EP1265770A1 - Vibration suppressed vehicle mirror - Google Patents

Vibration suppressed vehicle mirror

Info

Publication number
EP1265770A1
EP1265770A1 EP00967423A EP00967423A EP1265770A1 EP 1265770 A1 EP1265770 A1 EP 1265770A1 EP 00967423 A EP00967423 A EP 00967423A EP 00967423 A EP00967423 A EP 00967423A EP 1265770 A1 EP1265770 A1 EP 1265770A1
Authority
EP
European Patent Office
Prior art keywords
mirror
rotor
support portion
vehicle
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00967423A
Other languages
German (de)
French (fr)
Inventor
Robert William Gilbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMR Automotive Australia Pty Ltd
Original Assignee
Schefenacker Vision Systems Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schefenacker Vision Systems Australia Pty Ltd filed Critical Schefenacker Vision Systems Australia Pty Ltd
Publication of EP1265770A1 publication Critical patent/EP1265770A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/0602Rear-view mirror arrangements mounted on vehicle exterior comprising means for cleaning or deicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • B60R1/081Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors avoiding blind spots, e.g. by using a side-by-side association of mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect

Definitions

  • the present invention relates to vehicle mounted mirrors, and in particular to vehicle rear vision mirrors mounted external to the vehicle cabin.
  • Vibration causing rotational movement of the reflective mirror surface can present a moving or fuzzy rear view image to the vehicle driver.
  • Sources of vibration include the vehicle's engine and small scale vertical vehicle movement caused by the road surface.
  • mirrors mounted external to their cabin. Such mirrors either provide an alternative rear view to an internally mounted mirror or, in the case of many trucks, provide the only rear view.
  • a vehicle mirror assembly comprising: a mirror frame; a rotor rotatably mounted with respect to the mirror frame; a means for rotating the rotor with respect to the mirror frame; a connection means operably interposed between the rotor and the mirror frame allowing pivoting of the rotor with respect to the mirror frame; and a mirror, having a reflective surface, mounted with respect to the rotor so that the surface remains substantially parallel to the plane in which the rotor rotates, whereby the rotor stabilises the mirror against tilting vibrational movement.
  • connection means is arranged and constructed such that the angle of the mirror surface, with respect to the mirror frame, can be adjusted.
  • the vehicle mirror assembly comprises a support portion interposed between the mirror frame and the rotor, the support portion supporting the rotor.
  • the mirror may be mounted either to the support portion (and therefore non- rotatable) or may be mounted directly to the rotor.
  • connection means comprises: a pivot mounting interposed between the mirror frame and the support portion; and at least two legs operably interposed between the mirror frame and the support portion, each leg comprising an actuator for adjusting the no-load length of the leg and a vibration absorber connected in series to the actuator, wherein the actuator enables adjustment of the timed-averaged orientation of the mirror with respect to the mirror frame and the vibration absorbers reduce the transmission of vibration forces from the mirror frame to the support portion.
  • connection means connecting the support portion (and hence rotor) to the mirror frame, ensures that the mirror will not follow high frequency tilting movements of the mirror frame. At the same time the connection means will ensure that the rotor stabilised mirror will generally remain in the same angular orientation with respect to the vehicle to which the mirror frame is attached.
  • the rotor is a substantially disc-shaped flywheel having a diameter of at least two thirds of the smallest bisector of the mirror surface.
  • the means for rotating the rotor is preferably air driven.
  • the means for rotating the rotor preferably comprises an electric motor.
  • the mirror frame preferably comprises a mirror case that substantially encapsulates the support portion, rotor and mirror from behind the mirror surface.
