EP1258115A1 - Unified algorithm for frame scheduling and buffer management in differentiated services networks - Google Patents

Unified algorithm for frame scheduling and buffer management in differentiated services networks

Info

Publication number
EP1258115A1
EP1258115A1 EP01909268A EP01909268A EP1258115A1 EP 1258115 A1 EP1258115 A1 EP 1258115A1 EP 01909268 A EP01909268 A EP 01909268A EP 01909268 A EP01909268 A EP 01909268A EP 1258115 A1 EP1258115 A1 EP 1258115A1
Authority
EP
European Patent Office
Prior art keywords
frames
frame
queue
scheduling
architecture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01909268A
Other languages
German (de)
French (fr)
Inventor
Brian Yang
Craig Barrack
Ling-Hsiao Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zarlink Semiconductor VN Inc
Original Assignee
Zarlink Semiconductor VN Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zarlink Semiconductor VN Inc filed Critical Zarlink Semiconductor VN Inc
Publication of EP1258115A1 publication Critical patent/EP1258115A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/30Flow control; Congestion control in combination with information about buffer occupancy at either end or at transit nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/32Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • H04L47/625Queue scheduling characterised by scheduling criteria for service slots or service orders
    • H04L47/6275Queue scheduling characterised by scheduling criteria for service slots or service orders based on priority

