers are useful herein.
  • the term "polymer” shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.
  • the cationic polymer is a water soluble cationic polymer.
  • water soluble cationic polymer what is meant is a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1% in water (distilled or equivalent) at 25° C. The preferred polymer will be sufficiently soluble to form a substantially clear solution at 0.5% concentration, more preferably at 1.0% concentration.
  • the cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million.
  • the cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof.
  • any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met. Suitable counterions include halides (e.g., Cl, Br, I, or F, preferably Cl, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
  • the cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers.
  • the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non- cationic units referred to herein as spacer monomer units.
  • the cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition. In general, secondary and tertiary amines, especially tertiary amines, are preferred.
  • Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quatemization reaction. Amines can also be similarly quatemized subsequent to formation ofthe polymer.
  • tertiary amine functionalities can be quatemized by reaction with a salt of the formula R 88 X wherein R 88 is a short chain alkyl, preferably a C ⁇ - C 7 alkyl, more preferably a C, - C 3 alkyl, and X is a salt forming anion as defined above.
  • Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quatemized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts.
  • the alkyl portions of these monomers are preferably lower alkyls such as the C, - C 3 alkyls, more preferably C, and C 2 alkyls.
  • Suitable amine-substituted vinyl moriomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C t - C 7 hydrocarbyls, more preferably C, - C 3 , alkyls.
  • the cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
  • Suitable cationic hair conditioning polymers include, for example: copolymers of l-vinyl-2-pyrrolidone and l-vinyl-3-methylimidazolium salt (e.g., chloride salt) (referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, "CTFA", as Polyquatemium- 16), such as those commercially available from BASF Wyandotte Corp.
  • CTFA Cosmetic, Toiletry, and Fragrance Association
  • Cationic polysaccharide polymer materials suitable for use herein include those ofthe formula:
  • Z 7 is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual
  • R 89 is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof
  • R 90 , R 91 , and R 92 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R 90 , R 91 and R 92 ) preferably being about 20 or less
  • X is as previously described.
  • Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JRTM and LRTM series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquatemium 10.
  • CTFA trimethyl ammonium substituted epoxide
  • Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquatemium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200TM.
  • cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride commercially available from Celanese Corp. in their Jaguar R series.
  • Other materials include quaternary nitrogen-containing cellulose ethers as described in U.S. Pat. No. 3,962,418, and copolymers of etherified cellulose and starch as described in U.S. Pat. No. 3,958,581.
  • Particularly useful cationic polymers herein include Polyquaternium-7, Polyquatemium- 10, Polyquaternium-24, and mixtures thereof. Additional Oily Compounds
  • Additional oily compounds useful herein include fatty alcohols and their derivatives, fatty acids and their derivatives, and hydrocarbons.
  • the additional oily compounds useful herein may be volatile or nonvolatile, and have a melting point of not more than about 25° C. Without being bound by theory, it is believed that, the additional oily compounds may penetrate into the hair to modify the hydroxy bonds of the hair, thereby resulting in providing softness and flexibility to the hair.
  • the additional oily compounds of this section are to be distinguished from the high melting point compounds described above. Nonlimiting examples of the additional oily compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the fatty alcohols useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated alcohols, preferably unsaturated alcohols. Nonlimiting examples of these compounds include oleyl alcohol, palmitoleic alcohol, isostearyl alcohol, isocetyl alcohol, undecanol, octyl dodecanol, octyl decanol, octyl alcohol, caprylic alcohol, decyl alcohol and lauryl alcohol.
