EP1265599A1 - Composition antibiotique dotee d'inhibiteurs - Google Patents

Composition antibiotique dotee d'inhibiteurs

Info

Publication number
EP1265599A1
EP1265599A1 EP01914484A EP01914484A EP1265599A1 EP 1265599 A1 EP1265599 A1 EP 1265599A1 EP 01914484 A EP01914484 A EP 01914484A EP 01914484 A EP01914484 A EP 01914484A EP 1265599 A1 EP1265599 A1 EP 1265599A1
Authority
EP
European Patent Office
Prior art keywords
antibiotic
dosage form
patient
inhibitor
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01914484A
Other languages
German (de)
English (en)
Other versions
EP1265599A4 (fr
Inventor
Edward M. Rudnic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MiddleBrook Pharmaceuticals Inc
Original Assignee
Advancis Pharmaceutical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advancis Pharmaceutical Corp filed Critical Advancis Pharmaceutical Corp
Priority claimed from PCT/US2001/005984 external-priority patent/WO2001062231A1/fr
Publication of EP1265599A1 publication Critical patent/EP1265599A1/fr
Publication of EP1265599A4 publication Critical patent/EP1265599A4/fr
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/424Oxazoles condensed with heterocyclic ring systems, e.g. clavulanic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine

Definitions

  • This invention relates to antibiotics that contain beta-lactam rings that are subject to attack by beta-lactamases in combination with beta-lactamase inhibitors.
  • beta-lactam rings for example, pencillins and cephalosporins
  • beta-lactamases sometimes called penicillinases
  • Clavulanic acid, and its derivatives, as well as sulbactam are generally used to bind irreversibly to the beta- lactamase to prevent its activity against such an antibiotic.
  • an antibiotic composition that includes the inhibitor with such combinations generally being delivered as an immediate release dosage form.
  • the present invention relates to an improved, antibiotic composition that is comprised of at least four different dosage forms, two of which include at least one antibiotic with a beta-lactam ring ( or any portions of such a ring) and two of which include at least one beta-lactamase inhibitor, with the four different dosage forms having release profiles such that there is a first dosage form that releases said at least one antibiotic, a second dosage form that releases at least one beta-lactamase inhibitor, a third dosage form that releases said at least one antibiotic, and a fourth dosage form that releases said at least one inhibitor, with the release profile of the first and second dosage forms being such that the maximum serum concentration of the inhibitor is reached at a time no sooner and preferably after the time at which the maximum serum concentration of the antibiotic released from the first dosage form is achieved, with the third dosage form having a release profile such that the second antibiotic achieves a maximum serum concentration at a time no sooner than and preferably after the time at which the inhibitor released from the second dosage form reaches a maximum serum concentration, and with the fourth dosage form having a
  • the initiation of release from the second, third and fourth dosage form occurs at least one hour after initiation of release from the first, second and third form, respectively.
  • a maximum serum concentration for the antibiotic released from the first dosage form is achieved in no more than about three hours; the maximum serum concentration for the inhibitor released from the second dosage form is reached in a time of from about three to six hours; the maximum serum concentration of the antibiotic released from the third dosage form is reached in from about six to nine hours, and the maximum serum concentration released from the fourth dosage form is achieved in no more than twelve hours, with such times being measured from the time of administration of the antibiotic composition that is comprised of the at least four different dosage forms.
  • the at least four dosage forms are provided with release profiles such that the inhibitor is released from the second dosage form after the maximum serum concentration is achieved for antibiotic released from the first dosage form; antibiotic is released from the third dosage form after the maximum serum concentration is reached for the inhibitor released from the second dosage form, and inhibitor is released from the fourth dosage form after the maximum serum concentration is reached for the antibiotic released from the third dosage form.
  • each inhibitor release achieves a serum concentration maximum no sooner than and preferably after the serum concentration maximum of the immediately preceding antibiotic released, and the next antibiotic released reaches a serum concentration maximum no sooner than and preferably after the serum concentration maximum is achieved for the immediately preceding inhibitor dosage form.
