EP1242522B1 - Injection moulding cross joints made of nanoscalic powders - Google Patents

Injection moulding cross joints made of nanoscalic powders Download PDF

Info

Publication number
EP1242522B1
EP1242522B1 EP00990642A EP00990642A EP1242522B1 EP 1242522 B1 EP1242522 B1 EP 1242522B1 EP 00990642 A EP00990642 A EP 00990642A EP 00990642 A EP00990642 A EP 00990642A EP 1242522 B1 EP1242522 B1 EP 1242522B1
Authority
EP
European Patent Office
Prior art keywords
injection
volume
compositions according
powder
moulding compositions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00990642A
Other languages
German (de)
French (fr)
Other versions
EP1242522A1 (en
Inventor
Juliane Kraus
Ralph Nonninger
Helmut Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz-Institut fur Neue Materialien Gemeinnuet
Original Assignee
Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH filed Critical Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Publication of EP1242522A1 publication Critical patent/EP1242522A1/en
Application granted granted Critical
Publication of EP1242522B1 publication Critical patent/EP1242522B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Definitions

  • the present invention relates to injection molding compounds with nanoscale ceramic powders, to processes for producing sintered molded articles from these injection molding compositions, to these sintered shaped articles and to their use.
  • Powder injection molding has become established in recent years as a ceramic molding process for ceramics and metal.
  • Steel, cemented carbide, tungsten and cobalt alloys, interrnetallic phases, nickel-base alloy and numerous ceramic raw materials, e.g. Alumina, silicon nitride and SiC can be processed by this method.
  • the advantages of the process lie in the achievable homogeneous powder packing, the low density gradients in moldings and above all in the ability to manufacture complex components in large numbers, cost-effective and endkontumah. Due to the possibility of being able to introduce undercuts and openings into a molded part, and due to the realizable good surfaces, the post-processing can be reduced to a low level.
  • Keramikpulvem surface modifiers in the form of carboxylic acids, such as.
  • carboxylic acids such as.
  • stearic acid and binders or binders such as waxes, z. Paraffins having a molecular weight of 300-600 D, and polymers having a molecular weight of 10,000 D are used.
  • the stearic acid surface modifier is insufficient for particle sizes in the sub-micron range to achieve sufficiently low viscosities.
  • a further critical factor is the debinding of the injection-molded parts.
  • the critical step of debinding the molded parts follows. In this case, the entire binder must be removed from the molding, without resulting in a deformation of the molding or damage to the microstructure.
  • US-A-5155158 relates to castable or injection moldable ceramic compositions containing sinterable powder and a polyacetal binder and a dispersing aid, which may be hydroxystearic acid.
  • the sinterable powder typically has an average particle size in the range of 0.1 to 30 microns.
  • the composition may contain paraffin wax.
  • thermoplastic molding compositions containing a thermoplastic silicone resin or a thermoplastic mixture of various silicone resins and sinterable powder.
  • thermoplastic silicone resin organic based thermoplastic binder such as ethylene-vinyl acetate copolymer may be contained.
  • other additives such as e.g. Called stearic acid amide and paraffin wax.
  • EP-A-0700881 describes binders for ceramic compositions which consist of at least one sinterable powder and at least one thermoplastic binder.
  • the binder consists of polyamide and at least one styrene copolymer.
  • additives include stearic acid amides and waxes.
  • EP-A-0501602 and US-A-4197118 describe processes for the production of sintered shaped bodies, the binder being partly removed by extraction with solvent and optionally subsequently by thermal treatment.
  • the object of the invention was to develop an injection molding offset with nanoscale powders, with which high powder contents can be achieved with simultaneously low viscosities in order to produce sintered molded articles of high quality.
  • it should enable powder injection molding of nanoscale particles with sizes well below 100 nm.
  • debindering without damaging the microstructure and, in particular with regard to time and energy requirements should be economically feasible.
  • thermoplastic polymer a mixture of polyvinyl ether and ethylene-vinyl acetate copolymer, at least one wax, at least one nanoscale chalcogenide, carbide or nitride powder and contains at least one acid amide.
  • the powder used is a nanoscale ceramic-forming powder. This is in particular a nanoscale chalcogenide, carbide or nitride powder.
  • the chalcogenide powder may be an oxide, sulfide, selenide or telluride powder. Nanoscale oxide powders are particularly preferred. All powders commonly used for powder molding can be used.
  • the powder generally contains nanoscale inorganic solid particles of semimetal or metal chalcogenides, carbides or nitrides.
  • Examples are (optionally hydrated) oxides such as ZnO, CdO, SiO 2 , TiO 2 , ZrO 2 , CeO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , La 2 O 3 , Fe 2 O 3 , Cu 2 O , Ta 2 O 5 , Nb 2 O 5 , V 2 O 5 , MoO 3 or WO 3 , but also phosphates, silicates, zirconates, aluminates and stannates, sulfides such as CdS, ZnS, PbS and Ag 2 S, selenides such as GaSe, CdSe and ZnSe, tellurides such as ZnTe or CdTe, carbides such as WC, CdC 2 or SiC, nitrides such as BN, AIN, Si 3 N 4 and Ti 3 N 4 , corresponding mixed oxides such as metal-tin oxides, eg indium tin oxide (ITO), anti
  • the powders preferably contain nanoscale particles which are an oxide, hydrated oxide, chalcogenide, nitride or carbide of Si, Al, B, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Cu, Ta , Nb, V, Mo or W, more preferably Si, Al, B, W, Ti and Zr. Particular preference is given to using oxides.
  • Preferred nanoscale inorganic particulate solids are alumina, zirconia, silicon carbide, tungsten carbide and silicon nitride.
  • the nanoscale inorganic solid particles contained in the powder generally have an average primary particle size in the range of 1 to 300 nm or 1 to 100 nm, preferably 5 to 50 nm and particularly preferably 10 to 20 nm.
  • the primary particles may also be present in agglomerated form, preferably they are not agglomerated or substantially non-agglomerated.
  • the starting powder is mixed with an organic binder which provides the necessary plasticization of the mixture.
  • the injection molding composition according to the invention contains as binder components at least one mixture of polyvinyl ether and ethylene-vinyl acetate copolymer as thermoplastic polymer and at least one wax, preferably a paraffin wax.
  • thermoplastic polymer used is a combination of ethylene-vinyl acetate (EVA) copolymer and polyvinyl ether.
  • EVA ethylene-vinyl acetate
  • polyvinyl ether polyvinyl ether
  • a mixture of more than two thermoplastic polymers may be used.
  • thermoplastic polymer may be used as additional optional thermoplastic polymer, especially those commonly used for powder injection molding.
  • suitable thermoplastic polymers are polyolefins, such as polyethylene, polypropylene and poly-1-butene, vinyl polymers, such as polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polymethyl (meth) acrylate, polyacrylonitrile, polystyrene, and polyvinyl alcohol, polyamides, polyesters, polyacetals, polycarbonates, linear polyurethanes, and corresponding copolymers, with polyolefins being preferred.
  • polyolefins such as polyethylene, polypropylene and poly-1-butene
  • vinyl polymers such as polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polymethyl (meth) acrylate, polyacrylonitrile, polystyrene, and polyvinyl alcohol, polyamides, polyesters, polyacetals,
  • an EVA copolymer As a polymer component, an EVA copolymer is used.
  • the range X of commercially available EVA copolymers is very high in vinyl acetate content and melt index. The best results are achieved when using an EVA copolymer with a high melt index, preferably from 1 to 1000 g / 10 min, more preferably from 10 to 1000 g / 10 min, and most preferably from 100 to 1000 g / 10 min.
  • EVA copolymers with a low content of vinyl acetate in the copolymer preferably below 40%, particularly preferably below 30%, particularly low-viscosity binder systems are obtained.
  • Suitable EVA copolymers are e.g. Lupolen® V2520J, Lupolen V2910K, Lupolen V3510K, Lupolen V3910 DX and Lupolen V5510SX from BASF and Elvax® 450, Elvax 360, Elvax 240, Elvax 210 and Elvax 410 from DuPont, with Elvax 210 and Elvax 410 being particularly preferred.
  • the weight ratio of EVA copolymer to polyvinyl ether is preferably in the range of 0.25 to 1.50, more preferably 0.30 to 1.00, and particularly preferably 0.35 to 0.65.
  • Suitable polyvinyl ethers are characterized by long side chains, wherein the side chain preferably has more than 10 carbon atoms, more preferably more than 16 carbon atoms.
  • a suitable polyvinyl ether is, for example, the Luwax® V marketed by BASF, an octadecyl polyvinyl ether.
  • the injection molding composition according to the invention contains at least one wax as further binder component.