  • the fatty acids useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Suitable fatty acids include, for example, oleic acid, linoleic acid, isostearic acid, linoleic acid, ethyl linoleic acid, ethyl linoleic acid, arachidonic acid, and ricinolic acid.
  • the fatty acid derivatives and fatty alcohol derivatives are defined herein to include, for example, esters of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, and bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils, glyceryl ester oils, and mixtures thereof.
  • Nonlimiting examples of fatty acid derivatives and fatty alcohol derivatives include, for example, methyl linoleate, ethyl linoleate, isopropyl linoleate, isodecyl oleate, isopropyl oleate, ethyl oleate, octyldodecyl oleate, oleyl oleate, decyl oleate, butyl oleate, methyl oleate, octyldodecyl stearate, octyldodecyl isostearate, octyldodecyl isopalmitate, octyl isopelargonate, octyl pelargonate, hexyl isostearate, isopropyl isostearate, isodecyl isononanoate, isopropyl stearate,
  • Bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils and glyceryl ester oils useful herein are those which have a molecular weight of less than about 800, preferably less than about 500.
  • the hydrocarbons useful herein include straight chain, cyclic, and branched chain hydrocarbons which can be either saturated or unsaturated, so long as they have a melting point of not more than about 25°C. These hydrocarbons have from about 12 to about 40 carbon atoms, preferably from about 12 to about 30 carbon atoms, and preferably from about 12 to about 22 carbon atoms. Also encompassed herein are polymeric hydrocarbons of alkenyl monomers, such as polymers of C 2 . 6 alkenyl monomers. These polymers can be straight or branched chain polymers. The straight chain polymers will typically be relatively short in length, having a total number of carbon atoms as described above. The branched chain polymers can have substantially higher chain lengths.
  • the number average molecular weight of such materials can vary widely, but will typically be up to about 500, preferably from about 200 to about 400, and more preferably from about 300 to about 350.
  • mineral oils are liquid mixtures of hydrocarbons that are obtained from petroleum. Specific examples of suitable hydrocarbon materials include paraffin oil, mineral oil, dodecane, isododecane, hexadecane, isohexadecane, eicosene, isoeicosene, fridecane, tetradecane, polybutene, polyisobutene, and mixtures thereof.
  • hydrocarbons selected from the group consisting of mineral oil, poly ⁇ -olefin oils such as isododecane, isohexadecane, polybutene, polyisobutene, and mixtures thereof.
  • fatty alcohols and their derivatives useful herein include: oleyl alcohol with tradename UNJECOL 90BHRTM available from Shin Nihon Rika, various liquid esters with tradenames SCHERCEMOLTM series available from Scher, and hexyl isostearate with a fradename HISTM and isopropyl isostearate having a tradename ZPISTM available from Kokyu Alcohol.
  • Commercially available bulky ester oils useful herein include: trimethylolpropane tricaprylate/tricaprate with tradename MOBIL ESTER P43TM from Mobil Chemical Co.
  • hydrocarbons useful herein include isododecane, isohexadecane, and isoeicosene with tradenames PERMETHYL 99ATM, PERMETHYL 101ATM, and PERMETHYL 1082TM, available from Presperse (South Plainfield New Jersey, USA), a copolymer of isobutene and normal butene with tradenames INDOPOL H-100TM available from Amoco Chemicals (Chicago Illinois, and USA), mineral oil with tradename BENOLTM available from Witco, isoparaffin with tradename ISOPARTM from Exxon Chemical Co.
  • compositions of the present invention may also contain vitamins and amino acids such as: water soluble vitamins such as vitamin Bl, B2, B6, B12, C, pantothenic acid, pantothenyl ethyl ether, panthenol, biotin, and their derivatives, water soluble amino acids such as asparagine, alanin, indole, glutamic acid and their salts, water insoluble vitamins such as vitamin A, D, E, and their derivatives, water insoluble amino acids such as tyrosine, tryptamine, and their salts.
