EP1259780A1 - Measuring device for detecting a rotation angle in a contactless manner - Google Patents

Measuring device for detecting a rotation angle in a contactless manner

Info

Publication number
EP1259780A1
EP1259780A1 EP01911424A EP01911424A EP1259780A1 EP 1259780 A1 EP1259780 A1 EP 1259780A1 EP 01911424 A EP01911424 A EP 01911424A EP 01911424 A EP01911424 A EP 01911424A EP 1259780 A1 EP1259780 A1 EP 1259780A1
Authority
EP
European Patent Office
Prior art keywords
magnet
measuring device
sensitive
hall
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01911424A
Other languages
German (de)
French (fr)
Inventor
Asta Reichl
Thomas Klotzbuecher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1259780A1 publication Critical patent/EP1259780A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention is based on a measuring device for contactless detection of an angle of rotation according to the preamble of claim 1. So far, as described, for example, in DE 197 53 775.8 AI, flux guiding parts made of magnetically conductive material have been used in these measuring devices to guide the magnetic lines. This
  • measuring devices are therefore relatively large and can only be installed to a limited extent in measuring systems. Furthermore, the slope of the linear region of the measurement curve cannot be influenced sufficiently enough in this configuration.
  • a new measuring device for contactless detection of an angle of rotation has a rotor on which a magnet is arranged and a magnet-sensitive element for generating a measuring signal.
  • the rotor consists of magnetically non-conductive material and the magnet is planar and arranged parallel to a plane passing through the axis of the rotor.
  • the polarization of the magnet is diametrical to the axis. No flow parts are used with this measuring device. Further the assembly effort of this measuring device is greatly reduced. On the other hand, the linear range of the measurement curve cannot exceed 180 ° in this measuring device
  • the device according to the invention for the contactless detection of an angle of rotation with the combinations of features of claim 1 has the advantage that the two linear regions of the measurement curves of the two sensitive surfaces can be combined to form a continuously linear region up to an angle of 360 °. Despite this large angular range, the measuring device according to the invention is very small and inexpensive due to its simple construction.
  • the two sensitive Hall surfaces are preferably energized in opposite directions to one another, so that the precise rotational position of the object can be determined at any point in time or every angle of rotation of the object to be measured. This is possible simply by comparing the two output signals of the two sensitive Hall areas.
  • the two sensitive Hall surfaces are arranged on one plane.
  • the measurement signals of the two sensitive surfaces are carried separately.
  • the positioning of the two sensitive Hall surfaces is made easier, since the two surfaces must deliver the same results without matching with the same current and the same magnetic field. This applies above all to the positions shown in FIGS. 3 and 4. To that extent a complex comparison with a calibration curve, as in the known measuring devices, is not necessary.
  • the magnetically sensitive element and the magnet are preferably arranged with respect to one another in such a way that they describe a circular movement with respect to the distance x / 2 between the sensitive surfaces. This ensures simple calibration since the distance between the magnet and the magnet-sensitive element remains the same regardless of the relative angular position.
  • the magnet is preferably planar and arranged parallel to a plane passing through the axis of the rotor. On the one hand, this enables a homogeneous magnetic field in relation to the magnet-sensitive element and, on the other hand, it is insensitive to axial misalignment and its tolerance fluctuations
  • the polarization of the magnet is diametrical to the axis of the rotor.
  • a rectangular shape of the magnet with rounded corners, but also an oval or round shape of the magnet have proven to be preferred
  • the output signals of the two sensitive areas are evaluated by means of a comparison algorithm by means of which the position of the object to be measured can be determined in a simple form at any time drawing
  • FIG. 1 shows a schematic side sectional view of the measuring device according to the invention for contactless detection of an angle of rotation
  • FIG. 2 shows an enlarged illustration of the magnetically sensitive element from FIG. 1,
  • FIG. 3 is a schematic plan view of the inventive device of Figure 1, the
  • Polarization of the magnet is parallel to the orientation of the magnet-sensitive element
  • Figure 4 is a schematic plan view of the inventive device of Figure 1, the
