EP1247060A2 - An image focusing method and apparatus for wellbore resistivity imaging - Google Patents

An image focusing method and apparatus for wellbore resistivity imaging

Info

Publication number
EP1247060A2
EP1247060A2 EP01901934A EP01901934A EP1247060A2 EP 1247060 A2 EP1247060 A2 EP 1247060A2 EP 01901934 A EP01901934 A EP 01901934A EP 01901934 A EP01901934 A EP 01901934A EP 1247060 A2 EP1247060 A2 EP 1247060A2
Authority
EP
European Patent Office
Prior art keywords
measure
electrodes
formation
current
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01901934A
Other languages
German (de)
French (fr)
Inventor
Martin T. Evans
Richard A. Burt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority claimed from PCT/US2001/000742 external-priority patent/WO2001051880A2/en
Publication of EP1247060A2 publication Critical patent/EP1247060A2/en
Withdrawn legal-status Critical Current

Links

Definitions

  • the Gianzero patent discloses tool mounted pads, each with a plurality of small measure electrodes from which individually measurable survey currents are injected toward the wall of the borehole.
  • the measure electrodes are arranged in an array in which the measure electrodes are so placed at intervals along at least a circumferential direction (about the borehole axis) as to inject survey currents into the borehole wall segments which overlap with each other to a predetermined extent as the tool is moved along the borehole.
  • the measure electrodes are made small to enable a detailed electrical investigation over a circumferentially contiguous segment of the borehole so as to obtain indications of the stratigraphy of the formation near the borehole wall as well as fractures and their orientations.
  • a spatially closed loop array of measure electrodes is provided around a central electrode with the array used to detect the spatial pattern of electrical energy injected by the central electrode.
  • a linear array of measure electrodes is provided to inject a flow of current into the formation over a circumferentially effectively contiguous segment of the borehole. Discrete portions of the flow of current are separably measurable so as to obtain a plurality of survey signals representative of the current density from the array and from which a detailed electrical picture of a circumferentially continuous segment of the borehole wall can be derived as the tool is moved along the borehole.
  • they are arranged in a closed loop, such as a circle, to enable direct measurements of orientations of resistivity of anomalies
  • the Dory patent discloses the use of an acoustic sensor in combination with pad mounted electrodes, the use of the acoustic sensors making it possible to fill in the gaps in the image obtained by using pad mounted electrodes due to the fact that in large diameter boreholes, the pads will necessarily not provide a complete coverage of the borehole.
  • the present invention is a method and apparatus for obtaining resistivity images of a borehole.
  • the apparatus includes an array of measure electrodes separated from a pad or the body of the instrument by guard electrodes.
  • the guard electrode is maintained at a slightly lower potential than the pad and the measure electrode is at an intermediate potential thereto.
  • the current from the measure electrode initially diverges as it enters the formation, then converges (focuses) and then finally diverges again to define a depth of investigation.
  • This arrangement makes it relatively insensitive to borehole rugosity.
  • circumferential and vertical overlap may be obtained either by the arrangement of the measure electrodes to provide the overlap, or by relying on the broadening of the measure beam in a region of investigation within the formation.
  • Fig. 1 is a perspective and block diagram view of a borehole investigating tool with pads
  • Fig. 3 illustrates the actual flow of current using the tool of Fig. 1;
  • Fig. 4 is a schematic cross section illustrating the arrangement of electrodes and the flow of currents in an embodiment of the present invention;
  • Figs 5A - 5D are illustrations of arrangements of electrodes in various embodiments of the present invention.