  • vitamins and amino acids such as: water soluble vitamins such as vitamin Bl, B2, B6, B12, C, pantothenic acid, pantothenyl ethyl ether, panthenol, biotin, and their derivatives, water soluble amino acids such as asparagine, alanin, indole, glutamic acid and their salts, water insoluble vitamins such as vitamin A, D, E, and their derivatives,
  • compositions of the present invention may also contain pigment materials such as inorganic, nitroso, monoazo, disazo, carotenoid, triphenyl methane, triaryl methane, xanthene, quinoline, oxazine, azine, anthraquinone, indigoid, thionindigoid, quinacridone, phthalocianine, botanical, natural colors, including: water soluble components such as those having C. I.
  • compositions ofthe present invention may also contain antimicrobial agents which are useful as cosmetic biocides and antidandruff agents including: water soluble components such as piroctone olamine, water insoluble components such as 3,4,4'- trichlorocarbanilide (trichlosan), triclocarban and zinc pyrithione.
  • antimicrobial agents which are useful as cosmetic biocides and antidandruff agents including: water soluble components such as piroctone olamine, water insoluble components such as 3,4,4'- trichlorocarbanilide (trichlosan), triclocarban and zinc pyrithione.
  • compositions of the present invention may also contain chelating agents such as: 2,2'-dipyridylamine; 1,10-phenanthroline ⁇ o-phenanthroline ⁇ ; di-2-pyridyl ketone; 2,3-bis(2-pyridyl) pyrazine; 2,3-bis(2-pyridyl)-5,6-dihydropyrazine; 1,1'- carbonyldiimidazole; 2,4-bis(5,6-diphenyl-l,2,4-triazine-3-yl)pyridine; 2,4,6-tri(2- pyridyl)-l,3,5-triazine; 4,4'-dimethyl-2,2'dipyridyl; 2,2'-biquinoline; di-2-pyridyl glyoxal ⁇ 2,2'-pyridil ⁇ ; 2-(2-pyridyl)benzimidazole; 2,2'-bipyrazine; 3-(2-pyridyl
  • compositions of the present invention may further contain a visible particle.
  • a visible particle is a particle which can be distinctively detected as an individual particle by the naked eye when comprised in the present composition, and which is stable in the present composition.
  • the visible particle can be of any size, shape, or color, according to the desired characteristic of the product, so long as it is distinctively detected as an individual particle by the naked eye.
  • the visible particle has an average diameter of from about 50 ⁇ m to about 3000 ⁇ m, preferably from about lOO ⁇ m to about lOOO ⁇ m, more preferably from about 300 ⁇ m to about lOOO ⁇ m.
  • stable it is meant that the visible particles are not disintegrated, agglomerated, or separated under normal shelf conditions.
  • the composition is substantially transparent.
  • the visible particles provide a highly suitable aesthetic benefit. What is generally meant by transparent, is that a black substance having the size of a 1cm X 1cm square can be detected by the naked eye through 1cm thickness ofthe present composition.
  • the visible particles herein are used at levels of from about 0.01% to about 5% by weight ofthe composition.
  • the visible particle herein comprises a stmctural material and preferably an encompassed material.
  • the structural material provides a certain strength to the visible particle so that they retain their distinctively detectable structure in the present composition under normal shelf conditions.
  • the structural material further can be broken and disintegrated with very little shear on the hand with the fingers upon use.
  • Visible particles useful herein include capsules, shelled particles, beads, pellets, droplets, pills, caplets, tablets, grains, flakes, powders and granules.
  • the visible particles can be solid or liquid, filled or un-filled, so long as they are stable in the present composition.
  • the structural material used for making the visible particles varies depending on the compatibility with other components, as well as material, if any, to be encompassed in the visible particles.
  • Exemplary materials for making the visible particles herein include: polysaccharide and saccharide derivatives such as crystalline cellulose, cellulose acetate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose nitrate, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropyl-methylcellulose phthalate, methyl cellulose, sodium carboxymethylcellulose, gum acacia (gum arabic), agar, agarose, maltodextrin, sodium alginate, calcium alginate, dextran, starch, galactose, glucosamine, cyclodextrin, chitin, amylose, amylopectin, glycogen, laminaran, lichenan, curdlan, inulin, levan, pectin, mannan, xylan, alginic acid, arabic acid, glucommannan, agarose, agaropectin, prophyran,