  • all conventional waxes alone or as a mixture of two or more, can be used.
  • the wax may be a natural, chemically modified or synthetic wax.
  • the natural waxes may be vegetable waxes, e.g. Candelilla wax and carnauba wax, animal waxes, e.g. Shellac wax and beeswax, mineral waxes, e.g. Ceresin, or petrochemical waxes, e.g. Petrolatum, paraffin waxes and microwaxes act.
  • Montan ester waxes and Sasol waxes are examples of chemical modified waxes and polyalkylene waxes
  • polyethylene glycol waxes are examples of synthetic waxes. Preference is given to using paraffin waxes.
  • waxes are generally mixtures of n-alkanes, wherein according to the invention alkanes with chain lengths of 30 to 100 carbon atoms have proven to be very favorable and with chain lengths of 20 to 40 carbon atoms to be particularly favorable.
  • the melting range which should preferably be between 30 and 110 ° C, more preferably between 40 and 80 ° C and more preferably between 50 and 60 ° C.
  • a wax component is e.g. Terhell®, type 5405 from Schümann, which has a melting range of 54-56 ° C., is particularly preferred.
  • waxes which can be used according to the invention are waxes from BASF: Polygen® WE5, Luwax® A, Luwax Al60, Luwax Al61, Luwax AH6, Luwax Al3, Luwax AH3, Luwax EAS1, Luwax EVA1, Luwax EVA2, Luwax AF, Luwax AF29, Luwax AF30, Luwax AF31, Luwax AF32, Luwax OA, Luwax OA3, Luwax OA4, Luwax OA5, Luwax FB and Luwax LK4 and the brands Basophob, Dewanil, Keroflux; and waxes from Shell: Paraffin Wax Grade 125/130, Paraffin Wax Grade 130/135, Paraffin Wax Grade 135/140, Paraffin Wax Grade 140/145, Paraffin Wax Grade 145/150 and Paraffin Wax Grade 150/155.
  • the weight ratio between the polymer component used and the wax component used is preferably in the range from 0.05 to 0.35, more preferably from 0.08 to 0.20, and particularly preferably from 0.10 to 0.13.
  • Particularly suitable polymer / wax mixtures according to the invention are Terhell 5405 / Elvax 210; Terhell 5405 / Lupolen VK 3510; Terhell 5405 / Lupolen 5510 Sx; Terhell 5405 / Lupolen 2520 J; Terhell 5405 / Lupolen 2910 K; Terhell 5405 / Elvax 210 and (Terhell 5405 + Luwax V) / Elvax 210.
  • the combination of Elvax 210 with Terhell 5405 and Luvax V has proven to be particularly useful.
  • the injection molding composition according to the invention contains at least one acid amide as surface modifier, which in the implementation produces the compatibility between the nonpolar waxes and polymers and the polar powder surfaces.
  • at least a portion of the acid amide causes surface modification of the particles contained in the nanoscale powder.
  • the acid amide is generally a carboxylic acid amide derived from saturated and unsaturated carboxylic acids preferably having more than 7 and more preferably 12 to 24 carbon atoms. Acid amides of saturated carboxylic acids are preferred. Particularly preferred is a stearic acid amide.
  • the amide can also be mono- or di-substituted on the nitrogen, for example with an alkyl group.
  • Examples of the preferred long-chain carboxylic acid amides are middle fatty acid amides (having 8 to 12 carbon atoms) and preferably higher fatty acid amides (having more than 12 carbon atoms), such as caprylic, pelargonic, capric, undecane, lauric, tridecane, myristic, Pentadecane, palmitic, margarine, stearic, nonadecane, arachin, beehive, lignocerin, cerotin, melissin, palmitoleic, oleic, erucic and linoleic acid amides.
  • middle fatty acid amides having 8 to 12 carbon atoms
  • higher fatty acid amides having more than 12 carbon atoms
  • N, N'-ethylenebisstearic acid amide is particularly preferred.
  • the injection molding compositions may optionally contain other conventional additives. Examples are plasticizers and plasticizers.
  • the injection molding compound but preferably contains no further additives.
  • Preferred injection molding compounds with which the nanoscale powders can be injection-molded well contain powder contents of more than 35% by volume, preferably more than 40% by volume and more preferably more than 45% by volume.
  • the injection molding compound preferably contains the nanoscale powder with a content of 35 to 60% by volume, in particular about 50% by volume.
  • the injection molding compositions contain the acid amide preferably in concentrations of 15 to 25 vol.%, Particularly preferably 18 vol.%.
  • the wax in particular the paraffin wax, is present in the injection molding compositions, for example in amounts of from 20 to 40% by volume, preferably from 25 to 35% by volume, particularly preferably 29% by volume.
  • the thermoplastic polymer mixture is preferably contained in the injection molding mixture in amounts of from 2.5 to 17% by volume, preferably from 3.5 to 10% by volume.
  • the ethylene-vinyl acetate copolymer is preferably present in amounts of from 0.5 to 7% by volume, preferably 0.5 to 5% by volume, more preferably 2% by volume .-%, and the polyvinyl ether preferably in amounts of 2 to 10 vol .-%, preferably 4 vol .-%, in the injection molding prior to.
  • the binder additives are added in a preferred embodiment in a ratio of 3-7 vol.% Polyvinyl ether (PVE), 0.5-3 vol.% EVA and 20-40 vol.% Paraffin wax (PW).
  • PVE Polyvinyl ether
  • PW Paraffin wax
  • the ratios are particularly preferably 4 PVE, 2 EVA, 29 PW and 18 stearic acid amide (% by volume).
  • the processing aids EVA copolymer, polyvinyl ether, paraffin wax and stearic acid amide it was possible to produce an injection molding offset with a powder content of up to 47% by volume of nanoscale particles.
  • the mixing ratio ranges are 46.98 vol.% Al 2 O 3 , 1.91 vol.% EVA copolymer Elvax 210, 3.83 vol.% Polyvinyl ether Luwax V; 29.02% by volume of paraffin wax Terhell 5405 and 18.26% by volume of stearic acid amide.
  • the nanoscale powders are compounded with the polymers and the waxes and the carboxylic acid amide in conventional mixing or kneading.
  • Commercially available kneading units can preferably be used at temperatures in the range from 80 to 120 ° C. for homogenization, the resulting torque preferably being between 10 and 30 Nm.
  • Suitable devices for compounding are eg kneaders, twin-screw extruders or shear roller compactors.
  • the binder material is brought into a melt-shaped state, for example under the above-mentioned temperature effect, and then the powder and acid amide are added.
  • the mixing or kneading process is carried out until a homogeneous mixture is achieved.
  • the injection molding compound can be processed in conventional injection molding or transfer molding equipment to green bodies.
  • the necessary injection pressure is between 10 and 120 bar, preferably between 20 and 90 bar and more preferably between 30 and 60 bar.
  • the injection molding compound according to the invention allows the realization of an injection molding offset in which a large part of the organic processing aids (> 50 wt .-%) is removable via an extraction process.
  • the remaining organic processing aids give the green body the necessary stability that it needs for a more extensive sintering process, which is then carried out thermally.
  • the binder system described can therefore advantageously not only purely thermal (best conditions: 1 K / min to 450 ° C and 5 K / min to 1600 ° C) removed but large parts of the binder system can also be removed by extraction (most conveniently with n-octane at 60 ° C).
  • the remaining binder components ensure the green strength of the components and are only thermally removed in a second step. Since the extraction can be done much faster than a thermal debinding, thus time and cost can be saved.
  • the extraction of the extracted binder mixture can advantageously be recovered.
  • the extraction can be carried out with the aid of supercritical CO 2 or with the aid of organic solvents, preferably alkanes and more preferably pentane, hexane, heptane and octane.
  • the sintered molded article may e.g. for microtechniques, in mechanical engineering, in plant construction and in device construction, in micromechanics and for implants.
  • Small filigree ceramic components with microstructures such as e.g. needed in micromechanics are producing with high quality and dimensional accuracy.
  • ceramic gears can be produced which are suitable for micromechanics.
  • a nanoscale powder of nanoparticles via injection molding is carried out initially in a commercially available kneading unit, wherein the powder content is initially set to 43% by volume.
  • first 11 g of Elvax 210, 21.8 g LuwaxV and 161 g paraffin wax 5405 are mixed.
  • 817 g of nanoscale Al 2 O 3 and 81.7 g of stearic acid amide are added. Homogenization takes place at 120 ° C.
  • the offset is concentrated on a shear roller compact to achieve the final concentration of nanoparticles of 47 vol%, and granulated. Overall, this means the addition of another 200 g of nanoscale Al 2 O 3 , and 20 g of stearic acid.
  • the resulting granules are then processed in an injection molding machine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to injection moulding compounds containing a thermoplastic polymer, a wax, a nanoscalic chalcogenide-, carbide- or nitride-powder and an acid amide. The invention also relates to sintered shaped bodies produced therefrom. The sintered shaped bodies are especially useful in microtechnics, in mechanical engineering, terotechnology, construction of appliances, in micromechanics and for implants.