  • Fig. 1 shows a pad 30 and array 70 often circular measure electrodes 36 as closely spaced as possible in a multiple number of rows 74, 76.
  • the electrodes 36 are surrounded by insulator rings 44.
  • Measure electrodes 36 are mounted flush on pad 30 whose surface 42 is conductive. Insulators 44 electrically isolate measure electrodes 36 from the conductive pad surface 42 while in the operation of a pad 30 the electrical potential of the several measure electrodes 36 and conductive surface 42 is effectively the same.
  • the currents flowing from each of the electrodes 36 is indicative of the resistivity of the formation in contact with the electrode.
  • the pad 30 or the body of the instrument acts as an effective electrode.
  • Fig. 2 shows a schematic cross section of a resistivity array device including a measure electrode. Shown is a device 100 in contact with a borehole wall 106 with a formation 102. The device includes a pad of which portions 101a, 101b are shown, along with a measure electrode 103 and gaps 107 electrically separating the measure electrode 103 from the pad. For simplifying the illustration, the connections between a source of electrical current and the measure electrode 103 and the pad 101a, 101b are not shown.
  • the current flow is directly into the formation and the flow lines are parallel for a distance indicated by 105 after which the current paths start diverging.
  • the current will ultimately return back to the source through a return electrode (not shown).
  • the distance from the borehole wall 106 to 105 is the depth of investigation of the tool.
  • the magnitude of the current flowing from the measure electrode 103 is indicative of the electrical conductivity of the formation adjacent to the measure electrode 103 up to the depth of investigation.
  • the currents from the individual measure electrodes are measured to give an indication of the conductivity of the formation adjacent to the electrodes.
  • Fig. 3 the real situation is indicated. Due to the geometry of the pads, the conductive portion of the tool body in the vicinity of the pads and the geometry of the electrically isolating section of the tool between the pad section and the aforementioned return electrode, the electrical current from pad and the measure electrodes diverges quite rapidly. The is indicated by the paths 109a', 109b' and 109c' of current from the measure electrode 103 and the rapid divergence of the currents Ilia' . . . 11 If from the pad.
  • the current flowing from the electrode 103 depends upon the conductivity of the formation in a first region in contact with the measure electrode as well as portions of the formations surrounding this first region. This reduces the resolution of the instrument.
  • the current paths will be effected by irregularities in the borehole wall as indicated by 106'. Both of these effects (the divergence and the effects of rugosity) can give erroneous indications of formation conductivity.
  • This technique causes the measure beam (current from the measure electrode) to be defocused as it leaves the instrument and then refocus again approximately 1/4 to V ⁇ inch (.625 to 1.25 cm.) away from the pad carrying the measure electrode. This desensitizes the image to the effects of borehole wall rugosity. This is described below.
  • the arrangement of the electrodes is unchanged but the current flows into the measure electrodes.
  • the magnitudes of the voltages are the same as discussed above. This configuration is not discussed further but would be a straightforward variation of the discussion here on current flowing out of the measure electrodes.
  • the lower potential of the primary guard 203a, 203b causes the current from the measure electrode 215 to diverge as it leaves the measure electrode. The more divergent the beam, the less the sensitivity to that element of the length of the measure beam. As the measure beam progresses further into the formation, the higher potential of the pad 201a, 201b causes the beam from the measure electrode 215 and the guard 203a, 203b to be pinched in, thereby increasing the sensitivity from that portion of the measure beam.
