EP1262009A1 - Stacked sheet metal laminate - Google Patents

Stacked sheet metal laminate

Info

Publication number
EP1262009A1
EP1262009A1 EP01962662A EP01962662A EP1262009A1 EP 1262009 A1 EP1262009 A1 EP 1262009A1 EP 01962662 A EP01962662 A EP 01962662A EP 01962662 A EP01962662 A EP 01962662A EP 1262009 A1 EP1262009 A1 EP 1262009A1
Authority
EP
European Patent Office
Prior art keywords
sheet
sheet metal
layer
plate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01962662A
Other languages
German (de)
French (fr)
Inventor
Kurt Reutlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1262009A1 publication Critical patent/EP1262009A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]

Definitions

  • the invention relates to a sheet-metal laminate package, in particular for electrical machines and devices.
  • cooling systems are known for cooling electrical machines, which are used depending on the application.
  • an open design is often chosen for cooling. Due to the open design, an air flow can be led through the machine past the active parts, which represent the heat sources of the machine.
  • the heat sources are usually the windings in which the greatest losses occur.
  • the cooling air flow enters the machine and flows directly past the windings and the laminated core and absorbs the heat. When exiting the machine, the cooling air sticks with the heat and senses it from the surroundings.
  • the cooling air stiOm can be fanned by natural convention or by a fan.
  • the machine is of a closed design, it is not possible to guide the cooling air past the active components through the machine. With these machines. the heat of the windings is dissipated to the housing via the stator.
  • an internal cooling circuit is also provided, in which gas for cooling circulates. Internal cooling circuits are complex to manufacture.
  • the invention is based on the object of creating a sheet-metal laminate package for an electrical machine, so that the cooling of the machine is improved.
  • the object is solved by the features of claim 1.
  • the essence of the invention is to provide heat-conducting layers between the sheet-metal fins of a sheet-metal-disk pack, the thermal conductivity of which is greater than the thermal conductivity of the sheet-metal fins.
  • FIG. 1 is a plan view of a sheet-metal laminate package of a machine stand according to a first embodiment
  • FIG. 2 shows a cross-sectional illustration of the laminated laminated core according to FIG. 1,
  • Fig. 3 is a cross-sectional view along the section line 111-111 in Fig. 1 and
  • Fig. 4 is a cross-sectional view of a laminated laminated core according to a second embodiment.
  • laminated laminations 1 are used, which are partially wrapped by winding wire.
  • the winding wire through which current flows creates magnetic fields that are partially or completely felt in the sheet-plate package 1.
  • a typical sheet-metal plate pack 1 is shown. This is the stationary machine stand of an electric motor.
  • the individual sheet metal lamellae 2 are designed in the form of annular disks and have grooves 3 which extend radially outwards and are distributed over the circumference and are arranged congruently with respect to the various sheet metal lamellae 2.
  • the slots 3 receive the winding wire, which is felt at the two ends 4 and 5 at the two ends, from one slot 3 into the next.
  • the individual sheet metal lamellae 2 consist of steel sheets which are alloyed with silicon to reduce the specific losses.
  • the specific thermal conductivity of the sheet metal fins 2, which are also referred to as dynamo sheets, is typically in the range from 20 to 30 W / km.
  • the sheet metal lamellae 2, which lie flat on top of one another and are connected to one another, for example by gluing, are insulated from one another, which is often achieved by requesting a lacquer layer.
  • a heat-conducting plate 6 designed as a heat-conducting layer is arranged at regular intervals between the sheet-metal fins 2. The plate 6 is arranged flat between the sheet-metal fins 2 and in direct contact with them.
  • the plate 6 consists of a material that has a greater thermal conductivity than the material of the sheet metal lamellae 2.
  • a particularly suitable material for this is aluminum.