Description

Die vorliegende Erfindung betrifft Spritzgußmassen mit nanoskaligen keramischen Pulvern, Verfahren zur Herstellung von gesinterten Formkörpern aus diesen Spritzgußmassen, diese gesinterten Formkörper und deren Verwendung.The present invention relates to injection molding compounds with nanoscale ceramic powders, to processes for producing sintered molded articles from these injection molding compositions, to these sintered shaped articles and to their use.

Das Pulverspritzgießen hat sich in den vergangenen Jahren als keramisches Formgebungsverfahren für Keramik und Metall etabliert. Stahl, Hartmetall, Wolfram- und Cobaltlegierungen, interrnetallische Phasen, Nickelbasislegierung und zahlreiche keramische Rohstoffe, wie z.B. Aluminiumoxid, Siliciumnitrid und SiC, können mit diesem Verfahren verarbeitet werden. Die Vorteile des Verfahrens liegen in der erreichbaren homogenen Pulverpackung, den geringen Dichtegradienten in Formteilen und vor allem in der Möglichkeit, komplexe Bauteile in großen Stückzahlen, kostengünstig und endkontumah zu fertigen. Durch die Möglichkeit, Hinterschneidungen und Durchbrüche in ein Formteil einbringen zu können, und durch die realisierbaren guten Oberflächen kann die Nachbearbeitung auf ein geringes Maß reduziert werden.Powder injection molding has become established in recent years as a ceramic molding process for ceramics and metal. Steel, cemented carbide, tungsten and cobalt alloys, interrnetallic phases, nickel-base alloy and numerous ceramic raw materials, e.g. Alumina, silicon nitride and SiC can be processed by this method. The advantages of the process lie in the achievable homogeneous powder packing, the low density gradients in moldings and above all in the ability to manufacture complex components in large numbers, cost-effective and endkontumah. Due to the possibility of being able to introduce undercuts and openings into a molded part, and due to the realizable good surfaces, the post-processing can be reduced to a low level.

Insbesondere für keramische Mikrostrukuren ist ein feinkömiges Gefüge zwingend erforderlich, das meist nur über nanoskalige keramische Pulver erhalten werden kann. Daher wäre ein Spritzgußverfahren mit nanoskaligen keramischen Pulvern zur Bildung von gesinterten Formkörpern sehr interessant.Especially for ceramic microstructures a feinkömiges microstructure is mandatory, which can usually only be obtained on nanoscale ceramic powder. Therefore, an injection molding process with nanoscale ceramic powders for the formation of sintered moldings would be very interesting.

Während das Pressen und das Formgießen nanoskaliger Pulver gebräuchliche Verfahren darstellen, sind die Extrusion und das Spritzgießen von nanoskaügen Teilchen weniger bekannt. Es besteht die Schwierigkeit, daß ein hoher Pulvergehalt immer zwingend erforderlich ist, der in den noch plastisch verformbaren und verarbeitbaren Massen realisiert werden muß. Schwierig ist dabei die Beherrschung der Rheologie, da übliche Spritzgußbinder mit nanoskaligen Pulvern schon bei niedrigen Pulvergehalten sehr hochviskos werden.While the pressing and casting of nanoscale powders are common processes, the extrusion and injection molding of nanoscale particles are less well known. There is the difficulty that a high powder content is always mandatory, which must be realized in the still plastically deformable and processable masses. It is difficult to master the rheology, since conventional injection-molded binders with nanoscale powders become very highly viscous even at low powder contents.