Definitions

  • This mvention is related to network switches, and more specifically, frame forwarding techniques employed therein.
  • Differentiated Services are a set of technologies proposed by the IETF (Internet Engineering Task Force) which would allow Internet and other IP-based network service providers to offer differentiated levels of service, for an additional charge, to individual customers and information streams provided thereto.
  • the header of each frame which enters a network router contains a marker which indicates the level of service that the network router would apply to such frame during transmission.
  • the network router then applies the corresponding differentiated grades of service to the various frame which enter on the various ports.
  • service providers offer and provide to certain customers (not a hard and fast guarantee), a preferential grade of service for all frame traffic in accordance with the appropriate frame markers contained in the frame header.
  • the more preferential grades of service offer lower frame latency (i.e., frame delay). During times of frame congestion, those preferentially-marked frames would receive preferential service.
  • the present invention disclosed and claimed herein in one aspect thereof, comprises a frame scheduling and discard architecture in a Differentiated Services network environment.
  • the architecture comprises a discard logic for discarding a frame from a stream of incoming frames of the network environment in accordance with a discard algorithm, the frame being discarded if a predetermined congestion level in the network environment has been reached, and a predetermined backlog limit of a queue associated with the frame, has been reached.
  • Scheduling logic is also provided for scheduling the order in which to transmit one or more enqueued frames of the network environment.
  • FIG. 1 illustrates a general block diagram of a frame forwarding system in accordance with a disclosed embodiment
  • FIG. 2 illustrates a graph of congestion plane defined by the system of FIG. 1
  • FIG. 3 illustrates. a block diagram of sample frame forwarding system in accordance with Table 1;
  • FIG. 4 illustrates a graph of the sub-congestion planes in a WRED implementation.
  • the disclosed novel scheme preferably combines both measurable Quality of Service (QoS) criteria, such as delay and bandwidth, as well as buffer management, in a unified approach for frame forwarding in a Differentiated Services environment.
  • QoS Quality of Service
  • the approach to QoS described herein is based upon several assumptions: that the offered traffic pattern is unknown, the incoming traffic is not policed or shaped (however, if the incoming traffic is policed or shaped, additional assurances about switch performance may be made), and the network manager knows the applications (or traffic types) utilized on the network, such as voice, file transfer, or web browsing, and their relative importance.
  • shaped or “shaping” is defined as the process of controlling (or pacing) traffic flow to prevent overflow of a downstream device by limiting traffic flow to that which more closely matches the input bandwidth capabilities of the downstream device. Policing is similar to shaping, however, traffic that exceeds the configured rate is normally discarded, instead of being buffered. With this application knowledge, the network manager can then subdivide the applications into classes, and set up a service-level agreement with each.
  • the service-level agreement for example, may consist of bandwidth or latency assurances per class.
  • a class is capable of offering traffic that exceeds the contracted bandwidth.
  • a well-behaved class offers traffic at a rate no greater than the agreed-upon rate.
  • misbehaving class offers traffic that exceeds the agreed-upon rate.
  • a misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link bandwidth utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the QoS received by well-behaved classes.
  • Table 1 illustrates a sample grid of six traffic types, where each type may have its own distinct properties and applications. Table 1. Sample Grid of Six Traffic Types
  • the traffic types i.e., phone calls, circuit emulation, training videos, critical and non-critical interactive applications, web businesses, e-mails, file backups, and casual web browsing
  • Class C 3 the highest priority transmission class, requires that all frames be transmitted in less than 1 ms, and receives 40 Mbps of the 100 Mbps of bandwidth (40%) at that port.
  • Class C 2 the middle transmission priority class, receives 35 Mbps of the 100 Mbps total bandwidth (or 35%) at that port, and requires that all frames be transmitted in less than 4 ms.
  • class C l5 the lowest transmission priority class, receives 25 Mbps of the 100 Mbps total bandwidth (or 25%) at that port, and requires that frames be transmitted in less than 16 ms, before dropping occurs. .
  • each transmission class (C l5 C 2 , and C 3 ) has two subclasses; high-drop and low-drop.
  • Well-behaved users should rarely.lose frames.
  • poorly-behaved users i.e., users who send frames at too high of a rate
  • Table 1 shows that the class applications, respective priorities, and delay and drop criteria, may be structured in any manner desired. For example, casual web browsing fits into the category of high-drop, high-latency-tolerant traffic, whereas VoIP phone calls fit into the category of low-drop, low-latency traffic.
  • each 10/100 Mbps port supports three total classes (C l5 C 2 , and C 3 ).
  • the queue of the higher class has the higher priority (i.e., C 2 has strict priority over C,). Again, this is just one example. Note that the disclosed architecture is compatible with IETF classes proposed by the Internet Engineering Task Force.
  • FIG. 1 there is illustrated a block diagram which provides a high- level view of a disclosed embodiment.
  • the disclosed novel forwarding mechanism comprises two intertwined parts: buffer management, which operates in accordance with a discard algorithm for determining the admittance or discarding of incoming frames; and transmission scheduling, for determining the sequence of frame departure.
  • bandwidth, delay, and buffering are mathematically related by Bandwidth Received oc Queue Size/Delay Experienced.
  • the unified scheme through scheduling and buffer management, controls the Delay Experienced and Queue Size. As a consequence of this fact and the mathematical relationship hereinabove, the unified scheme also modulates Bandwidth Received per class.
  • a frame forwarding system 100 comprises a discard logic 102 operable in accordance with a discard algorithm which monitors an incoming bit stream 104.
  • An output 106 of the discard logic 102 flows to one or more queues 108, 110 and 112 (also denoted as queues Q Q 2 ,— 5 Q n ) which correspond to respective classes C l5 C 2 ,...,C n of traffic.
  • the queues 108, 110 and 112 temporarily store frames according to the class of frame traffic to which each is assigned, and each outputs frames to a multiplexer logic 114 for ultimate output at an output queue 116, which has total bandwidth capacity of K Mbps.