  • Polarization of the magnet is perpendicular to the magnetically sensitive element.
  • FIG. 5 the characteristic curve of the sensitive surface 2
  • FIG. 6 the characteristic curve of the sensitive surface
  • FIG. 7 shows the superimposition of the two characteristic curves of the sensitive areas 2 and 3,
  • FIG. 8 shows an interconnected characteristic curve which results from a comparison algorithm applied to the two characteristic curves of the two sensitive areas. Description of the embodiments
  • 20 denotes a sensor, which is connected by means of a shaft 10 to a component, not shown, whose rotational movement is to be determined.
  • At least the carrier plate 9 and in particular also the shaft 10 consist of magnetically non-conductive material.
  • the carrier plate 9 is designed as a circular disc.
  • a permanent magnet 6 is fastened to the edge of the carrier plate 9, as shown in FIGS. 1, 3 and 4.
  • the permanent magnet 6 is planar, that is, it has no curve shape that would adapt to the circular shape of the carrier plate 9.
  • the permanent magnet 6 is arranged parallel to the axis 4 of the shaft 10.
  • the polarization of the permanent magnet 6 is directed diametrically to the axis 4. In other words, this means that the polarization is perpendicular to axis 4.
  • the permanent magnet 6 could also be fastened on an arm resting on the axis 4 or in a pot, which in turn could thus perform a circular movement.
  • the magnetically sensitive element 1 is connected to a printed circuit board 8 via pins 5.
  • the magnetically sensitive element is a Hall element 1, which together with an associated circuit on the Printed circuit board 8 is arranged.
  • Two sensitive Hall surfaces 2, 3 are integrated in the Hall element 1 and are shifted to the left and right by the distance x / 2 from the center line 4.
  • the sensitive areas 2 and 3 are energized in opposite directions to one another and thereby result in the characteristic curves shown in FIGS. 5 to 7, that is to say the characteristic curves of the two sensitive areas 2, 3 are phase-shifted from one another by 180 °.
  • the two sensitive areas 2, 3 lie on one level, as can be seen from FIG. 2, which enables simple positioning of the two Hall areas 2, 3
  • FIGS. 3 and 4 show two different rotational positions of the rotor 11 m with respect to the Hall element 1 with the Hall surfaces 2, 3 in a schematic plan view.
  • the magnet 6 moves with polarization represented by arrows along the circular path around the Hall element 1.
  • the polarization is parallel to the alignment of the two sensitive Hall surfaces 2, 3 and m
  • FIG. 4 is perpendicular to the alignment of the two sensitive ones Hall surfaces 2, 3.
  • Reference numeral 12 denotes the line of symmetry of the Hall element 1 in the two figures.
  • the magnet 6 is positioned parallel to the sensitive areas 2, 3 of the Hall element 1, the two sensitive areas 2, 3 must indicate the same voltage. This would correspond to the representation in FIG. 4.
  • the assignment shown in FIG. 3 must now be approached.
  • the magnet 6 is arranged at right angles to the sensitive surfaces 2, 3 of the Hall element 1, i.e. rotated by 90 ° compared to the representation m of Figure 4. In this position ( Figure 3), no magnetic flux is detected by the sensitive areas 2, 3, i.e. both sensitive areas indicate the neutral voltage.
  • FIG. 8 shows the output characteristic curve C after a comparison algorithm when the magnet 6 rotates once around the Hall element 1 by 360 °.
  • This output characteristic curve C is linear over the entire 360 ° range, whereby a very precise measurement of the respective rotational position of an object to be measured is possible.
  • the magnet 6 can be a simple, small, standard flat magnet.
  • the magnet 6 can be clipped onto the carrier plate 9, glued on, or injected into a plastic.
  • the design of the sensor 20 allows large geometric tolerances for magnets 6. If the magnet 6 has a homogeneous field in the Hall region, the sensor 20 is insensitive to axial offsets.
  • the positioning of the Hall element 1 together with the printed circuit board 8 to the magnet 6 can be carried out without great effort by comparing and evaluating the Synchronization can happen because the output signals of the sensitive surfaces 2 and 3 are led to the outside via the connection pins 5. It should also be pointed out that by integrating the two sensitive areas 2, 3, for example on a leed frame (not shown) and in a housing, the distance x / 2 can be set very precisely.
  • the two surfaces can of course be inclined towards one another, so that regardless of the position of the Hall element 1 relative to the magnet 6, a current is always induced on one of the two sensitive surfaces 2, 3 , In other words, regardless of the positioning of the Hall element 1 relative to the magnet 6, the two sensitive surfaces 2, 3 are never parallel in their alignment parallel to the polarization of the magnet 6.