  • each of the dosage forms that contains an inhibitor includes such inhibitor in an amount that is effective to inhibit chemical inactivation of the antibiotic by beta-lactamase.
  • the dosage forms that contain the inhibitor contain such an inhibitor in an amount from about 20 percent to about 80 percent.
  • the dosage forms that contain the antibiotic generally include the antibiotic in an amount from about 30 percent to about 80 percent.
  • Each of the dosage forms that deliver antibiotics include from 30% to 70% of the dosage of the antibiotic to be delivered by the composition.
  • the first dosage form that releases antibiotic is an immediate release dosage form.
  • the second, third, and fourth dosage forms are delayed release dosage forms, which may be pH independent or pH dependent (enteric) dosage forms.
  • the second, third and fourth dosage forms are formulated in a matter to provide the release profiles as hereinabove described.
  • each of the dosage forms may be in the form of a pellet or a particle, with pellet particles being formed into the overall composition, in the form, for example, of the pellet particles in a capsule, or the pellet particles embedded in a tablet or suspended in a liquid suspension.
  • the antibiotic composition of the prevent invention may be administered, for example, by any of the following routes of administration: sublingual, transmucosal, transdermal, parenteral, and preferably are administered orally.
  • the composition includes a therapeutically effective amount of the antibiotic, which amount will vary with the antibiotic to be used, the disease or infection to be treated, and the number of times that the composition is to be delivered in a day.
  • the antibiotic product of the present invention as hereinabove described, may be formulated for administration by a variety of routes of administration.
  • the antibiotic product may be formulated in a way that is suitable for topical administration; administration in the eye or the ear; rectal or vaginal administration; as nose drops; by inhalation; as an injectable; or for oral administration.
  • the antibiotic product is formulated in a manner such that it is suitable for oral administration.
  • the antibiotic in formulating the antibiotic product for topical administration, such as by application to the skin, may be formulated for topical administration by including such dosage forms in an oil-in-water emulsion, or a water-in-oil emulsion.
  • the immediate release dosage forms are in the continuous phase
  • the delayed release dosage form is in a discontinuous phase.
  • an antibiotic product in the form of a patch which includes different antibiotic and inhibitor dosage forms having different release profiles, as hereinabove described.
  • the antibiotic product with different dosage forms with different release profiles may be formulated for rectal or vaginal administration, as known in the art. This may take the form of a cream or emulsion, or other dissolvable dosage forms similar to those used for topical administration.
  • the antibiotic product may be formulated for use in inhalation therapy by coating the particles and micronizing the particles for inhalation.
  • the antibiotic product is formulated in a manner suitable for oral administration.
  • each of the dosage forms may be used as a pellet or a particle, with a pellet or particle then being formed into a unitary pharmaceutical product, for example, in a capsule, or embedded in a tablet, or suspended in a liquid for oral administration.
  • each of the dosage forms of the product may be formulated as a tablet, with each of the tablets being put into a capsule to produce a unitary antibiotic product.
  • antibiotic products may include a first dosage form in the form of a tablet that is an immediate release tablet, and may also include three additional tablets, each of which provides for a delayed release of the antibiotic and inhibitor, as hereinabove described.
  • the antibiotics that are employed in the present invention are ones that include a beta-lactam ring or a portion thereof such as for example, penicillin derivatives, such as penicillin V, penicillin G, penicillin, ampicillin, amoxicillin, carbenicillin, ticarcillin, piperacillin, nafcillin, cloxacillin, dicloxacillin, monobactams such as aztreonam, carbapenems such as imipenem, cephalosporins such as cefoxitan, cephalexin, ceferiaxone, cefuroxime, cefpodoxime, and others.
  • penicillin derivatives such as penicillin V, penicillin G, penicillin, ampicillin, amoxicillin, carbenicillin, ticarcillin, piperacillin, nafcillin, cloxacillin, dicloxacillin
  • monobactams such as aztreonam
  • carbapenems such as imipenem
  • the beta-lactamase inhibitors maybe any one of a wide variety that are effective to inhibit the action of beta-lactamases on a beta-lactam ring, such as clavulanic acid and its derivatives, sulbactam.