  • Aluminum has a very good thermal conductivity of 230 W / km.
  • other materials with high thermal conductivity can also be used, such as copper, silver and gold.
  • five sheet metal lamellae 2 are separated from a plate 6. The spacing of the plates 6 from one another is determined as a function of the desired thermal conductivity of the laminated laminated core 1 and the magnetic fields to be guided therein. chooses.
  • the theoretical conductivity of the sheet-lamella package 1 is doubled in comparison to a sheet-lamella package which consists only of sheet metal lamellae 2 exists.
  • the plates 6, which consist of ⁇ non-magnetic material, reduce the iron fill factor, ie the proportion of magnetic iron in a sheet-metal plate pack 1 per unit volume.
  • the good electrical conductivity of the plates 6 does not increase the eddy strength of the corresponding electrical machine, since the magnetic flux is not felt in the aluminum, but in parallel in the dynamo plate. If a magnetic flux occurs in the axial direction and thereby cause eddy currents in the plate 6, then radial slots can follow in the plate 6.
  • kind of a comb can be provided to reduce the loss of vertebrae. This is particularly important in the case of the plates 6 arranged at the ends 4 and 5, since axial field components can also occur there under the winding heads as a result of the winding heads being flooded.
  • cover plates 7 designed as heat-conducting layers are provided, which are thicker than the laminated panels 6. Often, in the case of a laminated laminated core 1, it is sufficient to increase the thermal conductivity. that has no plates 6, only to provide cover plates 7 at both ends 4 and 5.
  • the cover plates 7 can have rounded corners 8 between the grooves 3, so that the winding wire can be guided around to the cover plate 7 without damage and at the same time with great contact and thus great heat transfer. It is also possible to provide edges 9 which spring back relative to the grooves 3 in order to simplify the wrapping of the cover plate 7 by winding wire.
  • the dik- keren cover plates 7 at the same time increase the stability of the laminated plate package 1.
  • the heat is removed from the loss locations to the heat sink by heat conduction.
  • the heat sink can e.g. be formed by a housing with water cooling.
  • the heat therefore flows from the windings over the insulation layers of the winding wires into the laminated laminated core, which often have tooth-shaped projections.
  • the heat then flows from these teeth through the stator yoke into the housing, where it is removed by the coolant. Teeth are a bottleneck when it comes to heat conduction. A large proportion of the heat lost is transported through the teeth. With the sheet metal slats.
  • Packages 1 the overall thermal conductivity of package 1 is greatly increased, so that the heat from package 1 and in particular from the teeth can be better dissipated to the stator yoke and to the housing. This results in a good thermal connection of the windings to the housing. In this way, either the temperature level in the machine can be reduced and the service life and efficiency can be improved. However, the performance of the machine can also be increased until the temperature level of the starting machine is reached with a sheet and plate package without a heat-conducting layer.
  • the heat-conducting layer is designed as a heat-conducting layer 10, which is provided on part or on each sheet-metal lamella 2.
  • the heat-conducting layer 10 can be produced by gluing, vapor deposition, rolling or electrolytic deposition, in particular of aluminum, on a sheet metal lamella 2.
  • an anodized aluminum oxide layer can be applied to the Wäimeleit layer 10. This has the advantage that sheet metal fins 2 which are not insulated per se can be used.
  • Sheet metal fins 2 with improved thermal conductivity and one-sided insulation can thus be produced in one.
  • the sheet metal fins 2 and the thermal insulation layers 10 are in direct physical contact with one another, i.e. there is no air gap between the layers 10 and the slats 2.
  • the layers 10 can of course also be arranged between the sheet metal lamellae 2 without being directly connected to a sheet metal lamellae 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