Abstract

The invention relates to a measuring device (10) for detecting a rotation angle in a contactless manner. The inventive device consists of a rotor (11) that does not conduct magnetically. A magnet (6) is arranged on said rotor. The inventive device also consists of a stationary magnet-sensitive element (1) for generating the measured signal. The magnet-sensitive element (1) is provided with two sensitive surfaces (2, 3) that are arranged at a distance (x).

Description

Messvorrichtung zur berührungslosen Erfassung eines DrehwinkelsMeasuring device for contactless detection of an angle of rotation
Stand der TechnikState of the art
Die Erfindung geht aus von einer Messvorrichtung zur berührungslosen Erfassung eines Drehwinkels nach der Gattung des Anspruches 1. Bisher wurden unter anderem, wie zum Beispiel in der DE 197 53 775.8 AI beschrieben, bei diesen Messvorrichtungen Flussleitteile aus magnetisch leitendem Material zur Lenkung der Magnetlinien verwendet. DieseThe invention is based on a measuring device for contactless detection of an angle of rotation according to the preamble of claim 1. So far, as described, for example, in DE 197 53 775.8 AI, flux guiding parts made of magnetically conductive material have been used in these measuring devices to guide the magnetic lines. This
Messvorrichtungen bauen aber somit relativ groß und sind nur bedingt in Messsysteme einzubauen. Ferner kann bei dieser Ausbildung die Steigung des linearen Bereichs der Messkurve nicht hinreichend genug beeinflusst werden.However, measuring devices are therefore relatively large and can only be installed to a limited extent in measuring systems. Furthermore, the slope of the linear region of the measurement curve cannot be influenced sufficiently enough in this configuration.
Um diese Probleme zu vermeiden, weist eine neue Messvorrichtung zur berührungslosen Erfassung eines Drehwinkels einen Rotor, auf dem ein Magnet angeordnet ist, und ein magnetempfindliches Element zur Erzeugung eines Messsignals auf. Der Rotor besteht hierbei aus magnetisch nicht leitendem Material und der Magnet ist planar ausgebildet sowie parallel zu einer durch die Achse des Rotors gehenden Ebene angeordnet. Zudem ist die Polarisierung des Magneten diametral zur Achse. Bei dieser Messvorrichtung werden keine Flussteile eingesetzt. Ferner ist der Montageaufwand dieser Messvorrichtung stark reduziert. Andererseits kann bei dieser Messvorrichtung der lineare Bereich der Messkurve 180° nicht übersteigenTo avoid these problems, a new measuring device for contactless detection of an angle of rotation has a rotor on which a magnet is arranged and a magnet-sensitive element for generating a measuring signal. The rotor consists of magnetically non-conductive material and the magnet is planar and arranged parallel to a plane passing through the axis of the rotor. In addition, the polarization of the magnet is diametrical to the axis. No flow parts are used with this measuring device. Further the assembly effort of this measuring device is greatly reduced. On the other hand, the linear range of the measurement curve cannot exceed 180 ° in this measuring device
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Vorrichtung zur beruhrungslosen Erfassung eines Drehwinkels mit den Merkmaiskombinationen des Anspruches 1 hat demgegenüber den Vorteil, dass sich die beiden linearen Bereiche der Messkurven der beiden sensitiven Flächen zu einem durchgehend linearen Bereich bis zu einem Winkel von 360° kombinieren lassen. Trotz dieses großen Wmkelbereiches ist die erfindungsgemäße Messvorrichtung sehr klein und aufgrund ihres einfachen Aufbaus kostengünstig.The device according to the invention for the contactless detection of an angle of rotation with the combinations of features of claim 1 has the advantage that the two linear regions of the measurement curves of the two sensitive surfaces can be combined to form a continuously linear region up to an angle of 360 °. Despite this large angular range, the measuring device according to the invention is very small and inexpensive due to its simple construction.
Vorzugsweise werden die beiden sensitiven Hall-Flächen zueinander entgegengesetzt bestromt, sodass zu jedem Zeitpunkt beziehungsweise jedem Drehwinkel des zu messenden Objektes ermittelbar ist, in welcher präzisen Drehstellung das Objekt sich befindet. Dies ist einfach durch einen Vergleich der beiden Ausgangssignale der beiden sensitiven Hall-Flächen möglich.The two sensitive Hall surfaces are preferably energized in opposite directions to one another, so that the precise rotational position of the object can be determined at any point in time or every angle of rotation of the object to be measured. This is possible simply by comparing the two output signals of the two sensitive Hall areas.
Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung sind die beiden sensitiven Hall-Flächen m einer Ebene angeordnet. Für eine einfache Positionierung des Hall- Elements werden die Messsignale der beiden sensitiven Flächen getrennt abgeführt. Unter anderem wird auch die Positionierung der beiden sensitiven Hall-Flächen erleichtert, da die beiden Flächen ohne Abgleicht bei gleicher Bestromung und gleicher Magnetfeldeinwirkung die gleichen Ergebnisse liefern müssen. Dies gilt vor allem für die m Figur 3 und 4 dargestellten Positionen. Insofern ist ein aufwendiger Vergleich mit einer Kalibrierungskurve, wie bei den bekannten Messvorrichtungen, nicht erforderlich.In a preferred exemplary embodiment of the present invention, the two sensitive Hall surfaces are arranged on one plane. For easy positioning of the Hall element, the measurement signals of the two sensitive surfaces are carried separately. Among other things, the positioning of the two sensitive Hall surfaces is made easier, since the two surfaces must deliver the same results without matching with the same current and the same magnetic field. This applies above all to the positions shown in FIGS. 3 and 4. To that extent a complex comparison with a calibration curve, as in the known measuring devices, is not necessary.