  • the beam Since the greatest divergence of the measure beam is closest to the borehole wall, the beam is quite insensitive to the effects of borehole rugosity. At large distances from the borehole wall such as 205b, the measure beam again diverges.
  • the region between 205a and 205b includes the region of greatest sensitivity of the tool.
  • the region of greatest sensitivity is roughly defined by the portion between 205c and 205b where the diameter of the measure beam is small, with the smallest value being attained at a distance between 205c and 205b.
  • By suitable adjustment of the electrical potentials it is possible to obtain a measure beam having a diameter within the sensitive region that is larger than or smaller than the diameter of the measure electrodes.
  • the electrodes and the pad are connected to sources of electrical current to maintain the desired voltages and, as in prior art devices, the current from the measure electrode is indicative of formation conductivity.
  • One advantage of the present invention over prior art devices is the ability to make accurate measurements in irregular boreholes. As may be seen in Fig. 4, there is no requirement of physical contact between the entire measure electrode and the formation: all that is necessary is good electrical contact, even through any intervening borehole fluid. Due to the defocusing of the beam near the measure electrode, the present device is relatively insensitive to the presence of borehole fluid between portions of the electrode and the formation. Similarly, the invention also functions properly when there is incomplete physical contact between the guard electrode and the formation.
  • the word "pad” is used here only for convenience and the invention would work equally well if the body of the instrument is used instead of the pad for the purpose of carrying measure electrodes and/or injecting currents into the formation as described below.
  • the pad in the present invention does not actually have to contact the borehole wall.
  • the primary function of the pad is to focus the measure beam after the defocusing caused by the guard electrode. This can be accomplished by a tool body that is not in actual contact with the borehole wall almost as well as by a pad in contact with the borehole wall. Accordingly, use of the word "pad” hereinafter and particularly in the claims is intended to include the body of the instrument as well.
  • Fig. 5a illustrates an array of measure electrodes 315a, 315b, 315c. . . set within a substantially rectangular guard electrode 303 with gaps 307a (that contain insulating material therein).
  • the guard electrode 303 is separated from the pad or body 301 by a substantially rectangular insulating gap 307b.
  • the spacing between the measure electrodes is selected as in the Gianzero patent to provide overlap in azimuth and depth, i.e., the diameter D of the measure electrode is greater than the horizontal spacing di of the electrodes 315b, 315c in adjacent rows and the vertical spacing d 2 between the rows of electrodes.
  • the electrodes do not have this azimuthal an and vertical overlap , but due to the broadening of the measure beam discussed above in reference to Fig. 4, overlap in azimuth and borehole depth of the region of investigation is obtained.
  • Fig. 5b depicts another arrangement of electrodes in the present invention.
  • the measure electrodes 415 are concentric with the guard electrodes 403. Insulating gaps 407 and 419 are also indicated.
  • the measure electrodes may or may not have overlap in azimuth and depth. When the measure electrodes themselves do not overlap, the broadening of the measure beam provides overlap of measurements at the depth of investigation.
  • Fig. 5c illustrates an arrangement of measure electrodes 515 separated from a guard electrode 519 by insulating gap 503.
  • the guard electrode 503 is, in turn, separated form the pad by insulating gap 519.
  • Fig. 5d illustrates a configuration of the measure electrodes measure electrodes 615 are arranged in two groups with insulating gaps 607. As in Fig. 5c, the guard electrode 603 is separated from the pad by another gap 619.
  • a secondary guard electrode located between the pad and the guard electrode is used to provide the focusing of the beam in the region of investigation.

