EP1257730B1 - Appareil et procede permettant de controler la pression d'un echantillon de fluide de puits - Google Patents

Appareil et procede permettant de controler la pression d'un echantillon de fluide de puits Download PDF

Info

Publication number
EP1257730B1
EP1257730B1 EP00959416A EP00959416A EP1257730B1 EP 1257730 B1 EP1257730 B1 EP 1257730B1 EP 00959416 A EP00959416 A EP 00959416A EP 00959416 A EP00959416 A EP 00959416A EP 1257730 B1 EP1257730 B1 EP 1257730B1
Authority
EP
European Patent Office
Prior art keywords
fluid sample
pressure
piston
recited
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00959416A
Other languages
German (de)
English (en)
Other versions
EP1257730A1 (fr
Inventor
Paul Andrew Reinhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2000/004992 external-priority patent/WO2000050736A1/fr
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of EP1257730A1 publication Critical patent/EP1257730A1/fr
Application granted granted Critical
Publication of EP1257730B1 publication Critical patent/EP1257730B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/10Obtaining fluid samples or testing fluids, in boreholes or wells using side-wall fluid samplers or testers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/081Obtaining fluid samples or testing fluids, in boreholes or wells with down-hole means for trapping a fluid sample

Definitions

  • the present invention relates to the art of earth boring and the collection of formation fluid samples from a wellbore. More particularly, the invention relates to methods and apparatus for collecting a deep well formation sample and preserving the in situ constituency of the sample upon surface retrieval.
  • Earth formation fluids in a hydrocarbon producing well typically comprise a mixture of oil, gas, and water.
  • the pressure, temperature and volume of formation fluids control the phase relation of these constituents.
  • high well fluid pressures often entrain gas within the oil above the bubble point pressure.
  • the pressure is reduced, the entrained or dissolved gaseous compounds separate from the liquid phase sample.
  • the accurate measure of pressure, temperature, and formation fluid composition from a particular well affects the commercial interest in producing fluids available from the well.
  • the data also provides information regarding procedures for maximizing the completion and production of the respective hydrocarbon reservoir.
  • United States Patent No. 5,361,839 to Griffith et al. (1993 ) disclosed a transducer for generating an output representative of fluid sample characteristics downhole in a wellbore.
  • United States Patent No. 5,329,811 to Schultz et al. disclosed an apparatus and method for assessing pressure and volume data for a downhole well fluid sample.
  • United States Patent No. 4,5 83,595 to Czenichow et al. (1986 ) disclosed a piston actuated mechanism for capturing a well fluid sample.
  • United States Patent No. 4,721,157 to Berzin ( 1988 ) disclosed a shifting valve sleeve for capturing a well fluid sample in a chamber.
  • United States Patent No. 4,766,955 to Petermann ( 1988 ) disclosed a piston engaged with a control valve for capturing a well fluid sample
  • United States Patent No. 4,903,765 to Zunkel ( 1990 ) disclosed a time delayed well fluid sampler.
  • Temperature downhole in a deep wellbore often exceed 300 degrees F (149°C).
  • 149°C degrees F
  • the resulting drop in temperature causes the formation fluid sample to contract. If the volume of the sample is unchanged, such contraction substantially reduces the sample pressure.
  • a pressure drop changes in the situ formation fluid parameters, and can permit phase separation between liquids and gases entrained within the formation fluid sample. Phase separation significantly changes the formation fluid characteristics, and reduces the ability to evaluate the actual properties of the formation fluid.
  • the present invention provides an apparatus as claimed in claim 1 and method as claimed in claim 15 for controlling the pressure of a pressurized formation fluid sample collected from a wellbore.
  • the apparatus of the invention comprises a housing having a hollow interior.
  • a piston within the housing interior defines a fluid sample chamber wherein the piston is moveable within the housing interior to selectively change the fluid sample chamber volume.
  • the piston preferable a compound piston preferably comprises an outer sleeve and an inner sleeve moveable relative to the outer sleeve. However, movement of the inner sleeve relative to the outer sleeve is unidirectional.
  • a pump preferably an external pump, extracts formation fluid for delivery under pressure into the fluid sample chamber.
  • a positioned opened valve permits pressurized wellbore fluid to move said piston for pressurizing the fluid sample within the fluid sample chamber so that the fluid sample remains pressurized when the fluid sample is moved to the Well surface.
  • the method of the invention is practiced by lowering a housing into a wellbore.
  • the compound piston is displaced within the sample chamber by formation fluid delivered by the external pump.
  • a valve is opened to introduce wellbore fluid at hydrostatic wellbore pressure against the piston to move the piston for pressurizing the well fluid sample within the fluid sample chamber.
