EP1261703A1 - Acides nucleiques, proteines et antigenes - Google Patents

Acides nucleiques, proteines et antigenes

Info

Publication number
EP1261703A1
EP1261703A1 EP01912655A EP01912655A EP1261703A1 EP 1261703 A1 EP1261703 A1 EP 1261703A1 EP 01912655 A EP01912655 A EP 01912655A EP 01912655 A EP01912655 A EP 01912655A EP 1261703 A1 EP1261703 A1 EP 1261703A1
Authority
EP
European Patent Office
Prior art keywords
seq
polypeptide
sequence
polynucleotides
polypeptides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01912655A
Other languages
German (de)
English (en)
Inventor
Craig A. Rosen
Steven C. Barash
Steven M. Ruben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Genome Sciences Inc
Original Assignee
Human Genome Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Genome Sciences Inc filed Critical Human Genome Sciences Inc
Priority claimed from PCT/US2001/001338 external-priority patent/WO2001055367A1/fr
Publication of EP1261703A1 publication Critical patent/EP1261703A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to novel musculoskeletal system related polynucleotides, the polypeptides encoded by these polynucleotides herein collectively referred to as "musculoskeletal system antigens," and antibodies that immunospecifically bind these polypeptides, and the use of such musculoskeletal system polynucleotides, antigens, and antibodies for detecting, treating, preventing and/or prognosing disorders of the musculoskeletal system, including, but not limited musculoskeletal system polypeptides.
  • Novel musculoskeletal system polypeptides and antibodies that bind to these polypeptides are provided.
  • vectors, host cells, and recombinant and synthetic methods for producing human musculoskeletal system polynucleotides, polypeptides, and/or antibodies are also provided.
  • the invention further relates to diagnostic and therapeutic methods useful for diagnosing, treating, preventing and/or prognosing disorders related to the musculoskeletal system, including musculoskeletal system cancer, and therapeutic methods for treating such disorders.
  • the invention further relates to screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention.
  • the invention further relates to methods and/or compositions for inhibiting or promoting the production and or function ofthe polypeptides ofthe invention.
  • the Human Musculoskeletal System is comprised of skeleton (e.g., bone), muscle, tendon, ligament, and other components of joints, which constitute the basic structural framework of the body. Together, the components of this system provide the strength, stability, frame, and elasticity necessary for movement. Additionally, the musculoskeletal system protects the internal organs, stores minerals, and produces blood.
  • skeleton e.g., bone
  • muscle e.g., muscle
  • tendon e.g., tendon, ligament
  • other components of joints which constitute the basic structural framework of the body.
  • the components of this system provide the strength, stability, frame, and elasticity necessary for movement. Additionally, the musculoskeletal system protects the internal organs, stores minerals, and produces blood.
  • the primary component of the musculoskeletal system is the skeleton itself.
  • the skeleton is a highly organized connection of bones responsible for many functions, including supporting the body against gravity, providing sites for muscle attachment, producing blood cells, protecting the organs and other soft body tissues, and permitting flexible movement.
  • the long bone is composed of two wider extremities (e.g., the epiphyses), a cylindrical tube in the middle (e.g., the midshaft or diaphysis), and a developmental zone (e.g., the metaphysis) between them.
  • the epiphysis and the metaphysis are separated by a layer of cartilage (e.g., epiphyseal cartilage or growth plate), responsible for the longitudinal growth of the bones.
  • the external part of the bones is formed by a layer of calcified tissue (e.g., the cortex or compact bone).
  • the cortex encloses the medullary cavity, the location ofthe hematopoietic bone marrow.
  • the cortex Toward the metaphysis and epiphysis, the cortex becomes progressively thinner, containing a network of thin, calcified trabeculae (e.g., trabecular bone or spongy bone) and hematopoietic bone marrow.
  • trabeculae e.g., trabecular bone or spongy bone
  • the cortical bone fulfills mainly a mechanical and protective function
  • the trabecular bone fulfills a metabolic function.
  • Bone is a balanced, dynamic system, constantly degrading and regenerating.
  • Bone is degraded by cells called osteoclasts that remove from the center of the bone, forming the central cavity ofthe long bones.
  • Osteoblasts are cells found in the osteoid tissue (e.g., bone matrix prior to calcification) and are responsible for the production of the matrix constituents of bone (e.g., collagen and ground substance).
  • the matrix constituents of bone e.g., collagen and ground substance.
  • osteoblasts become progressively embedded and differentiate into osteocytes, or bone cells.
  • these osteocytes then differentiate into cortical bone or trabecular bone within the calcified collagen fiber matrix. Blood vessels penetrate the newly calcified bone, bringing the blood supply that will form the hematopoietic bone marrow.
  • Joints are formed when two bones come together and allow for bending and movement. Tough bands of connective tissue, called ligaments, surround the joints, join the two bones together, and keep the bones properly aligned.
  • the joint capsule is lined by a synovial membrane, which produces synovial fluid for lubricating the joint. Joints may also contain fluid-filled sacs (e.g., bursa) that reduce friction in areas where skin, muscles, tendons, and ligaments rub over bones.
  • Most joints are freely moving synovial joints; however, some joints (e.g, vertebrae) are partly movable and allow some some degree of flexibility with cartilage, or menisci, between the bones, while other joints (e.g., skull sutures) do not allow movement at all.
  • skeletal muscles have very long fiber-like cells that contract quickly, but only when stimulated by nerve cells. Muscle is attached to the bone by tough connective tissue, called tendons, and arranged in opposing, balancing groups around joints that facilitate balanced movement.
  • tendons tough connective tissue
  • balancing groups around joints that facilitate balanced movement.
  • the musculoskeletal system was designed for strength and endurance, the components of this system can become worn, injured, or inflamed. These disorders can range from mild to severe and from acute to chronic. Generally, the treatment depends on the type and severity ofthe disorder.
  • osteoporosis Several types of bone disorders occur from an imbalance of the growth and breakdown cycles of bone. The most common, osteoporosis, is a progressive decrease in the density of bones, causing them to weaken. Osteoporosis occurs in several different types and is seen more often in older women. Postmenopa sal osteoporosis is generally found in women between the ages 51 and 75 and is caused by the lack of estrogen. Senile osteoporosis results not only from the imbalance between growth and breakdown but also from the calcium deficiency associated with age. Secondary osteoporosis is caused by secondary effects of another medical condition (e.g., chronic renal failure, hormonal disorders) or by drugs (e.g., barbiturates, anticonvulsants).
  • another medical condition e.g., chronic renal failure, hormonal disorders
  • drugs e.g., barbiturates, anticonvulsants.
  • Idiopathic juvenile osteoporosis is a rare form that occurs in children and young adults who, for no obvious reason, have weak bones. Treatment for all forms of osteoporosis is aimed at increasing bone density (e.g., estrogen intake, bisphosphonates, fluoride supplements).
  • Paget's Disease also results from an imbalance of the growth and breakdown of bone.
  • the turnover rate is areas affected by Paget's Disease increases tremendously; resulting in abnormal, enlarged bone that is soft and weak.
  • Paget's Disease tends to appear in family lineages. There is no direct treatment for Paget's Disease, rather treatment is given only alleviate pain and discomfort.
  • Bone disorders can also result from infection. Bone can be infected through three routes: bloodstream, direct invasion, and adjacent soft tissue infections.
  • Osteomyelitis is a bone infection usually caused by bacteria (e.g., Staphylococcus aureus) which results in swelling of the soft bone marrow tissue, compression of the blood vessels, and possibly death of parts of bone.
  • Pott's disease is an infection ofthe vertebrae by the bacteria that cause tuberculosis (e.g., Mycobacterium tuberculosis, M. bovis, or M. africanum.)
  • tuberculosis e.g., Mycobacterium tuberculosis, M. bovis, or M. africanum.
  • antibiotics are generally the most effective treatment for this disease. However, if the infection is severe or chronic, surgery may also be required to remove the infected tissue and replaced with healthy bone, muscle, or skin.
  • Osteochrondromas are growths on the surface of a bone that protrude as hard lumps. Benign chondromas, usually occurring in people aged 10 to 30, develop in the central part of the bone. Chrondroblastomas, usually occurring in people aged 10 to 20, are rare, painful tumors that grow in the ends of bones. Osteoid osteomas are very small tumors that commonly develop in the arms or legs but can occur in any bone. Giant cell tumors, usually occurring in people aged 20-40, most commonly originate in the ends of the bones and may extend into adjacent tissue. Treatment of these tumors generally involves pain management and, possibly, surgery to remove the tumor.
  • malignant bone tumors may be primary or metastatic. In children, most malignant bone tumors are primary; in adults, most are metastatic. The most common type of malignant primary tumor, multiple myeloma, originates in the red bone marrow cells and most commonly occurs in older people. Osteosarcoma, usually occurring in people aged 10-20, commonly occurs in or around the knee and cause pain and swelling. These tumors tend to spread to the lungs. Chrondrosarcomas are slow-growing tumors composed of cancerous cartilage cells. Ewing's sarcoma, occurring most commonly in males aged 10 to 20, develop most often in arms and legs. These tumors can become large and can affect the entire length of a bone. Metastatic bone tumors most often originate from breast, lung, prostate, kidney and thyroid cancers.
  • Treatment for bone tumors depends on the type of cancer. Most treatments are complex and involve a combination of chemotherapy, radiotherapy, and surgery. Prompt treatment is especially important for malignant bone tumors.
  • disorders affecting the joints and their associated components are considered connective tissue disorders because of the presence of large amounts of connective tissue in these structures. Most of the disorders of joints involve inflammation and may be the result of an immune or autoimmune reaction.
  • Drug treatment is generally aimed at reducing inflammation.
  • drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., aspirin and ibuprofen) are commonly used.
  • NSAIDs nonsteroidal anti-inflammatory drugs
  • Alternative drug treatments, used in more severe cases, are corticosteroids (e.g., prednisone) and immunosuppressive drugs (e.g., methotrexate, azathioprine, and cyclophophamide).
  • corticosteroids e.g., prednisone
  • immunosuppressive drugs e.g., methotrexate, azathioprine, and cyclophophamide.
  • Other treatment plans, used in conjunction with drugs include exercise, physical therapy, and sometimes surgery.
  • Osteoarthritis causes the formation of rough, pitted cartilage in the joint resulting in limited joint movement, stiffness, and pain.
  • rheumatoid arthritis an autoimmune disorder
  • tissue e.g., ligaments, synovial membrane, bursas
  • the joints including those in the extremities, become symmetrically inflamed, resulting in swelling, pain, and eventually, destruction of the interior of the joint.
  • Psoriatic Arthritis occurring in people who have psorasis, resembles rheumatoid arthritis; however, it doesn't produce the antibodies characteristic of arthritis.
  • autoimmune diseases may also affect the joints and tendons.
  • systemic lupus erythematosus may result in episodes of inflammation in the joints and tendons in addition to other connective tissues and organs.
  • Joint inflammation is common with systemic lupus erythematosus and can lead to deformity and permanent damage to the joint and its surrounding tissue; however, the bone does not erode as it does in rheumatoid arthritis.
  • Reiter's syndrome or reactive arthritis, is an inflammation of the joints and tendon attachments resulting from a bacterial infection originating in an area of the body other than the joints.
  • Reiter's syndrome There are two forms of Reiter's syndrome that occur more commonly in men aged 20 to 40.
  • Infectious arthritis develops from an infection of the synovial fluid and tissue of a joint. Different bacteria can infect a joint, depending on the person's age. Infants and young children are most commonly infected by gram-negative bacilli, Staphylococci, and Hemophilus influenzae. Older children and adults are most commonly infected by gonococci, staphylococci, and streptococci. Viruses (e.g., HIN, parvoviruses, and the viruses that cause rubella, mumps, and hepatitis B) can infect joints in people of any age. The joints most commonly infected are the knee, shoulder, wrist, hip, finger, and elbow and become red, warm to the touch, swollen, and painful.
  • Damage to muscles can cause pain, limit control over movement, and reduce the normal range of motion. Diseases of the muscles can develop from injury, inflammation, spasms, or inheritance.
  • Muscular dystrophies are a group of inherited muscle disorders leading to muscle weakness.
  • Duchenne's and Becker's muscular dystrophies are caused by different gene defects on the same gene resulting in weakness ofthe muscles closest to the torso. The gene for both diseases is recessive and carried on the X chromosome.
  • Duchenne's muscular dystrophy is characterized by an almost total lack of dystrophin protein, resulting in progressive muscle loss, including the heart muscle, and ultimately resulting in death by the age of 20.
  • Becker's muscular dystrophy is a less severe illness characterized by production of an oversized dystrophin protein that does not function properly.
  • Landouszy-Dejerine muscular dystrophy is transmitted by an autosomal dominant gene and results in the muscles of the face, shoulder, and legs weakening. Neither Becker's nor Landouszy- Dejerine muscular dystrophy is fatal. Currently, there is no cure for muscular dystrophies. Treatment regimens involve physical therapy and exercise to prevent the muscles from contracting permanently around the joints, and sometimes surgery to release tight, painful muscles.
  • Myotonic myopathies are a group of inherited muscle disorders in which the muscles are not capable of fully relaxing after contraction, leading to weakness, muscle spasms, and contractures.
  • Steinert's disease is an autosomal dominant disorder producing both weakness and tight, contracted muscles, especially in the hands. Symptoms can range from mild to severe. In the most severe cases, extreme muscle weakness and many other symptoms (e.g., cataracts, irregular heartbeat, diabetes, and mental retardation) can occur, resulting in death by the age of 50.
  • Pompe's disease is a severe, autosomal recessive, glycogen storage disease in infants where glycogen accumulates in the liver, muscles, nerves, and heart, preventing them from functioning properly. This disease is fatal by age 2; however, there are less severe forms of Pompe's disease that can affect older children and adults, causing weakness of the extremities and diminished ability to breathe deeply. Current treatments for the less severe forms of Pompe's disease and other glycogen storage diseases involve limiting exercise and diuretics to reduce the level of myoglobin released into the blood due to the muscle damage.
  • Periodic Paralysis is another rare autosomal dominant disorder that causes sudden attacks of weakness and paralysis where the muscles do not respond to normal nerve impulses or artificial stimulation.
  • periodic paralysis has been linked to the level of potassium in the blood with some families influenced by high levels (hyperkalemia) and some families by low levels (hypokalemia). Diet (e.g., avoidance of carbohydrate-rich food) and treatment with acetazolamide are the most common treatment to control periodic paralysis episodes.
  • Muscle disorders may result from inflammation.
  • Polymyositis is a chronic connective tissue disease characterized by painful inflammation and disabling muscle weakness and deterioration. Although the direct cause is unknown, cancer, viruses, or autoimmune reactions may play a role.
  • Current treatment regimens include restricting activities during periods of intense inflammation and treatment with corticosteroids or immunosuppressive drugs to improve the strength and relieve the pain and swelling associated with the disease.
  • the present invention relates to novel musculoskeletal system related polynucleotides, the polypeptides encoded by these polynucleotides herein collectively referred to as "musculoskeletal system antigens," and antibodies that immunospecifically bind these polypeptides, and the use of such musculoskeletal system polynucleotides, antigens, and antibodies for detecting, treating, preventing and/or prognosing disorders of the musculoskeletal system system, including, but not limited to, the presence of cancer and cancer metastases. More specifically, isolated musculoskeletal system nucleic acid molecules are provided encoding novel musculoskeletal system polypeptides.
  • Novel musculoskeletal system polypeptides and antibodies that bind to these polypeptides are provided. Also provided are vectors, host cells, and recombinant and synthetic methods for producing human musculoskeletal system polynucleotides, polypeptides, and/or antibodies.
  • the invention further relates to diagnostic and therapeutic methods useful for diagnosing, treating, preventing and/or prognosing disorders related to the musculoskeletal system, including cancer of musculoskeletal system tissues, and therapeutic methods for treating such disorders.
  • the invention further relates to screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention.
  • the invention further relates to methods and/or compositions for inhibiting or promoting the production and/or function ofthe polypeptides ofthe invention.
  • Table IA summarizes some of the polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID NO:Z), contig sequences (contig identifier (Contig ID:) and contig nucleotide sequence identifier
  • the first column provides a unique clone identifier, "Clone ID NO:Z", for a cDNA plasmid related to each musculoskeletal system associated contig sequence disclosed in Table 1 A.
  • the second column provides a unique contig identifier, "Contig ID:” for each of the contig sequences disclosed in Table IA.
  • the third column provides the sequence identifier,
  • ORF From-To
  • Table IA The fourth column, “ORF (From-To)" provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:X that delineate the preferred open reading frame (ORF) shown in the sequence listing and referenced in Table IA as SEQ ID NO. ⁇ (column 5).
  • Column 6 lists residues comprising predicted epitopes contained in the polypeptides encoded by each of the preferred ORFs (SEQ ID NO:Y).
  • musculoskeletal system associated polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the predicted epitopes described in Table 1 A. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
  • Column 7, “Tissue Distribution” shows the expression profile of tissue, cells, and/or cell line libraries which express the polynucleotides ofthe invention. The first number in column 7 (preceding the colon), represents the tissue/cell source identifier code corresponding to the code and description provided in Table 4.
  • tissue/cell source identifier codes in which the first two letters are "AR” designate information generated using DNA array technology. Utilizing this technology, cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array.
  • cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33 P dCTP, using oligo(dT) to prime reverse transcription. After hybridization, high stringency washing conditions were employed to remove non-specific hybrids from the array. The remaining signal, emanating from each gene target, was measured using a Phosphorimager. Gene expression was reported as Phosphor Stimulating Luminescence (PSL) which reflects the level of phosphor signal generated from the probe hybridized to each of the gene targets represented on the array. A local background signal subtraction was performed before the total signal generated from each array was used to normalize gene expression between the different hybridizations.
  • PSL Phosphor Stimulating Luminescence
  • Table IA summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID NO:Z), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ ID NO:B).
  • the first column provides a unique clone identifier, "Clone ID NO:Z”, for a cDNA clone related to each contig sequence.
  • the second column provides the sequence identifier, "SEQ ID NO:X”, for each contig sequence.
  • the third column provides a unique contig identifier, "Contig ID:” for each contig sequence.
  • the fourth column provides a BAC identifier "BAC ID NO:A” for the BAC clone referenced in the corresponding row of the table.
  • the fifth column provides the nucleotide sequence identifier, "SEQ ID NO:B” for a fragment of the BAC clone identified in column four of the corresponding row of the table.
  • the sixth column provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides ofthe invention that are also exemplary members of polynucleotide sequences that encode polypeptides ofthe invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
  • Table 2 summarizes homology and features of some of the polypeptides of the invention.
  • the first column provides a unique clone identifier, "Clone ID NO:Z”, corresponding to a cDNA disclosed in Table IA.
  • the second column provides the unique contig identifier, "Contig ID:” corresponding to contigs in Table IA and allowing for correlation with the information in Table 1 A.
  • the third column provides the sequence identifier, "SEQ ID NO:X”, for the contig polynucleotide sequences.
  • the fourth column provides the analysis method by which the homology/identity disclosed in the row was determined.
  • NR non-redundant protein database
  • PFAM protein families
  • polypeptides of the invention comprise, or alternatively consist of, an amino acid sequence encoded by the polynucleotides in SEQ ID NO:X as delineated in columns 8 and 9, or fragments or variants thereof.
  • Table 3 provides polynucleotide sequences that may be disclaimed according to certain embodiments of the invention.
  • the first column provides a unique clone identifier, "Clone ID NO:Z”, for a cDNA clone related to musculoskeletal system associated contig sequences disclosed in Table IA.
  • the second column provides the sequence identifier, "SEQ ID NO:X”, for contig polynucleotide sequences disclosed in Table 1 A.
  • the third column provides the unique contig identifier, "Contig ID”, for contigs disclosed in Table 1 A.
  • the fourth column provides a unique integer 'a' where 'a' is any integer between 1 and the final nucleotide minus 15 of SEQ ID NO:X, represented as "Range of a”, and the fifth column provides a unique integer 'b' where 'b' is any integer between 15 and the final nucleotide of SEQ ID NO:X, represented as . "Range of b", where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:X, and where b is greater than or equal to a + 14.
  • polynucleotides shown as SEQ ID NO:X the uniquely defined integers can be substituted into the general formula of a-b, and used to describe polynucleotides which may be preferably excluded from the invention.
  • preferably excluded from the polynucleotides of the invention are at least one, two, three, four, five, ten, or more of the polynucleotide sequence(s) having the accession number(s) disclosed in the sixth column of this Table (including for example, published sequence in connection with a particular BAC clone).
  • preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone).
  • Table 4 provides a key to the tissue/cell source identifier code disclosed in
  • tissue or cell source may be specific (e.g. a neoplasm), or may be disease-associated (e.g., a tissue sample from a normal portion of a diseased organ). Furthermore, tissues and/or cells lacking the "disease" designation may still be derived from sources directly or indirectly involved in a disease state or disorder, and therefore may have a further utility in that disease state or disorder.
  • tissue/cell source is a library
  • column 7 identifies the vector used to generate the library.
  • Table 5 provides a key to the OMIMTM reference identification numbers disclosed in Table IA, column 9.
  • OMIM reference identification numbers (Column 1) were derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIMTM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/).
  • Column 2 provides diseases associated with the cytologic band disclosed in Table IA, column 8, as determined from the Morbid Map database.
  • Table 6 summarizes ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application.
  • Table 7 shows the cDNA libraries sequenced, tissue source description, vector information and ATCC designation numbers relating to these cDNA libraries.
  • Table 8 provides a physical characterization of clones encompassed by the invention.
  • the first column provides the unique clone identifier, "Clone ID NO:Z", for certain cDNA clones of the invention, as described in Table IA.