  • class C l3 the lowest transmission priority class, has associated therewith a service-level agreement ⁇ ! which is defined by a delay bound parameter ( ⁇ x ) and a bandwidth parameter (r x ). If the number of frames enqueued in the queue 108 (also designated Q,) cannot be transmitted within the time designated by the delay parameter ( ⁇ , there is some probability that frames associated with that class will need to be dropped in order to prevent congestion.
  • class C 2 the next highest transmission priority class, has associated therewith a service-level agreement S 2 which is defined by a delay bound parameter ( ⁇ 2 ) and a bandwidth parameter (r 2 ).
  • the highest transmission priority class C n has associated therewith a service-level agreement S n which is defined by a delay bound parameter ( ⁇ and a bandwidth parameter (r n ). If the number of frames enqueued in the queue 112 (also designated Q cannot be transmitted within the time designated by the delay parameter ( ⁇ n ), there is some probability that frames associated with that class will need to be dropped in order to prevent congestion.
  • the output queue 116 temporarily stores the frames received from the various class queues 108, 110 and 112, and outputs frames of the various classes C l3 C 2 ,...,C n to a port P (not shown).
  • the multiplexer 114 is controlled by a scheduling logic 118 which determines the sequence of frame departure from the various class queues 108, 110 and 112.
  • port P serves n service classes of traffic, labeled C Manual C 2 ,...,C n .
  • the classes are defined such that the guaranteed maximum delay ⁇ 2 of class C, is greater than or equal to the guaranteed maximum delay ⁇ 2 of class C 2 , and that the guaranteed maximum delay ⁇ 2 of class C 2 is greater than or equal to the guaranteed maximum delay ⁇ 3 of class C 3 , and so on (i.e., ⁇ j > ⁇ 2 > ... > ⁇ chorus).
  • the disclosed scheme advantageously simultaneously satisfies both the delay and bandwidth constraints of the service-level agreements S; for all i, regardless of the offered traffic pattern.
  • Delay bounded scheduling is now discussed in the context of the 10/100 Mbps port having three delay-bounded classes (C 3 , C 2 , and C x ).
  • C 3 , C 2 , and C x delay-bounded classes
  • other implementations having more classes can be structured similarly.
  • scheduling for bounded delay in the case of the 10/100 Mbps port of Table 1, each frame enqueued in the three transmission scheduling queues Q ! -Q 3 (of classes C 1; C 2 , and C 3 ) contains an arrival time stamp.
  • the scheduling decision is made when a frame reaches the head-of-line (HOL) position in the queue, and according to the time stamp of the HOL frame of each queue.
  • delay is defined to be the difference between the stamped arrival time of a job (or frame) and the current time. Obviously, if there are no frames awaiting transmission for a particular class, then that class cannot be selected.
  • FIG. 2 there is illustrated the concept of a congestion plane 200 in Euclidean space, in accordance with a disclosed embodiment.
  • Q x be the queue backlog (measured in total bytes) for the output port P for each service class awaiting forwarding.
  • the congestion hyperplane 200 is spanned by the set of vectors ⁇ Q l5 Q 2 , Q 3 ,...,Q n ⁇ , and defined by equation
  • the first condition indicates that the system 100 is congested, i.e., that the system 100 has surpassed the congestion plane 200.
  • the second condition indicates that class has already accumulated a large backlog. Even if admitted, a frame belonging to class C ; has little chance of meeting its delay constraint, which is a consequence of the existing backlog and the minimum bandwidth assurances to other classes. Therefore, the incoming class i frame is discarded.
  • FIG. 3 there is illustrated a block diagram of a sample frame forwarding system in accordance with Table 1.
  • the frame forwarding system 300 (similar to system 100) has a 100 Mbps bandwidth, and utilizes the discard logic 102 which operates in accordance with the discard algorithm disclosed herein.
  • the discard logic 102 monitors an incoming bit stream 302, and based upon predetermined criteria, discards selected frames 304 of the bit stream 302 into a discard bin 306 (shown for purposes of discussion, only).
  • Admitted frames (307, 309, and 311) are then enqueued into respective classes of input queues (308, 310, and 312).
  • input queue 308 is a class C ⁇ queue (the lowest transmission priority class) having a delay bound which requires that all frames 307 be transmitted in less than 16 ms, and where class C x becomes a misbehaving class by offering traffic which exceeds the agreed-upon rate of 25 Mbps, there is some probability that some of the incoming class frames will be dropped to prevent congestion.
  • Input queue 310 is a class C 2 queue (the intermediate transmission priority class) having a delay bound which requires that all frames 309 be transmitted in less than 4 ms, and where class C 2 becomes a misbehaving class by offering traffic which exceeds the agreed-upon rate of 35 Mbps, there is some probability that some of the incoming class C 2 frames will be dropped to prevent congestion.
  • input queue 312 is a class C 3 queue (the highest transmission priority class) having a delay bound which requires that all frames 311 be transmitted in less than 1 ms, and where class C 2 becomes a misbehaving class by offering traffic which exceeds the agreed-upon rate of 40 Mbps, there is some probability that some of the incoming class C 3 frames will be dropped to prevent congestion.
  • class C 3 queue the highest transmission priority class
  • Level 1 and Level 2 sub-congestion planes prevent congestion by randomly dropping a percentage of high-drop frames, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for low-drop frames.
  • there will be some probability of dropping frames when the total available queue backlog N ranges from 120 to 200 KB, and any one of the class queues Q Q 3 has a backlog of buffered frames which meets or exceeds the respective queue limits of A, B, or C (in kilobytes).
  • the low-drop-to-high-drop range varies from 0 to X%, respectively.
  • the Level 2 sub-congestion plane 402 where 16Q 3 + 4Q 2 + Q x ⁇ 160 KB, and any one or more of the queues Q Q 3 exceeds its backlog limit (A, B, and C, respectively), the low-drop-to-high-drop range varies from Y% to Z%, respectively.
  • the Level 3 congestion plane 200 where the congestion plane 200 is defined by 16Q 3 + 4Q 2 + Qi ⁇ 200 KB, both the low-drop and high-drop rules stipulate a drop of 100% of the frames.
  • Level 3 of Table 3 follows the rules set forth hereinabove and given the bounded delay constraints in Figure 1. For example, according to the equations, a Class 2 frame is dropped, if and only if, 16Q 3 + 4Q 2 + Q x ⁇ 200 KB, and queue Q 2 exceeds a predetermined backlog limit, i.e., Q 2 > 17.5 KB. Level 1 and Level 2 define the sub-congestion planes (400 and 402, respectively) which were discussed hereinabove. For example, if 120 KB ⁇ 16Q 3 + 4Q 2 + Q x ⁇ 200 KB, and Q 2 > 17.5 KB, then dropping will still occur with some probability. Observe that frames may be identified as high-drop or low-drop, and assigned different drop probabilities within each category on each WRED level.
  • every point on the congestion plane 200 defines a triple of queue lengths (Q l5 Q 2 , Q 3 ) that is sustainable, in the sense that all latency bounds can be satisfied if the corresponding queue lengths (Q l5 Q 2 , Q 3 ) remain steady at those values.
  • one sustainable set of steady-state queue lengths, in KB is (50, 17.5, 5).