Beim Spritzguß von Keramikpulvem werden nach dem Stand der Technik für Pulver mit Teilchengrößen im µm-Bereich und sub-µm-Bereich Oberflächenmodifikatoren in Form von Carbonsäuren, wie z. B. Stearinsäure, und Binder bzw. Bindemittel, wie Wachse, z. B. Paraffine mit einem Molekulargewicht von 300-600 D, und Polymere mit einem Molekulargewicht von 10.000 D verwendet. Die Stearinsäure als Oberflächenmodifikator reicht bei Teilchengrößen im sub-µm-Bereich jedoch nicht aus, um ausreichend niedrige Viskositäten zu erreichen.In the injection molding of Keramikpulvem surface modifiers in the form of carboxylic acids, such as. For example, in the prior art for powders with particle sizes in the micron range and sub-micron range. As stearic acid, and binders or binders such as waxes, z. Paraffins having a molecular weight of 300-600 D, and polymers having a molecular weight of 10,000 D are used. However, the stearic acid surface modifier is insufficient for particle sizes in the sub-micron range to achieve sufficiently low viscosities.

Über die Verarbeitung von Pulvern mit Teilchengrößen unter 100 nm ist wenig bekannt. Song, Evans, J. Rheologie 40, 1996, 131 ff. und Song, Evans, Ceramics International 21 (1995), 325 ff., beschreiben die Verarbeitung eines feinen Pulvers über das Spritzgießen, bei der ein ZrO2-Pulver mit einem mittleren Teilchendurchmesser von 70 nm und einer spezifischen Oberfläche von 220 m2/g verarbeitet wird. Zur Entfernung des Binders, dem sogenannten Entbindern, aus dem nach dem Spritzgießen erhaltenen Grünkörper auf Basis von ZrO2 mit einer Teilchengröße von 70 nm ist bei einer Formteildicke von 6 mm eine Wärmebehandlung von 195 Stunden, also mehr als 8 Tagen, erforderlich. Hieraus ist ersichtlich, daß das Entbindern aus spritzgegossenen Formteilen aus nanoskaligen Pulvern mit eminent hohen Verarbeitungszeiträumen und hohen Energiekosten verbunden ist.Little is known about the processing of powders with particle sizes below 100 nm. Song, Evans, J. Rheology 40, 1996, 131 et seq. And Song, Evans, Ceramics International 21 (1995), 325 ff., Describe the processing of a fine powder via injection molding, in which a ZrO 2 powder with a mean Particle diameter of 70 nm and a specific surface of 220 m 2 / g is processed. To remove the binder, the so-called debinding, from the obtained after injection green body based on ZrO 2 with a particle size of 70 nm at a molding thickness of 6 mm, a heat treatment of 195 hours, ie more than 8 days, is required. From this it can be seen that the debinding of injection-molded parts made of nanoscale powders is associated with extremely high processing periods and high energy costs.

Die Bedeutung der oberflächenaktiven Substanzen (Oberflächenmodifikatoren) auf die Kompatibilität des Versatzes wird in dem Maße größer, in dem die Teilchengröße der eingesetzten Pulver kleiner wird. Nach dem Stand der Technik werden beim Pulverspritzgießen gewöhnlich niedermolekulare bifunktionelle organische Moleküle als oberflächenaktive Substanzen verwendet. Lenk, DKG 72, 1995, 10, 636 ff. beschreibt den Gebrauch von Carbonsäuren mit Kettenlängen von 12 bis 22 Kohlenstoffatomen als oberflächenaktive Substanzen. Nach Gützer, Silikattechnik 40, 1989, 2, 62 ff. wird Ölsäure am häufigsten als Oberflächenmodifikator eingesetzt, wobei eine optimale Ölsäurebelegung mit 2,5 mg/m2 Oberfläche angegeben wird. Durch den Zusatz von Ölsäure wird die Viskosität der Spritzgußversätze reduziert, so daß auf diese Weise eine Erhöhung des Pulvergehaltes möglich ist.The importance of the surface-active substances (surface modifiers) on the compatibility of the offset becomes greater as the particle size of the powders used becomes smaller. In the prior art, low molecular weight bifunctional organic molecules are usually used as surface active substances in powder injection molding. Lenk, DKG 72, 1995, 10, 636 ff. Describes the use of carboxylic acids having chain lengths of 12 to 22 carbon atoms as surface-active substances. According to Gützer, Silikattechnik 40, 1989, 2, 62 ff. Oleic acid is most often used as a surface modifier, with an optimal oleic acid occupancy with 2.5 mg / m 2 surface is given. By adding oleic acid, the viscosity of the injection molding offsets is reduced, so that in this way an increase in the powder content is possible.

Nach dem Stand der Technik sind mit den angesprochenen Oberflächenmodifikatoren nur Teilchengrößen mit einer Untergrenze von etwa 70 nm noch verarbeitbar. Unterhalb einer Primärteilchengröße von 70 nm steigt die spezifische Oberfläche drastisch an und kann bei Teilchen von 10 nm bis zu 200 m2/g betragen. Die dadurch erhöhten Wechselwirkungen mit den organischen Prozeßhilfsmitteln und die damit verbundene hohe Viskosität reduziert den maximal möglichen Pulvergehalt. Daher ist ein Spritzgießen von derart kleinen Teilchen nach den bisherigen Verfahren nicht möglich.According to the prior art, only particle sizes with a lower limit of about 70 nm can still be processed using the surface modifiers mentioned. Below a primary particle size of 70 nm, the specific surface increases drastically and can be up to 200 m 2 / g for particles of 10 nm. The resulting increased interactions with the organic processing aids and the associated high viscosity reduces the maximum possible powder content. Therefore, injection molding of such small particles according to the previous method is not possible.

Eine weitere kritische Größe stellt das Entbindem der spritzgegossenen Formteile dar. Nachdem über Spritzgießen ein keramischer Grünkörper auf Basis nanoskaliger Teilchen hergestellt ist, folgt der kritische Schritt des Entbindems der Formteile. Hierbei muß der gesamte Binder aus dem Formteil entfernt werden, ohne daß es zu einer Deformation des Formteils oder einer Schädigung der Mikrostruktur kommt. Je kleiner die Pulverteilchen werden, aus denen der Grünkörper aufgebaut ist, um so kleiner wird die Porengröße im Grünkörper und desto schwieriger ist es, die organischen Prozeßhüfsmittel aus dem Grünkörper zu entfernen, ohne daß sich im Innern des Grünkörpers ein Druck aufbaut, der zu einer Schädigung des Gefüges führt.A further critical factor is the debinding of the injection-molded parts. After a ceramic green body based on nanoscale particles is produced by injection molding, the critical step of debinding the molded parts follows. In this case, the entire binder must be removed from the molding, without resulting in a deformation of the molding or damage to the microstructure. The smaller the powder particles are, from which the green body is constructed, the smaller the pore size in the green body and the more difficult it is to remove the organic Prozeßhüfsmittel from the green body, without building up in the interior of the green body, a pressure that leads to a Damage to the structure leads.