  • Fig 1 shows a rear view of the mirror assembly according to a first embodiment of the invention.
  • Fig 2 shows a cross sectional view of the mirror assembly of Fig 1 through the plane 2-2 as indicated on Fig 1.
  • Fig 3 shows a rear view of a mirror assembly according to a second embodiment of the invention.
  • Fig 4 shows a cross section view of the mirror assembly of Fig 3 through the plane 4-4 as indicated on Fig 3.
  • Fig 5 shows a rear view of a mirror assembly according to a third embodiment of the invention.
  • Fig 6 shows a front perspective view of the mirror assembly of Fig 5.
  • a vehicle mirror assembly 10 for mounting external to a vehicle.
  • the vehicle mirror assembly 10 comprises a support arm 12 for connection to a vehicle, a mirror frame in the form of a mirror case 14 and a rotor stabilised mirror 40.
  • the rotor is in the form of a flywheel 34, although other rotor shapes could be used.
  • a support portion 30 is provided to support the flywheel 34 and the mirror 40.
  • a motor 32 is housed within the support portion 30. Motor 32 rotates flywheel 34 to create a gyroscope that has the effect of stabilising the mirror 40 and in particular preventing tilting vibrational movement being transmitted from the mirror frame (case) 14 to the mirror 40.
  • This arrangement allows support arm 12 to be relatively small and less stiff than would otherwise be required to prevent tilting vibration of the mirror 40.
  • connection means in the form of a pivot mounting 36 and two legs 20 and 60. Pivot mounting 36 allows pivoting of the flywheel and mirror with respect to the mirror case 14.
  • Pivoting of the mirror 40 with respect to the mirror case 14 is controlled by legs 20 and 60.
  • Each of these legs includes an actuator 22 for adjusting the no-load length of the leg and a vibration absorber in the form of a spring 24 and a damper 26 connected in series to the actuator 22.
  • the vibration absorbers reduce the transmission of vibration from the mirror case 14 to the support portion 30 (and therefore the mirror 40).
  • connection means connecting the support portion 30 (and hence flywheel 34) to the mirror frame (case) 14, ensures that the mirror 40 will not follow high frequency tilting movements of the mirror case 14.
  • connection means ensures that the flywheel stabilised mirror 40 will generally remain in the same angular orientation with respect to the vehicle to which the mirror case 14 is mounted. It also enables the rear view provided by the mirror 40 to be adjusted to suit the vehicle driver.
  • FIGs 3 and 4 A second embodiment of the invention is shown in Figs 3 and 4.
  • the mirror 40 is mounted directly to the flywheel 34 (rather than on the support portion 30). With this embodiment of the invention the mirror itself rotates. This arrangement has the advantage that water droplets are less likely to adhere to the mirror surface.
  • the flywheel 34 is eccentrically mounted so that its rotation causes lateral vibration. This lateral vibration further reduces the adhesion of water droplets to the mirror surface.
  • Fig 5 shows a third embodiment of the invention having two additional features.
  • a second non-rotating and non-flywheel stabilised mirror 50 is provided. This mirror optionally may be a concave mirror for showing a wide rear view to the vehicle driver. Actuators may be positioned to ensure adjustment of the angle of mirror 50.
  • the primary mirror 40 is mounted to a flywheel, as described in the second embodiment of the invention, and therefore is vibration stabilised and repels water from its surface.
  • Fig 6 is a rear perspective view of the third embodiment of the invention shown in Fig 5.
  • the flywheel is air driven instead of motor driven. Air enters the mirror casing 14 through the entrance 17 of a duct 16 and then passes vanes 35 before exiting the mirror case 14 through its rear. This air movement imparts rotation to the flywheel.
  • Various other air driven means for rotating the flywheel may be used.
  • Motor drive 32 may take various forms. For instance the motor's rotor itself may provide the rotational inertia required to produce the desired stabilisation.
  • rotors or flywheels may be employed to provide stability to the mirror based on the gyroscopic effect they produce.