Abstract

A frame forwarding and discard architecture (100) in a Differentiated Services network environment. The architecture (100) comprises a discard logic (102) for discarding a frame from a stream (104) of incoming frames of the network environment in accordance with a discard algorithm, the frame being discarded if a predetermined congestion level in the network environment has been reached, and a predetermined backlog limit of a queue associated with the frame, has been reached. Scheduling logic (118) is also provided for scheduling the order in which to transmit one or more enqueued frames of the network environment.

Description

UNIFIED ALGORITHM FOR FRAME SCHEDULING AND BUFFER
MANAGEMENT IN DIFFERENTIATED SERVICES NETWORKS
This application claims priority under 35 U.S.C. § 119(e) from U.S. Provisional Patent application Serial No. 60/184,557 filed on February 24, 2000, and entitled "Unified Algorithm For Frame Scheduling And Buffer Management In Differentiated Services Networks."
BACKGROUND OF THE INVENTION
TECHNICAL FIELD OF THE INVENTION
This mvention is related to network switches, and more specifically, frame forwarding techniques employed therein.
BACKGROUND OF THE ART
Differentiated Services, considered a "soft" approach to Quality of Service, is a
/ relatively new concept in the Internet community. Differentiated Services are a set of technologies proposed by the IETF (Internet Engineering Task Force) which would allow Internet and other IP-based network service providers to offer differentiated levels of service, for an additional charge, to individual customers and information streams provided thereto. Under this regime, the header of each frame which enters a network router contains a marker which indicates the level of service that the network router would apply to such frame during transmission. The network router then applies the corresponding differentiated grades of service to the various frame which enter on the various ports. With the Differentiated Services approach, service providers then offer and provide to certain customers (not a hard and fast guarantee), a preferential grade of service for all frame traffic in accordance with the appropriate frame markers contained in the frame header. The more preferential grades of service offer lower frame latency (i.e., frame delay). During times of frame congestion, those preferentially-marked frames would receive preferential service.
Current Differentiated Services forwarding mechanisms are inadequate because frame delay and bandwidth isolation cannot be simultaneously assured without severely underutilizing the system resources in the worst case. What is needed to provide simultaneous latency and bandwidth guarantees is a frame forwarding scheme which combines both buffer management and transmission scheduling.
SUMMARY OF THE INVENTION
The present invention disclosed and claimed herein, in one aspect thereof, comprises a frame scheduling and discard architecture in a Differentiated Services network environment. The architecture comprises a discard logic for discarding a frame from a stream of incoming frames of the network environment in accordance with a discard algorithm, the frame being discarded if a predetermined congestion level in the network environment has been reached, and a predetermined backlog limit of a queue associated with the frame, has been reached. Scheduling logic is also provided for scheduling the order in which to transmit one or more enqueued frames of the network environment.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:
FIG. 1 illustrates a general block diagram of a frame forwarding system in accordance with a disclosed embodiment;
FIG. 2 illustrates a graph of congestion plane defined by the system of FIG. 1; FIG. 3 illustrates. a block diagram of sample frame forwarding system in accordance with Table 1; and
FIG. 4 illustrates a graph of the sub-congestion planes in a WRED implementation.
DETAILED DESCRIPTION OF THE INVENTION
The disclosed novel scheme preferably combines both measurable Quality of Service (QoS) criteria, such as delay and bandwidth, as well as buffer management, in a unified approach for frame forwarding in a Differentiated Services environment. QoS is an all-encompassing term for which different people have different interpretations. In general, the approach to QoS described herein is based upon several assumptions: that the offered traffic pattern is unknown, the incoming traffic is not policed or shaped (however, if the incoming traffic is policed or shaped, additional assurances about switch performance may be made), and the network manager knows the applications (or traffic types) utilized on the network, such as voice, file transfer, or web browsing, and their relative importance. The term "shaped" or "shaping" is defined as the process of controlling (or pacing) traffic flow to prevent overflow of a downstream device by limiting traffic flow to that which more closely matches the input bandwidth capabilities of the downstream device. Policing is similar to shaping, however, traffic that exceeds the configured rate is normally discarded, instead of being buffered. With this application knowledge, the network manager can then subdivide the applications into classes, and set up a service-level agreement with each. The service-level agreement, for example, may consist of bandwidth or latency assurances per class. A class is capable of offering traffic that exceeds the contracted bandwidth. A well-behaved class offers traffic at a rate no greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed-upon rate. A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link bandwidth utilization, a misbehaving class is allowed to use any idle bandwidth. However, such leniency must not degrade the QoS received by well-behaved classes.
The following Table 1 illustrates a sample grid of six traffic types, where each type may have its own distinct properties and applications. Table 1. Sample Grid of Six Traffic Types
As illustrated in Table 1, the traffic types (i.e., phone calls, circuit emulation, training videos, critical and non-critical interactive applications, web businesses, e-mails, file backups, and casual web browsing) are structured into three classes (C C2, and C3), each receiving bandwidth assurances and latency bounds. Class C3, the highest priority transmission class, requires that all frames be transmitted in less than 1 ms, and receives 40 Mbps of the 100 Mbps of bandwidth (40%) at that port. Class C2, the middle transmission priority class, receives 35 Mbps of the 100 Mbps total bandwidth (or 35%) at that port, and requires that all frames be transmitted in less than 4 ms. Finally, class Cl5 the lowest transmission priority class, receives 25 Mbps of the 100 Mbps total bandwidth (or 25%) at that port, and requires that frames be transmitted in less than 16 ms, before dropping occurs. .
In addition, each transmission class (Cl5 C2, and C3) has two subclasses; high-drop and low-drop. Well-behaved users should rarely.lose frames. However, poorly-behaved users (i.e., users who send frames at too high of a rate) will have frames dropped, and the first to be discarded will be those frames meeting the high-drop criteria. If this is insufficient to resolve the congestion, some frames meeting the low-drop criteria are dropped, and in the worst case, all frames will be dropped.
Table 1 shows that the class applications, respective priorities, and delay and drop criteria, may be structured in any manner desired. For example, casual web browsing fits into the category of high-drop, high-latency-tolerant traffic, whereas VoIP phone calls fit into the category of low-drop, low-latency traffic.