  • the second column provides the size of the cDNA insert contained in the corresponding cDNA clone.
  • isolated refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered “by the hand of man” from its natural state.
  • an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be “isolated” because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.
  • isolated does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features ofthe polynucleotide sequences ofthe present invention.
  • a "polynucleotide” refers to a molecule having a nucleic acid sequence encoding SEQ ID NO:Y or a fragment or variant thereof, a nucleic acid sequence contained in SEQ ID NO:X (as described in column 3 of Table IA) or the complement thereof, a cDNA sequence contained in Clone ID NO:Z (as described in column 1 of Table 1 A and contained within a library deposited with the ATCC); a
  • the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence.
  • polypeptide refers to a molecule having an amino acid sequence encoded by a polynucleotide ofthe invention as broadly defined (obviously excluding poly-Phenylalanine or poly-Lysine peptide sequences which result from translation of a poIyA tail of a sequence corresponding to a cDNA).
  • a "musculoskeletal system antigen” refers collectively to any polynucleotide disclosed herein (e.g., a nucleic acid sequence contained in SEQ ID NO:X or the complement therof, or cDNA sequence contained in Clone ID NO:Z, or a nucleotide sequence encoding the polypeptide encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IB, or a nucleotide coding sequence in SEQ ID NO:B as defined in column 6 of Table IB or the complement thereof and fragments or variants thereof as described herein) or any polypeptide disclosed herein (e.g., an amino acid sequence contained in SEQ ID NO. ⁇ , an amino acid sequence encoded by SEQ ID NO:X, or the complement thereof, an amino acid sequence encoded by the cDNA sequence contained in Clone ID NO:Z, an amino acid sequence encoded by SEQ ID NO:B, or the complement thereof, and fragments or
  • SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig analysis).
  • a representative clone containing all or most of the sequence for SEQ ID NO:X is deposited at Human Genome Sciences, Inc. (HGS) in a catalogued and archived library.
  • HGS Human Genome Sciences, Inc.
  • each clone is identified by a cDNA Clone ID (identifier generally referred to herein as Clone ID NO:Z).
  • Clone ID NO:Z identifier generally referred to herein as Clone ID NO:Z.
  • Each Clone ID is unique to an individual clone and the Clone ID is all the information needed to retrieve a given clone from the HGS library.
  • ATCC American Type Culture Collection
  • Table 7 lists the deposited cDNA libraries by name and links each library to an ATCC Deposit. Library names contain four characters, for example, "HTWE.” The name of a cDNA clone (Clone ID NO:Z) isolated from that library begins with the same four characters, for example "HTWEP07".
  • Table IA correlates the Clone ID NO:Z names with SEQ ID NO:X.
  • SEQ ID NO:X the Clone ID NO:Z names
  • Tables IA, 6 and 7 the corresponding Clone ID NO:Z, which library it came from and which ATCC deposit the library is contained in.
  • the ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA.
  • the ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition ofthe deposit of microorganisms for the purposes of patent procedure.
  • the polynucleotides ofthe invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5 kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length.
  • polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron.
  • the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
  • a "polynucleotide” ofthe present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, or the complement thereof (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments described herein), the polynucleotide sequence delineated in columns 8 and 9 of Table 2 or the complement thereof, and/or cDNA sequences contained in Clone ID NO:Z (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments, or the cDNA clone within the pool of cDNA clones deposited with the ATCC, described herein) and/or the polynucleotide sequence delineated in column 6 of Table IB or the complement thereof.
  • SEQ ID NO:X or the complement thereof
  • “Stringent hybridization conditions” refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in O.lx SSC at about 65 degree C.
  • nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency), salt conditions, or temperature.
  • washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).
  • Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations.
  • the inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
  • polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide,” since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using oligo dT as a primer).
  • the polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double- stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions.
  • polynucleotide can be composed of triple- stranded regions comprising RNA or DNA or both RNA and DNA.
  • a polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons.
  • Modified bases include, for example, tritylated bases and unusual bases such as inosine.
  • a variety of modifications can be made to DNA and RNA; thus, "polynucleotide” embraces chemically, enzymatically, or metabolically modified forms.
  • the polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids.
  • the polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
  • polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
  • Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
  • SEQ ID NO:X refers to a polynucleotide sequence described, for example, in
  • SEQ ID NO:Y refers to a polypeptide sequence described in column 5 of Table IA.
  • SEQ ID NO:X is identified by an integer specified in column 3 of Table IA.
  • the polypeptide sequence SEQ ID NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X.
  • Clone ID NO:Z refers to a cDNA clone described in column 1 of Table IA.
  • a polypeptide having biological activity refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that ofthe polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide ofthe present invention).
  • Table IA summarizes some of the musculoskeletal system associated polynucleotides encompassed by the invention (including contig sequences (SEQ ID NO:X) and clones (Clone ID NO:Z) and further summarizes certain characteristics of these polynucleotides and the polypeptides encoded thereby.
  • the first column in Table 1 A provides a unique "Clone ID NO:Z" for a cDNA clone related to each contig sequence disclosed in Table 1 A.
  • This clone ID references the cDNA clone which contains at least the 5' most sequence ofthe assembled contig, and at least a portion of SEQ ID NO:X was determined by directly sequencing the referenced clone.
  • the reference clone may have more sequence than described in the sequence listing or the clone may have less. In the vast majority of cases, however, the clone is believed to encode a full-length polypeptide. In the case where a clone is not full-length, a full-length cDNA can be obtained by methods known in the art and/or as described elsewhere herein.
  • the second column in Table IA provides a unique "Contig ID” identification for each contig sequence.
  • the third column provides the "SEQ ID NO:X” identifier for each of the musculoskeletal system associated contig polynucleotide sequences disclosed in Table IA.
  • the fourth column, "ORF (From-To)" provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence "SEQ ID NO:X” that delineate the preferred open reading frame (ORF) shown in the sequence listing and referenced in Table 1 A, column 5, as SEQ ID NO:Y. Where the nucleotide position number "To" is lower than the nucleotide position number "From”, the preferred ORF is the reverse complement ofthe referenced polynucleotide sequence.
  • the fifth column in Table IA provides the corresponding SEQ ID NO:Y for the polypeptide sequence encoded by the preferred ORF delineated in column 4.
  • the invention provides an amino acid sequence comprising, or alternatively consisting of, a polypeptide encoded by the portion of SEQ ID NO:X delineated by "ORF (From-To)". Also provided are polynucleotides encoding such amino acid sequences and the complementary strand thereto.
  • polypeptides of the invention comprise, or alternatively consist of, at least one, two, three, four, five or more of the predicted epitopes as described in Table IA.
  • Table IA provides an expression profile and library code: count for each of the contig sequences (SEQ ID NO:X) disclosed in Table IA, which can routinely be combined with the information provided in Table 4 and used to determine the normal or diseased tissues, cells, and/or cell line libraries which predominantly express the polynucleotides ofthe invention.
  • the first number in column 7 represents the tissue/cell source identifier code corresponding to the code and description provided in Table 4.
  • the second number in column 7 represents the number of times a sequence corresponding to the reference polynucleotide sequence was identified in the tissue/cell source.
  • tissue/cell source identifier codes in which the first two letters are "AR” designate information generated using DNA array technology. Utilizing this technology, cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array. cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33 P dCTP, using oligo(dT) to prime reverse transcription.
  • Column 8 in Table IA provides a chromosomal map location for certain polynucleotides of the invention. Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database. Each sequence in the UniGene database is assigned to a "cluster"; all ofthe ESTs, cDNAs, and STSs in a cluster are believed to be derived from a single gene. Chromosomal mapping data is often available for one or more sequence(s) in a UniGene cluster; this data (if consistent) is then applied to the cluster as a whole. Thus, it is possible to infer the chromosomal location of a new polynucleotide sequence by determining its identity with a mapped UniGene cluster.
  • HOAAB42 214 530605 AC008013 2433 1-751 869-1288 1741-2134 3713-4192 4219-4525 5032-5188
  • Table IB summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID NO:Z), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ ID NO:B).
  • the first column provides a unique clone identifier, "Clone ID NO:Z”, for a cDNA clone related to each contig sequence.
  • the second column provides the sequence identifier, "SEQ ID NO:X”, for each contig sequence.
  • the third column provides a unique contig identifier, "Contig ID:” for each contig sequence.
  • the fourth column provides a BAC identifier "BAC ID NO: A” for the BAC clone referenced in the corresponding row of the table.
  • the fifth column provides the nucleotide sequence identifier, "SEQ ID NO:B” for a fragment of the BAC clone identified in column four ofthe corresponding row ofthe table.
  • the sixth column provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides ofthe invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
  • Table 2 further characterizes certain encoded polypeptides ofthe invention, by providing the results of comparisons to protein and protein family databases.
  • the first column provides a unique clone identifier, "Clone ID NO:”, corresponding to a cDNA clone disclosed in Table IA.
  • the second column provides the unique contig indentifier, "Contig ID:” which allows correlation with the information in Table IA.
  • the third column provides the sequence identifier, "SEQ ID NO:X”, for the contig polynucleotide sequences.
  • the fourth column provides the analysis method by which the homology/identity disclosed in the row was determined.
  • the fifth column provides a description of PFam/NR hits having significant matches identified by each analysis.
  • the NR database which comprises the NBRF PIR database, the NCBI
  • GenPept database was made non- redundant using the computer program nrdb2 (Warren Gish, Washington University in Saint Louis).
  • nrdb2 Warren Gish, Washington University in Saint Louis.
  • Each ofthe polynucleotides shown in Table IA, column 3 (e.g., SEQ ID NO:X or the 'Query' sequence) was used to search against the NR database.
  • the computer program BLASTX was used to compare a 6-frame translation of the Query sequence to the NR database (for information about the BLASTX algorithm please see Altshul et al, J. Mol. Biol. 215:403-410 (1990), and Gish et al., Nat. Genet. 3:266-272 (1993)).
  • a description of the sequence that is most similar to the Query sequence (the highest scoring 'Subject') is shown in column five of Table 2 and the database accession number for that sequence is provided in column six.
  • the highest scoring 'Subject' is reported in Table 2 if (a) the estimated probability that the match occurred by chance alone is less than 1.0e-07, and (b) the match was not to a known repetitive element.
  • BLASTX returns alignments of short polypeptide segments ofthe Query and Subject sequences which share a high degree of similarity; these segments are known as High-Scoring Segment Pairs or HSPs.
  • Table 2 reports the degree of similarity between the Query and the Subject for each HSP as a percent identity in Column 7.
  • the percent identity is determined by dividing the number of exact matches between the two aligned sequences in the HSP, dividing by the number of Query amino acids in the HSP and multiplying by 100.
  • the polynucleotides of SEQ ID NO:X which encode the polypeptide sequence that generates an HSP are delineated by columns 8 and 9 of Table 2.
  • HMM Hidden Markov Model
  • a HMM derived from PFam version 5.2 was said to be a significant match to a polypeptide ofthe invention if the score returned by HMMER 1.8 was greater than 0.8 times the HMMER 1.8 score obtained with the most distantly related known member of that protein family.
  • the description of the PFam family which shares a significant match with a polypeptide of the invention is listed in column 5 of Table 2, and the database accession number ofthe PFam hit is provided in column 6.
  • Column 7 provides the score returned by HMMER version 1.8 for the alignment.
  • Columns 8 and 9 delineate the polynucleotides of SEQ ID NO:X which encode the polypeptide sequence which shows a significant match to a PFam protein family.
  • the invention provides a protein comprising, or alternatively consisting of, a polypeptide encoded by the polynucleotides of SEQ ID NO:X delineated in columns 8 and 9 of Table 2. Also provided are polynucleotides encoding such proteins, and the complementary strand thereto.
  • nucleotide sequence SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
  • the nucleotide sequences of SEQ ID NO:X are useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in Clone ID NO:Z. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling immediate applications in chromosome mapping, linkage analysis, tissue identification and/or typing, and a variety of forensic and diagnostic methods of the invention.
  • polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to these polypeptides, or fragments thereof, and/or to the polypeptides encoded by the cDNA clones identified in, for example, Table IA.
  • DNA sequences generated by sequencing reactions can contain sequencing errors.
  • the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
  • the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence.
  • the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
  • the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and a predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing cDNA Clone ID NO:Z deposited with the ATCC (deposited with the ATCC on October 5, 2000, and receiving ATCC designation numbers PTA 2574 and PTA 2575; deposited with the ATCC on January 5, 2001, having the depositor reference numbers TS-1, TS-2, AC-1, and AC-2; and/or as set forth, for example, in Table 1 A, 6 and 7).
  • nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. Further, techniques known in the art can be used to verify the nucleotide sequences of SEQ ID O:X. [074] The predicted amino acid sequence can then be verified from such deposits.
  • amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
  • Partial cDNA clones can be made full-length by utilizing the rapid amplification of cDNA ends (RACE) procedure described in Frohman, M.A., et al., Proc. Nat'l. Acad. Sci. USA, 85:8998-9002 (1988).
  • RACE rapid amplification of cDNA ends
  • RNA Poly A+ or total RNA is reverse transcribed with Superscript II (Gibco BRL) and an antisense or complementary primer specific to the cDNA sequence.
  • the primer is removed from the reaction with a Microcon Concentrator (Amicon).
  • the first-strand cDNA is then tailed with dATP and tenninal deoxynucleotide transferase (Gibco/BRL).
  • dATP tenninal deoxynucleotide transferase
  • the second strand is synthesized from the dA- tail in PCR buffer, Taq DNA polymerase (Perkin-Elmer Cetus), an oligo-dT primer containing three adjacent restriction sites (Xhol, Sail and Clal) at the 5' end and a primer containing just these restriction sites.
  • This double-stranded cDNA is PCR amplified for 40 cycles with the same primers as well as a nested cDNA-specific antisense primer.
  • the PCR products are size-separated on an ethidium bromide- agarose gel and the region of gel containing cDNA products the predicted size of missing protein-coding DNA is removed.
  • cDNA is purified from the agarose with the Magic PCR Prep kit (Promega), restriction digested with Xhol or Sail, and ligated to a plasmid such as pBluescript SKII (Stratagene) at Xhol and EcoRV sites.
  • This DNA is transformed into bacteria and the plasmid clones sequenced to identify the correct protein-coding inserts. Correct 5' ends are confirmed by comparing this sequence with the putatively identified homologue and overlap with the partial cDNA clone. Similar methods known in the art and/or commercial kits are used to amplify and recover 3 ! ends.
  • kit form Similar reagents and methods to those above are supplied in kit form from Gibco/BRL for both 5' and 3' RACE for recovery of full length genes.
  • a second kit is available from Clontech which is a modification of a related technique, SLIC (single-stranded ligation to single-stranded cDNA), developed by Dumas et al., Nucleic Acids Res., 19:5227-32 (1991).
  • SLIC single-stranded ligation to single-stranded cDNA
  • the major differences in procedure are that the RNA is alkaline hydrolyzed after reverse transcription and RNA ligase is used to join a restriction site- containing anchor primer to the first-strand cDNA. This obviates the necessity for the dA-tailing reaction which results in a polyT stretch that is difficult to sequence past.
  • An alternative to generating 5' or 3' cDNA from RNA is to use cDNA library double-stranded DNA.
  • An asymmetric PCR-amplified antisense cDNA strand is synthesized with an antisense cDNA-specific primer and a plasmid-anchored primer. These primers are removed and a symmetric PCR reaction is performed with a nested cDNA-specific antisense primer and the plasmid-anchored primer.
  • RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcript.
  • a primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full length gene which may then be sequenced and used to generate the full length gene.
  • This method starts with total RNA isolated from the desired source, poly A RNA may be used but is not a prerequisite for this procedure.
  • RNA preparation may then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA, which may interfere with the later RNA ligase step.
  • the phosphatase if used, is then inactivated and the RNA is treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs.
  • This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.
  • This modified RNA preparation can then be used as a template for first strand cDNA synthesis using a gene specific oligonucleotide.
  • the first strand synthesis reaction can then be used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the musculoskeletal system antigen of interest.
  • the resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the relevant musculoskeletal system antigen.
  • the present invention also relates to vectors or plasmids, which include such
  • the material deposited with the ATCC (deposited with the ATCC on October 5, 2000, and receiving ATCC designation numbers PTA 2574 and PTA 2575; deposited with the ATCC on January 5, 2001, having the depositor reference numbers TS-1, TS-2, AC-1, and AC-2; and/or as set forth, for example, in Table IA, 6 and 7) is a mixture of cDNA clones derived from a variety of human tissue and cloned in either a plasmid vector or a phage vector, as shown, for example, in Table 7. These deposits are referred to as "the deposits" herein.
  • the tissues from which some of the clones were derived are listed in Table 7, and the vector in which the corresponding cDNA is contained is also indicated in Table 7.
  • the deposited material includes cDNA clones corresponding to SEQ ID NO:X described, for example, in Table IA (Clone ID NO:Z).
  • a clone which is isolatable from the ATCC Deposits by use of a sequence listed as SEQ ID NO:X may include the entire coding region of a human gene or in other cases such clone may include a substantial portion of the coding region of a human gene.
  • sequence listing may in some instances list only a portion of the DNA sequence in a clone included in the ATCC Deposits, it is well within the ability of one skilled in the art to sequence the DNA included in a clone contained in the ATCC Deposits by use of a sequence (or portion thereof) described in, for example Tables IA or 2 by procedures hereinafter further described, and others apparent to those skilled in the art.
  • Table 7 Also provided in Table 7 is the name of the vector which contains the cDNA clone. Each vector is routinely used in the art. The following additional information is provided for convenience.
  • Phagemid pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene.
  • Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene.
  • Vector pCR ® 2.1 which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al, Bio/Technology 9: (1991). [083] The present invention also relates to the genes corresponding to SEQ ID NO:X,
  • SEQ ID NO:Y SEQ ID NO:Y
  • the deposited clone Clone ID NO:Z
  • the corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
  • allelic variants, orthologs, and/or species homologs are also provided in the present invention. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of musculoskeletal system associated genes corresponding to SEQ ID NO:X or the complement thereof, polypeptides encoded by SEQ ID NO:X or the complement thereof, and/or the cDNA contained in Clone ID NO:Z, using information from the sequences disclosed herein or the clones deposited with the ATCC.
  • allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
  • polypeptides of the invention can be prepared in any suitable manner.
  • polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
  • polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.
  • polypeptides ofthe present invention are preferably provided in an isolated form, and preferably are substantially purified.
  • a recombinantly produced version of a polypeptide, including the secreted polypeptide can be substantially purified using techniques described herein or otherwise known in the art, such as, for example, by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988).
  • Polypeptides of the invention also can be purified from natural, synthetic or recombinant sources using techniques described herein or otherwise known in the art, such as, for example, antibodies of the invention raised against the musculoskeletal system polypeptides of the present invention in methods which are well known in the art.
  • the present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X, and/or the cDNA sequence contained in Clone ID NO:Z.
  • the present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO: Y, a polypeptide encoded by SEQ ID NO:X or a complement thereof, a polypeptide encoded by the cDNA contained in Clone ID NO:Z, and/or the polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IB.
  • Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, a polypeptide encoded by the cDNA contained in Clone ID NO:Z and/or a polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IB are also encompassed by the invention.
  • the present invention further encompasses a polynucleotide comprising, or alternatively consisting of, the complement of the nucleic acid sequence of SEQ ID NO:X, a nucleic acid sequence encoding a polypeptide encoded by the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the cDNA contained in Clone ID NO:Z.
  • representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in Table IB column 6, or any combination thereof.
  • Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in Table IB column 6, or any combination thereof.
  • the above-described polynucleotides of the invention comprise, or alternatively consist of,- sequences delineated in Table IB, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IB, column 5).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IB, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IB, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
  • representative examples of polynucleotides ofthe invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1), or any combination thereof.
  • Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1), or any combination thereof.
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1) and have a nucleic acid sequence which is different from that ofthe BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IB, column 5).
  • polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1) and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • the above- described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1) and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IB which correspond to the same contig sequence identifer SEQ ID NO:X (see Table IB, column 2), or any combination thereof.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more ofthe complementary strand(s) ofthe sequences delineated in column 6 of Table IB which correspond to the same contig sequence identifer SEQ ID NO:X (see Table IB, column 2), or any combination thereof.
  • the above-described polynucleotides ofthe invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IB which correspond to the same contig sequence identifer SEQ ID NO:X (see Table IB, column 2) and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IB, column 5).
  • polynucleotides ofthe invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IB which correspond to the same contig sequence identifer SEQ ID NO:X (see Table IB, column 2) and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IB which correspond to the same contig sequence identifer SEQ ID NO:X (see Table IB, column 2) and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO: A (See Table IB, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
  • representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more ofthe sequences delineated in the same row of Table IB column 6, or any combination thereof.
  • Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more ofthe complementary strand(s) ofthe sequences delineated in the same row of Table IB column 6, or any combination thereof.
  • the polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in the same row of Table IB column 6, wherein ' sequentially delineated sequences in the table (i.e. corresponding to those exons located closest to each other) are directly contiguous in a 5' to 3' orientation.
  • above-described polynucleotides ofthe invention comprise, or alternatively consist of, sequences delineated in the same row of Table IB, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IB, column 5).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IB, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IB, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides ofthe invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IB, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IB, column 2) or fragments or variants thereof.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides ofthe invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1), and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IA or IB) or fragments or variants thereof.
  • the delineated sequence(s) and polynucleotide sequence of SEQ ID NO:X correspond to the same Clone ID NO:Z.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides ofthe invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in the same row of column 6 of Table IB, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IA or IB) or fragments or variants thereof.
  • the delineated sequence(s) and polynucleotide sequence of SEQ ID NO:X correspond to the same row of column 6 of Table IB.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides ofthe invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one ofthe sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of the sequence of SEQ ID NO:X are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides ofthe invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one ofthe sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X are directly contiguous Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides ofthe sequence of SEQ ID NO:X and the 5' 10 polynucleotides ofthe sequence of one of the sequences delineated in column 6 of Table IB are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IB are directly contiguous.
  • Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides, are also encompassed by the invention.
  • polynucleotides ofthe invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one ofthe sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of another sequence in column 6 are directly contiguous.
  • Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of another sequence in column 6 corresponding to the same Clone ID NO:Z (see Table IB, column 1) are directly contiguous. Nucleic acids which hybridize to the complement of these 20 lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one sequence in column 6 corresponding to the same contig sequence identifer SEQ ID NO:X (see Table IB, column 2) are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of another sequence in column 6 corresponding to the same row are directly contiguous.
  • the 3' 10 polynucleotides of one ofthe sequences delineated in column 6 of Table IB is directly contiguous with the 5' 10 polynucleotides ofthe next sequential exon delineated in Table IB, column 6.
  • Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotide sequences such as EST sequences, are publicly available and accessible through sequence databases and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention.
  • each contig sequence (SEQ ID NO:X) listed in the third column of Table IA preferably excluded are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 and the final nucleotide minus 15 of SEQ ID NO:X, b is an integer of 15 to the final nucleotide of SEQ ID NO:X, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:X, and where b is greater than or equal to a + 14.
  • polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a and b are integers as defined in columns 4 and 5, respectively, of Table 3.
  • the polynucleotides of the invention do not consist of at least one, two, three, four, five, ten, or more of the specific polynucleotide sequences referenced by the Genbank Accession No. as disclosed in column 6 of Table 3 (including for example, published sequence in connection with a particular BAC clone).
  • preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone). In no way is this listing meant to encompass all of the sequences which may be excluded by the general formula, it is just a representative example. All references available through these accessions are hereby incorporated by reference in their entirety.
  • HOSMD84 325 959483 1 - 1036 15 - 1050 N75110, and H71506.
  • HSSAV18 569 508832 1 - 186 15 - 200 AA378135, and AA378220.
  • HSSAV88 570 508829 1 - 375 15 - 389 AA378151.
  • HSSGN47 601 707003 1 - 324 15 - 338 AI076644, AI951987, AA969026, AD000671, AF186605, and AJ007041.
  • HSSJN44 603 716573 1 - 428 15 - 442 AL139054.
  • HSSMZOl 626 921800 1 - 401 15 - 415 AA378938, H90844, T57767, AA824453, AA492105, AI752358, AA458452, AI783911, AA723299, AA812684, AA728973, N67313, AA167489, AA483771, AA664604, AI241831, U63721, AC005071, AL049692, AC006312, AC004878, AC005229, AC002996, AC005520, AC002544, AL031670, AC005874, AF134471, AC004099, AL109984, Z95115, AF134726, AC004263, AC004983, AC004686, AFl 11167, AF095703, AP000692, U80017, U91326, AC007686, AL135783, AL031666, AC004475, AC005207, AC004217, AC
  • HSSAZ04 659 933015 1 - 447 15 - 461 AW104609, AA731470, AA378296, AA093496, AA648807, and AC005768.
  • HSSAP68 661 564334 1 - 1137 15 - 1151 AL041924, AA569648, AA595661, AW020150, AI801505, AA974503, AA577706, AI521525, AI310670, AL041375, AI479148, AI282253, AW162314, AL036896, AA669238, AW151541, AI251034, AA526542, AA287363, AI890297, AW338376, AA171400, AI250552, AA218684, AA515728, AA533025, N68677, AW302048, AL079734, AW020094, AW069227, AI224583, AW408413, AW021399, AW275432, AI251284, AI754653, AI926102, AA313025, AA084320, AI284543, AI537020, AI809776, AA583245, N26159
  • the present invention is also directed to variants of the musculoskeletal system associated polynucleotide sequence disclosed in SEQ ID NO:X or the complementary strand thereto, nucleotide sequences encoding the polypeptide of SEQ ID NO:Y, the nucleotide sequence of SEQ ID NO:X encoding the polypeptide sequence as defined in column 6 of Table IA, nucleotide sequences encoding the polypeptide as defined in column 6 of Table IA, the nucleotide sequence as defined in columns 8 and 9 of Table 2, nucleotide sequences encoding the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2, the nucleotide sequence as defined in column 6 of Table IB, nucleotide sequences encoding the polypeptide encoded by the nucleotide sequence as defined in column 6 of Table IB, the cDNA sequence contained in Clone ID NO:Z, and/or nucleotide sequences encoding a
  • the present invention also encompasses variants of the polypeptide sequence disclosed in SEQ ID NO:Y, a polypeptide sequence as defined in column 6 of Table IA, a polypeptide sequence encoded by the polynucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2, a polypeptide sequence encoded by the nucleotide sequence as defined in column 6 of Table IB, a polypeptide sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, and/or a polypeptide sequence encoded by the cDNA sequence contained in Clone ID NO:Z.
  • “Nariant” refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide ofthe present invention.
  • one aspect of the invention provides an isolated nucleic acid molecule comprising, or alternatively consisting of, a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence described in SEQ ID ⁇ O:X or contained in the cDNA sequence of Clone ID NO:Z; (b) a nucleotide sequence in SEQ ID NO:X or the cDNA in Clone ID NO:Z which encodes a mature musculoskeletal system associated polypeptide; (c) a nucleotide sequence in SEQ ID NO:X or the cDNA sequence of Clone ID NO:Z, which encodes a biologically active fragment of a musculoskeletal system associated polypeptide; (d) a nucleotide sequence in SEQ ID NO:X or the cDNA sequence of Clone ID NO:Z, which encodes an antigenic fragment of a musculoskeletal system associated polypeptide; (e) a nucleotide sequence selected
  • the present invention is also directed to nucleic acid molecules which comprise, or alternatively consist of, a nucleotide sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), or (i) above, the nucleotide coding sequence in SEQ ID NO:X or the complementary strand thereto, the nucleotide coding sequence of the cDNA contained in Clone ID NO:Z or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID NO:Y, a nucleotide sequence encoding a polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the complement ofthe polynucleotide sequence in SEQ ID NO:X, a nucleo
  • Polynucleotides which hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides and nucleic acids.
  • the invention encompasses nucleic acid molecules which comprise, or alternatively, consist of a polynucleotide which hybridizes under stringent hybridization conditions, or alternatively, under lower stringency conditions, to a polynucleotide in (a), (b), (c), (d), (e), (f), (g), (h), or (i) above, as are polypeptides encoded by these polynucleotides.
  • polynucleotides which hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.
  • the invention provides a purified protein comprising, or alternatively consisting of, a polypeptide having an amino acid sequence selected from the group consisting of: (a) the complete amino acid sequence of SEQ ID NO: Y or the complete amino acid sequence encoded by the cDNA in Clone ID NO:Z; (b) the amino acid sequence of a mature musculoskeletal system associated polypeptide having the amino acid sequence of SEQ ID NO:Y or the amino acid sequence encoded by the cDNA in Clone ID NO:Z; (c) the amino acid sequence of a biologically active fragment of a musculoskeletal system associated polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in Clone ID NO:Z; and (d) the amino acid sequence of an antigenic fragment of a musculoskeletal system associated polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in Clone ID NO:Z.
  • the present invention is also directed to proteins which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, any of the amino acid sequences in (a), (b), (c), or (d), above, the amino acid sequence shown in SEQ ID NO:Y, the amino acid sequence encoded by the cDNA contained in Clone ID NO:Z, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IB, the amino acid sequence as defined in column 6 of Table IA, an amino acid sequence encoded by the nucleotide sequence in SEQ ID NO:X, and an amino acid sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X.
  • polypeptides are also provided (e.g., those fragments described herein).
  • Further proteins encoded by polynucleotides which hybridize to the complement of the nucleic acid molecules encoding these amino acid sequences under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are the polynucleotides encoding these proteins.
  • nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide.
  • nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide.
  • nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence.
  • the query sequence may be an entire sequence referred to in Table IA or 2 as the ORF (open reading frame), or any fragment specified, as described herein.
  • nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the present invention can be determined conventionally using known computer programs.
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both DNA sequences.
  • RNA sequence can be compared by converting U's to T's.
  • the result of said global sequence alignment is expressed as percent identity.
  • This corrected score is what is used for the purposes ofthe present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.
  • a 90 base subject sequence is aligned to a 100 base query- sequence to determine percent identity.
  • the deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end.
  • the 10 unpaired bases represent 10% ofthe sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%.
  • a 90 base subject sequence is compared with a 100 base query sequence.
  • deletions are internal deletions so that there are no bases on the 5' or 3' ofthe subject sequence which are not matched/aligned with the query.
  • percent identity calculated by FASTDB is not manually corrected.
  • bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.
  • amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence.
  • up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid.
  • These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
  • amino acid sequence of a polypeptide referred to in Table IA e.g., an amino acid sequence identified in columns 5 or 6
  • Table 2 e.g., the amino acid sequence of the polypeptide encoded by the polynucleotide sequence defined in columns 8 and 9 of Table 2
  • amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X or a fragment thereof or an amino acid sequence of the polypeptide encoded by cDNA contained in Clone ID NO:Z, or a fragment thereof
  • Table IA e.g., an amino acid sequence identified in columns 5 or 6
  • Table 2 e.g., the amino acid sequence of the polypeptide encoded by the polynucleotide sequence defined in columns 8 and 9 of Table 2
  • a preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci.6:237-245 (1990)).
  • the query and subject sequences are either both nucleotide sequences or both amino acid sequences.
  • the result of said global sequence alignment is expressed as percent identity.
  • the percent identity is corrected by calculating the number of residues ofthe query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent ofthe total bases of the query sequence.
  • Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes ofthe present invention. Only residues to the N- and C-termini ofthe subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C- terminal residues of the subject sequence.
  • a 90 amino acid residue subject sequence is aligned with a
  • the deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment ofthe first 10 residues at the N-terminus.
  • the 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%.
  • a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini ofthe subject sequence which are not matched/aligned with the query.
  • the polynucleotide variants of the invention may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations, which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, polypeptide variants in which less than 50, less than 40, less than 30, less than 20, less than 10, or 5-50, 5-25, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).
  • Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level and are mcluded in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
  • variants may be generated to improve or alter the characteristics of the polypeptides of the present invention.
  • one or more amino acids can be deleted from the N-terminus or C-terminus ofthe polypeptides ofthe present invention without substantial loss of biological function.
  • Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)
  • the invention further includes polypeptide variants which show a functional activity (e.g., biological activity) ofthe polypeptides ofthe invention.
  • a functional activity e.g., biological activity
  • variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.
  • the present application is directed to nucleic acid molecules at least 80%,
  • nucleic acid sequences disclosed herein e.g., encoding a polypeptide having the amino acid sequence of an N and/or C terminal deletion
  • a polypeptide having functional activity e.g., a particular nucleic acid molecule does not encode a polypeptide having functional activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer.
  • PCR polymerase chain reaction
  • nucleic acid molecules of the present invention that do not encode a polypeptide having functional activity include, inter alia, (1) isolating a gene or allelic or splice variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the gene, as described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); (3) Northern Blot analysis for detecting mRNA expression in specific tissues (e.g., normal musculoskeletal system tissue or diseased musculoskeletal system tissues); and (4) in situ hybridization (e.g., histochemistry) for detecting mRNA expression in specific tissues (e.g., normal musculoskeletal system tissue or diseased musculoskeletal system tissues).
  • in situ hybridization e.g., histochemistry
  • nucleic acid molecules having sequences at least
  • a polypeptide having functional activity is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein of the invention.
  • Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a polypeptide of the invention for binding) to an anti-polypeptide of the invention antibody], immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide ofthe invention.
  • polypeptides, and fragments, variants and derivatives ofthe invention can be assayed by various methods.
  • various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.
  • competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immunoassays, immunoradiometric
  • antibody binding is detected by detecting a label on the primary antibody.
  • the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody.
  • the secondary antibody is labeled.
  • Many means are known in the art for detecting binding in an immunoassay and are within the scope ofthe present invention.
  • binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting.
  • the ability of physiological correlates of a polypeptide ofthe present invention to bind to a substrate(s) ofthe polypeptide ofthe invention can be routinely assayed using techniques known in the art.
  • degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay.
  • nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having functional activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.
  • the first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity ofthe protein.
  • the second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. See Cunningham et al., Science 244:1081-1085 (1989). The resulting mutant molecules can then be tested for biological activity.
  • tolerated conservative amino acid substitutions involve replacement ofthe aliphatic or hydrophobic amino acids Ala, Nal, Leu and lie; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement ofthe amide residues Asn and Gin, replacement ofthe basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement ofthe small-sized amino acids Ala, Ser, Thr, Met, and Gly.
  • variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitutions with one or more of the amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as, for example, an IgG Fc fusion region peptide, serum albumin (preferably human serum albumin) or a fragment or variant thereof, or leader or secretory sequence, or a sequence facilitating purification.
  • additional amino acids such as, for example, an IgG Fc fusion region peptide, serum albumin (preferably human serum albumin) or a fragment or variant thereof, or leader or secretory sequence, or a sequence facilitating purification.
  • polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. See Pinckard et al., Clin. Exp. Immunol. 2:331- 340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev: Therapeutic Drug Carrier Systems 10:307-377 (1993).
  • a further embodiment of the invention relates to polypeptides which comprise the amino acid sequence of a polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions from a polypeptide sequence disclosed herein.
  • a polypeptide prefferably has an amino acid sequence which comprises the amino acid sequence of a polypeptide of SEQ ID NO:Y, an amino acid sequence encoded by SEQ ID NO:X, an amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, an amino acid sequence encoded by the complement of SEQ ID NO:X, and/or the amino acid sequence encoded by cDNA contained in Clone ID NO:Z which contains, in order of ever-increasing preference, at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions.
  • the polypeptides of the invention comprise, or alternatively, consist of, fragments or variants of a reference amino acid sequence selected from: (a) the amino acid sequence of SEQ ID NO:Y or fragments thereof (e.g., the mature form and/or other fragments described herein); (b) the amino acid sequence encoded by SEQ ID NO:X or fragments thereof; (c) the amino acid sequence encoded by the complement of SEQ ID NO:X or fragments thereof; (d) the amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or fragments thereof; and (e) the amino acid sequence encoded by cDNA contained in Clone ID NO:Z or fragments thereof; wherein the fragments or variants have 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, amino acid residue additions, substitutions, and/or deletions when compared to the reference amino acid sequence.
  • the amino acid substitutions are conservative.
  • polynucleotide fragment refers to a polynucleotide having a nucleic acid sequence which, for example: is a portion of the cDNA contained in Clone ID NO:Z or the complementary strand thereto; is a portion of the polynucleotide sequence encoding the polypeptide encoded by the cDNA contained in Clone ID NO:Z or the complementary strand thereto; is a portion of a polynucleotide sequence encoding the amino acid sequence encoded by the region of SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto; is a portion of the polynucleotide sequence of SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto; is a portion ofthe polynucleotide
  • polynucleotide fragments ofthe invention are preferably at least about
  • a fragment "at least 20 nt in length,” for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in Clone ID NO:Z, or the nucleotide sequence shown in SEQ ID NO:X or the complementary stand thereto. In this context "about” includes the particularly recited value or a value larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini.
  • nucleotide fragments have uses that include, but are not limited to, as diagnostic probes and primers as discussed herein.
  • larger fragments e.g., at least 160, 170, 180, 190, 200, 250, 500, 600, 1000, or 2000 nucleotides in length
  • larger fragments e.g., at least 160, 170, 180, 190, 200, 250, 500, 600, 1000, or 2000 nucleotides in length
  • polynucleotide fragments of the invention comprise, or alternatively consist of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401- 450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901- 950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251- 1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601- 1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951- 2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2
  • polynucleotide fragments of the invention comprise, or alternatively consist of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401- 450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901- 950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251- 1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601- 1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951- 2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2301-
  • polynucleotide fragments of the invention comprise, or alternatively consist of, a nucleic acid sequence comprising one, two, three, four, five, six, seven, eight, nine, ten, or more of the above described polynucleotide fragments of the invention in combination with a polynucleotide sequence delineated in Table IB column 6.
  • polynucleotide fragments of the invention comprise, or alternatively consist of, a nucleic acid sequence comprising one, two, three, four, five, six, seven, eight, nine, ten, or more of the above described polynucleotide fragments of the invention in combination with a polynucleotide sequence that is the complementary strand of a sequence delineated in column 6 of Table IB.
  • the above- described polynucleotide fragments of the invention comprise, or alternatively consist of, sequences delineated in Table IB, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IB, column 5).