US-A-5155158 betrifft durch Strangguss oder Spritzguss formpressbare Keramik-Zusammensetzungen, die sinterfähiges Pulver und ein Polyacetal-Bindemittel sowie ein Dispergier-Hilfsmittel, das Hydroxystearinsäure sein kann, enthalten. Das sinterfähige Pulver besitzt typischerweise eine mittlere Teilchengröße im Bereich von 0,1 bis 30 µm. Die Zusammensetzung kann Paraffinwachs enthalten.US-A-5155158 relates to castable or injection moldable ceramic compositions containing sinterable powder and a polyacetal binder and a dispersing aid, which may be hydroxystearic acid. The sinterable powder typically has an average particle size in the range of 0.1 to 30 microns. The composition may contain paraffin wax.

DE-A-4212593 beschreibt thermoplastische Formmassen, die ein thermoplastisches Siliconharz oder ein thermoplastisches Gemisch verschiedener Siliconharze und sinterfähiges Pulver enthalten. Zusätzlich zu dem thermoplastischen Siliconharz kann thermoplastisches Bindemittel auf organischer Basis wie Ethylen-Vinylacetat-Copolymer enthalten sein. Für die Formmasse werden auch weitere Additive wie z.B. Stearinsäureamid und Paraffinwachs genannt.DE-A-4212593 describes thermoplastic molding compositions containing a thermoplastic silicone resin or a thermoplastic mixture of various silicone resins and sinterable powder. In addition to the thermoplastic silicone resin, organic based thermoplastic binder such as ethylene-vinyl acetate copolymer may be contained. For the molding compound, other additives such as e.g. Called stearic acid amide and paraffin wax.

In EP-A-0700881 werden Bindemittel für keramische Massen beschrieben, die aus mindestens einem sinterfähigen Pulver und mindestens einem thermoplastischen Bindemittel bestehen. Das Bindemittel besteht aus Polyamid und mindestens einem Styrol-Copolymer. Als Beispiele für Additive werden Stearinsäureamide und Wachse genannt.EP-A-0700881 describes binders for ceramic compositions which consist of at least one sinterable powder and at least one thermoplastic binder. The binder consists of polyamide and at least one styrene copolymer. Examples of additives include stearic acid amides and waxes.

In EP-A-0501602 und US-A-4197118 werden Verfahren zur Herstellung von gesinterten Formkörpern beschrieben, wobei das Bindemittel teilweise durch Extraktion mit Lösungsmittel und gegebenenfalls anschließend durch thermische Behandlung entfernt wird.EP-A-0501602 and US-A-4197118 describe processes for the production of sintered shaped bodies, the binder being partly removed by extraction with solvent and optionally subsequently by thermal treatment.

Aufgabe der Erfindung war es, einen Spritzgußversatz mit nanoskaligen Pulvern zu entwickeln, mit dem hohe Pulvergehalte bei gleichzeitig niedrigen Viskositäten erreicht werden können, um damit gesinterte Formkörper hoher Qualität herzustellen. Insbesondere soll damit ein Pulverspritzgießen von nanoskaligen Teilchen mit Größen deutlich unter 100 nm möglich werden. Außerdem soll, selbst bei sehr kleinen Teilchen, ein Entbindern ohne Schädigung des Gefüges und, insbesondere im Hinblick auf Zeit- und Energiebedarf, in wirtschaftlicher Weise durchführbar sein.The object of the invention was to develop an injection molding offset with nanoscale powders, with which high powder contents can be achieved with simultaneously low viscosities in order to produce sintered molded articles of high quality. In particular, it should enable powder injection molding of nanoscale particles with sizes well below 100 nm. In addition, even in the case of very small particles, debindering without damaging the microstructure and, in particular with regard to time and energy requirements, should be economically feasible.

Diese Aufgabe wird überraschenderweise durch die erfindungsgemäße Spritzgußmasse gelöst, die als thermoplastisches Polymer eine Mischung von Polyvinylether und Ethylen-Vinylacetat-Copolymer,
mindestens ein Wachs,
mindestens ein nanoskaliges Chalkogenid-, Carbid- oder Nitridpulver und
mindestens ein Säureamid enthält.
This object is surprisingly achieved by the injection molding composition according to the invention, the as thermoplastic polymer, a mixture of polyvinyl ether and ethylene-vinyl acetate copolymer,
at least one wax,
at least one nanoscale chalcogenide, carbide or nitride powder and
contains at least one acid amide.

Auf diese Weise gelingt es, sehr hohe Pulvergehalte im Versatz zu realisieren, so daß bei sehr kleinen nanoskaligen Pulvern eine keramische Formgebung überhaupt erst möglich wird. Dies hat eine enorm hohe Bedeutung für die darauf aufbauende Verfahrenstechnik und Produktentwicklung. Es lassen sich erstmals gesinterte Formkörper, deren Qualität oder Struktur den Einsatz sehr kleiner nanoskaliger Teilchen erforderlich machen, über die Pulverspritzgußtechnologie herstellen. Darüberhinaus ist ein Entbindem ohne Gefügeschädigung auch bei diesen sehr kleinen nanoskaligen Teilchen möglich und kann einfacher durchgeführt werden.In this way, it is possible to realize very high powder contents in the offset, so that in the case of very small nanoscale powders ceramic shaping is possible in the first place. This has enormous significance for the process engineering and product development that builds on it. For the first time, sintered shaped articles whose quality or structure requires the use of very small nanoscale particles can be produced by powder injection molding technology. In addition, a debinding without Gefüdemädigung even with these very small nanoscale particles is possible and can be performed easily.

Das eingesetzte Pulver ist ein nanoskaliges keramikbildendes Pulver. Dabei handelt es sich insbesondere um ein nanoskaliges Chalkogenid-, Carbid- oder Nitridpulver. Bei dem Chalkogenidpulver kann es sich um ein Oxid-, Sulfid-, Selenid- oder Telluridpulver handeln. Nanoskalige Oxidpulver sind besonders bevorzugt. Es können alle Pulver eingesetzt werden, die üblicherweise für das Pulversintem verwendet werden. Das Pulver enthält im allgemeinen nanoskalige anorganische Feststoffteilchen aus Halbmetall- oder Metallchalkogeniden, -carbiden oder -nitriden. Beispiele sind (gegebenenfalls hydratisierte) Oxide wie ZnO, CdO, SiO2, TiO2, ZrO2, CeO2, SnO2, Al2O3, In2O3, La2O3, Fe2O3, Cu2O, Ta2O5, Nb2O5, V2O5, MoO3 oder WO3, aber auch Phosphate, Silikate, Zirkonate, Aluminate und Stannate, Sulfide wie CdS, ZnS, PbS und Ag2S, Selenide wie GaSe, CdSe und ZnSe, Telluride wie ZnTe oder CdTe, Carbide wie WC, CdC2 oder SiC, Nitride wie BN, AIN, Si3N4 und Ti3N4, entsprechende Mischoxide wie Metall-Zinn-Oxide, z.B. Indium-Zinn-Oxid (ITO), Antimon-Zinn-Oxid (ATO), fluor-dotiertes Zinnoxid (FTO) und Zn-dotiertes Al2O3, Leuchtpigmente mit Y- oder Eu-haltigen Verbindungen, oder Mischoxide mit Perowskitstruktur wie BaTiO3 und PbTiO3. Es kann eine Art von nanoskaligen anorganischen Feststoffteilchen oder eine Mischung verschiedener nanoskaliger anorganischer Feststoffteilchen eingesetzt werden.The powder used is a nanoscale ceramic-forming powder. This is in particular a nanoscale chalcogenide, carbide or nitride powder. The chalcogenide powder may be an oxide, sulfide, selenide or telluride powder. Nanoscale oxide powders are particularly preferred. All powders commonly used for powder molding can be used. The powder generally contains nanoscale inorganic solid particles of semimetal or metal chalcogenides, carbides or nitrides. Examples are (optionally hydrated) oxides such as ZnO, CdO, SiO 2 , TiO 2 , ZrO 2 , CeO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , La 2 O 3 , Fe 2 O 3 , Cu 2 O , Ta 2 O 5 , Nb 2 O 5 , V 2 O 5 , MoO 3 or WO 3 , but also phosphates, silicates, zirconates, aluminates and stannates, sulfides such as CdS, ZnS, PbS and Ag 2 S, selenides such as GaSe, CdSe and ZnSe, tellurides such as ZnTe or CdTe, carbides such as WC, CdC 2 or SiC, nitrides such as BN, AIN, Si 3 N 4 and Ti 3 N 4 , corresponding mixed oxides such as metal-tin oxides, eg indium tin oxide (ITO), antimony tin oxide (ATO), fluorine-doped tin oxide (FTO) and Zn-doped Al 2 O 3 , luminescent pigments with Y- or Eu-containing compounds, or mixed oxides with perovskite structure such as BaTiO 3 and PbTiO 3 . It can be a kind of nanoscale inorganic solid particles or a mixture of different nanoscale inorganic solid particles are used.