In addition to the aforementioned three classes (C,, C2, and C3), it is possible to implement more transmission classes with other delay bounds and minimum bandwidth assurances. Furthermore, in another variation, best-effort traffic can form a lowest class that receives bandwidth only when the other classes have no traffic at all. It is also possible to add a still higher transmission priority class that has strict priority over the other three (or more); that is, if this class has even one frame to transmit, then it is transmitted first. Note, however, that in this particular embodiment, each 10/100 Mbps port supports three total classes (Cl5 C2, and C3).
In a 1 Gbps implementation, each port might support eight classes because of the greater QoS granularity that could be required by a higher wire speed. For example, a default configuration might have six delay-bounded queues Q8-Q3 (corresponding to classes C8-C3, respectively) and two best-effort queues Q2 and Qt (for classes C2 and , respectively). The delay bounds for the 1 Gbps port could be, for example, 0.16 ms for C8 and C7, 0.32 ms for C6, 0.64 ms for C5, 1.28 ms for C4, and 2.56 ms for C3. Best-effort traffic is only served when there is no delay-bounded traffic to be served. For the 1 Gbps port, where there are two best-effort queues, the queue of the higher class has the higher priority (i.e., C2 has strict priority over C,). Again, this is just one example. Note that the disclosed architecture is compatible with IETF classes proposed by the Internet Engineering Task Force.
To cope with the uncertainty of not knowing the mix of incoming traffic, a delay assurance algorithm dynamically adjusts the scheduling and dropping criteria, guided by the queue occupancies and the due dates of the queue HOL frames. As a result, latency bounds are assured for all admitted frames with high confidence, even in the presence of system-wide congestion. The delay assurance algorithm identifies misbehaving classes and intelligently discards frames at no detriment to well-behaved classes. The algorithm also differentiates between high-drop and low-drop traffic with a weighted random early detection (WRED) approach. This approach is designed to avoid frame congestion in internetworks before it becomes a problem. A random early detection algorithm monitors traffic load at selected points along a network and randomly discards frames when congestion begins to increase. In response to the upper layer detecting the discarded frames, frame transmission will be slowed. Referring now to FIG. 1 , there is illustrated a block diagram which provides a high- level view of a disclosed embodiment. The disclosed novel forwarding mechanism comprises two intertwined parts: buffer management, which operates in accordance with a discard algorithm for determining the admittance or discarding of incoming frames; and transmission scheduling, for determining the sequence of frame departure. The importance of this intertwining can be summarized as follows: bandwidth, delay, and buffering are mathematically related by Bandwidth Received oc Queue Size/Delay Experienced. The unified scheme, through scheduling and buffer management, controls the Delay Experienced and Queue Size. As a consequence of this fact and the mathematical relationship hereinabove, the unified scheme also modulates Bandwidth Received per class.
Referring again to FIG. 1, a frame forwarding system 100 comprises a discard logic 102 operable in accordance with a discard algorithm which monitors an incoming bit stream 104. An output 106 of the discard logic 102 flows to one or more queues 108, 110 and 112 (also denoted as queues Q Q2,—5Qn) which correspond to respective classes Cl5 C2,...,Cn of traffic. The queues 108, 110 and 112 temporarily store frames according to the class of frame traffic to which each is assigned, and each outputs frames to a multiplexer logic 114 for ultimate output at an output queue 116, which has total bandwidth capacity of K Mbps. For example, class Cl3 the lowest transmission priority class, has associated therewith a service-level agreement ≤! which is defined by a delay bound parameter (δx) and a bandwidth parameter (rx). If the number of frames enqueued in the queue 108 (also designated Q,) cannot be transmitted within the time designated by the delay parameter (δ , there is some probability that frames associated with that class will need to be dropped in order to prevent congestion. Similarly, there is illustrated that the class C2, the next highest transmission priority class, has associated therewith a service-level agreement S2 which is defined by a delay bound parameter (δ2) and a bandwidth parameter (r2). If the number of frames enqueued in the queue 110 (also designated Q2) cannot be transmitted within the time designated by the delay parameter (δ2), there is some probability that frames associated with that class will need to be dropped in order to prevent congestion. Where the illustrated embodiment has a plurality of classes, the highest transmission priority class Cn has associated therewith a service-level agreement Sn which is defined by a delay bound parameter (δ and a bandwidth parameter (rn). If the number of frames enqueued in the queue 112 (also designated Q cannot be transmitted within the time designated by the delay parameter (δn), there is some probability that frames associated with that class will need to be dropped in order to prevent congestion. The output queue 116 temporarily stores the frames received from the various class queues 108, 110 and 112, and outputs frames of the various classes Cl3 C2,...,Cn to a port P (not shown). The multiplexer 114 is controlled by a scheduling logic 118 which determines the sequence of frame departure from the various class queues 108, 110 and 112.
A more generalized delineation of the novel system follows. Assume that port P serves n service classes of traffic, labeled C„ C2,...,Cn. For each service class , the network provider has negotiated a service-level agreement Si5 such that S; = (δ; , ), where δ; is the guaranteed maximum delay experienced by any admitted frame from class , and is the guaranteed minimum bandwidth allocation for class over time. The classes are defined such that the guaranteed maximum delay δ2 of class C, is greater than or equal to the guaranteed maximum delay δ2 of class C2, and that the guaranteed maximum delay δ2 of class C2 is greater than or equal to the guaranteed maximum delay δ3 of class C3, and so on (i.e., δj > δ2 > ... > δ„). The disclosed scheme advantageously simultaneously satisfies both the delay and bandwidth constraints of the service-level agreements S; for all i, regardless of the offered traffic pattern.
Delay bounded scheduling is now discussed in the context of the 10/100 Mbps port having three delay-bounded classes (C3, C2, and Cx). However, other implementations having more classes can be structured similarly. When scheduling for bounded delay, in the case of the 10/100 Mbps port of Table 1, each frame enqueued in the three transmission scheduling queues Q!-Q3 (of classes C1; C2, and C3) contains an arrival time stamp. The scheduling decision is made when a frame reaches the head-of-line (HOL) position in the queue, and according to the time stamp of the HOL frame of each queue. In the sample rules provided hereinbelow, delay is defined to be the difference between the stamped arrival time of a job (or frame) and the current time. Obviously, if there are no frames awaiting transmission for a particular class, then that class cannot be selected.
Referring now to FIG. 2, there is illustrated the concept of a congestion plane 200 in Euclidean space, in accordance with a disclosed embodiment. Let Qx be the queue backlog (measured in total bytes) for the output port P for each service class awaiting forwarding. Let λ; = δ δj, and let D = K-δx (measured in bytes). The congestion hyperplane 200 is spanned by the set of vectors{Ql5 Q2, Q3 ,...,Qn}, and defined by equation