  • force on a inner sleeve of the compound piston is unbalanced to compress the fluid sample by a volumetric reduction.
  • the reduced volume is secured by mechanically securing the relative positions ofthe compound piston against the sample chamber.
  • FIG. 1 schematically represents a cross-section of earth 10 along the length of a wellbore penetration 11.
  • the wellbore will be at least partially filled with a mixture of liquids including water, drilling fluid, and formation fluids that are indigenous to the earth formations penetrated by the wellbore.
  • wellbore fluids such fluid mixtures are referred to as "wellbore fluids”.
  • formation fluid hereinafter refers to a specific formation fluid exclusive of any substantial mixture or contamination by fluids not naturally present in the specific formation.
  • a formation fluid sampling tool 20 Suspended within the wellbore 11 at the bottom end of a wireline 12 is a formation fluid sampling tool 20.
  • the wireline 12 is often carried over a pulley 13 supported by a derrick 14. Wireline deployment and retrieval is performed by a powered winch carried by a service truck 15, for example.
  • FIG. 2 a preferred embodiment of a sampling tool 20 is schematically illustrated by FIG. 2 .
  • such sampling tools are a serial assembly of several tool segments that are joined end-to-end by the threaded sleeves of mutual compression unions 23.
  • An assembly of tool segments appropriate for the present invention may include a hydraulic power unit 21 and a formation fluid extractor 22 .
  • a large displacement volume motor/pump unit 24 is provided for line purging.
  • a similar motor/pump unit 25 having a smaller displacement volume that is quantitatively monitored as described more expansively with respect to FIG. 3 .
  • one or more tank magazine sections 26 are assembled below the small volume pump. Each magazine section 26 may have three or more fluid sample tanks 30.
  • the formation fluid extractor 22 comprises an extensible suction probe 27 that is opposed by borewall feet 28. Both, the suction probe 27 and the opposing feet 28 are hydraulically extensible to firmly engage the wellbore walls. Construction and operational details of the fluid extraction tool 22 are more expansively described by U.S. Patent No. 5,303,775 .
  • the constituency of the hydraulic power supply unit 21 comprises an A.C. motor 32 coupled to drive a positive displacement, hydraulic power pump 34.
  • the hydraulic power pump energizes a closed loops hydraulic circuit 36.
  • the hydraulic circuit is controlled, by a solenoid actuated 4- way valve 47, for example, to drive the motor section 42 of an integrated, positive displacement, pump/motor unit 25.
  • the pump portion 44 of the pump/motor unit 25 is monitored by means such as a rod position sensor 46, for example, to report the pump displacement volume.
  • Formation fluid drawn through the suction probe 27, is directed by a solenoid controlled valve 48 to alternate chambers of the pump 44 and to a tank distributor 49.
  • sample volumes of selected formation fluid are extracted directly from respective in situ formations and delivered to designated sample chambers among the several sample tank tools 30.
  • the large volume motor/pump unit 24 is employed to purge the -formation fluid flow lines between the suction probe 27 and the small volume pump 25. Since these sub-steps do not require accurate volumetric data, measurement of the pump displacement volume is not required. Otherwise, the motor/pump unit 24 may be substantially the same as motor/pump unit 25 except for the preference that the pump of unit 24 have a greater displacement volume capacity.
  • a representative magazine section 26 is illustrated by FIG. 4 to include a fluted, cylinder 50.
  • the cylinder 50 is fabricated to accommodate three or four tanks 30. Each tank 30 is operatively loaded into a respective alcove 52 with a bayonet-stab fit.
  • Two or more cylinders 50 are joined by an internally threaded sleeve 23 that is axially secured to one end of one cylinder but freely rotatable about the cylinder axis.
  • the sleeve 23 is turned upon the external threads of a mating joint boss 52 to draw the boss into a compression sealed juncture therebetween whereby the fluid flow conduits 54 drilled into the end of each boss 52 are continuously sealed across the joint.
  • FiGs. 5 , 6 and 7 illustrate each tank 30 as comprising a cylindrical pressure housing 60 that is delineated at opposite ends by cylinder headwalls.
  • the bottom-end headwall comprises a valve sub-assembly 62 having a socket boss 63 and a fluid conduit nipple 66 projecting axially therefrom.
  • a conduit 68 within the nipple 66 is selectively connected by a respective conduit 54 to the tank distributor 49 and, ultimately, to the suction probe 27 of the formation fluid extractor 22 . Fluid flow within the conduit 68 is rectified by a check valve 69.
  • Within the valve sub-assembly 62 is a formation fluid flow path 74 between the conduit 68 and a formation fluid reservoir internally of the pressure housing 60.
  • a solenoid actuated shut-off valve 76 is disposed to selectively open and close the channel of flow path 74. As best seen from the isometric detail of FIG. 7 , a bleed valve 78 selectively closes a shunt conduit 79 that junctions with the flow path 74.