Vorzugsweise sind das magnetempfindliche Element und der Magnet so zueinander angeordnet, dass sie eine Kreisbewegung bezogen auf den Abstand x/2 zwischen den sensitiven Flachen zueinander beschreiben. Hierdurch wird eine einfache Kalibrierung sichergestellt, da der Abstand des Magneten zu dem magnetempfindlichen Element ungeachtet der relativen Winkelstellung gleich bleibt.The magnetically sensitive element and the magnet are preferably arranged with respect to one another in such a way that they describe a circular movement with respect to the distance x / 2 between the sensitive surfaces. This ensures simple calibration since the distance between the magnet and the magnet-sensitive element remains the same regardless of the relative angular position.
Bevorzugt ist der Magnet planar ausgebildet und parallel zu einer durch die Achse des Rotors gehende Ebene angeordnet. Dies ermöglicht einerseits ein homogenes Magnetfeld m Bezug auf das magnetempfindliche Element und andererseits eine Unempfmdlichkeit gegen Axialversatz und deren ToleranzschwankungenThe magnet is preferably planar and arranged parallel to a plane passing through the axis of the rotor. On the one hand, this enables a homogeneous magnetic field in relation to the magnet-sensitive element and, on the other hand, it is insensitive to axial misalignment and its tolerance fluctuations
Um eine optimale Induktionswirkung am Hall -Messelement zu erreichen, ist die Polarisierung des Magneten diametral zur Achse des Rotors .In order to achieve an optimal induction effect on the Hall measuring element, the polarization of the magnet is diametrical to the axis of the rotor.
Als bevorzugt haben sich eine rechteckige Form des Magneten mit abgerundeten Ecken aber auch eine ovale oder runde Form des Magneten bewiesenA rectangular shape of the magnet with rounded corners, but also an oval or round shape of the magnet have proven to be preferred
Schließlich erfolgt bei einer bevorzugten Ausfuhrungsform der vorliegenden Erfindung die Auswertung der AusgangsSignale der beiden sensitiven Flachen mittels eines Vergleichsalgoritmus, durch den zu jedem Zeitpunkt die Stellung des zu messenden Objektes m einfacher Form ermittelt werden kann ZeichnungFinally, in a preferred embodiment of the present invention, the output signals of the two sensitive areas are evaluated by means of a comparison algorithm by means of which the position of the object to be measured can be determined in a simple form at any time drawing
Ausführungsbeispiele der Erfindung sind in der nachfolgenden Beschreibung näher erläutert . Es zeigt :Exemplary embodiments of the invention are explained in more detail in the following description. It shows :
Figur 1 eine schematische Seitenschnittansicht der erfindungsgemäßen Messvorrichtung zur berührungslosen Erfassung eines Drehwinkels,FIG. 1 shows a schematic side sectional view of the measuring device according to the invention for contactless detection of an angle of rotation,
Figur 2 eine vergrößerte Darstellung des magnetempfindlichen Elementes von Figur 1,FIG. 2 shows an enlarged illustration of the magnetically sensitive element from FIG. 1,
Figur 3 eine schematische Draufsicht auf die erfindungsgemäße Vorrichtung von Figur 1, wobei dieFigure 3 is a schematic plan view of the inventive device of Figure 1, the
Polarisierung des Magneten parallel zur Ausrichtung des magnetempfindlichen Elementes ist,Polarization of the magnet is parallel to the orientation of the magnet-sensitive element,
Figur 4 eine schematische Draufsicht auf die erfindungsgemäße Vorrichtung von Figur 1, wobei dieFigure 4 is a schematic plan view of the inventive device of Figure 1, the
Polarisierung des Magneten senkrecht zum magnetempfindlichen Element ist.Polarization of the magnet is perpendicular to the magnetically sensitive element.
Figur 5 die Kennlinie der sensitiven Fläche 2,FIG. 5 the characteristic curve of the sensitive surface 2,
Figur 6 die Kennlinie der sensitiven Fläche 3,FIG. 6 the characteristic curve of the sensitive surface 3,
Figur 7 die Übereinanderlagerung der beiden Kennlinien der sensitiven Flächen 2 und 3,FIG. 7 shows the superimposition of the two characteristic curves of the sensitive areas 2 and 3,
Figur 8 eine verschaltete Kennlinie, welche sich anhand eines auf die beiden Kennlinien der beiden sensitiven Flächen angewendeten Vergleichsalgoritmus ergibt. Beschreibung der AusführungsbeispieleFIG. 8 shows an interconnected characteristic curve which results from a comparison algorithm applied to the two characteristic curves of the two sensitive areas. Description of the embodiments