(i);
∑ λ, Qr D (1)
The buffer manager 102 will discard an incoming frame destined for port P and belonging to class C;, if and only if,
λ ≥ O (2) i and,
Qi > rr δI . (3)
The first condition (equation (2)) indicates that the system 100 is congested, i.e., that the system 100 has surpassed the congestion plane 200. The second condition (equation (3)) indicates that class has already accumulated a large backlog. Even if admitted, a frame belonging to class C; has little chance of meeting its delay constraint, which is a consequence of the existing backlog and the minimum bandwidth assurances to other classes. Therefore, the incoming class i frame is discarded.
The disclosed buffer management algorithm may be modified to include WRED, the benefits of which have been well-established in the literature. The WRED technique uses a weighted queue length to determine when the system is sufficiently congested to consider dropping one or more frames. The dropping policy must drop enough frames to keep the queue lengths below the congestion plane 200; otherwise 100% of the frames will be dropped in order to prevent congestion. Since the goal is to differentiate between high-drop and low-drop traffic, the system 100 cannot be allowed to get to the congestion plane 200, where all frames are dropped, regardless of drop precedence. Therefore, in this particular embodiment, two sub-congestion planes are defined (Level 1 and Level 2), and which are designed to achieve early congestion avoidance, such that frames may be dropped with less than 100% probability where less strict conditions are met.
Referring now to FIG. 3, there is illustrated a block diagram of a sample frame forwarding system in accordance with Table 1. The frame forwarding system 300 (similar to system 100) has a 100 Mbps bandwidth, and utilizes the discard logic 102 which operates in accordance with the discard algorithm disclosed herein. The discard logic 102 monitors an incoming bit stream 302, and based upon predetermined criteria, discards selected frames 304 of the bit stream 302 into a discard bin 306 (shown for purposes of discussion, only). Admitted frames (307, 309, and 311) are then enqueued into respective classes of input queues (308, 310, and 312). For example, input queue 308 is a class Cλ queue (the lowest transmission priority class) having a delay bound which requires that all frames 307 be transmitted in less than 16 ms, and where class Cx becomes a misbehaving class by offering traffic which exceeds the agreed-upon rate of 25 Mbps, there is some probability that some of the incoming class frames will be dropped to prevent congestion. Input queue 310 is a class C2 queue (the intermediate transmission priority class) having a delay bound which requires that all frames 309 be transmitted in less than 4 ms, and where class C2 becomes a misbehaving class by offering traffic which exceeds the agreed-upon rate of 35 Mbps, there is some probability that some of the incoming class C2 frames will be dropped to prevent congestion. Lastly, input queue 312 is a class C3 queue (the highest transmission priority class) having a delay bound which requires that all frames 311 be transmitted in less than 1 ms, and where class C2 becomes a misbehaving class by offering traffic which exceeds the agreed-upon rate of 40 Mbps, there is some probability that some of the incoming class C3 frames will be dropped to prevent congestion.
Enqueued frames (307, 309, and 311) from the respective queues (308, 310, and 312) are multiplexed with multiplexer logic 314 (similar to multiplexer logic 114) into an output bit stream 316 at a rate not to exceed 100 Mbps, the output port speed of the system 300. However, scheduling logic 318 connects to the multiplexer 314 to schedule transmission of the class frames (307, 309, and 311) from the respective class queues (308, 310 and 312). As mentioned hereinabove, each enqueued frame (307, 309, and 311) is time stamped upon arrival to the respective queue (308, 310, and 312). A scheduling decision is made when a class frame (307, 309, and 311) reaches the HOL position (313, 315, and 317) of its respective queue (308, 310, and 312), and according to the arrival time stamp of the HOL frame of each queue.
Referring now to FIG. 4, there is illustrated a graph of the congestion and sub- congestion planes. Note that any small number of sub-congestion planes can be defined. The Level 1 and Level 2 sub-congestion planes (400 and 402, respectively) prevent congestion by randomly dropping a percentage of high-drop frames, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early, as a sacrifice for low-drop frames. In the example, there will be some probability of dropping frames when the total available queue backlog N ranges from 120 to 200 KB, and any one of the class queues Q Q3 has a backlog of buffered frames which meets or exceeds the respective queue limits of A, B, or C (in kilobytes). In the Level 1 sub-congestion plane 400, where 16Q3 + 4Q2 + Qx ≥ 120 KB, and any one or more of the queues Q,-Q3 exceeds its backlog limit (A, B, and C, respectively), the low-drop-to-high-drop range varies from 0 to X%, respectively. Similarly, in the Level 2 sub-congestion plane 402, where 16Q3 + 4Q2 + Qx ≥ 160 KB, and any one or more of the queues Q Q3 exceeds its backlog limit (A, B, and C, respectively), the low-drop-to-high-drop range varies from Y% to Z%, respectively. Finally, in the Level 3 congestion plane 200, where the congestion plane 200 is defined by 16Q3 + 4Q2 + Qi ≥ 200 KB, both the low-drop and high-drop rules stipulate a drop of 100% of the frames.
Table 2 summarizes dropping rules utilized with WRED where various sub- congestion planes are defined for a 100 Mbps port with a maximum total queue backlog N, or in this particular example, where N = 200 KB.
Table 2. Dropping Rules to Enforce QoS on a 10/100 Mbps Port With Three Delay- Bounded Classes
Note that the rales for discarding (or dropping) frames are only applied, in this particular embodiment having the delay bounds of Table 1, when 1 Q3 + 4Q2 + Qx ≥ N KB, which will be discussed in greater detail hereinbelow. Table 3 gives an example of combining WRED with the aforementioned discard scheme.
Table 3. Sample Discard Method in Combination With WRED
Level 3 of Table 3 follows the rules set forth hereinabove and given the bounded delay constraints in Figure 1. For example, according to the equations, a Class 2 frame is dropped, if and only if, 16Q3 + 4Q2 + Qx ≥ 200 KB, and queue Q2 exceeds a predetermined backlog limit, i.e., Q2 > 17.5 KB. Level 1 and Level 2 define the sub-congestion planes (400 and 402, respectively) which were discussed hereinabove. For example, if 120 KB < 16Q3 + 4Q2 + Qx < 200 KB, and Q2 > 17.5 KB, then dropping will still occur with some probability. Observe that frames may be identified as high-drop or low-drop, and assigned different drop probabilities within each category on each WRED level.
As indicated in FIG. 2, in this particular embodiment having three classes Cl9 C2 and C3, every point on the congestion plane 200 defines a triple of queue lengths (Ql5 Q2, Q3) that is sustainable, in the sense that all latency bounds can be satisfied if the corresponding queue lengths (Ql5 Q2, Q3) remain steady at those values. For example, one sustainable set of steady-state queue lengths, in KB, is (50, 17.5, 5). These values are derived herein; Q3= (r3)(δ3) = (40 Mbps)(l ms) = 5 KB; Q2 = (r2)(δ2) = (35 Mbps)(4 ms) = 17.5 KB; and Q, = (r,)( δ,) = (25 Mbps)(16 ms) - 50 KB.
With respect to transmission scheduling, let Δ(F) be defined to be the current waiting time of frame F. Then, frame F of class i is defined to have slackness Ψ;(F), such that Ψj(F) = δ; - Δ(F). The transmission scheduling method is advantageously simple: the smaller the slackness (or slack time), the higher the transmission priority. Where the computed slack times between two or more classes of queues are equal, scheduling is provided first to the queue associated with the higher priority class (i.e., with the stricter delay constraint).