  • the above- described polynucleotide fragments ofthe invention comprise, or alternatively consist of, sequences delineated in Table IB, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO: A (see Table IB, column 4).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated Table IB, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IB, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in column 6 of Table IB, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IB, column 2) or fragments or variants thereof.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in column 6 of Table IB which correspond to the same Clone ID NO:Z (see Table IB, column 1), and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IA or IB) or fragments or variants thereof.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in the same row of column 6 of Table IB, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IA or IB) or fragments or variants thereof.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one ofthe sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of the sequence of SEQ ID NO:X are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above- described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one ofthe sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of a fragment or variant ofthe sequence of SEQ ID NO:X (e.g., as described herein) are directly contiguous Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IB are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IB and the 5' 10 polynucleotides of another sequence in column 6 are directly contiguous.
  • the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IB is directly contiguous with the 5' 10 polynucleotides of the next sequential exon delineated in Table IB, column 6.
  • Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • a "polypeptide fragment” refers to an amino acid sequence which is a portion of that contained in SEQ ID NO:Y, a portion of an amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a portion of an amino acid sequence encoded by the polynucleotide sequence of SEQ ID NO:X, a portion of an amino acid sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, and/or a portion of an amino acid sequence encoded by the cDNA contained in Clone ID NO:Z.
  • Protein (polypeptide) fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region.
  • Representative examples of polypeptide fragments of the invention include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-320, 321-340, 341-360, 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481-500, 501-520, 521-540, 541-560, 561-580, 581-600, 601-620, 621-640, 641-660, 661-680, 681-700, 701-720, 721-740, 741-760, 761-780,
  • polypeptide fragments of the invention include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121- 140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301- 320, 321-340, 341-360, 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481- 500, 501-520, 521-540, 541-560, 561-580, 581-600, 601-620, 621-640, 641-660, 661- 680, 681-700, 701-720, 721-740, 741-760, 761-780, 781-800, 801-820, 821-840, 841- 860, 861-880, 881-900, 901-920, 921-940, 941-
  • polypeptide fragments ofthe invention may be at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, or 150 amino acids in length.
  • “about” includes the particularly recited ranges or values, or ranges or values larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.
  • Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.
  • polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions is preferred. Similarly, polynucleotides encoding these polypeptide fragments are also preferred.
  • the present invention further provides polypeptides having one or more residues deleted from the amino terminus ofthe amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X or the complement thereof, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a polypeptide encoded by the portion of SEQ ID NO:B as defined in column 6 of Table IB, and/or a polypeptide encoded by the cDNA contained in Clone ID NO:Z).
  • a polypeptide of SEQ ID NO:Y e.g., a polypeptide of SEQ ID NO:Y, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X or the complement thereof, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a
  • N-terminal deletions may be described by the general formula m-q, where q is a whole integer representing the total number of amino acid residues in a polypeptide ofthe invention (e.g., the polypeptide disclosed in SEQ ID NO:Y, or the polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2), and m is defined as any integer ranging from 2 to q-6. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the present invention further provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or a polypeptide encoded by the cDNA contained in Clone ID NO:Z).
  • C- terminal deletions may be described by the general formula 1-n, where n is any whole integer ranging from 6 to q-1, and where n corresponds to the position of amino acid residue in a polypeptide ofthe invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • any of the above described N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted polypeptide.
  • the invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of a polypeptide encoded by SEQ ID NO:X (e.g., including, but not limited to, the preferred polypeptide disclosed as SEQ ID NO:Y and the polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2), the cDNA contained in Clone ID NO:Z, and/or the complement thereof, where n and m are integers as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the present application is also directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a polypeptide sequence set forth herein.
  • the application is directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to polypeptides having the amino acid sequence of the specific N- and C-terminal deletions.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • Any polypeptide sequence encoded by, for example, the polynucleotide sequences set forth as SEQ ID NO:X or the complement thereof, (presented, for example, in Tables IA and 2), the cDNA contained in Clone ID NO:Z, or the polynucleotide sequence as defined in column 6 of Table IB, may be analyzed to determine certain preferred regions of the polypeptide.
  • amino acid sequence of a polypeptide encoded by a polynucleotide sequence of SEQ ID NO:X may be analyzed using the default parameters of the DNASTAR computer algorithm (DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715 USA; http://www.dnastar.com/).
  • Polypeptide regions that may be routinely obtained using the DNASTAR computer algorithm include, but are not limited to, Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions; Chou-Fasman alpha-regions, beta-regions, and turn-regions; Kyte-Doolittle hydrophilic regions and hydrophobic regions; Eisenberg alpha- and beta-amphipathic regions; Karplus-Schulz flexible regions; Emini surface-forming regions; and Jameson- Wolf regions of high antigenic index.
  • highly preferred polynucleotides of the invention in this regard are those that encode polypeptides comprising regions that combine several structural features, such as several (e.g., 1, 2, 3 or 4) ofthe features set out above.
  • Emini surface- forming regions, and Jameson- Wolf regions of high antigenic index can routinely be used to determine polypeptide regions that exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from data by DNASTAR analysis by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.
  • Preferred polypeptide fragments ofthe invention are fragments comprising, or alternatively, consisting of, an amino acid sequence that displays a functional activity (e.g. biological activity) ofthe polypeptide sequence of which the amino acid sequence is a fragment.
  • a polypeptide displaying a "functional activity” is meant a polypeptide capable of one or more known functional activities associated with a full- length protein, such as, for example, biological activity, antigenicity, immunogenicity, and/or multimerization, as described herein.
  • polypeptide fragments are biologically active fragments.
  • Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention.
  • the biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
  • polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the antigenic fragments of the polypeptide of SEQ ID NO:Y, or portions thereof.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • the present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope of: the polypeptide sequence shown in SEQ ID NO:Y; a polypeptide sequence encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2; the polypeptide sequence encoded by the portion of SEQ ID NO:B as defined in column 6 of Table IB or the complement thereto; the polypeptide sequence encoded by the cDNA contained in Clone ID NO:Z; or the polypeptide sequence encoded by a polynucleotide that hybridizes to the sequence of SEQ ID NO:X, the complement of the sequence of SEQ ID NO:X, the complement of a portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, or the cDNA sequence contained in Clone ID NO:Z under stringent hybridization conditions or alternatively, under lower stringency hybridization as defined supra.
  • the present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence of the invention (such as, for example, the sequence disclosed in SEQ ID NO:X, or a fragment thereof), polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention, and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or alternatively, under lower stringency hybridization conditions defined supra.
  • polypeptide sequence of the invention such as, for example, the sequence disclosed in SEQ ID NO:X, or a fragment thereof
  • polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or alternatively, under lower stringency hybridization conditions defined supra.
  • epitopes refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human.
  • the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide.
  • An "immunogenic epitope,” as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci.
  • antigenic epitope is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross- reactivity with other antigens. Antigenic epitopes need not necessarily be immunogenic.
  • Fragments, which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131- 5135 (1985) further described in U.S. Patent No. 4,631,211.)
  • antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids.
  • Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length.
  • Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof.
  • Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies that specifically bind the epitope.
  • Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes.
  • Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)).
  • Non-limiting examples of epitopes of polypeptides that can be used to generate antibodies ofthe invention include a polypeptide comprising, or alternatively consisting of, at least one, two, three, four, five, six or more of the portion(s) of SEQ ID NO:Y specified in column 6 of Table IA. These polypeptide fragments have been determined to bear antigenic epitopes of the proteins of the invention by the analysis of the Jameson- Wolf antigenic index, which is included in the DNAStar suite of computer programs.
  • a polypeptide contains at least one, two, three, four, five, six or more of the portion(s) of SEQ ID NO:Y shown in column 6 of Table 1 A, but it may contain additional flanking residues on either the amino or carboxyl termini of the recited portion.
  • additional flanking sequences are preferably sequences naturally found adjacent to the portion; i.e., contiguous sequence shown in SEQ ID NO:Y.
  • the flanking sequence may, however, be sequences from a heterologous polypeptide, such as from another protein described herein or from a heterologous polypeptide not described herein.
  • epitope portions of a polypeptide of the invention comprise one, two, three, or more of the portions of SEQ ID NO:Y shown in column 6 of Table IA.
  • Polynucleotides encoding these polypeptides are also encompassed by the invention.
  • immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow et al, Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985).
  • Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes.
  • the polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier.
  • a carrier protein such as an albumin
  • immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).
  • Epitope-bearing polypeptides of the present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol, 66:2347-2354 (1985).
  • animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid.
  • KLH keyhole limpet hemacyanin
  • peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl- N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde.
  • Animals such as rabbits, rats and mice are immunized with either free or carrier- coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 ⁇ g of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response.
  • booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface.
  • the titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art. 4]
  • the polypeptides of the present invention e.g., those comprising an immunogenic or antigenic epitope
  • polypeptides ofthe present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CHI, CH2, CH3, or any combination thereof and portions thereof, resulting in chimeric polypeptides.
  • polypeptides and/or antibodies of the present invention may be fused with albumin (including but not limited to recombinant human serum albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No.
  • polypeptides and/or antibodies of the present invention are fused with the mature form of human serum albumin (i.e., amino acids 1 - 585 of human serum albumin as shown in Figures 1 and 2 of EP Patent 0 322 094) which is herein incorporated by reference in its entirety.
  • polypeptides and/or antibodies of the present invention are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-z of human serum albumin, where z is an integer from 369 to 419, as described in U.S.
  • Polypeptides and/or antibodies of the present invention may be fused to either the N- or C- terminal end of the heterologous protein (e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide).
  • heterologous protein e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide.
  • Polynucleotides encoding fusion proteins of the invention are also encompassed by the invention. 5]
  • Such fusion proteins as those described above may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins.
  • IgG Fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone.
  • Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin (HA) tag or flag tag) to aid in detection and purification of the expressed polypeptide.
  • an epitope tag e.g., the hemagglutinin (HA) tag or flag tag
  • HA hemagglutinin
  • a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972- 897).
  • the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues.
  • the tag serves as a matrix binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose column and histidine-tagged proteins can be selectively eluted with imidazole-containing buffers. Fusion Proteins
  • any polypeptide of the present invention can be used to generate fusion proteins.
  • the polypeptide of the present invention when fused to a second protein, can be used as an antigenic tag.
  • Antibodies raised against the polypeptide ofthe present invention can be used to indirectly detect the second protein by binding to the polypeptide.
  • secreted proteins target cellular locations based on trafficking signals
  • polypeptides ofthe present invention which are shown to be secreted can be used as targeting molecules once fused to other proteins.
  • domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions.
  • the fusion does not necessarily need to be direct, but may occur through linker sequences.
  • proteins of the invention are fusion proteins comprising an amino acid sequence that is an N and/or C- terminal deletion of a polypeptide of the invention.
  • the invention is directed to a fusion protein comprising an amino acid sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a polypeptide sequence of the invention.
  • Polynucleotides encoding these proteins are also encompassed by the invention.
  • fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N- terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.
  • polypeptides of the present invention can be combined with heterologous polypeptide sequences.
  • the polypeptides of the present invention may be fused with heterologous polypeptide sequences, for example, the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM) or portions thereof (CHI, CH2, CH3, and any combination thereof, including both entire domains and portions thereof), or albumin (including, but not limited to, native or recombinant human albumin or fragments or variants thereof (see, e.g., U.S. Patent No.
  • EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof.
  • the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties (EP-A 0232 262).
  • deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired.
  • the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations.
  • human proteins such as hIL-5
  • Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See, D. Bennett et al, J. Molecular Recognition 8:52-58 (1995); K. Johanson et al, J. Biol. Chem. 270:9459-9471 (1995).
  • the polypeptides ofthe present invention can be fused to marker sequences, such as a polypeptide, which facilitates purification of the fused polypeptide.
  • the marker amino acid sequence is a hexa- histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available.
  • hexa-histidine provides for convenient purification of the fusion protein.
  • Another peptide tag useful for purification, the "HA" tag corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al, Cell 37:767 (1984).)
  • DNA shuffling may be employed to modulate the activities of polypeptides ofthe invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists of the polypeptides. See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol.
  • one or more components, motifs, sections, parts, domains, fragments, etc., of a polynucleotide encoding a polypeptide of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc., of one or more heterologous molecules encoding a heterologous polypeptide.
  • any of these above fusions can be engineered using the polynucleotides or the polypeptides ofthe present invention.
  • the present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by synthetic and recombinant techniques.
  • the vector may be, for example, a phage, plasmid, viral, or retroviral vector.
  • Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
  • the polynucleotides ofthe invention may be joined to a vector containing a selectable marker for propagation in a host.
  • a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
  • the polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan.
  • the expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation.
  • the coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end ofthe polypeptide to be translated.
  • the expression vectors will preferably include at least one selectable marker.
  • markers include dihydrofolate reductase, G418 or neomycin resistance, glutamine synthase, for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria.
  • Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No.
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, 293, NSO and Bowes melanoma cells
  • plant cells Appropriate culture mediums and conditions for the above-described host cells are known in the art.
  • vectors preferred for use in bacteria include pQ ⁇ 70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc.
  • preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia.
  • Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, pHIL-D2, pHIL-Sl, pPIC3.5K, pPIC9K, and PAO815 (all available from Invitrogen, Carlsbad, CA).
  • Other suitable vectors will be readily apparent to the skilled artisan.
  • Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively.
  • An advantage of glutamine synthase based vectors is the availabilty of cell lines (e.g., the murine myeloma cell line, NSO) which are glutamine synthase negative.
  • Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g., Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene.
  • glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657, which are hereby incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors can be obtained from Lonza Biologies, Inc. (Portsmouth, NH). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al, Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol. Prog. 11:1 (1995) which are herein incorporated by reference.
  • the present invention also relates to host cells containing the above- described vector constructs described herein, and additionally encompasses host cells containing nucleotide sequences ofthe invention that are operably associated with one or more heterologous control regions (e.g., promoter and/or enhancer) using techniques known of in the art.
  • the host cell can be a higher eukaryotic cell, such as a mammalian cell (e.g., a human derived cell), or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell.
  • a host strain may be chosen, which modulates the expression ofthe inserted gene sequences, or modifies and processes the gene product in the specific fashion desired.
  • Expression from certain promoters can be elevated in the presence of certain inducers; thus expression of the genetically engineered polypeptide may be controlled.
  • different host cells have characteristics and specific mechanisms for the translational and post-translational processing and modification (e.g., phosphorylation, cleavage) of proteins. Appropriate cell lines can be chosen to ensure the desired modifications and processing ofthe foreign protein expressed.
  • nucleic acids and nucleic acid constructs of the invention into the host cell can be effected by calcium phosphate transfection, DEAE- dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.
  • the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., musculoskeletal system antigen coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with musculoskeletal system associated polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous musculoskeletal system associated polynucleotides.
  • endogenous genetic material e.g., musculoskeletal system antigen coding sequence
  • genetic material e.g., heterologous polynucleotide sequences
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous musculoskeletal system associated polynucleotide sequences via homologous recombination
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous musculoskeletal system associated polynucleotide sequences via homologous recombination
  • Polypeptides of the present invention can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides ofthe invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.
  • N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.
  • the yeast Pichia pastoris is used to express polypeptides of the invention in a eukaryotic system.
  • Pichia pastoris is a methylotrophic yeast which can metabolize methanol as its sole carbon source.
  • a main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using O 2 . This reaction is catalyzed by the enzyme alcohol oxidase.
  • Pichia pastoris In order to metabolize methanol as its sole carbon source, Pichia pastoris must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for O 2 .
  • alcohol oxidase produced from the AOX1 gene comprises up to approximately 30% of the total soluble protein in Pichia pastoris. See, Ellis, S.B., et al, Mol. Cell. Biol. 5:1111-21 (1985); Koutz, P.J, et al, Yeast 5:167-77 (1989); Tschopp, J.F., et al, Nucl. Acids Res. 15:3859-76 (1987).
  • heterologous coding sequence such as, for example, a polynucleotide of the present invention, under the transcriptional regulation of all or part of the A 0X1 regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol.
  • the plasmid vector pPIC9K is used to express DNA encoding a polypeptide of the invention, as set forth herein, in a Pichea yeast system essentially as described in "Pichia Protocols: Methods in Molecular Biology," D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998.
  • This expression vector allows expression and secretion of a polypeptide of the invention by virtue of the strong AOX1 promoter linked to the Pichia pastoris alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.
  • PHO alkaline phosphatase
  • yeast vectors could be used in place of pPIC9K, such as, pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHIL-D2, pHIL-Sl, ⁇ PIC3.5K, and PAO815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.
  • high-level expression of a heterologous coding sequence such as, for example, a polynucleotide of the present invention
  • a heterologous coding sequence such as, for example, a polynucleotide of the present invention
  • an expression vector such as, for example, pGAPZ or pGAPZalpha
  • the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides.
  • endogenous genetic material e.g., coding sequence
  • genetic material e.g., heterologous polynucleotide sequences
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous polynucleotide sequences via homologous recombination
  • heterologous control regions e.g., promoter and/or enhancer
  • endogenous polynucleotide sequences via homologous recombination
  • polypeptides of the invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller et al., Nature, 310:105-111 (1984)).
  • a polypeptide corresponding to a fragment of a polypeptide can be synthesized by use of a peptide synthesizer.
  • nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the polypeptide sequence.
  • Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4- diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b- methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid
  • the invention encompasses polypeptides ofthe present invention which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH 4 ; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.
  • Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression.
  • the polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation ofthe protein.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include iodine ( 121 1, 123 I, 125 I, 131 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( ⁇ In, 112 In, 113m In, 115 ⁇ Tn), technetium ( 99 T