  • the pressure housing top-end headwall comprises a sub 64 having a fluid inlet conduit 70 that connects the interior bore 80 of the pressure housing 60 with a threaded tubing nipple socket 72.
  • the conduit 70 is a normally open fluid flow path between the interior bore 80 and the in situ wellbore environment.
  • a traveling trap sub-assembly 82 that comprises the coaxial assembly of an inner traveling/locking sleeve 86 within an outer traveling sleeve 84 as shown by FIG.8 .
  • a traveling trap sub-assembly 82 Unitized with the outer traveling sleeve 84 by a retaining bolt 88 as shown by FIG. 9 , is a locking piston rod 90.
  • a fluid channel 92 along the length of the rod 90 openly communicates the inner face 96 of a floating piston 94 with the open well bore conduit 70.
  • the floating piston 94 is axially confined within the inner bore of the inner traveling/locking sleeve 86 by a retaining ring 98.
  • a mixing ball 99 is placed within the sample (formation fluid) receiving chamber 95 that is geometrically defined as that variable volume within the interior bore 80 of pressure housing 60 between the valve sub-assembly 62 and the end area of the traveling trap sub-assembly 82.
  • a body lock ring 100 having internal barb rings 102 and external barb rings 104 selectively connects the rod 90 to the inner traveling/locking sleeve 86.
  • the selective connection of the barbed lock ring 100 permits the sleeve 86 to move coaxially along the rod 90 from the piston 84 but prohibits any reversal of that movement.
  • Another construction detall of the inner traveling/locking sleeve 86 is the sealed partition 122 between the opposite ends of the sleeve 86.
  • the chamber 124 created between the partition 122 and the piston head 106 of the rod 90 is sealed to the atmospheric pressure present in the chamber at the time of assembly.
  • the body lock ring 100 between the locking piston rod 90 and the inner bore wall of the inner traveling/locking sleeve 86 above the partition 122 does not provide a fluid pressure barrier. Consequently, the chamber 126 between the partition 122 and the body lock ring 100 functions at the same fluid pressure as the wellbore fluid flood chamber 120 when the flood valve 110 is opened.
  • the base of the floating piston/sleeve 84 includes a flood valve 110 having a pintle 112 biased by a spring 114 against a seal seat 116.
  • the pintle includes a stem 118 that projects beyond the end plane of the floating piston /sleeve 84.
  • the pintle 112 is displaced from engagement with the seal seat 116 to admit wellbore fluid into the flood chamber 120 as is illustrated by FIGS. 11 and 12 .
  • the flood chamber 120 is geometrically defined as the variable volume bounded by the annular space between the outer perimeter of the rod 90 and the inner bore 85 of the outer traveling sleeve 84.
  • Preparation of the sample tanks 30 prior to downhole deployment includes the closure of bleed valve 78 and the opening of shut-off valve 76.
  • the sampling tool Under the power and control of instrumentation carried by the service truck 15, the sampling tool is located downhole at the desired sample acquisition location.
  • the hydraulic power unit 21 When located, the hydraulic power unit 21 is engaged by remote control from the service truck 15. Hydraulic power from the unit 21 is directed to the formation fluid extractor unit 22 for borewall engagement of the formation fluid suction probe 27 and the borewall feet 28.
  • the suction probe 27 provides an isolated, direct fluid flow channel for substantially pure formation fluid. Such formation fluid flow into the suction probe 27 is first induced by the suction of large volume pump 24 which is driven by the hydraulic power unit 21.
  • the large volume pump 24 is operated for a predetermined period of time to flush the sample distribution conduits of contaminated wellbore fluids with formation fluid drawn through suction probe 27.
  • hydraulic power is switched from the large volume pump 24 to the small volume piston pump 25.
  • formation fluid drawn from the suction probe 27 by the pump 25 is shuttled by 4-way valve 48 into successively opposite chambers 44.
  • the valve 48 directs discharge from the chambers to a multiple port rotary valve 49, for example, which further directs the formation fluid on to the desired sample tank 30.
  • Formation fluid enters the tank 30 through the nipple conduit 68 and is routed past the check valve 69 and along the flow path 74 into the sample receiving chamber 95.
  • the tank shut-off valve 76 was opened before the tank was lowered into the wellbore.
  • Pressure of the pumped formation fluid in the receiving chamber 95 displaces both, the outer traveling sleeve 84 and the inner traveling/locking sleeve 86, against the standing wellbore pressure in the interior bore 80 of pressure housing 60 as shown by FIG. 10 .
  • high pressure check valve closes to trap the sample of formation fluid within the sample chamber 30 and passage 32.
  • the base plane of the outer traveling sleeve 84 will engage the inside face of the top sub 64. Thereby, the stem 118 is axially displaced to open the flood valve 110.
  • Internal conduits within the outer traveling sleeve 84 direct wellbore fluid into the flood chamber 120.
  • the wellbore pressure in the flood chamber 120 bears against the inner traveling/locking sleeve 84 over the cross-sectional area of the flood chamber 120 annulus.
  • Opposing the flood chamber force on the traveling/locking sleeve 86 are two pressure sources.