  • Highly preferable structural material herein comprises components selected from the group consisting of polysaccharides and their derivatives, saccharides and their derivatives, oligosaccharides, monosaccharides, and mixtures thereof, still preferably, components from the above mentioned group wherein components having various water solubility are selected.
  • the stmctural material is made of components selected from the group consisting of cellulose, cellulose derivatives, saccharides, and mixtures thereof.
  • the visible particle herein may encompass, contain, or be filled with an encompassed material.
  • encompassed material can be water soluble or water insoluble, and comprise components such as: vitamins, amino acids, proteins and protein derivatives, herbal extracts, pigments, dyes, antimicrobial agents, chelating agents, UV absorbers, optical brighteners, silicone compounds, perfumes, humectants which are generally water soluble, additional conditioning agents which are generally water insoluble, and mixtures thereof.
  • water soluble components are preferred encompassed material.
  • components selected from the group consisting of vitamins, amino acids, proteins, protein derivatives, herbal extracts, and mixtures thereof are preferred encompassed material.
  • Vitamins and amino acids useful as encompassed material herein include: water soluble vitamins such as vitamin Bl, B2, B6, B12, C, pantothenic acid, panthenyl ethyl ether, panthenol, biotin, and their derivatives, water soluble amino acids such as asparagine, alanin, indole, glutamic acid and their salts, water insoluble vitamins such as vitamin A, D, E, and their derivatives, water insoluble amino acids such as tyrosine , tryptamine, and their salts.
  • Pigments useful as encompassed material herein include inorganic, nitroso, monoazo, bisazo, carotenoid, triphenyl methane, triaryl methane, xanthene, quinoline, oxazine, azine, anthraquinone, indigoid, thionindigoid, quinacridone, phthalocianine, botanical, natural colors, including: water soluble components such as those having C. I.
  • Antimicrobial agents useful as encompassed material include those useful as cosmetic biocides and antidandruff agents including: water soluble components such as piroctone olamine, water insoluble components such as 3,4,4'- frichlorocarbanilide (trichlosan), trichlocarban and zinc pyrithione.
  • water soluble components such as piroctone olamine
  • water insoluble components such as 3,4,4'- frichlorocarbanilide (trichlosan), trichlocarban and zinc pyrithione.
  • Chelating agents useful as encompassed material include: 2,2'-dipyridylamine; 1,10-phenanthroline ⁇ o-phenanthroline ⁇ ; di-2-pyridyl ketone; 2,3-bis(2-pyridyl) pyrazine; 2,3-bis(2-pyridyl)-5,6-dihydropyrazine; l,l'-carbonyldiimidazole; 2,4- bis(5,6-diphenyl- 1 ,2,4-triazine-3-yl)pyridine; 2,4,6-tri(2-pyridyl)- 1 ,3,5-triazine; 4,4'- dimethyl-2,2'dipyridyl; 2,2'-biquinoline; di-2-pyridyl glyoxal ⁇ 2,2'-pyridil ⁇ ; 2-(2- pyridyl)benzimidazole; 2,2'-bipyrazine; 3-(2-pyridyl)
  • Useful silicone compounds, humectants, additional conditioning agents, UV absorbers, optical brighteners, and herbal extracts for encompassed material are the same as those exemplified in other portions of the specification.
  • the components herein, however, are substantially retained within the breakable visible particles, and are substantially not dissolved in the bulk of the present composition under normal shelf conditions.
  • UnisphereTM and UnicerinTM particles are made of microcrystalline cellulose, hydroxypropyl cellulose, lactose, vitamins, pigments, and proteins. Upon use, the UnisphereTM and UnicerinTM particles can be disintegrated with very little shear on the hand with the fingers with practically no resistance, and readily dissolve in the composition.
  • compositions of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the composition more cosmetically or aesthetically acceptable or to provide them with additional usage benefits.
  • additional components generally are used individually at levels of from about 0.001% to about 10%, preferably up to about 5% by weight of the composition.