Die Pulver enthalten bevorzugt nanoskalige Teilchen, bei denen es sich um ein Oxid, Oxidhydrat, Chalkogenid, Nitrid oder Carbid von Si, Al, B, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Cu, Ta, Nb, V, Mo oder W, besonders bevorzugt von Si, Al, B, W, Ti und Zr, handelt. Besonders bevorzugt werden Oxide eingesetzt. Bevorzugte nanoskalige anorganische Feststoffteilchen sind Aluminiumoxid, Zirkonoxid, Siliciumcarbid, Wolframcarbid und Siliciumnitrid.The powders preferably contain nanoscale particles which are an oxide, hydrated oxide, chalcogenide, nitride or carbide of Si, Al, B, Zn, Cd, Ti, Zr, Ce, Sn, In, La, Fe, Cu, Ta , Nb, V, Mo or W, more preferably Si, Al, B, W, Ti and Zr. Particular preference is given to using oxides. Preferred nanoscale inorganic particulate solids are alumina, zirconia, silicon carbide, tungsten carbide and silicon nitride.

Die im Pulver enthaltenen nanoskaligen anorganischen Feststoffteilchen besitzen im allgemeinen eine durchschnittliche Primärteilchengröße im Bereich von 1 bis 300 nm oder 1 bis 100 nm, vorzugsweise 5 bis 50 nm und besonders bevorzugt 10 bis 20 nm. Die Primärteilchen können auch in agglomerierter Form vorliegen, bevorzugt liegen sie nicht agglomeriert bzw. im wesentlichen nicht agglomeriert vor.The nanoscale inorganic solid particles contained in the powder generally have an average primary particle size in the range of 1 to 300 nm or 1 to 100 nm, preferably 5 to 50 nm and particularly preferably 10 to 20 nm. The primary particles may also be present in agglomerated form, preferably they are not agglomerated or substantially non-agglomerated.

Zum Zwecke der Formgebung wird das Ausgangspulver mit einem organischen Binder vermischt, der für die nötige Plastifizierung der Mischung sorgt. Die erfindungsgemäße Spritzgußmasse enthält als Binderkomponenten mindestens eine Mischung von Polyvinylether und Ethylen-Vinylacetat-Copolymer als thermoplastisches Polymer und mindestens ein Wachs, bevorzugt ein Paraffinwachs.For the purpose of shaping, the starting powder is mixed with an organic binder which provides the necessary plasticization of the mixture. The injection molding composition according to the invention contains as binder components at least one mixture of polyvinyl ether and ethylene-vinyl acetate copolymer as thermoplastic polymer and at least one wax, preferably a paraffin wax.

Das eingesetzte thermoplastische Polymer ist eine Kombination von Ethylen-Vinylacetat (EVA)-Copolymer und Polyvinylether. Es kann gegebenenfalls eine Mischung von mehr als zwei thermoplastischen Polymeren eingesetzt werden.The thermoplastic polymer used is a combination of ethylene-vinyl acetate (EVA) copolymer and polyvinyl ether. Optionally, a mixture of more than two thermoplastic polymers may be used.

Als zusätzliches optionales thermoplastisches Polymer kann jedes geeignete thermoplastische Polymer verwendet werden, insbesondere solche, die für den Pulverspritzguß gebräuchlich sind. Beispiele für weitere einsetzbare thermoplastische Polymere sind Polyolefine, wie Polyethylen, Polypropylen und Poly-1-buten, Vinylpolymere, wie Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylacetat, Polymethyl-(meth)acrylat, Polyacrylnitril, Polystyrol, und Polyvinylalkohol, Polyamide, Polyester, Polyacetale, Polycarbonate, lineare Polyurethane und entsprechende Copolymere, wobei Polyolefine bevorzugt sind.Any suitable thermoplastic polymer may be used as additional optional thermoplastic polymer, especially those commonly used for powder injection molding. Examples of other useful thermoplastic polymers are polyolefins, such as polyethylene, polypropylene and poly-1-butene, vinyl polymers, such as polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polymethyl (meth) acrylate, polyacrylonitrile, polystyrene, and polyvinyl alcohol, polyamides, polyesters, polyacetals, polycarbonates, linear polyurethanes, and corresponding copolymers, with polyolefins being preferred.

Als eine Polymerkomponente wird ein EVA-Copolymer eingesetzt. Die Bandbreite X der im Handel erhältlichen EVA-Copolymere ist hinsichtlich Vinylacetatgehalt und Schmelzindex sehr groß. Die besten Ergebnisse werden erreicht, wenn ein EVA-Copolymer mit einem hohen Schmelzindex, bevorzugt von 1 bis 1000 g/10 min, bevorzugter von 10 bis 1000 g/10 min und besonders bevorzugt von 100 bis 1000 g/10 min, verwendet wird. Durch Einsatz von EVA-Copolymeren mit einen niedrigen Gehalt an Vinylacetat im Copolymer, bevorzugt unter 40%, besonders bevorzugt unter 30%, werden besonders niedrigviskose Bindersysteme erhalten.As a polymer component, an EVA copolymer is used. The range X of commercially available EVA copolymers is very high in vinyl acetate content and melt index. The best results are achieved when using an EVA copolymer with a high melt index, preferably from 1 to 1000 g / 10 min, more preferably from 10 to 1000 g / 10 min, and most preferably from 100 to 1000 g / 10 min. By using EVA copolymers with a low content of vinyl acetate in the copolymer, preferably below 40%, particularly preferably below 30%, particularly low-viscosity binder systems are obtained.