Abstract

A vehicle external rear vision mirror assembly comprising: a support arm; a mirror frame (14) mounted on an end of the support arm; a support portion (30) connected to the mirror frame (14); a flywheel (34) rotatably mounted with respect to the support portion (30); a means for rotating the flywheel (34); a mirror (40) mounted to the support portion (30), the mirror (40) having a reflective surface orientated substantially normal to the rotational axis of the flywheel (34); and a connection means connecting the support portion (30) to the mirror frame (14), the connection means arranged and constructed such that the angle of the support portion (30), with respect to the mirror frame (14), can be adjusted, whereby the flywheel (34) stabilises the mirror (40) against tilting vibrational movement. The mirror (40) may be mounted either to the support portion (30) (and therefore non-rotatable) or may be mounted directly to the flywheel (34).

Description

VIBRATION SUPPRESSED VEHICLE MIRROR
The present invention relates to vehicle mounted mirrors, and in particular to vehicle rear vision mirrors mounted external to the vehicle cabin.
BACKGROUND
With any vehicle mirror, it is important to stabilise the position of the reflective mirror surface providing the rear view with respect to either the vehicle or with respect to the driver. Vibration causing rotational movement of the reflective mirror surface can present a moving or fuzzy rear view image to the vehicle driver. Sources of vibration include the vehicle's engine and small scale vertical vehicle movement caused by the road surface.
In order to provide rear vision to the side of a vehicle, many vehicles have mirrors mounted external to their cabin. Such mirrors either provide an alternative rear view to an internally mounted mirror or, in the case of many trucks, provide the only rear view.
Stabilisation of externally mounted mirrors is more difficult than stabilisation of internally mounted mirrors for a number of reasons. Externally mounted mirror housings are subject to additional forces (for example aerodynamic forces) and are often more complex in their design. For instance, external mirrors often require an ability to break away upon impact with a pedestrian and therefore have pivots and detent mechanisms between a vehicle body and the mirror surface. External mirrors often have motor drive systems for remote adjustment of their position and heating equipment to prevent fogging and/ or icing. These additional systems add weight. Heavier mirror housings have greater inertia and therefore are more difficult to attach to the vehicle in a way that ensures they do not vibrate with respect to the vehicle. Generally heavier mirrors are supported by larger and stiffer cantilevered arms. This adds to the cost of the vehicle and can detract from the appearance of the vehicle. It is an object of the present invention to provide a vehicle mirror assembly that stabilises a mirror reflective surface against tilting vibration and thereby overcomes at least some of the aforementioned problems.
SUMMARY OF THE INVENTION
According to the invention there is provided a vehicle mirror assembly comprising: a mirror frame; a rotor rotatably mounted with respect to the mirror frame; a means for rotating the rotor with respect to the mirror frame; a connection means operably interposed between the rotor and the mirror frame allowing pivoting of the rotor with respect to the mirror frame; and a mirror, having a reflective surface, mounted with respect to the rotor so that the surface remains substantially parallel to the plane in which the rotor rotates, whereby the rotor stabilises the mirror against tilting vibrational movement.
Preferably the connection means is arranged and constructed such that the angle of the mirror surface, with respect to the mirror frame, can be adjusted.
Preferably the vehicle mirror assembly comprises a support portion interposed between the mirror frame and the rotor, the support portion supporting the rotor.
The mirror may be mounted either to the support portion (and therefore non- rotatable) or may be mounted directly to the rotor.
Preferably the connection means comprises: a pivot mounting interposed between the mirror frame and the support portion; and at least two legs operably interposed between the mirror frame and the support portion, each leg comprising an actuator for adjusting the no-load length of the leg and a vibration absorber connected in series to the actuator, wherein the actuator enables adjustment of the timed-averaged orientation of the mirror with respect to the mirror frame and the vibration absorbers reduce the transmission of vibration forces from the mirror frame to the support portion.
The connection means, connecting the support portion (and hence rotor) to the mirror frame, ensures that the mirror will not follow high frequency tilting movements of the mirror frame. At the same time the connection means will ensure that the rotor stabilised mirror will generally remain in the same angular orientation with respect to the vehicle to which the mirror frame is attached.
Preferably the rotor is a substantially disc-shaped flywheel having a diameter of at least two thirds of the smallest bisector of the mirror surface.
According to a first aspect of the invention, the means for rotating the rotor is preferably air driven.
According to a second aspect of the invention, the means for rotating the rotor preferably comprises an electric motor.