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

An apparatus for obtaining resistivity images of a borehole includes an array of measure electrodes (215) separated from a pad or the body of the instrument (210a-b) by a guard electrode (203a-b). The guard electrode is maintained at a slightly lower potential than the pad and the measure electrode is at an intermediate potential thereto. With this arrangement the current (211a-f) from the guard electrode defocuses the measure current (209a-c) from the measure electrode as it enters the formation, and at greater distances, the current from the measure electrode is refocused by the effect of the current from the pad. This defocusing and refocusing defines a region of investigation (205b-c) away from the borehole wall that is relatively insensitive to borehole rugosity.

Description

TITLE: AN IMAGE FOCUSING METHOD AND APPARATUS
FOR WELLBORE RESISTIVITY IMAGING
CROSS REFERENCES TO RELATED APPLICATIONS
This application claims priority from United States Provisional Patent Application Ser. No. 60/175,585 filed on January 11, 2000.
BACKGROUND OF THE INVENTION 1. Field of the Invention
This invention generally relates to explorations for hydrocarbons involving electrical investigations of a borehole penetrating an earth formation. More specifically, this invention relates to highly localized borehole investigations employing the introduction and measuring of individual focused survey currents injected toward the wall of a borehole with a tool moved along the borehole.
2. Background of the Art
Electrical earth borehole logging is well known and various devices and various techniques have been described for this purpose. In an electrical investigation of a borehole, current from an electrode is introduced in the formation from a tool inside the borehole. There are two modes of operation: in one, the current at the measuring electrode is maintained constant and a voltage is measured while in the second mode, the voltage of the electrode is fixed and the current flowing from the electrode is measured. Ideally, it is desirable that if the current is varied to maintain constant the voltage measured at a monitor electrode, the current is inversely proportional to the resistivity of the earth formation being investigated. Conversely, it is desirable that if this current is maintained constant, the voltage measured at a monitor electrode is proportional to the resistivity of the earth formation being investigated.
Techniques for investigating the earth formation with arrays of measuring electrodes have been proposed. See, for example, the U.S. Pat. No. 2,930,969 to Baker, Canadian Pat. No. 685,727 to Mann et al. U.S. Patent No. 4,468,623 to
Gianzero, and U.S. Patent No. 5,502,686 to Dory et al.. The Baker patent proposed a plurality of electrodes, each of which was formed of buttons which are electrically joined by flexible wires with buttons and wires embedded in the surface of a collapsible tube. The Mann patent proposes an array of small electrode buttons either mounted on a tool or a pad and each of which introduces in sequence a separately measurable survey current for an electrical investigation of the earth formation. The electrode buttons are placed in a horizontal plane with circumferential spacings between electrodes and a device for sequentially exciting and measuring a survey current from the electrodes is described.
The Gianzero patent discloses tool mounted pads, each with a plurality of small measure electrodes from which individually measurable survey currents are injected toward the wall of the borehole. The measure electrodes are arranged in an array in which the measure electrodes are so placed at intervals along at least a circumferential direction (about the borehole axis) as to inject survey currents into the borehole wall segments which overlap with each other to a predetermined extent as the tool is moved along the borehole. The measure electrodes are made small to enable a detailed electrical investigation over a circumferentially contiguous segment of the borehole so as to obtain indications of the stratigraphy of the formation near the borehole wall as well as fractures and their orientations. In one technique, a spatially closed loop array of measure electrodes is provided around a central electrode with the array used to detect the spatial pattern of electrical energy injected by the central electrode. In another embodiment, a linear array of measure electrodes is provided to inject a flow of current into the formation over a circumferentially effectively contiguous segment of the borehole. Discrete portions of the flow of current are separably measurable so as to obtain a plurality of survey signals representative of the current density from the array and from which a detailed electrical picture of a circumferentially continuous segment of the borehole wall can be derived as the tool is moved along the borehole. In another form of an array of measure electrodes, they are arranged in a closed loop, such as a circle, to enable direct measurements of orientations of resistivity of anomalies
The Dory patent discloses the use of an acoustic sensor in combination with pad mounted electrodes, the use of the acoustic sensors making it possible to fill in the gaps in the image obtained by using pad mounted electrodes due to the fact that in large diameter boreholes, the pads will necessarily not provide a complete coverage of the borehole.
The prior art devices, being contact devices, are sensitive to the effects of borehole rugosity: the currents flowing from the electrodes depend upon good contact between the electrode and the borehole wall. If the borehole wall is irregular, the contact and the current from the electrodes is irregular, resulting in inaccurate imaging of the borehole. A second drawback is the relatively shallow depth of investigation caused by the use of measure electrodes at the same potential as the pad and the resulting divergence of the measure currents.