Geeignete EVA-Copolymere sind z.B. Lupolen® V2520J, Lupolen V2910K, Lupolen V3510K, Lupolen V3910 DX und Lupolen V5510SX von BASF und Elvax® 450, Elvax 360, Elvax 240, Elvax 210 und Elvax 410 von DuPont, wobei Elvax 210 und Elvax 410 besonders bevorzugt sind.Suitable EVA copolymers are e.g. Lupolen® V2520J, Lupolen V2910K, Lupolen V3510K, Lupolen V3910 DX and Lupolen V5510SX from BASF and Elvax® 450, Elvax 360, Elvax 240, Elvax 210 and Elvax 410 from DuPont, with Elvax 210 and Elvax 410 being particularly preferred.

Durch die Mischung aus EVA-Copolymer und einem Polyvinylether kann eine Verbesserung der Versatzviskosität erreicht werden. Das Gewichtsverhältnis von EVA-Copolymer zu Polyvinylether liegt bevorzugt im Bereich von 0,25 bis 1,50, bevorzugter von 0,30 bis 1,00 und besonders bevorzugt von 0,35 bis 0,65.By the mixture of EVA copolymer and a polyvinyl ether, an improvement of the offset viscosity can be achieved. The weight ratio of EVA copolymer to polyvinyl ether is preferably in the range of 0.25 to 1.50, more preferably 0.30 to 1.00, and particularly preferably 0.35 to 0.65.

Geeignete Polyvinylether zeichnen sich durch lange Seitenketten aus, wobei die Seitenkette bevorzugt mehr als 10 Kohlenstoffatome, besonders bevorzugt mehr als 16 Kohlenstoffatome aufweist. Ein geeigneter Polyvinylether ist z.B. das von BASF vertriebene Luwax® V, ein Octadecylpolyvinylether.Suitable polyvinyl ethers are characterized by long side chains, wherein the side chain preferably has more than 10 carbon atoms, more preferably more than 16 carbon atoms. A suitable polyvinyl ether is, for example, the Luwax® V marketed by BASF, an octadecyl polyvinyl ether.

Die erfindungsgemäße Spritzgußmasse enthält als weitere Binderkomponente mindestens ein Wachs. Dabei können alle gebräuchlichen Wachse, allein oder als Mischung von zwei oder mehreren, eingesetzt werden.The injection molding composition according to the invention contains at least one wax as further binder component. In this case, all conventional waxes, alone or as a mixture of two or more, can be used.

Bei dem Wachs kann es sich um einen natürlichen, chemisch modifizierten oder synthetischen Wachs handeln. Bei den natürlichen Wachsen kann es sich um pflanzliche Wachse, z.B. Candelillawachs und Carnaubawachs, tierische Wachse, z.B. Schellackwachs und Bienenwachs, Mineralwachse, z.B. Ceresin, oder petrochemische Wachse, z.B. Petrolatum, Paraffinwachse und Mikrowachse, handeln. Montanesterwachse und Sasolwachse sind Beispiele für chemische modifizierte Wachse und Polyalkylenwachse und Polyethylenglycolwachse sind Beispiele für synthetische Wachse. Bevorzugt werden Paraffinwachse eingesetzt.The wax may be a natural, chemically modified or synthetic wax. The natural waxes may be vegetable waxes, e.g. Candelilla wax and carnauba wax, animal waxes, e.g. Shellac wax and beeswax, mineral waxes, e.g. Ceresin, or petrochemical waxes, e.g. Petrolatum, paraffin waxes and microwaxes act. Montan ester waxes and Sasol waxes are examples of chemical modified waxes and polyalkylene waxes, and polyethylene glycol waxes are examples of synthetic waxes. Preference is given to using paraffin waxes.

Im Handel erhältliche Wachse stellen im allgemeinen Mischungen aus n-Alkanen dar, wobei sich erfindungsgemäß Alkane mit Kettenlängen von 30 bis 100 Kohlenstoffatomen als sehr günstig und mit Kettenlängen von 20 bis 40 Kohlenstoffatomen als besonders günstig erwiesen haben. Zur Charakterisierung der Wachsmischung dient der Schmelzbereich, der bevorzugt zwischen 30 und 110°C, bevorzugter zwischen 40 und 80°C und besonders bevorzugt zwischen 50 und 60°C liegen soll. Als Wachskomponente ist z.B. Terhell®, Typ 5405 der Fa. Schümann besonders bevorzugt, das einen Schmelzbereich von 54 - 56°C aufweist.Commercially available waxes are generally mixtures of n-alkanes, wherein according to the invention alkanes with chain lengths of 30 to 100 carbon atoms have proven to be very favorable and with chain lengths of 20 to 40 carbon atoms to be particularly favorable. To characterize the wax mixture is the melting range, which should preferably be between 30 and 110 ° C, more preferably between 40 and 80 ° C and more preferably between 50 and 60 ° C. As a wax component is e.g. Terhell®, type 5405 from Schümann, which has a melting range of 54-56 ° C., is particularly preferred.

Beispiele für erfindungsgemäß einsetzbare Wachse sind Wachse der Firma BASF: Polygen® WE5, Luwax® A, Luwax Al60, Luwax Al61, Luwax AH6, Luwax Al3, Luwax AH3, Luwax EAS1, Luwax EVA1, Luwax EVA2, Luwax AF, Luwax AF29, Luwax AF30, Luwax AF31, Luwax AF32, Luwax OA, Luwax OA3, Luwax OA4, Luwax OA5, Luwax FB und Luwax LK4 sowie die Marken Basophob, Dewanil, Keroflux; und Wachse der Firma Shell: Paraffin Wax Grade 125/130, Paraffin Wax Grade 130/135, Paraffin Wax Grade 135/140, Paraffin Wax Grade 140/145, Paraffin Wax Grade 145/150 und Paraffin Wax Grade 150/155.Examples of waxes which can be used according to the invention are waxes from BASF: Polygen® WE5, Luwax® A, Luwax Al60, Luwax Al61, Luwax AH6, Luwax Al3, Luwax AH3, Luwax EAS1, Luwax EVA1, Luwax EVA2, Luwax AF, Luwax AF29, Luwax AF30, Luwax AF31, Luwax AF32, Luwax OA, Luwax OA3, Luwax OA4, Luwax OA5, Luwax FB and Luwax LK4 and the brands Basophob, Dewanil, Keroflux; and waxes from Shell: Paraffin Wax Grade 125/130, Paraffin Wax Grade 130/135, Paraffin Wax Grade 135/140, Paraffin Wax Grade 140/145, Paraffin Wax Grade 145/150 and Paraffin Wax Grade 150/155.

Im fertigen Bindersystem liegt das Gewichtsverhältnis zwischen eingesetzter Polymerkomponente und eingesetzter Wachskomponente (Paraffinwachs) bevorzugt im Bereich von 0,05 bis 0,35, bevorzugter von 0,08 bis 0,20 und besonders bevorzugt von 0,10 bis 0,13.In the finished binder system, the weight ratio between the polymer component used and the wax component used (paraffin wax) is preferably in the range from 0.05 to 0.35, more preferably from 0.08 to 0.20, and particularly preferably from 0.10 to 0.13.