The mirror frame preferably comprises a mirror case that substantially encapsulates the support portion, rotor and mirror from behind the mirror surface.
Specific embodiments of the invention will now be described in some further detail with reference to and as illustrated in the accompanying figures. These embodiments are illustrative, and are not meant to be restrictive of the scope of the invention. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
Preferred embodiments of the invention are illustrated in the accompanying representations in which:
Fig 1 shows a rear view of the mirror assembly according to a first embodiment of the invention; and
Fig 2 shows a cross sectional view of the mirror assembly of Fig 1 through the plane 2-2 as indicated on Fig 1.
Fig 3 shows a rear view of a mirror assembly according to a second embodiment of the invention.
Fig 4 shows a cross section view of the mirror assembly of Fig 3 through the plane 4-4 as indicated on Fig 3.
Fig 5 shows a rear view of a mirror assembly according to a third embodiment of the invention.
Fig 6 shows a front perspective view of the mirror assembly of Fig 5.
Referring to Figs 1 and 2, a vehicle mirror assembly 10 is shown for mounting external to a vehicle. In this first embodiment of the invention the vehicle mirror assembly 10 comprises a support arm 12 for connection to a vehicle, a mirror frame in the form of a mirror case 14 and a rotor stabilised mirror 40. The rotor is in the form of a flywheel 34, although other rotor shapes could be used. A support portion 30 is provided to support the flywheel 34 and the mirror 40. A motor 32 is housed within the support portion 30. Motor 32 rotates flywheel 34 to create a gyroscope that has the effect of stabilising the mirror 40 and in particular preventing tilting vibrational movement being transmitted from the mirror frame (case) 14 to the mirror 40. This arrangement allows support arm 12 to be relatively small and less stiff than would otherwise be required to prevent tilting vibration of the mirror 40.
Interposed between the support portion 30 and the mirror case 14 is a connection means in the form of a pivot mounting 36 and two legs 20 and 60. Pivot mounting 36 allows pivoting of the flywheel and mirror with respect to the mirror case 14.
Pivoting of the mirror 40 with respect to the mirror case 14 is controlled by legs 20 and 60. Each of these legs includes an actuator 22 for adjusting the no-load length of the leg and a vibration absorber in the form of a spring 24 and a damper 26 connected in series to the actuator 22. The vibration absorbers reduce the transmission of vibration from the mirror case 14 to the support portion 30 (and therefore the mirror 40).
The above-described connection means, connecting the support portion 30 (and hence flywheel 34) to the mirror frame (case) 14, ensures that the mirror 40 will not follow high frequency tilting movements of the mirror case 14. At the same time the connection means ensures that the flywheel stabilised mirror 40 will generally remain in the same angular orientation with respect to the vehicle to which the mirror case 14 is mounted. It also enables the rear view provided by the mirror 40 to be adjusted to suit the vehicle driver.
A second embodiment of the invention is shown in Figs 3 and 4. In this embodiment of the invention the mirror 40 is mounted directly to the flywheel 34 (rather than on the support portion 30). With this embodiment of the invention the mirror itself rotates. This arrangement has the advantage that water droplets are less likely to adhere to the mirror surface. In a variation of this embodiment, the flywheel 34 is eccentrically mounted so that its rotation causes lateral vibration. This lateral vibration further reduces the adhesion of water droplets to the mirror surface. Fig 5 shows a third embodiment of the invention having two additional features. A second non-rotating and non-flywheel stabilised mirror 50 is provided. This mirror optionally may be a concave mirror for showing a wide rear view to the vehicle driver. Actuators may be positioned to ensure adjustment of the angle of mirror 50.
The primary mirror 40 is mounted to a flywheel, as described in the second embodiment of the invention, and therefore is vibration stabilised and repels water from its surface.
Fig 6 is a rear perspective view of the third embodiment of the invention shown in Fig 5. In this third embodiment of the invention, the flywheel is air driven instead of motor driven. Air enters the mirror casing 14 through the entrance 17 of a duct 16 and then passes vanes 35 before exiting the mirror case 14 through its rear. This air movement imparts rotation to the flywheel. Various other air driven means for rotating the flywheel may be used.
Motor drive 32 may take various forms. For instance the motor's rotor itself may provide the rotational inertia required to produce the desired stabilisation.
Various types of rotors or flywheels may be employed to provide stability to the mirror based on the gyroscopic effect they produce.
While the present invention has been described in terms of preferred embodiments in order to facilitate better understanding of the invention, it should be appreciated that various modifications can be made without departing from the principles of the invention. Therefore the invention should be understood to include all such modifications within its scope.