  • a polypeptide of the present invention or fragment or variant thereof is attached to macrocyclic chelators that associate with radiometal ions, including but not limited to, 177 Lu, 90 Y, 166 Ho, and 153 Sm, to polypeptides.
  • the radiometal ion associated with the macrocyclic chelators is ⁇ n In.
  • the radiometal ion associated with the macrocyclic chelator is 90 Y.
  • the macrocyclic chelator is l,4,7,10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid (DOTA).
  • DOTA is attached to an antibody of the invention or fragment thereof via a linker molecule.
  • linker molecules useful for conjugating DOTA to a polypeptide are commonly known in the art - see, for example, DeNardo et al, Clin Cancer Res. 4(10):2483-90 (1998); Peterson et al, Bioconjug. Chem. 10(4):553-7 (1999); and Zimmerman et al, Nucl. Med. Biol. 26(8):943-50 (1999); which are hereby incorporated by reference in their entirety. 4]
  • the musculoskeletal system associated proteins of the invention may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art.
  • Musculoskeletal system associated polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic musculoskeletal system associated polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
  • Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cysteine, formation of pyroglutamate, formylation, gamma- carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
  • chemically modified derivatives of the polypeptides of the invention which may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337).
  • the chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like.
  • the polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about” indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing.
  • Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects ofthe polyethylene glycol to a therapeutic protein or analog).
  • the polyethylene glycol may have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa.
  • the polyethylene glycol may have a branched structure.
  • Branched polyethylene glycols are described, for example, in U.S. Patent No. 5,643,575; Morpurgo et al, Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al., Nucleosides Nucleotides 18:2745-2750 (1999); and Caliceti et al., Bioconjug. Chem. 10:638-646 (1999), the disclosures of each of which are incorporated herein by reference.
  • polyethylene glycol molecules should be attached to the protein with consideration of effects on functional or antigenic domains ofthe protein.
  • attachment methods available to those skilled in the art, such as, for example, the method disclosed in EP 0 401 384 (coupling PEG to G-CSF), herein incorporated by reference; see also Malik et al., Exp. Hematol. 20:1028-1035 (1992), reporting pegylation of GM-CSF using tresyl chloride.
  • polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as a free amino or carboxyl group.
  • Reactive groups are those to which an activated polyethylene glycol molecule may be bound.
  • the amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-teraiinal amino acid residue.
  • Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.
  • polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues.
  • polyethylene glycol can be linked to proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues.
  • One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) of the protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) ofthe protein.
  • N-terminus Using polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein.
  • the method of obtaining the N-terminally pegylated preparation i.e., separating this moiety from other monopegylated moieties if necessary
  • Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.
  • pegylation of the proteins of the invention may be accomplished by any number of means.
  • polyethylene glycol may be attached to the protein either directly or by an intervening linker.
  • Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992); Francis et al, Intern. J. of Hematol. 68:1- 18 (1998); U.S. Patent No. 4,002,531; U.S. Patent No. 5,349,052; WO 95/06058; and WO 98/32466, the disclosures of each of which are incorporated herein by reference.
  • One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol (MPEG) using tresylchloride (ClSO 2 CH 2 CF 3 ).
  • MPEG monmethoxy polyethylene glycol
  • ClSO 2 CH 2 CF 3 tresylchloride
  • polyethylene glycol is directly attached to amine groups of the protein.
  • the invention includes protein-polyethylene glycol conjugates produced by reacting proteins of the invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group.
  • Polyethylene glycol can also be attached to proteins using a number of different intervening linkers.
  • U.S. Patent No. 5,612,460 discloses urethane linkers for connecting polyethylene glycol to proteins.
  • Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced by reaction of proteins with compounds such as MPEG- succinimidylsuccinate, MPEG activated with l,l'-carbonyldiimidazole, MPEG- 2,4,5-trichloropenylcarbonate, MPEG-p-nitrophenolcarbonate, and various MPEG- succinate derivatives.
  • the number of polyethylene glycol moieties attached to each protein ofthe invention may also vary.
  • the pegylated proteins of the invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules.
  • the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249- 304 (1992).
  • the musculoskeletal system associated polypeptides of the invention can be recovered and purified from chemical synthesis and recombinant cell cultures by standard methods which include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography (“HPLC”) is employed for purification. Well known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and/or purification.
  • HPLC high performance liquid chromatography
  • Musculoskeletal system associated polynucleotides and polypeptides may be used in accordance with the present invention for a variety of applications, particularly those that make use of the chemical and biological properties of musculoskeletal system associated antigens.
  • diseases associated with musculoskeletal system such as e.g., bone disorders (e.g., osteoporosis, osteomyelitis, Paget's disease, and sciolosis); joint disorders (e.g., osteoarthritis, rheumatoid arthritis, infectious arthritis, systemic lupus erythematosus, gout, and Reiter's syndrome); ligament, tendon, and bursa disorders (e.g., bursitis, tendinitis, and tenosynovitis); muscle disorders (e.g., muscular dystrophy, Pompe's disease, periodic paralysis, polymyalgia rheumatica, polymyos
  • muscle disorders e.g., muscular dystrophy, Pompe's disease
  • polynucleotides expressed in a particular tissue type are used to detect, diagnose, treat, prevent and/or prognose disorders associated with the tissue type.
  • the polypeptides of the invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention relates to monomers and multimers of the polypeptides of the invention, their preparation, and compositions (preferably, Therapeutics) containing them.
  • the polypeptides of the invention are monomers, dimers, trimers or tetramers.
  • the multimers of the invention are at least dimers, at least trimers, or at least tetramers.
  • Multimers encompassed by the invention may be homomers or heteromers.
  • homomer refers to a multimer containing only polypeptides corresponding to a protein of the invention (e.g., the amino acid sequence of SEQ ID NO:Y, an amino acid sequence encoded by SEQ ID NO:X or the complement of SEQ ID NO:X, the amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or an amino acid sequence encoded by cDNA contained in Clone ID NO:Z (including fragments, variants, splice variants, and fusion proteins, corresponding to these as described herein)).
  • These homomers may contain polypeptides having identical or different amino acid sequences.
  • a homomer of the invention is a multimer containing only polypeptides having an identical amino acid sequence. In another specific embodiment, a homomer of the invention is a multimer containing polypeptides having different amino acid sequences. In specific embodiments, the multimer of the invention is a homodimer (e.g., containing two polypeptides having identical or different amino acid sequences) or a homotrimer (e.g., containing three polypeptides having identical and/or different amino acid sequences). In additional embodiments, the homomeric multimer of the invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.
  • heteromer refers to a multimer containing two or more heterologous polypeptides (i.e., polypeptides of different proteins) in addition to the polypeptides of the invention.
  • the multimer of the invention is a heterodimer, a heterotrimer, or a heterotetramer.
  • the heteromeric multimer of the invention is at least a heterodimer, at least a heterotrimer, or at least a heterotetramer.
  • Multimers of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked by, for example, liposome formation.
  • multimers of the invention such as, for example, homodimers or homotrimers, are formed when polypeptides of the invention contact one another in solution.
  • heteromultimers of the invention such as, for example, heterotrimers or heterotetramers, are formed when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution.
  • multimers of the invention are formed by covalent associations with and/or between the polypeptides of the invention.
  • covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ID NO:Y, encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or encoded by the cDNA contained in Clone ID NO:Z).
  • the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide.
  • the covalent associations are the consequence of chemical or recombinant manipulation.
  • covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a fusion protein.
  • covalent associations are between the heterologous sequence contained in a fusion protein of the invention (see, e.g., U.S. Patent Number 5,478,925).
  • the covalent associations are between the heterologous sequence contained in a Fc fusion protein of the invention (as described herein).
  • covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another protein that is capable of forming covalently associated multimers, such as for example, osteoprotegerin (see, e.g., International Publication NO: WO 98/49305, the contents of which are herein incorporated by reference in its entirety).
  • two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incorporated by reference). Proteins comprising multiple polypeptides ofthe invention separated by peptide linkers may be produced using conventional recombinant DNA technology.
  • Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization of the proteins in which they are found.
  • Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, (1988)), and have since been found in a variety of different proteins.
  • leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize.
  • leucine zipper domains suitable for producing soluble multimeric proteins of the invention are those described in PCT application WO 94/10308, hereby incorporated by reference.
  • Recombinant fusion proteins comprising a polypeptide of the invention fused to a polypeptide sequence that dimerizes or trimerizes in solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art.
  • Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity.
  • Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers.
  • One example is a leucine zipper derived from lung surfactant protein D (SPD), as described in Hoppe et al. (FEBS Letters 344:191, (1994)) and in U.S. patent application Ser. No. 08/446,922, hereby incorporated by reference.
  • Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides ofthe invention.
  • proteins of the invention are associated by interactions between Flag® polypeptide sequence contained in fusion proteins of the invention containing Flag® polypeptide sequence.
  • proteins of the invention are associated by interactions between heterologous polypeptide sequence contained in Flag® fusion proteins ofthe invention and anti-Flag® antibody.
  • the multimers of the invention may be generated using chemical tecliniques known in the art.
  • polypeptides desired to be contained in the multimers ofthe invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., U.S. Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • multimers of the invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., U.S. Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • polypeptides of the invention may be routinely modified by the addition of cysteine or biotin to the C-terminus or N-terminus of the polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., U.S. Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer of the invention (see, e.g., U.S. Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • multimers of the invention may be generated using genetic engineering techniques known in the art.
  • polypeptides contained in multimers of the invention are produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., U.S. Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • polynucleotides coding for a homodimer of the invention are generated by ligating a polynucleotide sequence encoding a polypeptide of the invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product of the polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., U..S Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • recombinant techniques described herein or otherwise known in the art are applied to generate recombinant polypeptides of the invention which contain a transmembrane domain (or hydrophobic or signal peptide) and which can be incorporated by membrane reconstitution techniques into liposomes (see, e.g., U.S. Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
  • polypeptides ofthe invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant ofthe invention (e.g., a polypeptide or fragment or variant ofthe amino acid sequence of SEQ ID NO:Y or a polypeptide encoded by the cDNA contained in Clone ID NO:Z, and/or an epitope, ofthe present invention) as determined by immunoassays well known in the art for assaying specific antibody-antigen binding.
  • TCR T-cell antigen receptors
  • Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies ofthe invention), intracellularly-made antibodies (i.e., intrabodies), and epitope-binding fragments of any of the above.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen.
  • the immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule.
  • the immunoglobulin molecules of the invention are IgGl.
  • the immunoglobulin molecules ofthe invention are IgG4.
  • the antibodies are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain.
  • Antigen-binding antibody fragments, including single-chain antibodies may comprise the variable region(s) alone or in combination with the entirety or a portion ofthe following: hinge region, CHI, CH2, and CH3 domains. Also included in the invention are antigen- binding fragments also comprising any combination of variable region(s) with a hinge region, CHI, CH2, and CH3 domains.
  • the antibodies of the invention may be from any animal origin including birds and mammals.
  • the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken.
  • "human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al.
  • the antibodies of the present invention may be monospecif ⁇ c, bispecific, trispecific or of greater multispecificity.
  • Multispecific antibodies may be specific for different epitopes of a polypeptide ofthe present invention or may be specific for both a polypeptide ofthe present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material.
  • a heterologous epitope such as a heterologous polypeptide or solid support material.
  • Antibodies ofthe present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention, which they recognize or specifically bind.
  • the epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N-terminal and C-terminal positions, or by size in contiguous amino acid residues, or listed in the Tables and Figures.
  • Preferred epitopes of the invention include those shown in column 6 of Table 1 A, as well as polynucleotides that encode these epitopes.
  • Antibodies which specifically bind any epitope or polypeptide of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides ofthe present invention, and allows for the exclusion ofthe same.
  • Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%>, at least 75%o, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In specific embodiments, antibodies of the present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof.
  • Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%., less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention.
  • the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein.
  • antibodies which bind polypeptides encoded by polynucleotides, which hybridize to a polynucleotide of the present invention under stringent hybridization conditions (as described herein).
  • Antibodies of the present invention may also be described or specified in terms of their binding affinity to a polypeptide of the invention.
  • Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10 "2 M, 10 "2 M, 5 X 10 "3 M, 10 “3 M, 5 X 10 -4 M, 10 "4 M, 5 X 10 "5 M, 10 "5 M, 5 X 10 "6 M, 10- 6 M, 5 X 10 "7 M, 10 7 M, 5 X 10 "8 M, 10 '8 M, 5 X 10 "9 M, 10 '9 M, 5 X 10 "10 M, 10 '10 M, 5 X 10 "11 M, 10 -11 M, 5 X 10 '12 M, 10 "12 M, 5 X 10 "13 M, 10 "13 M, 5 X 10 "14 M, 10 “ 14 M, 5 X 10 "15 M, or lO "15 M.
  • the invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of the invention as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herei-n.
  • the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.
  • Antibodies of the present invention may act as agonists or antagonists of the polypeptides ofthe present invention.
  • the present invention includes antibodies, which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully.
  • antibodies of the present invention bind an antigenic epitope disclosed herein, or a portion thereof
  • the invention features both receptor- specific antibodies and ligand-specific antibodies.
  • the invention also features receptor-specific antibodies, which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art.
  • receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra).
  • antibodies are provided that inhibit ligand activity or receptor activity by at least 95%>, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%) ofthe activity in absence ofthe antibody.
  • the invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand.
  • neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor.
  • antibodies, which activate the receptor may act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor.
  • the antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides of the invention disclosed herein.
  • the above antibody agonists can be made using methods known in the art.
  • Antibodies of the present invention may be used, for example, to purify, detect, and target the polypeptides ofthe present invention, including both in vitro and in vivo diagnostic and therapeutic methods.
  • the antibodies have utility in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides of the present invention in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); incorporated by reference herein in its entirety.
  • the antibodies of the present invention may be used either alone or in combination with other compositions.
  • the antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C- terminus or chemically conjugated (including covalent and non-covalent conjugations) to polypeptides or other compositions.
  • antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5,314,995; and EP 396,387; the disclosures of which are incorporated herein by reference in their entireties.
  • the antibodies of the invention include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response.
  • the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc.
  • the derivative may contain one or more non-classical amino acids.
  • the antibodies of the present invention may be generated by any suitable method known in the art. Polyclonal antibodies to an antigen-of- interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen.
  • adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
  • Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof.
  • monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).
  • the term “monoclonal antibody” as used herein is not limited to antibodies produced through hybridoma technology.
  • the term “monoclonal antibody” refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
  • mice can be immunized with a polypeptide of the invention or a cell expressing such peptide.
  • an immune response e.g., antibodies specific for the antigen are detected in the mouse serum
  • the mouse spleen is harvested and splenocytes isolated.
  • the splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution.
  • hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention.
  • Ascites fluid which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.
  • the present invention provides methods of generating monoclonal antibodies, as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide ofthe invention.
  • EBV Epstein Barr Virus
  • Protocols for generating EBV-transformed B cell lines are commonly known in the art, such as, for example, the protocol outlined in Chapter 7.22 of Current Protocols in Immunology, Coligan et al., Eds., 1994, John Wiley & Sons, NY, which is hereby inco ⁇ orated in its entirety by reference herein.
  • the source of B cells for transformation is commonly human peripheral blood, but B cells for transformation may also be derived from other sources including, but not limited to, lymph nodes, tonsil, spleen, tumor tissue, and infected tissues.
  • Tissues are generally made into single cell suspensions prior to EBV transformation. Additionally, steps may be taken to either physically remove or inactivate T cells (e.g., by treatment with cyclosporin A) in B cell-containing samples, because T cells from individuals seropositive for anti-EBV antibodies can suppress B cell immortalization by EBV.
  • EBV lines are generally polyclonal. However, over prolonged periods of cell cultures, EBV lines may become monoclonal or polyclonal as a result of the selective outgrowth of particular B cell clones.
  • polyclonal EBV transformed lines may be subcloned (e.g., by limiting dilution culture) or fused with a suitable fusion partner and plated at limiting dilution to obtain monoclonal B cell lines.
  • suitable fusion partners for EBV transformed cell lines include mouse myeloma cell lines (e.g., SP2/0, X63-Ag8.653), heteromyeloma cell lines (human x mouse; e.g, SPAM-8, SBC-H20, and CB-F7), and human cell lines (e.g., GM 1500, SKO-007, RPMI 8226, and KR-4).
  • the present invention also provides a method of generating polyclonal or monoclonal human antibodies against polypeptides ofthe invention or fragments thereof, comprising EB V-transformation of human B cells.
  • Antibody fragments which recognize specific epitopes may be generated by known techniques.
  • Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments).
  • F(ab')2 fragments contain the variable region, the light chain constant region and the CHI domain ofthe heavy chain.
  • the antibodies of the present invention can also be generated using various phage display methods known in the art and as discussed in detail in the Examples (e.g., Example 10).
  • phage display methods functional antibody domains are displayed on the surface of phage particles, which carry the polynucleotide sequences encoding them.
  • phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine).
  • Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead.
  • Phage used in these methods are typically filamentous phage including fd and Ml 3 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein.
  • Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol.
  • the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below.
  • a chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region.
  • Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al., (1989) J. Immunol. Methods 125:191-202; U.S. Patent Nos. 5,807,715; 4,816,567; and 4,816397, which are incorporated herein by reference in their entirety.
  • Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non- human species and a framework regions from a human immunoglobulin molecule.
  • CDRs complementarity determining regions
  • framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding.
  • These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Patent No.
  • Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498 (1991); Studnicka et al., Protein Engineering 7(6):805- 814 (1994); Roguska. et al., PNAS 91:969-973 (1994)), and chain shuffling (U.S. Patent No. 5,565,332).
  • CDR-grafting EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089)
  • veneering or resurfacing EP 592,106; EP 519,596; Padlan, Molecular Immunology 28
  • Human antibodies are particularly desirable for therapeutic treatment of human patients.
  • Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.
  • Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes.
  • the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells.
  • the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes.
  • the mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production.
  • the modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice.
  • the chimeric mice are then bred to produce homozygous offspring, which express human antibodies.
  • the transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide ofthe invention.
  • Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology.
  • the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
  • Completely human antibodies, which recognize a selected epitope can be generated using a technique referred to as "guided selection.”
  • a selected non-human monoclonal antibody e.g., a mouse antibody