In den Figuren ist mit 20 ein Sensor bezeichnet, der mit Hilfe einer Welle 10 mit einem nicht dargestellten Bauteil verbunden ist, dessen Drehbewegung bestimmt werden soll. An der Stirnseite der Welle 10 ist mittig eine Trägerplatte 9 aufgesetzt, die zusammen mit der Welle 10 als Rotor 11 dient. Zumindest die Trägerplatte 9 und insbesondere auch die Welle 10 bestehen aus magnetisch nicht leitendem Material . Die Trägerplatte 9 ist als kreisförmig ausgebildete Scheibe ausgestaltet. Mit Abstand vom Mittelpunkt der Trägerplatte 9 sowie der Mittellinie 4 der Welle 10 ist zum Beispiel am Rande der Trägerplatte 9, wie in den Figuren 1, 3 und 4 dargestellt, ein Permanentmagnet 6 befestigt. Der Permanentmagnet 6 ist planar ausgebildet, das heißt, er weist keine Kurvenform auf, die sich der Kreisform der Trägerplatte 9 anpassen würde .In the figures, 20 denotes a sensor, which is connected by means of a shaft 10 to a component, not shown, whose rotational movement is to be determined. A support plate 9, which together with the shaft 10 serves as a rotor 11, is placed in the center on the end face of the shaft 10. At least the carrier plate 9 and in particular also the shaft 10 consist of magnetically non-conductive material. The carrier plate 9 is designed as a circular disc. At a distance from the center of the carrier plate 9 and the center line 4 of the shaft 10, for example, a permanent magnet 6 is fastened to the edge of the carrier plate 9, as shown in FIGS. 1, 3 and 4. The permanent magnet 6 is planar, that is, it has no curve shape that would adapt to the circular shape of the carrier plate 9.
Der Permanentmagnet 6 ist parallel zu der Achse 4 der Welle 10 angeordnet. Hierbei ist die Polarisierung des Permanentmagneten 6 diametral zur Achse 4 gerichtet. Mit anderen Worten bedeutet dies, dass die Polarisierung senkrecht zur Achse 4 verläuft . Statt auf einer kreisförmigen Trägerscheibe 9 könnte der Permanentmagnet 6 auch auf einem auf der Achse 4 aufsitzendem Arm oder in einem Topf befestigt sein, der somit wiederum eine Kreisbewegung ausführen könnte.The permanent magnet 6 is arranged parallel to the axis 4 of the shaft 10. Here, the polarization of the permanent magnet 6 is directed diametrically to the axis 4. In other words, this means that the polarization is perpendicular to axis 4. Instead of on a circular carrier disk 9, the permanent magnet 6 could also be fastened on an arm resting on the axis 4 or in a pot, which in turn could thus perform a circular movement.
Stationär ist ein magnetempfindliches Element 1 für denStationary is a magnetically sensitive element 1 for the
Mittelpunkt der Trägerplatte 9 angeordnet. Wie in Figur 1 dargestellt, ist das magnetempfindliche Element 1 über Pins 5 mit einer Leiterplatte 8 verbunden. Das magnetempfindliche Element ist im vorliegenden Fall ein Hall -Element 1, welches zusammen mit einer zugehörigen Schaltung auf der Leiterplatte 8 angeordnet ist. In dem Hall-Element 1 sind zwei sensitive Hall -Flachen 2, 3 integriert, die um den Abstand x/2 von der Mittellinie 4 nach links und rechts verschoben sind. Die sensitiven Flachen 2 und 3 werden entgegengesetzt zueinander bestromt und ergeben hierdurch die m den Figuren 5 bis 7 dargestellten Kennlinien, das heißt die Kennlinien der beiden sensitiven Flachen 2, 3 sind zueinander um 180° phasenverschoben.Center of the support plate 9 arranged. As shown in FIG. 1, the magnetically sensitive element 1 is connected to a printed circuit board 8 via pins 5. In the present case, the magnetically sensitive element is a Hall element 1, which together with an associated circuit on the Printed circuit board 8 is arranged. Two sensitive Hall surfaces 2, 3 are integrated in the Hall element 1 and are shifted to the left and right by the distance x / 2 from the center line 4. The sensitive areas 2 and 3 are energized in opposite directions to one another and thereby result in the characteristic curves shown in FIGS. 5 to 7, that is to say the characteristic curves of the two sensitive areas 2, 3 are phase-shifted from one another by 180 °.
Im vorliegenden Ausfuhrungsbe spiel liegen die beiden sensitiven Flachen 2, 3 auf einer Ebene, wie aus Figur 2 ersichtlich, wodurch eine einfache Positionierung der beiden Hall -Flachen 2, 3 ermöglicht wirdIn the present exemplary embodiment, the two sensitive areas 2, 3 lie on one level, as can be seen from FIG. 2, which enables simple positioning of the two Hall areas 2, 3
In den Figuren 3 und 4 sind m schematischen Draufsichten zwei verschiedene Drehpositionen des Rotors 11 m Bezug auf das Hall-Element 1 mit den Hall-Flächen 2, 3 dargestellt. Hierbei bewegt sich der Magnet 6 mit durch Pfeile dargestellter Polarisierung entlang der Kreisbahn um das Hall-Element 1. In Figur 3 ist hierbei die Polarisierung parallele zur Ausrichtung der beiden sensitiven Hall-Flachen 2, 3 sowie m Figur 4 senkrecht zur Ausrichtung der beiden sensitiven Hall-Flachen 2, 3. Das Bezugszeichen 12 bezeichnet m den beiden Figuren die Symmetπelinie des Hall-Elementes 1.FIGS. 3 and 4 show two different rotational positions of the rotor 11 m with respect to the Hall element 1 with the Hall surfaces 2, 3 in a schematic plan view. Here, the magnet 6 moves with polarization represented by arrows along the circular path around the Hall element 1. In FIG. 3, the polarization is parallel to the alignment of the two sensitive Hall surfaces 2, 3 and m FIG. 4 is perpendicular to the alignment of the two sensitive ones Hall surfaces 2, 3. Reference numeral 12 denotes the line of symmetry of the Hall element 1 in the two figures.
Bewegt sich nunmehr, wie m den Figuren 3 und 4 dargestellt, der Magnet 6 aufgrund einer Drehbewegung des Rotors 11 um das Hall-Element 1 einschließlich sensitiver Flachen 2, 3, so werden an den beiden sensitiven Flachen 2, 3 jeweils Spannungen induziert, die zu den m den Figuren 5 und 6 dargestellten Kennlinien A für die sensitive Flache 2 sowie B für die sensitive Flache 3 fuhren. Hierbei ist, wie m Figur 7 dargestellt, die 180° Phasenverschiebung der beiden Kennlinien A und B durch die entgegengesetzte Bestromung der beiden sensitiven Flachen 2, 3 ersichtlich.If the magnet 6 now moves, as shown in FIGS. 3 and 4, due to a rotary movement of the rotor 11 around the Hall element 1, including sensitive areas 2, 3, voltages are induced on the two sensitive areas 2, 3, respectively lead to the characteristic curves A shown for FIGS. 5 and 6 for sensitive area 2 and B for sensitive area 3. Here, as shown in FIG. 7, is the 180 ° phase shift of the two Characteristic curves A and B can be seen from the opposite energization of the two sensitive areas 2, 3.