The invention relates to a stacked sheet metal laminate, especially for electric machines and devices, consisting of several laminated sheets of metal (20) which are placed on top of each other in a flat position and at least one thermoconductive layer arranged on a sheet metal laminate (2). The thermoconductivity of the thermoconductive layer is greater than the thermoconductivity of the sheet metal laminate (2).

Description

Blech-Lamellen-PaketSheet metal plates package
Die Erfindung betrifft ein Blech-Lamellen-Paket insbesondere für elektrische Maschinen und Geräte.The invention relates to a sheet-metal laminate package, in particular for electrical machines and devices.
Für die Kühlung von elektrischen Maschinen sind verschiedene Kühlsysteme bekannt, die je nach Anwendungsfall im Einsatz sind. Bei einfachen Maschinen wird häufig zur Kühlung eine offene Bauform gewählt. Durch die offene Bauform kann ein Luftstrom durch die Maschine vorbei an den aktiven Teilen geführt werden, welche die Wärmequellen der Maschine darstellen. Hierbei handelt es sich gewöhnlic bei den Wärmequellen um die Wicklungen, in denen die größten Verluste auftreten. Der Kühlluftstrom tritt in die Maschine ein und strömt direkt an den Wicklungen und an den Blech-Paketen vorbei und nimmt die Wärme auf. Beim Austritt aus der Maschine nimmt der KühlluftstiOm die Wärme mit und fühlt diese an die Umgebung ab. Der KühlluftstiOm kann hierbei durch natürliche Konvention oder durch einen Lüfter angefacht werden. Bei geschlossen ausgebildeten Maschinen ist es nicht möglich, einen KühlluftstiOm durch die Maschine an den aktiven Bauteilen vorbeizuführen. Bei diesen Maschinen. wird die Wärme der Wicklungen über den Ständer an das Gehäuse abgeführt. Bei größeren Maschinen ist auch zum Teil ein innerer Kühlkreislauf vorgesehen, in dem Gas zur Kühlung zirkuliert. Innere Kühlkreisläufe sind aufwendig herzustellen.Various cooling systems are known for cooling electrical machines, which are used depending on the application. For simple machines, an open design is often chosen for cooling. Due to the open design, an air flow can be led through the machine past the active parts, which represent the heat sources of the machine. The heat sources are usually the windings in which the greatest losses occur. The cooling air flow enters the machine and flows directly past the windings and the laminated core and absorbs the heat. When exiting the machine, the cooling air sticks with the heat and senses it from the surroundings. The cooling air stiOm can be fanned by natural convention or by a fan. When the machine is of a closed design, it is not possible to guide the cooling air past the active components through the machine. With these machines. the heat of the windings is dissipated to the housing via the stator. In the case of larger machines, an internal cooling circuit is also provided, in which gas for cooling circulates. Internal cooling circuits are complex to manufacture.
Der Erfindung liegt die Aufgabe zugrande, ein Blech-Lamellen-Paket für eine elektrische Maschine zu schaffen, so daß die Kühlung der Maschine verbessert ist. Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, zwischen den Blech-Lamellen eines Blech- Lamellen-Pakets Wärmeleit-Lagen vorzusehen, deren Wärmeleitfähigkeit größer ist als die Wärmeleitfähigkeit der Blech-Lamellen.The invention is based on the object of creating a sheet-metal laminate package for an electrical machine, so that the cooling of the machine is improved. The object is solved by the features of claim 1. The essence of the invention is to provide heat-conducting layers between the sheet-metal fins of a sheet-metal-disk pack, the thermal conductivity of which is greater than the thermal conductivity of the sheet-metal fins.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den • Unteransprüchen.Further advantageous embodiments of the invention result from the subclaims.
Zusätzliche Merkmale und Einzelheiten der Erfindung ergeben sich aus der Beschreibung zweier Ausführungsbeispiele anhand, der Zeichnung. Es zeigenAdditional features and details of the invention result from the description of two exemplary embodiments with reference to the drawing. Show it
Fig. 1 eine Draufsicht auf ein Blech-Lamellen-Paket eines Maschinenständers gemäß einer ersten Ausfühιτιngsfoιτn,1 is a plan view of a sheet-metal laminate package of a machine stand according to a first embodiment,
Fig. 2 eine Querschnittsdarstellung des Blech-Lamellen-Pakets gemäß Fig. 1,FIG. 2 shows a cross-sectional illustration of the laminated laminated core according to FIG. 1,
Fig. 3 eine Querschnittsdarstellung gemäß der Schnittlinie 111-111 in Fig. 1 undFig. 3 is a cross-sectional view along the section line 111-111 in Fig. 1 and