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Cette invention se rapporte à de nouveaux polynucléotides liés au système musculosquelettique et aux polypeptides codés par ces polynucléotides, appelés collectivement 'antigènes du système musculosquelettique', ainsi qu'à l'utilisation de ces antigènes du système musculosquelettique pour détecter des troubles du système musculosquelettique, en particulier la présence d'un cancer et de métastases de cancers. Cette invention concerne plus spécifiquement des molécules d'acide nucléiques associées au système musculosquelettique et isolées, qui codent ces nouveaux polypeptides associés au système musculosquelettique, ainsi que de nouveaux polypeptides et anticorps du système musculosquelettique qui se fixent à ces polypeptides. Cette invention concerne également des vecteurs, des cellules hôtes et des procédés synthétiques et de recombinaison servant à produire des polynucléotides et/ou des polypeptides associés au système musculosquelettique humain, ainsi que des procédés diagnostiques et thérapeutiques servant dans le diagnostic, le traitement, la prévention et/ou le pronostic des troubles liés au système musculosquelettique, y compris le cancer des tissus musculosquelettiques et des procédés thérapeutiques de traitement de ces troubles. Cette invention concerne enfin des procédés de criblage servant à identifier des agonistes et des antagonistes de ces polynucléotides et polypeptides, ainsi que des procédés et/ou des compositions servant à inhiber la production et les fonctions de ces polypeptides.
EP01912655A 2000-01-31 2001-01-17 Acides nucleiques, proteines et antigenes Withdrawn EP1261703A1 (fr)