  • One source is the formation fluid pressure in the sample chamber 95 bearing on the annular end section of the traveling/locking sleeve 86 as was provided by the small volume pump unit 25.
  • the other pressure opposing the flood chamber pressure is the closed atmosphere chamber 124 acting on the area of the annular partition 122. Initially, the force balance on the traveling/locking sleeve 86 favors the flood chamber side to press the annular end of the sleeve 86 into the sample chamber 95.
  • the fluid sample pressure is greatly above the wellbore pressure.
  • the operative components may be designed so that when the collected formation sample is removed from the well, the sample pressure does not decline below the bubble point of entrained or dissolved gas. Movement of the inner traveling/locking sleeve 86 further compresses the collected formation fluid sample above the boost capability of the pump 25 . Such compression continues until the desired boost ratio is accomplished.
  • a down hole fluid sample can have a hydrostatic wellbore pressure of 10,000 psi (6.9x10 7 Pa).
  • the typical compressibility for such a fluid is 5X10 -6 so that a volume decrease of only eight percent would raise the fluid sample pressure by 16,000 psi (1.1x10 8 Pa) to 26,000 psi (1.8x10 8 Pa) for a boost ratio of 2.6 to 1.0.
  • the formation fluid sample temperature will cool, thereby returning the formation fluid sample pressure toward the original pressure of 10,000 psi (6.9x10 7 Pa).
  • the resulting 200°F (111°C) drop in temperature will lower the fluid sample pressure by approximately 15,300 psi (1.1 ⁇ 10 8 Pa) in a fixed volume, thereby resulting in a surface fluid sample pressure of approximately 10,700 psi (7.4x10 7 Pa).
  • inner traveling/locking sleeve 86 is fixed relative to outer traveling sleeve 84 during retrieval of the magazine 26.
  • the invention accomplishes the fixed relationship by means of the body lock ring 100.
  • This mechanism permits additional boost to be added to the formation fluid sample pressure within the sample chamber 96 as a proportionality of the in situ wellbore pressure.
  • the magazine section 26 may subsequently be lowered to additional depths within a wellbore 11 where the hydrostatic pressure is greater than a prior sample extraction.
  • the hydrostatic wellbore pressure increase is transmitted through flood valve 112 into flood chamber 120 to further move the inner traveling/locking sleeve 86 and to further compress the formation fluid sample within the sample chamber 95 to a greater pressure.
  • Such pressure boost can be accomplished quickly and magazine 26 removed to the surface of wellbore 11 before a significant amount of heat from the additional wellbore depth is transferred to the previously collected formation fluid sample.
  • tank shut-off valve 76 is closed to trap the formation fluid sample. Thereafter, bleed valve 78 may be opened to relieve the fluid pressure in the flow passage between tank shut-off valve 76 and the high pressure check valve 69. This pressure release provides a positive indication of fluid pressure and facilitates removal of a tank 30 from a magazine 26.
  • Fig. 13 illustrates one technique for removing the formation fluid sample under pressure from within fluid sample chamber 95 .
  • Tank 30 is connected to a pressure source 130 engaged with aperture 132 through top sub 64. Pressure from the pressure source 130 is introduced until the inverse of the boost ratio times the expected pressure within fluid sample chamber 95 is reached.
  • shut-off valve 76 is cracked open and the formation fluid sample is permitted to pass through passage 74 into an attached receiver line 140.
  • the reverse boost pressure can be increased to displace the collected formation fluid sample until the sleeve edge of the inner traveling/locking sleeve 86 bottoms out against the valve sub 62.
  • Continued extraction fluid from the pressure source 130 displaces the outer traveling sleeve 84 relative to the inner sleeve 86.
  • the piston head 106 engages the floating piston 94 to sweep most of the formation fluid sample from the chamber 95.
  • the only volume within the chamber 95 not removed by the extraction pressure is found in an annular space between the outer traveling sleeve 84 and the valve sub 62.
  • the components of tank 30 can be dissembled and reset for another use.
  • the invention permits multiple tanks 30 to be lowered in the same operation so that different zones within wellbore 11 can be sampled.
  • Each tank can be selectively operated to collect different samples at different pressures and to compress each sample to different rates exceeding the bubble point for gas within the sample. Operating costs are significantly reduced because less rig time is required to sample multiple zones.
  • the invention prevents the pressure within each fluid sample from being reduced below the bubble point therefore delivering each fluid sample to the wellbore surface in substantially the same pressure state as the downhole sampling state. The invention accomplishes this function without requiring expanding gases, large springs and complicated mechanical systems.
  • the fluid sample is collected under pressure and additional pressure is added with a force exerted by the downhole hydrostatic pressure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Claims (24)