Wird der Magnet 6 parallel zu den sensitiven Flachen 2, 3 des Hall-Elements 1 positioniert, so müssen die beiden sensitiven Flachen 2, 3 dieselbe Spannung anzeigen. Dies wurde der Darstellung m Figur 4 entsprechen. Zur exakten Positionierung ist nun die m der Figur 3 dargestellte Zuordnung anzufahren. Hier ist der Magnet 6 im rechten Winkel zu den sensitiven Flachen 2, 3 des Hall-Elements 1 angeordnet, d.h. um 90° gegenüber der Darstellung m der Figur 4 weitergedreht. In dieser Stellung (Figur 3) wird von den sensitiven Flachen 2, 3 kein Magnetfluss erfasst, d.h. beide sensitiven Flächen zeigen die neutrale Spannung an.If the magnet 6 is positioned parallel to the sensitive areas 2, 3 of the Hall element 1, the two sensitive areas 2, 3 must indicate the same voltage. This would correspond to the representation in FIG. 4. For exact positioning, the assignment shown in FIG. 3 must now be approached. Here the magnet 6 is arranged at right angles to the sensitive surfaces 2, 3 of the Hall element 1, i.e. rotated by 90 ° compared to the representation m of Figure 4. In this position (Figure 3), no magnetic flux is detected by the sensitive areas 2, 3, i.e. both sensitive areas indicate the neutral voltage.
Schließlich zeigt Figur 8 die Ausgangskennlinie C nach einem Vergleichsalgoπtmus , wenn sich der Magnet 6 einmal um das Hall-Element 1 um 360° dreht. Diese Ausgangskennlinie C ist über den kompletten 360°-Bereιch linear, wodurch eine sehr präzise Messung der jeweiligen Drehposition eines zu messenden Objektes möglich ist.Finally, FIG. 8 shows the output characteristic curve C after a comparison algorithm when the magnet 6 rotates once around the Hall element 1 by 360 °. This output characteristic curve C is linear over the entire 360 ° range, whereby a very precise measurement of the respective rotational position of an object to be measured is possible.
Ferner kann der Magnet 6 e n einfacher kleiner Standardflachmagnet sein. Der Magnet 6 kann hierbei auf der Trägerplatte 9 aufgeclipst, aufgeklebt, oder m einem Kunststoff eingespritzt sein.Furthermore, the magnet 6 can be a simple, small, standard flat magnet. The magnet 6 can be clipped onto the carrier plate 9, glued on, or injected into a plastic.
Durch den Aufbau des Sensors 20 sind große geometrische Toleranzen bei Magneten 6 zulassig. Weist der Magnet 6 im Hall-Bereich ein homogenes Feld auf, so ist der Sensor 20 auf Axialversätze unempfindlich.The design of the sensor 20 allows large geometric tolerances for magnets 6. If the magnet 6 has a homogeneous field in the Hall region, the sensor 20 is insensitive to axial offsets.
Schließlich ist noch anzumerken, dass die Positionierung des Hall -Elementes 1 nebst Leiterplatte 8 zum Magneten 6 ohne großen Aufwand mittels Vergleichen und Auswerten des Gleichlaufs geschehen kann, da die Ausgangssignale der sensitiven Flächen 2 und 3 über die Anschlusspins 5 nach außen geführt sind. Auch ist darauf hinzuweisen, dass durch die Integration beider sensitiver Flächen 2, 3, etwa auf einem nicht dargestellten Leedframe und in einem Gehäuse der Abstand x/2 sehr genau einstellbar ist.Finally, it should also be noted that the positioning of the Hall element 1 together with the printed circuit board 8 to the magnet 6 can be carried out without great effort by comparing and evaluating the Synchronization can happen because the output signals of the sensitive surfaces 2 and 3 are led to the outside via the connection pins 5. It should also be pointed out that by integrating the two sensitive areas 2, 3, for example on a leed frame (not shown) and in a housing, the distance x / 2 can be set very precisely.
Alternativ zu der Anordnung der beiden sensitiven Flächen 2, 3 in einer Ebene, können die beiden Flächen natürlich gegeneinander geneigt werden, sodass ungeachtet der Position des Hall -Elementes 1 zum Magneten 6 an einem der beiden sensitiven Flächen 2, 3 immer ein Strom induziert wird. Mit anderen Worten, ungeachtet der Positionierung des Hall- Elementes 1 zum Magneten 6 sind niemals beide sensitiven Flächen 2, 3 gleichzeitig in ihrer Ausrichtung parallel zur Polarisierung des Magneten 6.As an alternative to arranging the two sensitive surfaces 2, 3 in one plane, the two surfaces can of course be inclined towards one another, so that regardless of the position of the Hall element 1 relative to the magnet 6, a current is always induced on one of the two sensitive surfaces 2, 3 , In other words, regardless of the positioning of the Hall element 1 relative to the magnet 6, the two sensitive surfaces 2, 3 are never parallel in their alignment parallel to the polarization of the magnet 6.
Die vorhergehende Beschreibung der Ausführungsbeispiele gemäß der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihre Äquivalente zu verlassen. The preceding description of the exemplary embodiments according to the present invention is only for illustrative purposes and not for the purpose of restricting the invention. Various changes and modifications are possible within the scope of the invention without leaving the scope of the invention and its equivalents.