Fig. 4 eine Querschnittsdarstellung eines Blech-Lamellen-Pakets gemäß einer zweiten AusfühiTingsform.Fig. 4 is a cross-sectional view of a laminated laminated core according to a second embodiment.
In elektiischen Maschinen, wie zum Beispiel ElektiOmotoren und Generatoren und elektrischen Geräten, wie zum Beispiel Transfoimatoren, werden Blech-Lamellen-Pakete 1 verwendet, die von Wicklungsdraht teilweise umwickelt sind. Der von Strom durchfiossene Wicklungsdraht erzeugt Ma- gnetfelder, die teilweise oder ganz in dem Blech-Lamellen-Paket 1 gefühlt werden. In Fig. 1 ist ein typisches Blech-Lamellen-Paket 1 dargestellt. Hierbei handelt es sich um den ortsfesten Maschinenständer eines Elektromotors. Die einzelnen Blech-Lamellen 2 sind hierfür ringscheibenföimig ausgebildet und weisen radial nach außen verlaufende, über dem Umfang verteilte Nuten 3 auf, die hinsichtlich der verschiedenen Blech-Lamellen 2 deckungsgleich angeordnet sind. Die Nuten 3 nehmen den Wicklungsdraht auf, der an den beiden stimseitigen Enden 4 und 5 von einer Nut 3 in die nächste gefühlt wird. Die einzelnen Blech-Lamellen 2 bestehen aus Stahl- blechen, die zur Reduzierang der spezifischen Verluste mit Silizium legiert sind. Die spezifische thermische Leitfähigkeit der Blech-Lamellen 2, die auch als Dynamo-Bleche bezeichnet werden, liegt typischerweise im Bereich von 20 bis 30 W/Km. Die Blech-Lamellen 2, die flächig aufeinander liegen und miteinander z.B. durch Kleben verbunden sind, sind gegenein- ander isoliert, was häufig durch Auffragen einer Lackschicht eπ'eicht wird. Zwischen den Blech-Lamellen 2 ist, wie in Fig. 2 dargestellt, in regelmäßigen Abständen eine als Wärmeleit-Lage ausgebildete Wärmeleit-Platte 6 angeordnet. Die Platte 6 ist flächig zwischen den Blech-Lamellen 2 angeordnet und in immittelbarem Kontakt mit diesen. Die Platte 6 besteht ans einem Material, das eine größere Wäimeleitfähigkeit besitzt, als das Material der Blech-Lamellen 2. Ein besonders geeignetes Material hierfür ist Aluminium. Aluminium besitzt eine sehr gute thermische Leitfähigkeit von 230 W/Km. Es können jedoch auch andere Materialien mit hoher Wärmeleitfähigkeit veiwendet werden, wie zum Beispiel Kupfer, -Silber und Gold. Bei der in Fig. 2 dargestellten Anordnung sind jeweils fünf Blech-Lamellen 2 von einer Platte 6 getrennt. Der Abstand der Platten 6 voneinander wird in Abhängigkeit von der gewünschten thermischen Leitfähigkeit des Blech- Lamellen-Pakets 1 sowie der darin zu führenden magnetischen Felder ge- wählt. Für den Fall, daß jede zehnte Blech-Lamelle 2 durch eine Platte 6 aus Aluminium ersetzt wird, ergibt sich eine Verdopplung der theimischen Leitfähigkeit des Blech-Lamellen-Pakets 1 im Vergleich zu einem Blech- Lamellen-Paket, das lediglich aus Blech-Lamellen 2 besteht. Durch die aus unmagnetischem Material bestehenden Platten 6 wird der Eisenfüllfaktor, d.h. der Anteil des magnetischen Eisens in einem Blech-Lamellen-Paket 1 pro Volumeneinheit reduziert. Die gute elektrische Leitfähigkeit der Platten 6 erhöht jedoch die WirbelstiOmvermste der entsprechenden elektiischen Maschine nicht, da der magnetische Fluß nicht im Aluminium, sondern parallel dazu im Dynamoblech gefühlt wird. Sollte ein magnetischer Fluß in axialer Richtung auftreten und hierdurch Wirbelströme in der Platte 6 verursachen, so können in der Platte 6 radial verlaufende Schlitze nach. Art eines Kammes vorgesehen werden, um die Wirbelstuimverluste zu reduzieren. Dies ist insbesondere bei den an den Enden 4 und 5 angeordneten Platten 6 von Bedeutung, da dort unter den Wicklungsköpfen auch axiale Feldanteile durch die Durchflutung der Wickelungsköpfe auftreten können. An den Enden 4 und 5 des Blech-Lamellen-Pakets 1 sind als Wärmeleit- Lagen ausgebildete Deckplatten 7 vorgesehen, die dicker ausgebildet sind, als die Platten 6. Häufig genügt es zur Erhöhung der Wäimeleitfähigkeit, bei einem Blech-Lamellen-Paket 1, das keine Platten 6 aufweist, lediglich an den beiden Enden 4 und 5 Deckplatten 7 vorzusehen. Zur verbesserten Aufnahme des Wicklungsdrahtes können die Deckplatten 7 zwischen den Nuten 3 abgerundete Ecken 8 aufweisen, damit der Wicklungsdraht ohne Schaden bei gleichzeitig großem Kontakt und damit großem Wärmeüber- gang zur Deckplatte 7 herumgeführt werden kann. Es ist auch möglich-, gegenüber den Nuten 3 zurückspringende Kanten 9 vorzusehen, um die Umwicklung der Deckplatte 7 durch Wicklungsdraht zu vereinfachen. Die dik- keren Deckplatten 7 erhöhen gleichzeitig die Stabilität des Blech-Lamellen- Pakets 1.In electric machines, such as electric motors and generators and electrical devices, such as transfoimators, laminated laminations 1 are used, which are partially wrapped