  1. Appareil destiné à commander la pression d'un échantillon de fluide de formation sous pression recueilli dans le fond d'un puits, comportant :
    une boîtier (60) qui est creux à l'intérieur ;
    un piston (90, 94) situé à l'intérieur dudit boîtier pour définir une chambre (95) à échantillon de fluide, ledit piston (90, 94) étant mobile dans l'intérieur dudit boîtier pour faire varier sélectivement le volume de ladite chambre à échantillon de fluide ;
    caractérisé en ce qu'il comporte en outre
    une soupape (110) destinée à permettre à du fluide de puits de forage sous pression de déplacer ledit piston (90, 94), le mouvement dudit piston mettant sous pression l'échantillon de fluide à l'intérieur de ladite chambre (95) à échantillon de fluide afin que l'échantillon de fluide reste sous pression lorsque l'échantillon de fluide est déplacé vers la surface du puits, et caractérisé par une pompe (25) destinée à introduire un échantillon de fluide de formation sous pression dans ladite chambre (95).
  2. Appareil selon la revendication 1, dans lequel ladite soupape (110) est reliée audit piston (90, 94).
  3. Appareil selon la revendication 1 ou 2, comportant en outre un clapet de retenue (69) engagé entre ladite pompe (25) et ladite chambre (95) à échantillon de fluide pour empêcher ledit piston (90, 94) de déplacer à force l'échantillon de fluide vers ladite pompe (25).
  4. Appareil selon la revendication 1, 2 ou 3, comportant en outre une vanne (76) de fermeture de réservoir engagée entre ladite pompe (25) et ladite chambre (95) à échantillon de fluide pour permettre sélectivement à ladite chambre (95) à échantillon de fluide d'être isolée en pression de ladite pompe (25).
  5. Appareil selon l'une quelconque des revendications précédentes, comportant en outre un verrou (100) destiné à retenir ledit piston (90, 94) fixement par rapport audit boîtier (60) afin de maintenir le volume de ladite chambre (95) à échantillon de fluide.
  6. Appareil selon l'une quelconque des revendications précédentes, dans lequel ledit piston (90, 94) comporte un fourreau extérieur (84) et un fourreau intérieur (86) mobile par rapport audit fourreau extérieur (84), et dans lequel ladite soupape (110) est capable de permettre au fluide de puits de forage sous pression d'entrer en contact avec ledit fourreau intérieur (86) afin de déplacer ledit fourreau intérieur (86) par rapport audit fourreau extérieur (84) et de mettre ainsi sous pression l'échantillon de fluide.
  7. Appareil selon la revendication 6, comportant en outre un verrou (110) destiné à retenir ledit fourreau intérieur (86) fixement par rapport audit fourreau extérieur (84) afin de maintenir le volume de ladite chambre (95) à échantillon de fluide.
  8. Appareil selon la revendication 6 ou 7, comportant en outre une chambre (120) de débordement entre ledit fourreau intérieur (86) et ledit fourreau extérieur (84) destinée à recevoir le fluide de puits de forage sous pression afin que le fluide de puits de forage exerce une pression différentielle contre ledit fourreau intérieur (86) pour déplacer ledit fourreau intérieur (86) par rapport audit fourreau extérieur (84).
  9. Appareil selon la revendication 6, 7 ou 8, comportant en outre une chambre atmosphérique (124) entre ledit fourreau intérieur (86) et ledit fourreau extérieur (84), qui a initialement une pression inférieure à la pression hydrostatique et dont le volume diminue pendant que ledit fourreau intérieur (86) se déplace par rapport audit fourreau extérieur (84).
  10. Appareil selon l'une quelconque des revendications précédentes, dans lequel ledit piston (90, 94) comporte un fourreau extérieur (84) et un fourreau intérieur (86) mobile par rapport audit fourreau extérieur (84), et dans lequel ledit appareil comporte en outre un moyen de retenue (88) destiné à retenir ledit fourreau extérieur (84) par rapport audit boîtier (60).
  11. Appareil selon l'une quelconque des revendications précédentes, dans lequel ledit piston comporte un fourreau extérieur (84) et un fourreau intérieur (86) mobile par rapport audit fourreau extérieur (84), et dans lequel ledit appareil comporte en outre un verrou (100) destiné à retenir ledit fourreau intérieur (86) immobile par rapport audit boîtier (60).
  12. Appareil selon l'une quelconque des revendications précédentes, comportant en outre une soupape (69) destinée à bloquer sélectivement une communication de fluide entre ladite pompe (25) et ladite chambre (95) à échantillon de fluide.
  13. Appareil selon la revendication 12, dans lequel ladite soupape (69) comprend un clapet de retenue.