SUMMARY OF THE INVENTION
The present invention is a method and apparatus for obtaining resistivity images of a borehole. The apparatus includes an array of measure electrodes separated from a pad or the body of the instrument by guard electrodes. The guard electrode is maintained at a slightly lower potential than the pad and the measure electrode is at an intermediate potential thereto. With this arrangement, the current from the measure electrode initially diverges as it enters the formation, then converges (focuses) and then finally diverges again to define a depth of investigation. This arrangement makes it relatively insensitive to borehole rugosity. If required, circumferential and vertical overlap may be obtained either by the arrangement of the measure electrodes to provide the overlap, or by relying on the broadening of the measure beam in a region of investigation within the formation. BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 (PRIOR ART) is a perspective and block diagram view of a borehole investigating tool with pads;
Fig. 2 illustrates an idealized current flow necessary for obtaining proper measurements using the tool of Fig. 1 ;
Fig. 3 illustrates the actual flow of current using the tool of Fig. 1; Fig. 4 is a schematic cross section illustrating the arrangement of electrodes and the flow of currents in an embodiment of the present invention;
Figs 5A - 5D are illustrations of arrangements of electrodes in various embodiments of the present invention
DETAILED DESCRIPTION OF THE INVENTION In order to gain a proper understanding of the present invention, reference is made to Figs 1 - 5.
Fig. 1 (Prior Art) shows a pad 30 and array 70 often circular measure electrodes 36 as closely spaced as possible in a multiple number of rows 74, 76. The electrodes 36 are surrounded by insulator rings 44. Measure electrodes 36 are mounted flush on pad 30 whose surface 42 is conductive. Insulators 44 electrically isolate measure electrodes 36 from the conductive pad surface 42 while in the operation of a pad 30 the electrical potential of the several measure electrodes 36 and conductive surface 42 is effectively the same. The currents flowing from each of the electrodes 36 is indicative of the resistivity of the formation in contact with the electrode. The pad 30 or the body of the instrument (not shown) acts as an effective electrode.
Fig. 2 shows a schematic cross section of a resistivity array device including a measure electrode. Shown is a device 100 in contact with a borehole wall 106 with a formation 102. The device includes a pad of which portions 101a, 101b are shown, along with a measure electrode 103 and gaps 107 electrically separating the measure electrode 103 from the pad. For simplifying the illustration, the connections between a source of electrical current and the measure electrode 103 and the pad 101a, 101b are not shown.
Also shown within the formation 102 are idealized current paths of electrical current 109a, 109b and 109c from the measure electrode 103 and current paths of the electrical current Ilia, 111b, .... 11 If from the pad. For the idealized situation shown the current flow is directly into the formation and the flow lines are parallel for a distance indicated by 105 after which the current paths start diverging. As those versed in the art would know, the current will ultimately return back to the source through a return electrode (not shown). The distance from the borehole wall 106 to 105 is the depth of investigation of the tool. The magnitude of the current flowing from the measure electrode 103 is indicative of the electrical conductivity of the formation adjacent to the measure electrode 103 up to the depth of investigation. In the prior art array resistivity devices, the currents from the individual measure electrodes are measured to give an indication of the conductivity of the formation adjacent to the electrodes. Turning now to Fig. 3, the real situation is indicated. Due to the geometry of the pads, the conductive portion of the tool body in the vicinity of the pads and the geometry of the electrically isolating section of the tool between the pad section and the aforementioned return electrode, the electrical current from pad and the measure electrodes diverges quite rapidly. The is indicated by the paths 109a', 109b' and 109c' of current from the measure electrode 103 and the rapid divergence of the currents Ilia' . . . 11 If from the pad. As a result of this, the current flowing from the electrode 103 depends upon the conductivity of the formation in a first region in contact with the measure electrode as well as portions of the formations surrounding this first region. This reduces the resolution of the instrument. In addition, the current paths will be effected by irregularities in the borehole wall as indicated by 106'. Both of these effects (the divergence and the effects of rugosity) can give erroneous indications of formation conductivity.
These two problems are addressed in the present invention by use of a beam focusing technique. This technique causes the measure beam (current from the measure electrode) to be defocused as it leaves the instrument and then refocus again approximately 1/4 to Vτ inch (.625 to 1.25 cm.) away from the pad carrying the measure electrode. This desensitizes the image to the effects of borehole wall rugosity. This is described below.
Turning now to Fig. 4, a schematic cross section of the measure electrode of the present invention is shown. For illustrative purposes, a single measure electrode 215 is shown. This measure electrode is flanked by a primary guard electrode 203a, 203b that separate the measure electrode 215 from the pad or body of the instrument 201a, 201b. The measure electrode 215 is maintained at a voltage V that is higher than the voltage V- D of the guard electrodes 203a, 203b but less than the voltage V + D of the pad 201a, 201b. In a typical application, the voltage V is 5 volts while the values of D and D are of the order of 500 D V. These are the relative voltages when electrical current is flowing out of the measure electrodes.