Although the preferred embodiment has been described in detail, it should be understood that various changes, substitutions and alterations can be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A method of frame scheduling and discard in a Differentiated Services network environment, comprising the steps of: discarding a frame of an incoming stream of frames with a discard logic which operates in accordance with a discard algorithm; and scheduling with a scheduling logic the order in which to transmit one or more enqueued frames of the network environment.
2. A method of frame scheduling and discard in a Differentiated Services network environment, comprising the steps of: discarding a frame of an incoming stream of frames with a discard logic which operates in accordance with a discard algorithm, if, a predetermined congestion level in the network environment has been reached, and a predetermined backlog limit of a queue associated with said frame, has been reached, and scheduling with a scheduling logic the order in which to transmit one or more enqueued frames of the network environment.
3. The method of Claim 2, wherein said frame in the step of discarding is associated with a unique class of frames, and which said unique class of frames are further associated with said queue of the networking environment.
4. The method of Claim 2, wherein said queue in the step of discarding is controlled in accordance with a maximum delay limit and a minimum bandwidth limit.
5. The method of Claim 2, wherein the network environment contains a plurality of queues which are classified in accordance with respective queue classes, which said plurality of queue classes range from a lowest transmission priority class to a highest transmission priority class.
6. The method of Claim 5, wherein said lowest transmission priority class has a maximum delay value which is greater than said maximum delay value of said highest transmission priority class.
7. The method of Claim 2, wherein the step of scheduling comprises a step of calculating a slackness time in order to determine the order of transmitting said one or more enqueued frames.
8. The method of Claim 7, wherein a smaller said slackness time corresponds to a higher transmission priority.
9. The method of Claim 7, wherein each of said one or more enqueued frames is associated with a time stamp, and said slackness time of a select one of said one or more enqueued frames is defined as the difference in time that said select one of said one or more enqueued frames has been enqueued and a maximum delay time associated with said respective queue.
10. The method of Claim 7, wherein if a first slackness time of a lower priority queue equals a second slackness time of a higher priority queue, a frame of said higher priority queue will be scheduled, in the step of scheduling, for transmission first.
11. The method of Claim 2, wherein a select frame of said one or more enqueued frames is scheduled for transmission, in the step of scheduling, when said select frame reaches a head-of-line position in its respective queue.
12. The method of Claim 2, wherein said frame is discarded, in the step of discarding, in accordance with a plurahty of predetermined congestion levels.
13. The method of Claim 12, wherein when a highest congestion level of said plurality of predetermined congestion levels is reached, all of the frames associated with said queue which has reached said predetermined backlog limit are discarded.
14. The method of Claim 13, wherein when said predetermined congestion level is reached, and said predetermined congestion level is lower than said highest congestion level, some of the frames associated with said queue which has reached said predetermined backlog limit are discarded.
15. A frame scheduling and discard architecture in a Differentiated Services network environment, comprising: discard logic for discarding select ones of a stream of incoming frames of the network environment in accordance with a discard algorithm; and scheduling logic for scheduling the order in which to transmit one or more enqueued frames of the network environment.
16. A frame scheduling and discard architecture in a Differentiated Services network environment, comprising: discard logic for discarding a frame from a stream of incoming frames in accordance with a discard algorithm, said frame being discarded if, a predetermined congestion level in the network environment has been reached, and a predetermined backlog limit of a queue associated with said frame, has been reached, and scheduling logic for scheduling the order in which to transmit one or more enqueued frames of the network environment.
17. The architecture of Claim 16, wherein said frame is associated with a unique class of frames, and which said unique class of frames are further associated with said queue of the networking environment.
18. The architecture of Claim 16, wherem said queue is controlled in accordance with a maximum delay limit and a minimum bandwidth limit.
19. The architecture of Claim 16, wherein the network environment contains a plurality of queues which are classified in accordance with respective queue classes, which said plurality of queue classes range from a lowest transmission priority class to a highest transmission priority class.
20. The architecture of Claim 19, wherein said lowest transmission priority class has a maximum delay value which is greater than said maximum delay value of said highest transmission priority class.
21. The architecture of Claim 16, wherein a slackness time is calculated in order to determine the order of transmitting said one or more enqueued frames.
22. The architecture of Claim 21, wherein a smaller said slackness time corresponds to a higher transmission priority.
23. The architecture of Claim 21 , wherein each of said one or more enqueued frames is associated with a time stamp, and said slackness time of a select one of said one or more enqueued frames is defined as the difference in time that said select one of said one or more enqueued frames has been enqueued and a maximum delay time associated with said respective queue.
24. The architecture of Claim 21 , wherein if a first slackness time of a lower priority queue equals a second slackness time of a higher priority queue, a frame of said higher priority queue will be scheduled for transmission first.
25. The architecture of Claim 16, wherein a select frame of said one or more enqueued frames is scheduled for transmission when said select frame reaches a head-of-line position in its respective queue.
26. The architecture of Claim 16, wherein said frame is discarded in accordance with a plurality of predetermined congestion levels.
27. The architecture of Claim 26, wherein when a highest congestion level of said plurality of predetermined congestion levels is reached, all of the frames associated with said queue which has reached said predetermined backlog limit are discarded.
28. The architecture of Claim 27, wherein when said predetermined congestion level is reached, and said predetermined congestion level is lower than said highest congestion level, some of the frames associated with said queue which has reached said predetermined backlog limit are discarded.
EP01909268A 2000-02-24 2001-02-16 Unified algorithm for frame scheduling and buffer management in differentiated services networks Withdrawn EP1258115A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18455700P 2000-02-24 2000-02-24
US184557P 2000-02-24
PCT/US2001/005014 WO2001063858A1 (en) 2000-02-24 2001-02-16 Unified algorithm for frame scheduling and buffer management in differentiated services networks