  • a wide variety of other additional components can be formulated into the present compositions. These include: other conditioning agents such as hydrolyzed collagen with tradename Peptein 2000TM available from Hormel, vitamin E with fradename Emix-dTM available from Eisai, panthenol available from Roche, panthenyl ethyl ether available from Roche, hydrolyzed keratin, proteins, plant extracts, and nutrients; hair-fixative polymers such as amphoteric fixative polymers, cationic fixative polymers, anionic fixative polymers, nonionic fixative polymers, and silicone grafted copolymers; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; pH adjusting agents, such as citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; salts, in general, such as potassium acetate and sodium chloride; coloring agents, such as any of the FD&C or D
  • the hair conditioning compositions of the present invention can be transparent or opaque, and can be formulated in a wide variety of product forms, including but not limited to creams, gels, emulsions, and mousses.
  • compositions of the present invention are preferably transparent. What is meant by transparent, is that a black substance having the size of a 1cm X 1cm square can be detected by the naked eye through 1cm thickness ofthe present composition.
  • the hair cosmetic compositions of the present invention are used in conventional ways to provide the volumizing, conditioning, styling and other benefits of the present invention. Such method of use depends upon the type of composition employed but generally involves providing hair, or a hair sample, having a bulk hair area, applying an effective amount of the product to the hair, and then drying the hair. Before drying, the composition will be allowed to remain on the hair (as in the case of gels, lotions, and creams). "Effective amount” means an amount sufficient enough to provide the desired increase in bulk hair volume and the conditioning benefits. In general, from about 1 g to about 50 g is applied to the hair, and/or the scalp. The phrase "increase in bulk hair volume" as used herein is not equal to fly-away hair.
  • the hair care composition may be distributed throughout the hair, typically by rubbing or massaging the hair and scalp, or the composition may be selectively applied to certain parts of the hair.
  • the composition is preferably applied to wet or damp hair prior to drying of the hair.
  • the hair care compositions are applied to the hair, the hair is dried and styled in accordance with the preference of the user. In the alternative, it may be applied to already dry hair, and the hair is then combed or styled, and dried in accordance with the preference ofthe user.
  • compositions (wt%
  • Acrylic acid alkyl acrylate copolymer 1 PEMULEN TR-1TM available from B.F. Goodrich *2 Acrylic acid alkyl acrylate copolymer 2: PEMULEN TR-2TM available from B.F. Goodrich *3 Polyvinylpyrrolidone/Vinyl acetate copolymer 1 : Luviskol 73 WTM with a mole ratio of vinylpyrrolidone monomer to vinyl acetate monomer 7:3 available from BASF *4 Polyvinylpyrrolidone/Vinyl acetate copolymer 2: Luviskol 64 WTM with a mole ratio of vinylpyrrolidone monomer to vinyl acetate monomer 6:4 available from BASF *5 PolyvinylpyrrolidoneNinyl acetate copolymer 3: Polyvinylpyrrolidone/Vinyl acetate/Vinyl propionate copolymer having tradename Luviskol VAP343E with a mole ratio of
  • Triethanolamine Triethanolamine available from Nippon Shokubai
  • Behenyl Alcohol 65, 80 available from Nikko Chemical
  • Hexylene Glycol Hexylene glycol available from Mitsui Toatsu *21 Polyethylene Glycol 200: Carbowax PEG200TM available from Union Carbide
  • Polygonum multiflori extract Polygonum multiflori exfract obtained form Occupational Medicine, CAPM.
  • Panthenol Panthenol Available from Roche *25 Benzophenone-4: Uvnul MS-40TM available from BASF
  • Microspheres 1 091 DE available as EXPANCELTM, from Akzo Nobel *30
  • Microspheres 2 091 DE80 available as EXPANCELTM, from Akzo Nobel *31
  • Visible particles 1 Unispheres AGE-52TM available from Induchem *32
  • Visible particles 2 Unispheres YE-501TM available from Induchem *33
  • the polymeric materials such as the carboxylic acid/alkyl carboxy late copolymer, polyvinylpyrrolidone/vinyl acetate copolymer, amphoteric conditioning polymer, and additional viscosity modifier, if present, are dispersed in water at room temperature, mixed by vigorous agitation, and heated to 50°C.
  • the high melting point compounds, if included, are added to the mixture with agitation at above 70°C by either melting such components or by dissolving such components. Then the neutralizing agent is added to the mixture.
  • the mixture After neutralizing, the mixture is cooled to below 40°C, and then the remaining components are added to the mixture with agitation.