Claims

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. A vehicle mirror assembly comprising: a mirror frame; a rotor rotatably mounted with respect to the mirror frame; a means for rotating the rotor with respect to the mirror frame; a connection means operably interposed between the rotor and the mirror frame allowing pivoting of the rotor with respect to the mirror frame; and a mirror, having a reflective surface, mounted with respect to the rotor so that the surface remains substantially parallel to the plane in which the rotor rotates, whereby the rotor stabilises the mirror against tilting vibrational movement.
2. A vehicle mirror assembly as claimed in claim 1, wherein the connection means is arranged and constructed such that the angle of the mirror surface, with respect to the mirror frame, can be adjusted.
3. A vehicle mirror assembly as claimed in claim 2 comprising a support portion interposed between the mirror frame and the rotor, the support portion supporting the rotor.
4. A vehicle mirror assembly as claimed in claim 3, wherein the connection means comprises: a pivot mounting interposed between the mirror frame and the support portion; and at least two legs operably interposed between the mirror frame and the support portion, each leg comprising an actuator for adjusting the no-load length of the leg and a vibration absorber connected in series to the actuator, wherein the actuator enables adjustment of the timed-averaged orientation of the mirror with respect to the mirror frame and the vibration absorbers reduce the transmission of vibration forces from the mirror frame to the support portion.
5. A vehicle mirror assembly as claimed in claim 4, wherein the vibration absorbers each comprises a spring means and a damper means operable in parallel.
6. A vehicle mirror assembly as claimed in any one of claims 1 to 5, wherein the rotor is a substantially disc-shaped flywheel.
7. A vehicle mirror assembly as claimed in claim 6, wherein the flywheel has a diameter of at least two thirds of the smallest bisector of the mirror surface.
8. A vehicle mirror assembly as claimed in any one of claims 1 to 7, wherein the means for rotating the rotor is air driven.
9. A vehicle mirror assembly as claimed in claim 8, wherein the means for rotating comprises vanes mounted to the rotor and an air passage arranged and constructed so as to direct air through the vanes.
10. A vehicle mirror assembly as claimed in any one of claims 1 to 7, wherein the means for rotating the rotor comprises an electric motor.
11. A vehicle mirror assembly as claimed in any one of claims 1 to 10, wherein the mirror frame comprises a case substantially encapsulating the support portion, rotor and mirror from behind the mirror surface.
12. A vehicle external rear vision mirror assembly comprising: a support arm having a proximal and a distal end, the distal end for attaching to a vehicle; a mirror frame mounted on or integral with the proximal end of the support arm; a support portion connected to the mirror frame; a rotor rotatably mounted with respect to the support portion; a means for rotating the rotor; a mirror mounted to the support portion, the mirror having a reflective surface orientated substantially normal to the rotational axis of the rotor; and a connection means connecting the support portion to the mirror frame, the connection means arranged and constructed such that the angle of the support portion, with respect to the mirror frame, can be adjusted, whereby the rotor stabilises the mirror against tilting vibrational movement.
13. A mirror assembly as claimed in claim 12 wherein the connection means comprises: a pivot mounting interposed between the mirror frame and the support portion; and at least two legs operably interposed between the mirror frame and the support portion, each leg comprising an actuator for adjusting the no-load length of the leg and a vibration absorber connected in series to the actuator, wherein the actuator enables adjustment of the time-averaged orientation of the mirror with respect to the mirror frame and the vibration absorbers reduce the transmission of vibration forces from the mirror frame to the support portion.