  • the product contains sufficient antibiotic for a twenty- four hour period whereby the product is administered once a day.
  • the immediate release portion of this system can be a mixture of ingredients that breaks down quickly after administration to release the antibiotic. This can take the form of either a discrete pellet or granule that is mixed in with, or compressed with, the other three components.
  • the materials to be added to the antibiotics for the immediate release component can be, but are not limited to, microcrystalline cellulose, corn starch, pregelatinized starch, potato starch, rice starch, sodium carboxymethyl starch, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, ethylcellulose, chitosan, hydroxychitosan, hydroxymethylatedchitosan, cross-linked chitosan, cross-linked hydroxymethyl chitosan, maltodextrin, mannitol, sorbitol, dextrose, maltose, fructose, glucose, levulose, sucrose, polyvinylpyrrolidone (PVP), acrylic acid derivatives (Carbopol, Eudragit, etc.), polyethylene glycols, such a low molecular weight PEGs (PEG2000- 10000) and high molecular weight PEGs (Polyox) with molecular weights above 20,000 daltons.
  • ingredients in this system may be useful to have other ingredients in this system to aid in the dissolution of the drug, or the breakdown of the component after ingestion or administration.
  • These ingredients can be surfactants, such as sodium lauryl sulfate, sodium monoglycerate, sorbitan monooleate, polyoxyethylene sorbitan monooleate, glyceryl monostearate, glyceryl monooleate, glyceryl monobutyrate, one of the non- ionic surfactants such as the Pluronic line of surfactants, or any other material with surface active properties, or any combination of the above.
  • surfactants such as sodium lauryl sulfate, sodium monoglycerate, sorbitan monooleate, polyoxyethylene sorbitan monooleate, glyceryl monostearate, glyceryl monooleate, glyceryl monobutyrate, one of the non- ionic surfactants such as the Pluronic line of surfactants, or
  • These materials may be present in the rate of 0.05-15% (W/W).
  • compositions in this composition are the same immediate release unit, but with additional polymers integrated into the composition, or as coatings over the pellet or granule.
  • Materials that can be used to obtain a delay in release suitable for this component of the invention can be, but are not limited to, polyethylene glycol (PEG) with molecular weight above 4,000 daltons (Carbowax, Polyox), waxes such as white wax or bees wax, paraffin, acrylic acid derivatives (Eudragit), propylene glycol, and ethylcellulose.
  • PEG polyethylene glycol
  • Carbowax, Polyox polyethylene glycol
  • waxes such as white wax or bees wax
  • paraffin acrylic acid derivatives
  • acrylic acid derivatives Eudragit
  • propylene glycol and ethylcellulose
  • compositions in this composition are the same as the immediate release component, but with additional polymers integrated into the composition, or as coatings over the pellet or granule.
  • the kind of materials useful for this purpose can be, but are not limited to, cellulose acetate pthalate, Eudragit L, and other pthalate salts of cellulose derivatives.
  • These materials can be present in concentrations from 4-20% (WAV).
  • Clarithromycin 65% (WAV)
  • Clarithromycin 75 % (WAV)
  • composition of the antibiotic or inhibitor matrix pellets provided in Table 1.
  • Table 1 Composition of Antibiotic Pellets
  • composition of the aqueous Eudragit L30D-55 dispersion applied to the antibiotic matrix pellets and to the inhibitor matrix pellets is provided below in Table 2.
  • the TEC/talc suspension is then homogenized using a PowerGen 700 high shear mixer.
  • composition of the aqueous Eudragit® S 100 dispersion applied to the inhibitor matrix pellets is provided below in Table 3.
  • Part B is then added slowly to the polymer dispersion in Part A with a mild stirring.
  • Pellets are filled into size 00 hard gelatin capsules at a ratio of 20%: 30%: 20%: 30% Immediate-release matrix pellets (uncoated), L30 D-55 coated pellets 12% weight gain, L30D-55 coated pellets 30% weight gain and S100 coated pellets respectively.
  • the capsule is filled with the four different pellets to achieve the desired dosage.
  • the immediate release pellets contain the antibiotic; the L30 D-55 12% weight gain coated pellets contain the inhibitor; the L30 D-55 30% weight gain coated pellets contain the antibiotic and the SI 00 coated pellets contain the inhibitor.
  • the present invention is advantageous in that the beta-lactamase inhibitor will be dosed at a lower peak concentration, giving rise to fewer side effects.
  • the alternative dosing of the antibiotic and the inhibitor will alternate the exposure to the bacteria in such a way as to make the antibiotic more effective than if they were co- administered, and thereby competing with each other for sites on the bacterial cell wall receptors.