  14. Appareil selon l'une quelconque des revendications précédentes, comportant en outre un second boîtier et un second piston à l'intérieur dudit second boîtier, qui définissent une seconde chambre à échantillon de fluide qui est engagée avec ladite pompe (25) pour mettre sous pression sélectivement un second échantillon de fluide de formation à une pression différente de la pression de fluide à l'intérieur de la première chambre (95) à échantillon de fluide.
  15. Procédé pour commander la pression d'un échantillon de fluide de formation sous pression provenant d'un puits de forage, comprenant les étapes consistant :
    à descendre un outil de fond (20) dans le puits de forage, ledit outil de fond (20) comportant un boîtier (60) et un piston (90, 94) qui est mobile dans l'intérieur creux du boîtier (60) pour définir une chambre (95) à échantillon de fluide ;
    à pomper un fluide de formation jusque dans ladite chambre (95) à échantillon de fluide afin de collecter un échantillon de fluide de formation ;
    à manoeuvrer une soupape (110) pour introduire du fluide du puits de forage à la pression hydrostatique de fond jusqu'au contact avec le piston (90, 94) afin de déplacer ledit piston (90, 94) et de mettre ainsi sous pression l'échantillon de fluide dans ladite chambre à échantillon de fluide ;
    à retenir l'échantillon de fluide dans ladite chambre (95) à échantillon de fluide tout en comprimant l'échantillon de fluide ; et
    à ramener ledit outil de fond (20) à la surface du puits.
  16. Procédé selon la revendication 15, comprenant en outre l'étape de verrouillage dudit piston (90, 94) par rapport audit boîtier (60) afin de fixer le volume de l'échantillon de fluide à l'intérieur de ladite chambre (95) à échantillon de fluide lorsque l'échantillon de fluide atteint une pression sélectionnée au-dessus de la pression hydrostatique de fond.
  17. Procédé selon la revendication 15 ou 16, comprenant en outre l'étape consistant à descendre ledit outil de fond (20) dans le puits de forage (11) afin qu'une plus grande pression de fluide hydrostatique déplace ledit piston (90, 94) pour comprimer davantage l'échantillon de fluide avant que ledit outil (20) de fond soit remonté à la surface du puits.
  18. Procédé selon la revendication 15, 16 ou 17, dans lequel ledit piston (90, 94) comprime l'échantillon de fluide à une pression telle que l'échantillon de fluide ne change pas de phase lorsque ledit outil (20) de fond est ramené à la surface du puits.
  19. Procédé selon l'une quelconque des revendications 15 à 18, comprenant en outre l'étape qui consiste à retirer l'échantillon de fluide de ladite chambre (95) à échantillon de fluide tout en maintenant la pression de l'échantillon de fluide au-dessus d'une pression sélectionnée.
  20. Procédé selon l'une quelconque des revendications 15 à 19, comprenant en outre les étapes qui consistent :
    à déplacer ledit outil (20) de fond de puits jusqu'à un second emplacement à l'intérieur du puits de forage (11) ;
    à pomper un second échantillon de fluide de formation jusque dans une seconde chambre à échantillon de fluide ;
    à comprimer le second échantillon de fluide ; et
    à fixer le volume du second échantillon de fluide.
  21. Procédé selon la revendication 20, dans lequel ledit outil (20) de fond comporte un second boîtier et un second piston qui est mobile dans l'intérieur creux du second boîtier qui définit la seconde chambre à échantillon de fluide.
  22. Procédé selon la revendication 21, dans lequel l'étape de compression du second échantillon de fluide comprend la manoeuvre d'une seconde soupape pour déplacer ledit second piston.
  23. Procédé selon la revendication 21 ou 22, dans lequel l'étape de fixation du volume du second échantillon de fluide comprend le verrouillage dudit second piston par rapport audit second boîtier.
  24. Procédé selon l'une quelconque des revendications 20 à 23, dans lequel une seconde pression hydrostatique audit second emplacement comprime le second échantillon de fluide à une pression supérieure à la pression du premier échantillon de fluide.
EP00959416A 2000-02-25 2000-08-25 Appareil et procede permettant de controler la pression d'un echantillon de fluide de puits Expired - Lifetime EP1257730B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/US00/04992 2000-02-25
PCT/US2000/004992 WO2000050736A1 (fr) 1999-02-25 2000-02-25 Dispositif et procede permettant de controler la pression d'echantillons de fluide de puits
PCT/US2000/023382 WO2001063093A1 (fr) 2000-02-25 2000-08-25 Appareil et procede permettant de controler la pression d'un echantillon de fluide de puits