Claims

Ansprüche Expectations
1. Messvorrichtung (10) zur berührungslosen Erfassung eines Drehwinkels mit einem magnetisch nicht leitenden Rotor (11) , auf dem ein Magnet (6) angeordnet ist, und einem stationären magnetempfindlichen Element (1) zur Erzeugung eines Messsignals, dadurch gekennzeichnet, dass das magnetempfindliche Element (1) zwei im Abstand (x) angeordnete sensitive Flächen (2, 3) aufweist.1. Measuring device (10) for contactless detection of an angle of rotation with a magnetically non-conductive rotor (11) on which a magnet (6) is arranged, and a stationary magnet-sensitive element (1) for generating a measurement signal, characterized in that the magnetically sensitive Element (1) has two sensitive surfaces (2, 3) arranged at a distance (x).
2. Messvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Magnet (6) bei seiner Drehbewegung das magnetfeldempfindliche Element (1) umrundet.2. Measuring device according to claim 1, characterized in that the magnet (6) rotates around the magnetic field-sensitive element (1) during its rotational movement.
3. Messvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das magnetfeldempfindliche Element (1) ein Hall-Element ist.3. Measuring device according to claim 1 or 2, characterized in that the magnetic field-sensitive element (1) is a Hall element.
4. Messvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die beiden sensitiven Hall-Flächen4. Measuring device according to one of claims 1 to 3, characterized in that the two sensitive Hall surfaces
(2, 3) zueinander entgegengesetzt bestromt sind.(2, 3) are energized in opposite directions to each other.
5. Messvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die beiden sensitiven Hall-Flächen (2, 3) in einer Ebene angeordnet sind. 5. Measuring device according to one of claims 1 to 4, characterized in that the two sensitive Hall surfaces (2, 3) are arranged in one plane.
6. Messvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das magnetempfindliche Element (1) und der Magnet (6) so zueinander angeordnet sind, dass sie eine Kreisbewegung zueinander beschreiben.6. Measuring device according to one of claims 1 to 5, characterized in that the magnetically sensitive element (1) and the magnet (6) are arranged relative to one another in such a way that they describe a circular movement relative to one another.
7. Messvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Magnet (6) planar ausgebildet ist und parallel zu einer durch die Achse (4) des Rotors (11) gehenden Ebene angeordnet ist.7. Measuring device according to one of claims 1 to 6, characterized in that the magnet (6) is planar and is arranged parallel to a plane passing through the axis (4) of the rotor (11).
8. Messvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Polarisierung des Magneten (6) diametral zur Achse (4) des Rotors (11) ist.8. Measuring device according to claim 7, characterized in that the polarization of the magnet (6) is diametrical to the axis (4) of the rotor (11).
9. Messvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Magnet (6) eine rechteckige Form mit abgerundeten Ecken aufweist.9. Measuring device according to one of claims 1 to 8, characterized in that the magnet (6) has a rectangular shape with rounded corners.
10.Messvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Magnet (6) eine ovale oder runde Form aufweist.10.Measuring device according to one of claims 1 to 9, characterized in that the magnet (6) has an oval or round shape.
11.Messvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Auswertung der11.Measuring device according to one of claims 1 to 10, characterized in that the evaluation of the
Ausgangssignale der beiden sensitiven Flächen (2, 3) mittels eines Vergleichsalgoritmus erfolgt. Output signals of the two sensitive areas (2, 3) are carried out by means of a comparison algorithm.
EP01911424A 2000-02-24 2001-02-06 Measuring device for detecting a rotation angle in a contactless manner Withdrawn EP1259780A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10008537 2000-02-24
DE10008537A DE10008537A1 (en) 2000-02-24 2000-02-24 Measuring device for contactless detection of an angle of rotation
PCT/DE2001/000451 WO2001063212A1 (en) 2000-02-24 2001-02-06 Measuring device for detecting a rotation angle in a contactless manner

Publications (1)

Publication Number Publication Date
EP1259780A1 true EP1259780A1 (en) 2002-11-27

Family

ID=7632165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01911424A Withdrawn EP1259780A1 (en) 2000-02-24 2001-02-06 Measuring device for detecting a rotation angle in a contactless manner

Country Status (5)