In an alternate embodiment of the present invention, the arrangement of the electrodes is unchanged but the current flows into the measure electrodes. In such an arrangement, the magnitudes of the voltages are the same as discussed above. This configuration is not discussed further but would be a straightforward variation of the discussion here on current flowing out of the measure electrodes.
The lower potential of the primary guard 203a, 203b causes the current from the measure electrode 215 to diverge as it leaves the measure electrode. The more divergent the beam, the less the sensitivity to that element of the length of the measure beam. As the measure beam progresses further into the formation, the higher potential of the pad 201a, 201b causes the beam from the measure electrode 215 and the guard 203a, 203b to be pinched in, thereby increasing the sensitivity from that portion of the measure beam.
Since the greatest divergence of the measure beam is closest to the borehole wall, the beam is quite insensitive to the effects of borehole rugosity. At large distances from the borehole wall such as 205b, the measure beam again diverges. The region between 205a and 205b includes the region of greatest sensitivity of the tool. The region of greatest sensitivity is roughly defined by the portion between 205c and 205b where the diameter of the measure beam is small, with the smallest value being attained at a distance between 205c and 205b. By suitable adjustment of the electrical potentials, it is possible to obtain a measure beam having a diameter within the sensitive region that is larger than or smaller than the diameter of the measure electrodes. The electrodes and the pad are connected to sources of electrical current to maintain the desired voltages and, as in prior art devices, the current from the measure electrode is indicative of formation conductivity.
One advantage of the present invention over prior art devices is the ability to make accurate measurements in irregular boreholes. As may be seen in Fig. 4, there is no requirement of physical contact between the entire measure electrode and the formation: all that is necessary is good electrical contact, even through any intervening borehole fluid. Due to the defocusing of the beam near the measure electrode, the present device is relatively insensitive to the presence of borehole fluid between portions of the electrode and the formation. Similarly, the invention also functions properly when there is incomplete physical contact between the guard electrode and the formation.
In the context of the present invention, the word "pad" is used here only for convenience and the invention would work equally well if the body of the instrument is used instead of the pad for the purpose of carrying measure electrodes and/or injecting currents into the formation as described below. Those versed in the art would recognize that the pad in the present invention does not actually have to contact the borehole wall. The primary function of the pad is to focus the measure beam after the defocusing caused by the guard electrode. This can be accomplished by a tool body that is not in actual contact with the borehole wall almost as well as by a pad in contact with the borehole wall. Accordingly, use of the word "pad" hereinafter and particularly in the claims is intended to include the body of the instrument as well.
Various configurations of measure electrodes, guard electrodes and pads may be used in the invention. Fig. 5a illustrates an array of measure electrodes 315a, 315b, 315c. . . set within a substantially rectangular guard electrode 303 with gaps 307a (that contain insulating material therein). The guard electrode 303 is separated from the pad or body 301 by a substantially rectangular insulating gap 307b. In one embodiment of the invention, the spacing between the measure electrodes is selected as in the Gianzero patent to provide overlap in azimuth and depth, i.e., the diameter D of the measure electrode is greater than the horizontal spacing di of the electrodes 315b, 315c in adjacent rows and the vertical spacing d2 between the rows of electrodes. In another embodiment of the invention, the electrodes do not have this azimuthal an and vertical overlap , but due to the broadening of the measure beam discussed above in reference to Fig. 4, overlap in azimuth and borehole depth of the region of investigation is obtained.
Fig. 5b depicts another arrangement of electrodes in the present invention. In this, the measure electrodes 415 are concentric with the guard electrodes 403. Insulating gaps 407 and 419 are also indicated. As with the embodiment discussed above with reference to Fig. 5a, the measure electrodes may or may not have overlap in azimuth and depth. When the measure electrodes themselves do not overlap, the broadening of the measure beam provides overlap of measurements at the depth of investigation.
Fig. 5c illustrates an arrangement of measure electrodes 515 separated from a guard electrode 519 by insulating gap 503. The guard electrode 503 is, in turn, separated form the pad by insulating gap 519.
Fig. 5d illustrates a configuration of the measure electrodes measure electrodes 615 are arranged in two groups with insulating gaps 607. As in Fig. 5c, the guard electrode 603 is separated from the pad by another gap 619.
In another embodiment of the invention (not shown), a secondary guard electrode located between the pad and the guard electrode is used to provide the focusing of the beam in the region of investigation.
While the foregoing disclosure is directed to the preferred embodiments of the invention, various modifications will be apparent to those skilled in the art. It is intended that all variations within the scope and spirit of the appended claims be embraced by the foregoing disclosure.