Publications (2)

Publication Number Publication Date
EP1257730A1 EP1257730A1 (fr) 2002-11-20
EP1257730B1 true EP1257730B1 (fr) 2008-12-03

Family

ID=21741094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00959416A Expired - Lifetime EP1257730B1 (fr) 2000-02-25 2000-08-25 Appareil et procede permettant de controler la pression d'un echantillon de fluide de puits

Country Status (5)

Country Link
EP (1) EP1257730B1 (fr)
CA (1) CA2401375C (fr)
DE (1) DE60041005D1 (fr)
RU (1) RU2244123C2 (fr)
WO (1) WO2001063093A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246664B2 (en) 2001-09-19 2007-07-24 Baker Hughes Incorporated Dual piston, single phase sampling mechanism and procedure
US7258167B2 (en) * 2004-10-13 2007-08-21 Baker Hughes Incorporated Method and apparatus for storing energy and multiplying force to pressurize a downhole fluid sample
US7565835B2 (en) 2004-11-17 2009-07-28 Schlumberger Technology Corporation Method and apparatus for balanced pressure sampling
US7546885B2 (en) 2005-05-19 2009-06-16 Schlumberger Technology Corporation Apparatus and method for obtaining downhole samples
US7596995B2 (en) 2005-11-07 2009-10-06 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US7874206B2 (en) 2005-11-07 2011-01-25 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US8429961B2 (en) 2005-11-07 2013-04-30 Halliburton Energy Services, Inc. Wireline conveyed single phase fluid sampling apparatus and method for use of same
US7472589B2 (en) 2005-11-07 2009-01-06 Halliburton Energy Services, Inc. Single phase fluid sampling apparatus and method for use of same
US7367394B2 (en) 2005-12-19 2008-05-06 Schlumberger Technology Corporation Formation evaluation while drilling
US7634936B2 (en) * 2006-02-17 2009-12-22 Uti Limited Partnership Method and system for sampling dissolved gas
US8210267B2 (en) * 2007-06-04 2012-07-03 Baker Hughes Incorporated Downhole pressure chamber and method of making same
US7967067B2 (en) 2008-11-13 2011-06-28 Halliburton Energy Services, Inc. Coiled tubing deployed single phase fluid sampling apparatus
WO2010135591A2 (fr) 2009-05-20 2010-11-25 Halliburton Energy Services, Inc. Outil de capteur de fond de trou pour des mesures nucléaires
AU2010249496B2 (en) 2009-05-20 2016-03-24 Halliburton Energy Services, Inc. Downhole sensor tool with a sealed sensor outsert
US9429014B2 (en) 2010-09-29 2016-08-30 Schlumberger Technology Corporation Formation fluid sample container apparatus
RU2490451C1 (ru) * 2012-02-28 2013-08-20 Андрей Александрович Павлов Способ контроля глубинной пробы
CA2888758A1 (fr) 2012-10-23 2014-05-01 Halliburton Energy Services, Inc. Appareils, systemes, et procedes d'echantillonnage de taille selectionnable
UA115371U (xx) * 2016-11-17 2017-04-10 Пробовідбірник бокала
US20240183271A1 (en) * 2022-12-02 2024-06-06 Saudi Arabian Oil Company Subsurface sampling tool