by winding wire. The winding wire through which current flows creates magnetic fields that are partially or completely felt in the sheet-plate package 1. In Fig. 1, a typical sheet-metal plate pack 1 is shown. This is the stationary machine stand of an electric motor. For this purpose, the individual sheet metal lamellae 2 are designed in the form of annular disks and have grooves 3 which extend radially outwards and are distributed over the circumference and are arranged congruently with respect to the various sheet metal lamellae 2. The slots 3 receive the winding wire, which is felt at the two ends 4 and 5 at the two ends, from one slot 3 into the next. The individual sheet metal lamellae 2 consist of steel sheets which are alloyed with silicon to reduce the specific losses. The specific thermal conductivity of the sheet metal fins 2, which are also referred to as dynamo sheets, is typically in the range from 20 to 30 W / km. The sheet metal lamellae 2, which lie flat on top of one another and are connected to one another, for example by gluing, are insulated from one another, which is often achieved by requesting a lacquer layer. As shown in FIG. 2, a heat-conducting plate 6 designed as a heat-conducting layer is arranged at regular intervals between the sheet-metal fins 2. The plate 6 is arranged flat between the sheet-metal fins 2 and in direct contact with them. The plate 6 consists of a material that has a greater thermal conductivity than the material of the sheet metal lamellae 2. A particularly suitable material for this is aluminum. Aluminum has a very good thermal conductivity of 230 W / km. However, other materials with high thermal conductivity can also be used, such as copper, silver and gold. In the arrangement shown in FIG. 2, five sheet metal lamellae 2 are separated from a plate 6. The spacing of the plates 6 from one another is determined as a function of the desired thermal conductivity of the laminated laminated core 1 and the magnetic fields to be guided therein. chooses. In the event that every tenth sheet lamella 2 is replaced by a plate 6 made of aluminum, the theoretical conductivity of the sheet-lamella package 1 is doubled in comparison to a sheet-lamella package which consists only of sheet metal lamellae 2 exists. The plates 6, which consist of non-magnetic material, reduce the iron fill factor, ie the proportion of magnetic iron in a sheet-metal plate pack 1 per unit volume. However, the good electrical conductivity of the plates 6 does not increase the eddy strength of the corresponding electrical machine, since the magnetic flux is not felt in the aluminum, but in parallel in the dynamo plate. If a magnetic flux occurs in the axial direction and thereby cause eddy currents in the plate 6, then radial slots can follow in the plate 6. Kind of a comb can be provided to reduce the loss of vertebrae. This is particularly important in the case of the plates 6 arranged at the ends 4 and 5, since axial field components can also occur there under the winding heads as a result of the winding heads being flooded. At the ends 4 and 5 of the laminated laminated core 1, cover plates 7 designed as heat-conducting layers are provided, which are thicker than the laminated panels 6. Often, in the case of a laminated laminated core 1, it is sufficient to increase the thermal conductivity. that has no plates 6, only to provide cover plates 7 at both ends 4 and 5. To improve the reception of the winding wire, the cover plates 7 can have rounded corners 8 between the grooves 3, so that the winding wire can be guided around to the cover plate 7 without damage and at the same time with great contact and thus great heat transfer. It is also possible to provide edges 9 which spring back relative to the grooves 3 in order to simplify the wrapping of the cover plate 7 by winding wire. The dik- keren cover plates 7 at the same time increase the stability of the laminated plate package 1.
Im folgenden wird die Funktion des Blech-Lamellen-Pakets 1 beschrieben. Bei geschlossenen Maschinen, insbesondere Maschinen ohne extra gefühlten mnenkiililki'eis, erfolgt der Wärmeabtransport von den Verlustorten zur Wärmesenke durch Wäimeleitung. Die Wärmesenke kann z.B. durch ein Gehäuse mit Wasserkühlung gebildet werden. Die Wärme fließt somit von den Wicklungen über die Isolationsschichten der Wicklungsdrähte in die Blech-Lamellen-Pakete, welche häufig zahnförmige Vorspränge aufweisen. Von diesen Zähnen fließt die Wärme dann über das Ständerjoch ins Gehäuse und wird dort durch das Kühlmittel abtransportiert. Bei der Wärmeleitung stellen die Zähne einen Engpaß dar. Ein großer Anteil der Wärmeverluste wird über die Zähne transportiert. Bei den Blech-Lamellen- . Paketen 