Publications (1)

Publication Number Publication Date
EP1258115A1 true EP1258115A1 (en) 2002-11-20

Family

ID=22677393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909268A Withdrawn EP1258115A1 (en) 2000-02-24 2001-02-16 Unified algorithm for frame scheduling and buffer management in differentiated services networks

Country Status (6)

Country Link
EP (1) EP1258115A1 (en)
KR (1) KR20020079904A (en)
CN (1) CN100568847C (en)
AU (1) AU2001237043A1 (en)
TW (1) TW490964B (en)
WO (1) WO2001063858A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030223442A1 (en) * 2002-05-29 2003-12-04 Huang Anguo T. Buffer memory reservation
US7283536B2 (en) * 2002-06-11 2007-10-16 Nokia Corporation Multimode queuing system for DiffServ routers
US7177274B2 (en) 2002-06-19 2007-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods of transmitting data packets without exceeding a maximum queue time period and related devices
CN100359888C (en) * 2003-11-27 2008-01-02 华为技术有限公司 A data poll dispatching method
EP1619839A1 (en) * 2004-07-21 2006-01-25 Siemens Mobile Communications S.p.A. Method of and apparatus for scheduling transmission of multimedia streaming services over the radio channel of wireless communication systems
KR100745682B1 (en) * 2005-12-08 2007-08-02 한국전자통신연구원 I/o packet control device and method of line card in packet exchange system
WO2009012811A1 (en) * 2007-07-23 2009-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Controlling traffic in a packet switched comunications network
KR101013668B1 (en) * 2008-10-17 2011-02-10 엘에스산전 주식회사 Coil holding apparatus of switching mechanism for air circuit breaker
CN102036398B (en) * 2009-09-29 2015-06-03 中兴通讯股份有限公司 Relay node (RN) and method thereof for transmitting data
CN103067968B (en) * 2011-10-19 2016-08-10 鼎桥通信技术有限公司 A kind of method preventing frame protocol step-out
US10904313B2 (en) * 2017-06-20 2021-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Apparatuses, methods, computer programs, and computer program products for live uplink adaptive streaming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0163858A1 *

Also Published As

Publication number Publication date
CN100568847C (en) 2009-12-09
TW490964B (en) 2002-06-11
AU2001237043A1 (en) 2001-09-03
WO2001063858A1 (en) 2001-08-30
KR20020079904A (en) 2002-10-19
CN1416633A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
US6990529B2 (en) Unified algorithm for frame scheduling and buffer management in differentiated services networks
US7263063B2 (en) Per hop behavior for differentiated services in mobile ad hoc wireless networks
US7006437B2 (en) Scheduling mechanisms for use in mobile ad hoc wireless networks for achieving a differentiated services per-hop behavior
US7126918B2 (en) Micro-flow management
US8204069B2 (en) Systems and methods for queue management in packet-switched networks
JP4619584B2 (en) Method for scheduling packets at a router in a packet switched network
US7738382B2 (en) Hierarchical multi-rate multi-precedence policer
US8547846B1 (en) Method and apparatus providing precedence drop quality of service (PDQoS) with class-based latency differentiation
Romanchuk et al. Method for processing multiservice traffic in network node based on adaptive management of buffer resource
US7843825B2 (en) Method and system for packet rate shaping
WO2001063858A1 (en) Unified algorithm for frame scheduling and buffer management in differentiated services networks
NZ531355A (en) Distributed transmission of traffic flows in communication networks
US11343193B2 (en) Apparatus and method for rate management and bandwidth control
Aboul-Magd Voice over differentiated services
JP4087279B2 (en) BAND CONTROL METHOD AND BAND CONTROL DEVICE THEREOF
Kim et al. Providing absolute differentiated services for optical burst switching networks: loss differentiation
Cisco Policing and Shaping Overview
Bodamer A scheduling algorithm for relative delay differentiation
KR100720917B1 (en) Method of adaptive multi-queue management to guarantee QoS
KR100475783B1 (en) Hierarchical prioritized round robin(hprr) scheduling
Li et al. Relative differentiated delay service: time varying deficit round robin
Minagawa et al. Controlling user flows with RIO and WFQ
Majoor Quality of service in the internet Age
Sheu et al. End-to-end jitter minimization with TCM for real-time multimedia traffic in DiffServ networks
RU2340109C2 (en) Methof of combined control of bandwidth values for group of separate data streams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030902