Applications Claiming Priority (235)

Application Number Priority Date Filing Date Title
US17906500P 2000-01-31 2000-01-31
US179065P 2000-01-31
US18062800P 2000-02-04 2000-02-04
US180628P 2000-02-04
US18466400P 2000-02-24 2000-02-24
US184664P 2000-02-24
US18635000P 2000-03-02 2000-03-02
US186350P 2000-03-02
US18987400P 2000-03-16 2000-03-16
US189874P 2000-03-16
US19007600P 2000-03-17 2000-03-17
US190076P 2000-03-17
US19812300P 2000-04-18 2000-04-18
US198123P 2000-04-18
US20551500P 2000-05-19 2000-05-19
US205515P 2000-05-19
US20946700P 2000-06-07 2000-06-07
US209467P 2000-06-07
US21488600P 2000-06-28 2000-06-28
US214886P 2000-06-28
US21513500P 2000-06-30 2000-06-30
US215135P 2000-06-30
US21664700P 2000-07-07 2000-07-07
US21688000P 2000-07-07 2000-07-07
US216880P 2000-07-07
US216647P 2000-07-07
US21749600P 2000-07-11 2000-07-11
US21748700P 2000-07-11 2000-07-11
US217487P 2000-07-11
US217496P 2000-07-11
US21829000P 2000-07-14 2000-07-14
US218290P 2000-07-14
US22096300P 2000-07-26 2000-07-26
US22096400P 2000-07-26 2000-07-26
US220964P 2000-07-26
US220963P 2000-07-26
US22575800P 2000-08-14 2000-08-14
US22544700P 2000-08-14 2000-08-14
US22575700P 2000-08-14 2000-08-14
US22575900P 2000-08-14 2000-08-14
US22521400P 2000-08-14 2000-08-14
US22526800P 2000-08-14 2000-08-14
US22526600P 2000-08-14 2000-08-14
US22451800P 2000-08-14 2000-08-14
US22527000P 2000-08-14 2000-08-14
US22451900P 2000-08-14 2000-08-14
US22526700P 2000-08-14 2000-08-14
US22521300P 2000-08-14 2000-08-14
US225214P 2000-08-14
US225447P 2000-08-14
US225270P 2000-08-14
US225267P 2000-08-14
US224519P 2000-08-14
US225759P 2000-08-14
US225213P 2000-08-14
US224518P 2000-08-14
US225758P 2000-08-14
US225266P 2000-08-14
US225268P 2000-08-14
US225757P 2000-08-14
US22627900P 2000-08-18 2000-08-18
US226279P 2000-08-18
US22686800P 2000-08-22 2000-08-22
US22668100P 2000-08-22 2000-08-22
US22718200P 2000-08-22 2000-08-22
US226681P 2000-08-22
US227182P 2000-08-22
US226868P 2000-08-22
US22700900P 2000-08-23 2000-08-23
US227009P 2000-08-23
US22892400P 2000-08-30 2000-08-30
US228924P 2000-08-30
US22934400P 2000-09-01 2000-09-01
US22934300P 2000-09-01 2000-09-01
US22934500P 2000-09-01 2000-09-01
US22928700P 2000-09-01 2000-09-01
US229287P 2000-09-01
US229344P 2000-09-01
US229345P 2000-09-01
US229343P 2000-09-01
US22950900P 2000-09-05 2000-09-05
US22951300P 2000-09-05 2000-09-05
US229513P 2000-09-05
US229509P 2000-09-05
US23043700P 2000-09-06 2000-09-06
US23043800P 2000-09-06 2000-09-06
US230438P 2000-09-06
US230437P 2000-09-06
US23124400P 2000-09-08 2000-09-08
US23141400P 2000-09-08 2000-09-08
US23124300P 2000-09-08 2000-09-08
US23124200P 2000-09-08 2000-09-08
US23141300P 2000-09-08 2000-09-08
US23208100P 2000-09-08 2000-09-08
US23208000P 2000-09-08 2000-09-08
US232081P 2000-09-08
US232080P 2000-09-08
US231244P 2000-09-08
US231242P 2000-09-08
US231414P 2000-09-08
US231413P 2000-09-08
US231243P 2000-09-08
US23196800P 2000-09-12 2000-09-12
US231968P 2000-09-12
US23239900P 2000-09-14 2000-09-14
US23306400P 2000-09-14 2000-09-14
US23240000P 2000-09-14 2000-09-14
US23239800P 2000-09-14 2000-09-14
US23239700P 2000-09-14 2000-09-14
US23306300P 2000-09-14 2000-09-14
US23306500P 2000-09-14 2000-09-14
US23240100P 2000-09-14 2000-09-14
US233065P 2000-09-14
US232400P 2000-09-14
US233064P 2000-09-14
US232398P 2000-09-14
US233063P 2000-09-14
US232401P 2000-09-14
US232397P 2000-09-14
US232399P 2000-09-14
US23422300P 2000-09-21 2000-09-21
US234223P 2000-09-21
US234274P 2000-09-21
US234998P 2000-09-25
US234997P 2000-09-25
US235484P 2000-09-26
US235836P 2000-09-27
US235834P 2000-09-27
US236367P 2000-09-29
US236327P 2000-09-29
US236370P 2000-09-29
US236368P 2000-09-29
US236369P 2000-09-29
US237038P 2000-10-02
US236802P 2000-10-02
US237039P 2000-10-02
US237037P 2000-10-02
US237040P 2000-10-02
US239937P 2000-10-13
US239935P 2000-10-13
US241786P 2000-10-20
US241809P 2000-10-20
US241221P 2000-10-20
US241808P 2000-10-20
US241787P 2000-10-20
US241826P 2000-10-20
US240960P 2000-10-20
US241785P 2000-10-20
US244617P 2000-11-01
US24661300P 2000-11-08 2000-11-08
US24660900P 2000-11-08 2000-11-08
US24647800P 2000-11-08 2000-11-08
US24652400P 2000-11-08 2000-11-08
US24652300P 2000-11-08 2000-11-08
US246527P 2000-11-08
US246524P 2000-11-08
US246611P 2000-11-08
US246609P 2000-11-08
US246526P 2000-11-08
US246525P 2000-11-08
US246610P 2000-11-08
US246477P 2000-11-08
US246476P 2000-11-08
US246532P 2000-11-08
US246528P 2000-11-08
US246478P 2000-11-08
US246523P 2000-11-08
US246475P 2000-11-08
US246474P 2000-11-08
US246613P 2000-11-08
US24921500P 2000-11-17 2000-11-17
US24920900P 2000-11-17 2000-11-17
US24926400P 2000-11-17 2000-11-17
US24921700P 2000-11-17 2000-11-17
US24924500P 2000-11-17 2000-11-17
US24929700P 2000-11-17 2000-11-17
US24921800P 2000-11-17 2000-11-17
US24921400P 2000-11-17 2000-11-17
US24921100P 2000-11-17 2000-11-17
US24921600P 2000-11-17 2000-11-17
US24921200P 2000-11-17 2000-11-17
US24921000P 2000-11-17 2000-11-17
US24924400P 2000-11-17 2000-11-17
US24926500P 2000-11-17 2000-11-17
US24920800P 2000-11-17 2000-11-17
US24920700P 2000-11-17 2000-11-17
US24929900P 2000-11-17 2000-11-17
US24921300P 2000-11-17 2000-11-17
US24930000P 2000-11-17 2000-11-17
US249217P 2000-11-17
US249244P 2000-11-17
US249264P 2000-11-17
US249216P 2000-11-17
US249300P 2000-11-17
US249299P 2000-11-17
US249213P 2000-11-17
US249209P 2000-11-17
US249211P 2000-11-17
US249212P 2000-11-17
US249210P 2000-11-17
US249207P 2000-11-17
US249265P 2000-11-17
US249297P 2000-11-17
US249208P 2000-11-17
US249245P 2000-11-17
US249218P 2000-11-17
US249214P 2000-11-17
US249215P 2000-11-17
US25016000P 2000-12-01 2000-12-01
US25039100P 2000-12-01 2000-12-01
US250391P 2000-12-01
US250160P 2000-12-01
US25671900P 2000-12-05 2000-12-05
US25198800P 2000-12-05 2000-12-05
US25103000P 2000-12-05 2000-12-05
US251988P 2000-12-05
US256719P 2000-12-05
US251030P 2000-12-05
US25147900P 2000-12-06 2000-12-06
US251479P 2000-12-06
US25199000P 2000-12-08 2000-12-08
US25185600P 2000-12-08 2000-12-08
US25186800P 2000-12-08 2000-12-08
US25198900P 2000-12-08 2000-12-08
US25186900P 2000-12-08 2000-12-08
US251868P 2000-12-08
US251856P 2000-12-08
US251990P 2000-12-08
US251869P 2000-12-08
US251989P 2000-12-08
US25409700P 2000-12-11 2000-12-11
US254097P 2000-12-11
US25967801P 2001-01-05 2001-01-05
US259678P 2001-01-05
PCT/US2001/001338 WO2001055367A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et antigenes