Abstract

La présente invention concerne une composition antibiotique comportant quatre formes galéniques avec des profils de libération différents permettant une première libération d'un antibiotique bêta lactame, suivie par une libération d'un inhibiteur de bêta-lactamase, puis d'une libération de l'antibiotique suivie par une libération de l'inhibiteur. Dans un mode de réalisation préféré, une libération à partir de la seconde, troisième et quatrième formes galénique commence après que le composant libéré à partir de la forme immédiatement précédente ait atteint Cmax.
EP01914484A 2000-02-24 2001-02-23 Composition antibiotique dotee d'inhibiteurs Ceased EP1265599A4 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18458200P 2000-02-24 2000-02-24
US14258200P 2000-02-24 2000-02-24
US142582P 2000-02-24
PCT/US2001/005984 WO2001062231A1 (fr) 2000-02-24 2001-02-23 Composition antibiotique dotee d'inhibiteurs

Publications (2)

Publication Number Publication Date
EP1265599A1 true EP1265599A1 (fr) 2002-12-18
EP1265599A4 EP1265599A4 (fr) 2006-01-18

Family

ID=29586284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01914484A Ceased EP1265599A4 (fr) 2000-02-24 2001-02-23 Composition antibiotique dotee d'inhibiteurs

Country Status (1)

Country Link
EP (1) EP1265599A4 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794001A (en) * 1986-03-04 1988-12-27 American Home Products Corporation Formulations providing three distinct releases
EP0752850A1 (fr) * 1994-04-14 1997-01-15 Smithkline Beecham Plc Formulation pharmaceutique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794001A (en) * 1986-03-04 1988-12-27 American Home Products Corporation Formulations providing three distinct releases
EP0752850A1 (fr) * 1994-04-14 1997-01-15 Smithkline Beecham Plc Formulation pharmaceutique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0162231A1 *

Also Published As

Publication number Publication date
EP1265599A4 (fr) 2006-01-18

Similar Documents

Publication Publication Date Title
US6565882B2 (en) Antibiotic composition with inhibitor
US6623757B2 (en) Antibiotic composition
US8889187B2 (en) Once a day amoxicillin product comprising immediate and delayed release dosage forms
US6730320B2 (en) Tetracycline antibiotic product, use and formulation thereof
US6991807B2 (en) Antibiotic composition
US6667057B2 (en) Levofloxacin antibiotic product, use and formulation thereof
CA2494015C (fr) Produit antibiotique, utilisation et formulation associees
US6663890B2 (en) Metronidazole antibiotic product, use and formulation thereof
US6667042B2 (en) Fluroquinilone antibiotic product, use and formulation thereof
US6623758B2 (en) Cephalosporin-metronidazole antibiotic composition
US6632453B2 (en) Ciprofoxacin-metronidazole antibiotic composition
CA2470016A1 (fr) Produit antibiotique, son utilisation et sa formulation
AU2001239869B2 (en) Antibiotic composition with inhibitor
AU2001239869A1 (en) Antibiotic composition with inhibitor
EP1487414A2 (fr) Composition antibiotique
EP1265599A1 (fr) Composition antibiotique dotee d'inhibiteurs
AU2003218024C1 (en) Antibiotic composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

A4 Supplementary search report drawn up and despatched

Effective date: 20051202

RIC1 Information provided on ipc code assigned before grant

Ipc: A61P 31/04 20000101ALI20051128BHEP

Ipc: A61K 31/545 19850101ALI20051128BHEP

Ipc: A61K 31/43 19850101ALI20051128BHEP

Ipc: A61K 9/54 19740701ALI20051128BHEP

Ipc: A61K 9/20 19740701AFI20010905BHEP

Ipc: A61K 31/424 20000101ALI20051128BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ADVANCIS PHARMACEUTICAL CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MIDDLEBROOK PHARMACEUTICALS, INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MIDDLEBROOK PHARMACEUTICALS, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20091231