Claims

WHAT IS CLAIMED IS: 1. An apparatus conveyed in a borehole for obtaining a resistivity image of an earth formation penetrated by the borehole, the apparatus comprising: (a) a plurality of measure electrodes in electrical contact with the formation, each of the plurality of measure electrodes connected to a source of electrical current for conveying a beam of measure current corresponding to each measure electrode into the formation, said plurality of measure electrodes at a first electrical potential; (b) at least one guard electrode at a second potential substantially encircling each of said plurality of measure electrodes for conveying a current for defocusing the measure currents for a first distance into the formation, said second potential having a magnitude less than a magnitude of the first potential; and ( c) a pad at a third electrical potential connected to a source of electrical current for conveying a current into the formation for refocusing the measure current at a second distance into the formation, said third potential greater having a magnitude greater than a magnitude of the first potential and said second distance being greater than the first distance.
2. The apparatus of claim 1 wherein the at least one guard electrode is at a distance that is one of (i) in contact with the formation, and, (ii) in close proximity to the formation.
3. The apparatus of claim 1 wherein the pad is at a distance that is one of (i) in contact with the formation, and, (ii) in close proximity to the formation.
4. The apparatus of claim 1 wherein the plurality of measure electrodes have a first diameter associated with each of the measure electrodes.
5. The apparatus of claim 1 wherein each beam of measure current has a second diameter at a distance related to the first distance and the second distance, said second diameter greater than the first diameter.
6. The apparatus of claim 5 wherein each beam of measure current has an effective diameter related to the first distance and the second distance wherein said effective diameter is less than the second diameter.
7. The apparatus of claim 4 wherein said measure electrodes are arranged in an array on the pad at intervals which are selected to space the measure electrodes along circumferential and borehole axis directions to provide overlap of the first diameter of the plurality of electrodes.
8. The apparatus of claim 6 wherein said measure electrodes are arranged in an array on the pad at intervals which are selected to space the measure electrodes along circumferential and borehole axis directions to provide overlap of the effective diameter of the measure current associated with each of the plurality of electrodes.
9. The apparatus of claim 1 wherein the at least one guard electrode comprises a plurality of guard electrodes, said plurality of guard electrodes less than or equal to the plurality of measure electrodes.
10. The apparatus of claim 1 further comprising a meter for measuring the current at each of the measure electrodes.
11. The apparatus of claim 1 further comprising a meter for measuring a potential of each of the measure electrodes.
12. A method of obtaining a resistivity image of an earth formation penetrated by a borehole, the method comprising: (a) connecting a source of electrical current to each of a plurality of measure electrodes at a first electrical potential in electrical contact with the formation and conveying a beam of measure current corresponding to each measure electrode into the formation; (b) using at least one guard electrode at a second potential substantially encircling each of said plurality of measure electrodes thereby defocusing the measure currents for a first distance into the formation, and wherein a magnitude of said second potential is less than a magnitude of the first potential; and ( c) using one of (i) a pad, and, (ii) a secondary guard electrode, at a third electrical potential connected to a source of electrical current for conveying a current into the formation for refocusing the measure current at a second distance into the formation, said third potential having a magnitude greater than a magnitude of the first potential and said second distance greater than the first distance.
13. The method of claim 12 wherein the at least one guard electrode is at a distance that is one of (i) in contact with the formation, and, (ii) in close proximity to the formation.
14. The method of claim 12 wherein the pad is at a distance that is one of (i) in contact with the formation, and, (ii) in close proximity to the formation.
15. The method of claim 12 further comprising defining an effective diameter for each of the measure beams within the formation.
16. The method of claim 12 further comprising arranging the measure electrodes arranged in an array on the pad at intervals which are selected to space the measure electrodes along circumferential and borehole axis directions to provide overlap of a diameter of the plurality of electrodes.
17. The method of claim 15 further comprising arranging the measure electrodes arranged in an array on the pad at intervals which are selected to space the measure electrodes along circumferential and borehole axis directions to provide overlap of the effective diameter of each of the measure beams within the formation..
18. The measure of claim 12 further comprising measuring the current at each of the measure electrodes.
19. The measure of claim 12 further comprising measuring the electrical potential at each of the measure electrodes.
EP01901934A 2000-01-11 2001-01-10 An image focusing method and apparatus for wellbore resistivity imaging Withdrawn EP1247060A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17558500P 2000-01-11 2000-01-11
US175585P 2000-01-11
PCT/US2001/000742 WO2001051880A2 (en) 2000-01-11 2001-01-10 An image focusing method and apparatus for wellbore resistivity imaging