Country Link
US (1) US7042209B2 (en)
EP (1) EP1259780A1 (en)
JP (1) JP2003524171A (en)
DE (1) DE10008537A1 (en)
WO (1) WO2001063212A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213206A (en) * 2001-01-12 2002-07-31 Mitsubishi Heavy Ind Ltd Blade structure of gas turbine
US7023202B2 (en) * 2003-08-01 2006-04-04 Japan Servo Co., Ltd. Magnetic rotary position sensor
JP5479695B2 (en) * 2008-08-06 2014-04-23 株式会社東海理化電機製作所 Rotation detector
CN101737383B (en) * 2008-11-17 2014-02-26 海德堡印刷机械股份公司 Device for clamping or loosening driving wheel on shaft
JP6049570B2 (en) * 2013-08-27 2016-12-21 アルプス電気株式会社 Rotation detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634281A1 (en) * 1996-08-24 1998-02-26 Bosch Gmbh Robert Measuring device for contactless detection of an angle of rotation or a linear movement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2071333B (en) * 1980-02-22 1984-02-01 Sony Corp Magnetic sensor device
CA1232957A (en) 1984-09-28 1988-02-16 Allan J. Hewett Rotational sensor
US4908527A (en) * 1988-09-08 1990-03-13 Xolox Corporation Hall-type transducing device
DE4014885C2 (en) * 1989-05-13 1995-07-13 Aisan Ind Angle of rotation sensor
JPH04248403A (en) * 1991-02-01 1992-09-03 Asahi Chem Ind Co Ltd Angle detector using hall element
JP3206204B2 (en) * 1992-05-22 2001-09-10 株式会社デンソー Throttle position sensor
US5394029A (en) * 1993-02-17 1995-02-28 Gay; John C. Geomagnetic orientation sensor, means, and system
WO1996016316A1 (en) * 1994-11-22 1996-05-30 Robert Bosch Gmbh Arrangement for the contactless determination of the angle of rotation of a rotatable component
JP3833779B2 (en) * 1997-05-16 2006-10-18 株式会社奥村組 Seismic isolation device
DE19722016A1 (en) * 1997-05-27 1998-12-03 Bosch Gmbh Robert Arrangement for non-contact rotation angle detection
DE19737999B4 (en) * 1997-08-30 2009-09-10 Robert Bosch Gmbh Device for angle detection and angle assignment
DE19741579A1 (en) * 1997-09-20 1999-03-25 Bosch Gmbh Robert System to determine position of permanent magnet
US6137288A (en) * 1998-05-08 2000-10-24 Luetzow; Robert Herman Magnetic rotational position sensor
JP2002542473A (en) * 1999-04-21 2002-12-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Measuring device for detecting rotation angle by non-contact method
US6489761B1 (en) * 1999-09-09 2002-12-03 Delphi Technologies, Inc. Magnetic arrangement for an analog angle encoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634281A1 (en) * 1996-08-24 1998-02-26 Bosch Gmbh Robert Measuring device for contactless detection of an angle of rotation or a linear movement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0163212A1 *

Also Published As

Publication number Publication date
JP2003524171A (en) 2003-08-12
DE10008537A1 (en) 2001-09-06
US7042209B2 (en) 2006-05-09
US20030141863A1 (en) 2003-07-31
WO2001063212A1 (en) 2001-08-30

Similar Documents

Publication Publication Date Title
DE19634281C2 (en) Measuring device for contactless detection of an angle of rotation or a linear movement
DE102005038516A1 (en) Device for detecting revolutions of a steering shaft
DE19634282A1 (en) Measuring device for contactless detection of an angle of rotation
EP2620752A2 (en) Magnetic field sensor
WO2005088258A1 (en) Magnetic sensor arrangement
DE102007016133A1 (en) Measuring device for non-contact detection of a rotation angle with arranged in a recess of the magnet magnetically sensitive element
EP1036303B1 (en) Measuring device for contactless detection of a rotational angle
EP1173727B1 (en) Measurement device for the non-contact detection of an angle of rotation
DE102010050356B4 (en) magnetic field sensor
EP1259780A1 (en) Measuring device for detecting a rotation angle in a contactless manner
DE102005061347A1 (en) Shaft`s absolute rotation angle measuring arrangement, has two diametrically magnetizable rings, and magnetic field sensors arranged adjacent to surrounding of rings, such that radial component of magnetic field of one ring is detected
DE19852916A1 (en) Measuring device for contactless detection of an angle of rotation
EP0836072B1 (en) Rotation sensor
DE19852915A1 (en) Measuring device for contactless detection of an angle of rotation
DE19753775A1 (en) Measurement device for contactless detection of angle of rotation
WO1999030113A1 (en) Measuring device for contactless detection of a rotational angle
DE10008535A1 (en) Measuring device for contactless detection of an angle of rotation
WO1999030111A1 (en) Metering device for contactless determination of a rotation
DE102016010332A1 (en) Device with a sensor and a sensor
DE102017202365A1 (en) sensor device
DE19532065C2 (en) Magnetoresistive sensor
DE102011121870A1 (en) Magnetic sensor array structure has transmitter unit extended along circumferential direction of shaft so that axial movement of shaft is increased, and region of transmitter unit is located in detection area of sensor unit
DE19917467A1 (en) Measuring device for contactless detection of an angle of rotation
DE4437751A1 (en) Magnetic position sensor for determining position or angle of linear or rotary moving parts
DD296530A5 (en) LOCATOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070702

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071113