1 ist die Wärmeleitfähigkeit des Pakets 1 insgesamt stark erhöht, so daß die Wärme von dem Paket 1 und insbesondere von den Zähnen besser zum Ständerjoch und zum Gehäuse abgeführt werden kann. Es ergibt sich somit eine gute thermische Anbindung der Wicklungen an das Gehäuse. Auf diese Weise kann entweder das Temperatmmveau in der Maschine gesenkt werden und hierdurch die Lebensdauer und der Wirkungsgrad verbessert werden. Es kann jedoch auch die Leistung der Maschine gesteigert werden, bis das Temperaturaiveau der Ausgangsmaschine mit einem Blech- Lamellen-Paket ohne Wärmeleit-Lage erreicht wird.In the following the function of the laminated plate package 1 is described. In the case of closed machines, in particular machines without specially felt mnenkiililki'eis, the heat is removed from the loss locations to the heat sink by heat conduction. The heat sink can e.g. be formed by a housing with water cooling. The heat therefore flows from the windings over the insulation layers of the winding wires into the laminated laminated core, which often have tooth-shaped projections. The heat then flows from these teeth through the stator yoke into the housing, where it is removed by the coolant. Teeth are a bottleneck when it comes to heat conduction. A large proportion of the heat lost is transported through the teeth. With the sheet metal slats. Packages 1, the overall thermal conductivity of package 1 is greatly increased, so that the heat from package 1 and in particular from the teeth can be better dissipated to the stator yoke and to the housing. This results in a good thermal connection of the windings to the housing. In this way, either the temperature level in the machine can be reduced and the service life and efficiency can be improved. However, the performance of the machine can also be increased until the temperature level of the starting machine is reached with a sheet and plate package without a heat-conducting layer.
Im folgenden wird unter Bezugnahme auf Fig. 4 eine zweite Ausführaπgs- form der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei der ersten Ausführungsform, auf deren Beschreibung hiermit verwiesen wird. Unterschiedliche, jedoch funktioneil gleichartige Teile erhalten dieselben Bezugszeichen mit einem hochgesetzten Strich. Der zentrale Unterschied gegenüber der ersten Ausfübrungsform besteht darin, daß die Wärmeleit-Lage als Wäimeleit-Schicht 10 ausgebildet ist, die auf einem Teil oder auf jeder Blech-Lamelle 2 vorgesehen ist. Die Wär- meleit-Schicht 10 kann durch Aufkleben, Aufdampfen, Aufwalzen oder elektrolytisches Abscheiden, insbesondere von Aluminium, auf einer Blech-Lamelle 2 erzeugt werden. Zur Isolation der Wäimeleit-Schicht 10 zur benachbarten Blech-Lamelle 2 kann auf der Wäimeleit-Schicht 10 eine Eloxalschicht aus Aluminiumoxid aufgebracht sein. Dies hat den Vorteil, daß an sich nicht isolierte Blech-Lamellen 2 verwendet werden können.A second embodiment of the invention is described below with reference to FIG. 4. Identical parts are given the same reference numerals as in the first embodiment, to the description of which reference is hereby made. Different, but functionally similar Parts are given the same reference numbers with a prime. The central difference from the first embodiment is that the heat-conducting layer is designed as a heat-conducting layer 10, which is provided on part or on each sheet-metal lamella 2. The heat-conducting layer 10 can be produced by gluing, vapor deposition, rolling or electrolytic deposition, in particular of aluminum, on a sheet metal lamella 2. In order to isolate the Wäimeleit layer 10 from the adjacent sheet metal lamella 2, an anodized aluminum oxide layer can be applied to the Wäimeleit layer 10. This has the advantage that sheet metal fins 2 which are not insulated per se can be used.
Somit lassen sich Blech-Lamellen 2 mit verbesserter thermischer Leitfähigkeit und einseitiger Isolation in einem herstellen. Die Blech-Lamellen 2 sowie die Wäimeleit-Schichten 10 stehen in unmittelbaren physischen Kontakt zueinander, d.h. zwischen den Schichten 10 und den Lamellen 2 besteht kein Luftspalt. Die Schichten 10 können selbstverständlich auch zwischen den Blech-Lamellen 2 angeordnet sein, ohne mit einer Blech- Lamelle 2 unmittelbar verbunden zu sein. Sheet metal fins 2 with improved thermal conductivity and one-sided insulation can thus be produced in one. The sheet metal fins 2 and the thermal insulation layers 10 are in direct physical contact with one another, i.e. there is no air gap between the layers 10 and the slats 2. The layers 10 can of course also be arranged between the sheet metal lamellae 2 without being directly connected to a sheet metal lamellae 2.