Publications (1)

Publication Number Publication Date
EP1261703A1 true EP1261703A1 (fr) 2002-12-04

Family

ID=27587097

Family Applications (38)

Application Number Title Priority Date Filing Date
EP01912656A Withdrawn EP1252176A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910335A Withdrawn EP1254218A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910331A Withdrawn EP1259540A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912664A Withdrawn EP1255778A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912662A Withdrawn EP1255767A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912652A Withdrawn EP1254171A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01914331A Withdrawn EP1254173A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910326A Withdrawn EP1252289A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910325A Withdrawn EP1254219A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01914330A Withdrawn EP1252297A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912649A Withdrawn EP1261380A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910337A Withdrawn EP1255776A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910328A Withdrawn EP1261634A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01920103A Withdrawn EP1261637A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912657A Withdrawn EP1261618A2 (fr) 2000-01-31 2001-01-17 Acides ncleiques, proteines et anticorps
EP01908617A Withdrawn EP1252290A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912654A Withdrawn EP1254172A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01922230A Withdrawn EP1259526A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01908611A Withdrawn EP1261633A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910329A Withdrawn EP1255766A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924085A Withdrawn EP1261745A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01926335A Withdrawn EP1263944A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924081A Withdrawn EP1254153A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910332A Withdrawn EP1255864A1 (fr) 2000-01-31 2001-01-17 Acides nucl iques, proteines et anticorps
EP01916068A Withdrawn EP1255817A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912655A Withdrawn EP1261703A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et antigenes
EP01912658A Withdrawn EP1254248A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924084A Withdrawn EP1265910A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924086A Withdrawn EP1259531A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910330A Withdrawn EP1255768A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines, et anticorps
EP01910334A Withdrawn EP1259642A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912651A Withdrawn EP1252303A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912650A Withdrawn EP1255777A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910336A Withdrawn EP1252302A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01920102A Withdrawn EP1254152A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines, et anticorps
EP01928288A Withdrawn EP1254147A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01918156A Withdrawn EP1254151A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines, et anticorps
EP01912653A Withdrawn EP1252185A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps

Family Applications Before (25)

Application Number Title Priority Date Filing Date
EP01912656A Withdrawn EP1252176A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910335A Withdrawn EP1254218A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910331A Withdrawn EP1259540A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912664A Withdrawn EP1255778A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912662A Withdrawn EP1255767A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912652A Withdrawn EP1254171A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01914331A Withdrawn EP1254173A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910326A Withdrawn EP1252289A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910325A Withdrawn EP1254219A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01914330A Withdrawn EP1252297A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912649A Withdrawn EP1261380A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910337A Withdrawn EP1255776A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910328A Withdrawn EP1261634A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01920103A Withdrawn EP1261637A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912657A Withdrawn EP1261618A2 (fr) 2000-01-31 2001-01-17 Acides ncleiques, proteines et anticorps
EP01908617A Withdrawn EP1252290A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912654A Withdrawn EP1254172A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01922230A Withdrawn EP1259526A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01908611A Withdrawn EP1261633A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910329A Withdrawn EP1255766A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924085A Withdrawn EP1261745A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01926335A Withdrawn EP1263944A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924081A Withdrawn EP1254153A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910332A Withdrawn EP1255864A1 (fr) 2000-01-31 2001-01-17 Acides nucl iques, proteines et anticorps
EP01916068A Withdrawn EP1255817A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps

Family Applications After (12)

Application Number Title Priority Date Filing Date
EP01912658A Withdrawn EP1254248A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924084A Withdrawn EP1265910A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01924086A Withdrawn EP1259531A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910330A Withdrawn EP1255768A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines, et anticorps
EP01910334A Withdrawn EP1259642A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912651A Withdrawn EP1252303A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01912650A Withdrawn EP1255777A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01910336A Withdrawn EP1252302A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01920102A Withdrawn EP1254152A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines, et anticorps
EP01928288A Withdrawn EP1254147A2 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps
EP01918156A Withdrawn EP1254151A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines, et anticorps
EP01912653A Withdrawn EP1252185A1 (fr) 2000-01-31 2001-01-17 Acides nucleiques, proteines et anticorps

Country Status (1)

Country Link
EP (38) EP1252176A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9433675B2 (en) 2012-05-23 2016-09-06 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
US9770487B2 (en) 2013-02-20 2017-09-26 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic adenocarcinoma
US10093736B2 (en) 2012-11-13 2018-10-09 Biontech Ag Agents for treatment of claudin expressing cancer diseases
US10137195B2 (en) 2013-03-18 2018-11-27 Ganymed Pharmaceuticals Gmbh Therapy involving antibodies against Claudin 18.2 for treatment of cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0155367A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9433675B2 (en) 2012-05-23 2016-09-06 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
US10022444B2 (en) 2012-05-23 2018-07-17 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against Claudin 18.2 for treatment of cancer
US10813996B2 (en) 2012-05-23 2020-10-27 Astellas Pharma Inc. Combination therapy involving antibodies against Claudin 18.2 for treatment of cancer
US12059464B2 (en) 2012-05-23 2024-08-13 Astellas Pharma Inc. Combination therapy involving antibodies against Claudin 18.2 for treatment of cancer
US10093736B2 (en) 2012-11-13 2018-10-09 Biontech Ag Agents for treatment of claudin expressing cancer diseases
US9770487B2 (en) 2013-02-20 2017-09-26 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic adenocarcinoma
US10314890B2 (en) 2013-02-20 2019-06-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic cancer
US10946069B2 (en) 2013-02-20 2021-03-16 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic cancer
US11826402B2 (en) 2013-02-20 2023-11-28 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of metastatic pancreatic adenocarcinoma
US10137195B2 (en) 2013-03-18 2018-11-27 Ganymed Pharmaceuticals Gmbh Therapy involving antibodies against Claudin 18.2 for treatment of cancer
US11395852B2 (en) 2013-03-18 2022-07-26 Astellas Pharma Inc. Therapy involving antibodies against Claudin 18.2 for treatment of cancer

Also Published As

Publication number Publication date
EP1259642A1 (fr) 2002-11-27
EP1261634A1 (fr) 2002-12-04
EP1255864A1 (fr) 2002-11-13
EP1254219A2 (fr) 2002-11-06
EP1255767A2 (fr) 2002-11-13
EP1254152A2 (fr) 2002-11-06
EP1254147A2 (fr) 2002-11-06
EP1254173A1 (fr) 2002-11-06
EP1255778A2 (fr) 2002-11-13
EP1255766A2 (fr) 2002-11-13
EP1255817A1 (fr) 2002-11-13
EP1261637A1 (fr) 2002-12-04
EP1261633A2 (fr) 2002-12-04
EP1254248A2 (fr) 2002-11-06
EP1252297A1 (fr) 2002-10-30
EP1263944A2 (fr) 2002-12-11
EP1252303A2 (fr) 2002-10-30
EP1254218A2 (fr) 2002-11-06
EP1259526A2 (fr) 2002-11-27
EP1252185A1 (fr) 2002-10-30
EP1254153A2 (fr) 2002-11-06
EP1252176A2 (fr) 2002-10-30
EP1252290A1 (fr) 2002-10-30
EP1252302A2 (fr) 2002-10-30
EP1259540A1 (fr) 2002-11-27
EP1254171A1 (fr) 2002-11-06
EP1261380A1 (fr) 2002-12-04
EP1261618A2 (fr) 2002-12-04
EP1255768A2 (fr) 2002-11-13
EP1254151A1 (fr) 2002-11-06
EP1259531A2 (fr) 2002-11-27
EP1255777A1 (fr) 2002-11-13
EP1265910A2 (fr) 2002-12-18
EP1255776A1 (fr) 2002-11-13
EP1254172A1 (fr) 2002-11-06
EP1261745A2 (fr) 2002-12-04
EP1252289A2 (fr) 2002-10-30

Similar Documents

Publication Publication Date Title
WO2001055367A1 (fr) Acides nucleiques, proteines et antigenes
WO2002000677A1 (fr) Acides nucleiques, proteines et anticorps
WO2001090304A2 (fr) Acides nucleiques, proteines et anticorps
WO2002102994A2 (fr) Proteines secretees humaines
WO2001055317A2 (fr) Acides nucleiques, proteines et anticorps
WO2001059063A2 (fr) Acides nucleiques, proteines et anticorps
EP1392817A2 (fr) Proteines secretees par l'etre humain
WO2001055326A2 (fr) Acides nucleiques, proteines et anticorps
WO2001055441A2 (fr) Acides nucléiques, protéines et anticorps
EP1370651A1 (fr) 70 proteines humaines secretees
EP1261703A1 (fr) Acides nucleiques, proteines et antigenes
WO2002057420A2 (fr) 50 proteines secretees humaines
WO2001055167A1 (fr) Acides nucleiques, proteines et anticorps
WO2001055162A1 (fr) Acides nucleiques, proteines et anticorps
WO2001055313A2 (fr) Acides nucleiques, proteines et anticorps
EP1252337A2 (fr) Acides nucleiques, proteines et anticorps
EP1254217A2 (fr) Acides nucl iques, prot ines et anticorps
EP1254150A2 (fr) Acides nucleiques, proteines et anticorps
EP1261742A2 (fr) Acides nucleiques, proteines et anticorps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20021126