Publications (1)

Publication Number Publication Date
EP1247060A2 true EP1247060A2 (en) 2002-10-09

Family

ID=22640812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01901934A Withdrawn EP1247060A2 (en) 2000-01-11 2001-01-10 An image focusing method and apparatus for wellbore resistivity imaging

Country Status (2)

Country Link
EP (1) EP1247060A2 (en)
AU (1) AU2001227785A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0151880A3 *

Also Published As

Publication number Publication date
AU2001227785A1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
US6348796B2 (en) Image focusing method and apparatus for wellbore resistivity imaging
US4468623A (en) Method and apparatus using pad carrying electrodes for electrically investigating a borehole
CA2565800C (en) Use of micro-resistivity apparatus to obtain shallow rxo and deep azimuthal formation resistivity
US7066282B2 (en) Apparatus and methods for measuring formation characteristics in presence of conductive and non-conductive muds
US6714014B2 (en) Apparatus and method for wellbore resistivity imaging using capacitive coupling
US6191588B1 (en) Methods and apparatus for imaging earth formation with a current source, a current drain, and a matrix of voltage electrodes therebetween
EP1929332B1 (en) High resolution resistivity earth imager
US7896073B2 (en) Apparatus for formation resistivity imaging in wells with oil-based drilling fluids
JP3133845B2 (en) Logging method and apparatus using annular electrode and azimuthal electrode
US7365545B2 (en) Two-axial pad formation resistivity imager
US6680613B2 (en) Method and apparatus for cancellation of borehole effects due to a tilted or transverse magnetic dipole
US20090302854A1 (en) Apparatus for Formation Resistivity Imaging in Wells with Oil-Based Drilling Fluids
EP1920272B1 (en) Method and apparatus for enhancing formation resistivity images obtained with downhole galvanic tools
JP3002218B2 (en) Method and apparatus for measuring resistivity of formation
WO2008154295A1 (en) Imaging based on 4-terminal dual-resistor voltage measurements
EA014866B1 (en) Apparatus for forming high resolution resistivity earth imager by resistivity method data
US7612567B2 (en) Two-axial pad formation resistivity imager
RU2462735C2 (en) Method and apparatus for forming images based on resistivity method data in wells filled with low-conductivity well fluid
US6025722A (en) Azimuthally segmented resistivity measuring apparatus and method
US8629678B2 (en) Formation resistivity imaging in conductive boreholes
EP1247060A2 (en) An image focusing method and apparatus for wellbore resistivity imaging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020729

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

D17D Deferred search report published (deleted)
R17D Deferred search report published (corrected)

Effective date: 20030807

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 01V 1/20 A

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060116