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558522B1 (fr) 1983-12-22 1986-05-02 Schlumberger Prospection Dispositif pour prelever un echantillon representatif du fluide present dans un puits, et procede correspondant
US4721157A (en) 1986-05-12 1988-01-26 Baker Oil Tools, Inc. Fluid sampling apparatus
US4766955A (en) 1987-04-10 1988-08-30 Atlantic Richfield Company Wellbore fluid sampling apparatus
CA1325379C (fr) 1988-11-17 1993-12-21 Owen T. Krauss Dispositif d'echantillonnnage en fond de puits
US4903765A (en) 1989-01-06 1990-02-27 Halliburton Company Delayed opening fluid sampler
GB9003467D0 (en) 1990-02-15 1990-04-11 Oilphase Sampling Services Ltd Sampling tool
NO172863C (no) 1991-05-03 1993-09-15 Norsk Hydro As Elektro-hydraulisk bunnhullsproevetakerutstyr
US5240072A (en) 1991-09-24 1993-08-31 Halliburton Company Multiple sample annulus pressure responsive sampler
GB9200182D0 (en) * 1992-01-07 1992-02-26 Oilphase Sampling Services Ltd Fluid sampling tool
US5473939A (en) * 1992-06-19 1995-12-12 Western Atlas International, Inc. Method and apparatus for pressure, volume, and temperature measurement and characterization of subsurface formations
US5377755A (en) 1992-11-16 1995-01-03 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5303775A (en) 1992-11-16 1994-04-19 Western Atlas International, Inc. Method and apparatus for acquiring and processing subsurface samples of connate fluid
US5329811A (en) 1993-02-04 1994-07-19 Halliburton Company Downhole fluid property measurement tool
US5361839A (en) 1993-03-24 1994-11-08 Schlumberger Technology Corporation Full bore sampler including inlet and outlet ports flanking an annular sample chamber and parameter sensor and memory apparatus disposed in said sample chamber
GB9420727D0 (en) * 1994-10-14 1994-11-30 Oilphase Sampling Services Ltd Thermal sampling device
US5662166A (en) 1995-10-23 1997-09-02 Shammai; Houman M. Apparatus for maintaining at least bottom hole pressure of a fluid sample upon retrieval from an earth bore
US6065355A (en) * 1997-09-23 2000-05-23 Halliburton Energy Services, Inc. Non-flashing downhole fluid sampler and method

Also Published As

Publication number Publication date
EP1257730A1 (fr) 2002-11-20
RU2002125501A (ru) 2004-03-10
DE60041005D1 (de) 2009-01-15
WO2001063093A1 (fr) 2001-08-30
RU2244123C2 (ru) 2005-01-10
CA2401375A1 (fr) 2001-08-30
CA2401375C (fr) 2007-01-23

Similar Documents

Publication Publication Date Title
US6439307B1 (en) Apparatus and method for controlling well fluid sample pressure
EP1257730B1 (fr) Appareil et procede permettant de controler la pression d'un echantillon de fluide de puits
US6557632B2 (en) Method and apparatus to provide miniature formation fluid sample
CA2147027C (fr) Procede et appareil pour prelever et traiter des echantillons de liquide fossile
AU739721B2 (en) Non-flashing downhole fluid sampler and method
CA2460831C (fr) Procede et mecanisme d'echantillonnage monophasique a double piston
EP0620893B1 (fr) Procede et appareil d'echantillonnage et de test de formations geologiques
RU2363846C2 (ru) Скважинный инструмент для опробования пласта
US7140436B2 (en) Apparatus and method for controlling the pressure of fluid within a sample chamber
US7665354B2 (en) Method and apparatus for an optimal pumping rate based on a downhole dew point pressure determination
EP1621724A2 (fr) Procédés pour l'essai en fond de puits de formations souterraines et appareil pour sa mise en oeuvre
EP0347050A2 (fr) Appareil de prise d'échantillons pour fond de trou transporté par tubages
CN104838089A (zh) 用于监控天然气地质储藏的高压流体采样器
AU2014225914A1 (en) Sample chamber assembly and methods
CA1335877C (fr) Methode d'essai d'un puits de petrole, et appareil connexe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BACKER HUGUES INCORPORATED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAKER HUGHES INCORPORATED

17Q First examination report despatched

Effective date: 20051116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BAKER HUGHES INCORPORATED

REF Corresponds to:

Ref document number: 60041005

Country of ref document: DE

Date of ref document: 20090115

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BAKER HUGHES INCORPORATED

Effective date: 20081224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091028

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100825

Year of fee payment: 11

Ref country code: FR

Payment date: 20100831

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60041005

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120809

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190731

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200824