  • compositions have many advantages, such as improved conditioning benefits to the hair such as smoothness, softness, and reduction of friction, while providing increase in bulk hair volume. These compositions are also easy to apply on the hair, and they leave the hair and hands with a clean feeling.
  • Disodium EDTA, and 0.12g of Citric Acid is added to the water. Ingredients are mixed for 15 minutes or until completely dissolved. Solution is stopped from being heated and 7.50g of C9-11 Pareth 8 and 15.00g of Propylene Glycol is added to the solution, with continuous stirring. When the batch temperature is under 110°F, 21.22g of DMDM Hydantoin, 1.20g of Panthenol, 2.70g of Panthyl Ethyl Ether, 2.4g of Keratin amino acids, 0.15g of Myristyol Hydrolyzed Collagen and 4.50g of perfume are added. Mechanical stirring is ended and 16.41g of Laponite XLSTM microparticles are manually stirred into the solution.
  • EXPANCEL 551 DETM microspheres are added by manually sturring.
  • the microspheres and Laponite microparticles may be added sequentially, in any order, or simultaneously.
  • Premix A is made by placing 2977.50g of water into a 4L sanitized beaker. The water is heated to and maintained at 70-80°F for remainder of the batch. Agitation is begun at a maximum safe speed and 22.50g of Carbomer 940 is slowly sifted in. Solution is mixed until completely dissolved, for at least 30 minutes.
  • Premix B is made by placing 341.16g of water into a 2L sanitized beaker and heating it to 125°F+/-5°F. With mechanical stirring, 4.14g of Tetrasodium EDTA, 12.60g of Polyquatemium-4, and 18.00g of Isosteareth-20 are added. Solution is stopped from being heated and 63.00g of Polyquatemium-11, 144.00g of PVP/VA Copolymer, 0.72g of Panthenol, 0.18g of Octyl Salicylate and 0.18g of Vitamin E Acetate are added. When batch temperature is under 100°F, 2.00g of perfume and 13.32g of DMDM Hydantoin are added. Solution is mixed until homogenous.
  • Gel formulation is made by placing 2400. OOg of Premix A into a sanitized 4L beaker. Stirring by hand, 15.00g of Laponite XLSTM and 11.76g of Triethanolamine are added to Premix A. Then, 500. lOg of Premix B is added and solution is stirred by hand.
  • Triethanolamine is added dropwise. Solution is mixed until homogeneous for at least 15 minutes. pH ofthe solution is measured and adjusted, if necessary, by adding Triethanolamine, with a target of 5.90+/-0.30.
  • Test Method for Measuring Bulk Volume Differences in Hair Specimens of the Examples are tested for their volume effects on hair utilizing the following procedure.
  • All hair switches used in this method are first cleaned by taking them through two Prell shampoo cycles. Excess water is squeezed from the switches after rinsing.
  • the drying rack is placed in a 75°F/50% relative humidity room for overnight air drying.
  • Dry switches are combed, one at a time, using a fine tooth comb (5 strokes per switch).
  • a static gun is used on the hanging switches to remove static.
  • a picture is taken immediately. The picture is used, in addition to visual inspection, to identify any differences in bulk volume between treated switches.
  • control is included with every run of this method.
  • the control is the leave-in conditioner product with no volume-up additives.
  • control is considered to have a bulk volume rating of 1, then small bulk volume increases are given a value of 2 and significant increases in bulk volume are given a 3.
  • Pictures of switches are especially useful for seeing differences in bulk volume between switches and are used for the actual quantification procedure. These supplement the qualitative visual observation of bulk volume differences between switches.
  • Hair switches treated with the formulations containing microparticles, or containing microparticles, and microspheres are compared with the hair switches treated with a formulation containing no microparticles or microspheres. Significantly high volume, as evaluated by the procedure described above, is noticed for the hair switches treated with formulations containing microparticles, or containing microparticles and microspheres.
  • the specific embodiments and examples set forth herein are illustrative only and are not intended to limit the scope of the claims defining the invention. Additional embodiments and examples within the scope of the claims will be apparent in view of the present specification.