Claims

Patentansprücheclaims
1. Blech-Lamellen-Paket, insbesondere für elektrische Maschinen und Geräte, mit a) mehreren, flächig aufeinander angeordneten Blech-Lamellen (2) und ' b) mindestens einer flächig an einer Blech-Lamelle (2) angeordneten Wärmeleit-Lage, c) wobei die Wäimeleitfähigkeit der Wärmeleit-Lage größer ist als die Wärmeleitfähigkeit der Blech-Lamelle (2).1. sheet metal plate package, in particular for electrical machines and devices, with a) a plurality of sheet metal plates (2) arranged flat on top of one another and ' b) at least one heat conducting layer arranged flatly on a sheet metal plate (2), c ) where the thermal conductivity of the thermal conductivity layer is greater than the thermal conductivity of the sheet metal lamella (2).
2. Blech-Lamellen-Paket gemäß Ansprach 1, dadurch gekennzeichnet, daß die- Wärmeleit-Lage aus Aluminium, Kupfer, Silber, Gold oder aus einer diese Bestandteile enthaltenden Legierung besteht.2. Sheet-plate package according to spoke 1, characterized in that the thermal conduction layer consists of aluminum, copper, silver, gold or an alloy containing these components.
3. Blech-Lamellen-Paket gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wäimeleit-Lage als eine auf einer Blech-Lamelle (2) angeordnete Wäimeleit-Schicht (10) ausgebildet ist.3. Sheet metal lamella package according to claim 1 or 2, characterized in that the Wäimeleit layer is formed as a Wäimeleit layer (10) arranged on a sheet metal lamella (2).
4. Blech-Lamellen-Paket gemäß Ansprach 3, dadurch gekennzeichnet, daß die Wäimeleit-Schicht (10) mit der Blech-Lamelle (2) durch Aufkleben, Aufdampfen oder Auffalzen verbunden ist.4. Sheet metal-lamella package according spoke 3, characterized in that the Wäimeleit layer (10) with the sheet-metal lamella (2) is connected by gluing, vapor deposition or folding.
5. Blech-Lamellen-Paket gemäß Ansprach 3 oder 4, dadurch gekenn- zeichnet, daß auf jeder Blech-Lamelle (2) eine Wäimeleit-Schicht (10) ausgebildet ist. 5. Sheet metal plate pack according to spoke 3 or 4, characterized in that a Wäimeleit layer (10) is formed on each sheet plate (2).
6. Blech-Lamellen-Paket gemäß einem der Anspräche 3 bis 5, dadurch gekennzeichnet, daß auf der Wäimeleit-Schicht (10) eine aus Metall- Oxid bestehende Isolierschicht vorgesehen ist.6. sheet-plate package according to one of claims 3 to 5, characterized in that on the Wäimeleit layer (10) is provided an insulating layer made of metal oxide.
7. Blech-Lamellen-Paket gemäß Ansprach 1 oder 2, dadurch gekennzeichnet, daß die Wärmeleit-Lage als Wärmeleit-Platte (6) ausgebildet ist.7. sheet-plate package according to spoke 1 or 2, characterized in that the heat-conducting layer is designed as a heat-conducting plate (6).
■8. Blech-Lamellen-Paket gemäß Ansprach 7, dadurch gekennzeichnet, daß in periodischen Abständen zwischen den Blech-Lamellen (2)■ 8th Sheet metal lamella package according to spoke 7, characterized in that at periodic intervals between the sheet metal lamellae (2)
Wärmeleit-Platten (6) angeordnet sind.Thermally conductive plates (6) are arranged.
9. Blech-Lamellen-Paket gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß auf den Blech-Lamellen (2) eine Wär- meleit-Deckplatte (7) vorgesehen ist.9. sheet-plate package according to one of the preceding claims, characterized in that a heat-conducting cover plate (7) is provided on the sheet plates (2).
10. Blech-Lamellen-Paket gemäß einem der vorangehenden Anspräche, dadurch gekennzeichnet, daß die Wärmeleit-Lage geschlitzt ausgebildet ist. 10. Sheet-plate package according to one of the preceding claims, characterized in that the heat-conducting layer is slotted.
EP01962662A 2000-10-17 2001-08-18 Stacked sheet metal laminate Withdrawn EP1262009A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10051499A DE10051499A1 (en) 2000-10-17 2000-10-17 Plate lamella packet for electrical machines, has stacked plate lamellas and heat conducting layer mounted flat on plate lamella of thermal conductivity greater than that of plate lamellas
DE10051499 2000-10-17
PCT/DE2001/003169 WO2002033808A1 (en) 2000-10-17 2001-08-18 Stacked sheet metal laminate

Publications (1)

Publication Number Publication Date
EP1262009A1 true EP1262009A1 (en) 2002-12-04

Family

ID=7660125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962662A Withdrawn EP1262009A1 (en) 2000-10-17 2001-08-18 Stacked sheet metal laminate

Country Status (6)