14. A mirror assembly as claimed in claim 13 wherein the vibration absorbers each comprises a spring means and a damper means operable in parallel.
15. A mirror assembly as claimed in any one of claims 12 to 14, wherein the rotor is a substantially disc shaped flywheel.
16. A vehicle mirror assembly as claimed in claim 15, wherein the flywheel has a diameter of at least two thirds of the smallest bisector of the mirror surface.
17. A vehicle mirror assembly as claimed in any one of claims 12 to 16, wherein the means for rotating the rotor is air driven.
18. A vehicle mirror assembly as claimed in claim 17, wherein the means for rotating comprises vanes mounted to the rotor and an air passage arranged and constructed so as to direct air through the vanes.
19. A vehicle mirror assembly as claimed in any one of claims 12 to 16, wherein the means for rotating the rotor comprises an electric motor.
20. A vehicle mirror assembly as claimed in any one of claims 12 to 19, wherein the mirror frame comprises a case substantially encapsulating the support portion, rotor and mirror from behind the mirror surface.
21. A vehicle external rear vision mirror assembly comprising: a support arm having a proximal and a distal end, the distal end for attaching to a vehicle; a mirror frame mounted on or integral with the proximal end of the support arm; a support portion connected to the mirror frame; a rotor rotatably mounted with respect to the support portion; a means for rotating the rotor; a mirror mounted directly to, or integral with the rotor, the mirror having a reflective surface orientated substantially normal to the rotational axis of the rotor; and a connection means connecting the support portion to the mirror frame, the connection means arranged and constructed such that the angle of the support portion, with respect to the mirror frame, can be adjusted, whereby the rotor stabilises the mirror against tilting vibrational movement.
22. A mirror assembly as claimed in claim 21 wherein the connection means comprises: a pivot mounting interposed between the mirror frame and the support portion; and at least two legs operably interposed between the mirror frame and the support portion, each leg comprising a actuator for adjusting the no-load length of the leg and a vibration absorber connected in series to the actuator, wherein the actuator enables adjustment of the time-averaged orientation of the mirror with respect to the mirror frame and the vibration absorbers reduce the transmission of vibration forces from the mirror frame to the support portion.
23. A mirror assembly as claimed in claim 22 wherein the vibration absorbers each comprises a spring means and a damper means operable in parallel.
24. A mirror assembly as claimed in any one of claims 20 to 23 wherein the rotor is a substantially disc shaped flywheel.
25. A vehicle mirror assembly as claimed in claim 24, wherein the flywheel has a diameter of at least two thirds of the smallest bisector of the mirror surface.
26. A vehicle mirror assembly as claimed in any one of claims 20 to 25, wherein the means for rotating the rotor is air driven.
27. A vehicle mirror assembly as claimed in claim 26, wherein the means for rotating comprises vanes mounted to the rotor and an air passage arranged and constructed so as to direct air through the vanes.
28. A vehicle mirror assembly as claimed in any one of claims 20 to 25, wherein the means for rotating the rotor comprises an electric motor.
29. A vehicle mirror assembly as claimed in any one of claims 20 to 28, wherein the mirror frame comprises a case substantially encapsulating the support portion, rotor and mirror from behind the mirror surface.
30. A mirror assembly as claimed in any one of claims 21 to 29 wherein the rotor is eccentrically mounted so that its rotation causes lateral vibration, whereby the vibration reduced the adhesion of water droplets to the mirror surface.
EP00967423A 1999-09-23 2000-09-25 Vibration suppressed vehicle mirror Withdrawn EP1265770A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPQ3020A AUPQ302099A0 (en) 1999-09-23 1999-09-23 Vibration suppressed vehicle mirror
AUPQ302099 1999-09-23
PCT/AU2000/001163 WO2001021439A1 (en) 1999-09-23 2000-09-25 Vibration suppressed vehicle mirror