Landscapes

  • Cosmetics (AREA)

Abstract

L'invention porte sur des compositions s'intégrant à la chevelure pour en augmenter le gonflant comprenant: des microparticules non sphériques d'une taille moyenne inférieure à environ 100νm dans leur dimension la plus longue, un polymère hydrosoluble ou gonflant à l'eau et un support aqueux, tels que la combinaison du polymère et des microparticules donne un réseau péliculaire. L'invention porte également sur des procédés accroissant le volume de la chevelure, et plus particulièrement à l'aide de compositions s'intégrant à la chevelure contenant des microparticules non sphériques d'une taille moyenne inférieur à environ 100νm dans leur dimension la plus longue, un polymère hydrosoluble ou gonflant à l'eau et un support aqueux. Lesdites compositions donnent du gonflant, du corps, de l'élasticité, de l'ampleur, du volume et de la texture, tout en traitant le cheveu et en améliorant l'esthétique. On peut également inclure dans la composition des microsphères souples et encapsulées dans un liquide d'un diamètre moyen inférieur à 300νm.
EP01926504A 2000-03-31 2001-03-30 Compositions cosmetiques s'integrant a la chevelure pour en augmenter le gonflant Withdrawn EP1267805A2 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US87600000A 2000-03-31 2000-03-31
US8760 2000-03-31
US23115200P 2000-09-08 2000-09-08
US231152P 2000-09-08
US26138401P 2001-01-12 2001-01-12
US261384P 2001-01-12
PCT/US2001/010363 WO2001074311A2 (fr) 2000-03-31 2001-03-30 Compositions cosmetiques s'integrant a la chevelure pour en augmenter le gonflant

Publications (1)

Publication Number Publication Date
EP1267805A2 true EP1267805A2 (fr) 2003-01-02

Family

ID=27398161

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01926504A Withdrawn EP1267805A2 (fr) 2000-03-31 2001-03-30 Compositions cosmetiques s'integrant a la chevelure pour en augmenter le gonflant

Country Status (1)

Country Link
EP (1) EP1267805A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089491B2 (en) 2008-11-26 2015-07-28 L'oréal Cosmetic compositions with a spongy texture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0174311A3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089491B2 (en) 2008-11-26 2015-07-28 L'oréal Cosmetic compositions with a spongy texture

Similar Documents

Publication Publication Date Title
US20020034486A1 (en) Leave-in hair cosmetic compositions for enhancing volume
US20020012645A1 (en) Leave-in hair cosmetic compositions for enhancing volume containing fluid-encapsulated, flexible microspheres
WO2001076543A1 (fr) Composition d'apres-shampooing contenant un systeme d'epaississants
US6767875B1 (en) Hair conditioning composition comprising carboxylic acid/carboxylate copolymer and moisturizing agent
EP1286645B1 (fr) Composition de soin capillaire contenant un agent de lissage
US20030165454A1 (en) Hair conditioning composition comprising a frizz control agent
EP1104278B1 (fr) Composition pour le conditionnement des cheveux comprenant un copolymere acide carboxylique/carboxylate, et particule visible
EP1139977A1 (fr) Composition apres-shampooing comprenant une particule visible
WO2001074309A1 (fr) Composition capillaire tonifiante comprenant un acide carboxylique/copolymere carboxylate et un copolymere vinylpyrrolidone
EP1139984A1 (fr) Composition pour le conditionnement des cheveux comprenant un copolymere acide carboxylique/carboxylate ainsi que des particules visibles et cassables
WO2000006098A1 (fr) Composition pour le conditionnement des cheveux comprenant un copolymere acide carboxylique/carboxylate, un compose de silicone et un compose ayant un point de fusion eleve
EP1100435B1 (fr) Composition pour le conditionnement des cheveux comprenant un copolymere acide carboxylique/carboxylate, et agent de conditionnement amphoterique
EP1212028B1 (fr) Composition capillaire tonifiante comprenant un acide carboxylique/copolymere carboxylate et un agent hydratant
EP1267805A2 (fr) Compositions cosmetiques s'integrant a la chevelure pour en augmenter le gonflant
EP1100430A1 (fr) Composition transparente pour le conditionnement des cheveux comprenant une particule visible cassable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020927

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SNYDER, MICHAEL, ALBERT

Inventor name: MIDHA, SANJEEV

Inventor name: THOMSON, SHARI, RENEE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051001