Country Link
US (1) US20030077476A1 (en)
EP (1) EP1262009A1 (en)
JP (1) JP2004512792A (en)
DE (1) DE10051499A1 (en)
MX (1) MXPA02006010A (en)
WO (1) WO2002033808A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314886A1 (en) * 2003-04-01 2004-11-11 Robert Bosch Gmbh Braking device for an electric motor
CN101501958B (en) * 2006-07-26 2011-10-26 三菱电机株式会社 Electric rotating machine
DK2375545T3 (en) 2010-04-06 2013-05-27 Ge Energy Power Conversion Technology Ltd Electrical machines
DE102014004613B4 (en) * 2014-03-29 2017-11-30 Groschopp Ag Drives & More electric motor
EP3402039A1 (en) * 2017-05-10 2018-11-14 Siemens Aktiengesellschaft Insulation of an electric machine
DE102019120944A1 (en) * 2019-08-02 2021-02-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Stator for an electric machine with improved cooling, electric machine and automobile
EP3979465A1 (en) * 2020-09-30 2022-04-06 Siemens Aktiengesellschaft Electrical machine and system
DE102023203142A1 (en) 2023-04-05 2024-10-10 Zf Friedrichshafen Ag insulation of an electrical machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1877569A (en) * 1930-02-19 1932-09-13 Radio Patents Corp Electromagnetic apparatus
US3710574A (en) * 1969-07-22 1973-01-16 R Pearson Fluid distribution and injection systems
US4103195A (en) * 1976-08-11 1978-07-25 General Electric Company Bonded laminations forming a stator core
US5091666A (en) * 1990-06-15 1992-02-25 General Electric Company Stator cooling system for electrical machinery
US5600238A (en) * 1994-07-05 1997-02-04 Ford Motor Company Method and apparatus for detecting the linear or rotary position of an object through the use of a variable magnetic shunt disposed in parallel with a yoke air gap
DE29514476U1 (en) * 1995-02-23 1995-11-23 VEM-Elektroantriebe GmbH, 01259 Dresden Arrangement for increasing the heat conduction in laminated cores of rotating electrical machines
JPH09312361A (en) * 1996-05-22 1997-12-02 Hitachi Metals Ltd Composite material for electronic component and its manufacture
US5703421A (en) * 1996-05-24 1997-12-30 The United States Of America As Represented By The Secretary Of The Air Force Reluctance generator/motor cooling
DE29721266U1 (en) * 1997-04-30 1998-02-12 Siemens AG, 80333 München Coating for sheet metal elements of electrical machines, in particular stator sheets of high-voltage machines
US6121709A (en) * 1997-10-16 2000-09-19 Alliedsignal Inc. Rotor assembly having bonded lamination stack
US6159305A (en) * 1998-07-14 2000-12-12 General Electric Company High speed induction motor rotor and method of fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0233808A1 *

Also Published As

Publication number Publication date
WO2002033808A1 (en) 2002-04-25
DE10051499A1 (en) 2002-04-25
US20030077476A1 (en) 2003-04-24
JP2004512792A (en) 2004-04-22
MXPA02006010A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
DE102016204445B4 (en) Rotating electric machine of axial gap type
DE10052913C2 (en) Motor with a stator that includes an insulator with high thermal conductivity
DE112017000278B4 (en) Electrical rotary machine
DE10201012B4 (en) Electric machine with laminated cooling rings
DE112018006725T5 (en) Rotating electric machine
DE112018006720T5 (en) Rotary electrical machine system
WO2017121520A1 (en) Electric machine
DE2923519A1 (en) ELECTRIC MOTOR WITH INTEGRAL CAPACITOR
DE102019215015A1 (en) Transverse flux machine
DE102016219831B4 (en) Rotating electrical machine
WO1990009697A1 (en) A permanent-magnet-excited electric motor
WO2001015304A9 (en) Induction-type electric machine
WO2006029992A1 (en) Permanently-stimulated synchronous motor with flat-wire windings
DE102009010475B4 (en) Winding fixing component and rotating electrical machine equipped therewith
DE102017207659B4 (en) Electric machine and method for manufacturing an electric machine
DE112020001311T5 (en) Rotating electrical machine and method of making a rotor
EP3231070A1 (en) Permanently excited electric machine
DE102016219828A1 (en) Rotating electrical machine
WO2022214146A1 (en) Stator of an electric axial flux machine, and axial flux machine
EP1262009A1 (en) Stacked sheet metal laminate
DE102018006915A1 (en) Permanently excited electrical machine
DE102013101084A1 (en) Rotary field machine with external rotor, in particular in modular design
DE102021108953B3 (en) Stator of an axial flux electric machine and axial flux machine
DE102016219829B4 (en) Rotating electrical machine
DE4427323A1 (en) Electric machine, with combined permanent magnetic and electric excitation, for battery-powered electric vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20021025

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050301