Publications (1)

Publication Number Publication Date
EP1265770A1 true EP1265770A1 (en) 2002-12-18

Family

ID=3817184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967423A Withdrawn EP1265770A1 (en) 1999-09-23 2000-09-25 Vibration suppressed vehicle mirror

Country Status (3)

Country Link
EP (1) EP1265770A1 (en)
AU (1) AUPQ302099A0 (en)
WO (1) WO2001021439A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170778A (en) * 2001-12-06 2003-06-17 Tokai Rika Co Ltd Mirror device for vehicle
FR2906202B1 (en) * 2006-09-26 2009-04-17 Peugeot Citroen Automobiles Sa DEVICE FOR REDUCING THE VIBRATION OF THE MIRROR OF A MIRROR OF A MOTOR VEHICLE AND MIRROR WITH SUCH A DEVICE.
DE102011011334A1 (en) 2011-02-16 2011-12-29 Daimler Ag Device for arranging optical element for detecting settings in or at vehicle or vehicle component, has vibration-damping or uncoupling structure layer that is arranged between vehicle body or part of vehicle body and optical element
CN108043669B (en) * 2018-01-19 2019-10-29 刘创建 A kind of disk supporting mechanism of socks spot plastic-processing machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609014A (en) * 1970-06-10 1971-09-28 Kurz Arthur W Jun Electric remote control rear view mirror
FR2577867B1 (en) * 1985-02-22 1987-05-22 Manzoni Stephane ANTI-VIBRATION DEVICE FOR VEHICLE MIRROR
JPH08276824A (en) * 1995-04-06 1996-10-22 Murakami Kaimeidou:Kk Outside visible device
GB2340804A (en) * 1998-08-19 2000-03-01 Ian Simpson Vehicle mirror apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0121439A1 *

Also Published As

Publication number Publication date
AUPQ302099A0 (en) 1999-10-14
WO2001021439A1 (en) 2001-03-29

Similar Documents

Publication Publication Date Title
US6174062B1 (en) Adjustable rear-view mirror for a vehicle
CA2333364A1 (en) Axleless vehicle suspension system
US20070045036A1 (en) Turning device
EP0937601A3 (en) Rearview mirror assembly incorporating vehicle information display
EP1155911A3 (en) Memory mirror system for vehicle
AU676322B2 (en) Mirror assembly for the exterior of an automotive vehicle having a hand set adjustment mechanism
EP2301804A1 (en) Hinge construction
WO2001021439A1 (en) Vibration suppressed vehicle mirror
KR20030040059A (en) Inner mirror with built-in antenna
US6588818B2 (en) Vehicle accessory-mounting assembly
US7150538B2 (en) Detachable extension mirror
JP2987211B2 (en) Articulated reflector device
CN114248696B (en) Vehicle-mounted display screen and vehicle with same
CN214689300U (en) Vehicle-mounted display screen and vehicle with same
EP1135278B1 (en) Rear-view mirror for a vehicle
CN216401330U (en) Central display screen angle adjusting device and car
WO2001028816A3 (en) Articulated arm of the rear mirror
JP4283023B2 (en) Vehicle rear-view mirror
JPH0134593Y2 (en)
KR20040007518A (en) Compact park mechanism for a vehicle external mirror
JPH08152930A (en) Heater control transmitter
JPS6328041Y2 (en)
JPH02258471A (en) Steering device of motor car
JP2502976Y2 (en) Remote-controlled rear endoscope
JPS6127796Y2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050601