Erfindungsgemäß besonders zweckmäßige Polymer/Wachs-Mischungen sind Terhell 5405/Elvax 210; Terhell 5405/Lupolen VK 3510; Terhell 5405/Lupolen 5510 Sx; Terhell 5405/ Lupolen 2520 J; Terhell 5405/Lupolen 2910 K; Terhell 5405/Elvax 210 und (Terhell 5405 + Luwax V) /Elvax 210. Die Kombination Elvax 210 mit Terhell 5405 und Luvax V hat sich als besonders zweckmäßig herausgestellt. Durch die erfindungsgemäß verwendeten Polymer/Wachs-Mischungen im allgemeinen und den genannten speziellen Mischungen im besonderen können niedrigviskose, strukturviskos fließende Bindersysteme erhalten werden, die sich für die erfindungsgemäßen Spritzgußmassen mit nanoskaligen Pulvern als besonders günstig erwiesen haben.Particularly suitable polymer / wax mixtures according to the invention are Terhell 5405 / Elvax 210; Terhell 5405 / Lupolen VK 3510; Terhell 5405 / Lupolen 5510 Sx; Terhell 5405 / Lupolen 2520 J; Terhell 5405 / Lupolen 2910 K; Terhell 5405 / Elvax 210 and (Terhell 5405 + Luwax V) / Elvax 210. The combination of Elvax 210 with Terhell 5405 and Luvax V has proven to be particularly useful. By the polymer / wax mixtures used in the invention in general and the special mixtures mentioned in particular low-viscosity, structurally viscous flowing binder systems can be obtained, which have proven to be particularly favorable for the injection molding compositions according to the invention with nanoscale powders.

Neben diesen Binderbestandteilen enthält die erfindungsgemäße Spritzgußmasse mindestens ein Säureamid als Obertlächenmodifikator, der bei der Umsetzung die Kompatibilität zwischen den unpolaren Wachsen und Polymeren und den polaren Pulveroberflächen herstellt. Ohne an eine Theorie gebunden sein zu wollen, wird davon ausgegangen, daß zumindest ein Teil des Säureamids eine Oberflächenmodifizierung der im nanoskaligen Pulver enthaltenen Teilchen bewirkt.In addition to these binder constituents, the injection molding composition according to the invention contains at least one acid amide as surface modifier, which in the implementation produces the compatibility between the nonpolar waxes and polymers and the polar powder surfaces. Without wishing to be bound by theory, it is believed that at least a portion of the acid amide causes surface modification of the particles contained in the nanoscale powder.

Bei dem Säureamid handelt es sich im allgemeinen um ein Carbonsäureamid, das sich von gesättigten und ungesättigten Carbonsäuren mit vorzugsweise mehr als 7 und insbesondere 12 bis 24 Kohlenstoffatomen ableitet. Säureamide von gesättigten Carbonsäuren sind bevorzugt. Besonders bevorzugt wird hierbei ein Stearinsäureamid. Das Amid kann am Stickstoff auch mono- oder di- substituiert sein, z.B. mit einer Alkylgruppe.The acid amide is generally a carboxylic acid amide derived from saturated and unsaturated carboxylic acids preferably having more than 7 and more preferably 12 to 24 carbon atoms. Acid amides of saturated carboxylic acids are preferred. Particularly preferred is a stearic acid amide. The amide can also be mono- or di-substituted on the nitrogen, for example with an alkyl group.

Beispiele für die bevorzugten langkettigen Carbonsäureamide sind mittlere Fettsäureamide (mit 8 bis 12 Kohlenstoffatomen) und bevorzugt höhere Fettsäureamide (mit mehr als 12 Kohlenstoffatomen), wie Capryl-, Pelargon-, Caprin-, Undecan-, Laurin-, Tridecan-, Myristin-, Pentadecan-, Palmitin-, Margarin-, Stearin-, Nonadecan-, Arachin-, Behen-, Lignocerin-, Cerotin-, Melissin-, Palmitolein-, Öl-, Eruca- und Linolsäureamid. Weitere Beispiele sind N,N'-Ethylenbisstearinsäureamid, N-(4-Hydroxyphenyl)stearinsäureamid, N(-2-(Diethylamino)ethyl)stearinsäureamid und Octadecanamid. Stearinsäureamid ist besonders bevorzugt.Examples of the preferred long-chain carboxylic acid amides are middle fatty acid amides (having 8 to 12 carbon atoms) and preferably higher fatty acid amides (having more than 12 carbon atoms), such as caprylic, pelargonic, capric, undecane, lauric, tridecane, myristic, Pentadecane, palmitic, margarine, stearic, nonadecane, arachin, beehive, lignocerin, cerotin, melissin, palmitoleic, oleic, erucic and linoleic acid amides. Further examples are N, N'-ethylenebisstearic acid amide, N- (4-hydroxyphenyl) stearic acid amide, N (-2- (diethylamino) ethyl) stearic acid amide and octadecanamide. Stearic acid amide is particularly preferred.

Allgemein lassen sich alle Carbonsäureamide einsetzen, die sich von den üblicherweise als Oberflächenmodifikatoren verwendeteten Carbonsäuren ableiten. Oberrraschenderweise wurde aber erfindungsgemäß festgestellt, daß die Amide einen wesentlich günstigeren Einfluß auf die Verarbeitbarkeit der Spritzgußmassen, z.B. im Hinblick auf die Viskosität, als die analogen Carbonsäuren zeigen.In general, it is possible to use all carboxylic acid amides which are derived from the carboxylic acids customarily used as surface modifiers. Surprisingly, however, it has been found according to the invention that the amides have a much more favorable influence on the processability of the injection molding compounds, e.g. in terms of viscosity, as the analog carboxylic acids show.

Die Spritzgußmassen können gegebenenfalls weitere übliche Zusätze enthalten. Beispiele sind Plastifizierer und Weichmacher. Die Spritzgußmasse enthält aber bevorzugt keine weiteren Zusätze.The injection molding compositions may optionally contain other conventional additives. Examples are plasticizers and plasticizers. The injection molding compound but preferably contains no further additives.

Bevorzugte Spritzgußmassen, mit denen sich die nanoskaligen Pulver gut spritzgießen lassen, enthalten Pulvergehalte von mehr als 35 Vol.-%, bevorzugt mehr als 40 Vol.-% und besonders bevorzugt mehr als 45 Vol.-%. Bevorzugt enthält die Spritzgußmasse das nanoskalige Pulver mit einem Gehalt von 35 bis 60 Vol.-%, insbesondere etwa 50 Vol.-%.Preferred injection molding compounds with which the nanoscale powders can be injection-molded well contain powder contents of more than 35% by volume, preferably more than 40% by volume and more preferably more than 45% by volume. The injection molding compound preferably contains the nanoscale powder with a content of 35 to 60% by volume, in particular about 50% by volume.

Die Spritzgußmassen enthalten das Säureamid bevorzugt in Konzentrationen von 15 bis 25 Vol. %, besonders bevorzugt 18 Vol. %. Das Wachs, insbesondere das Paraffinwachs, ist in den Spritzgußmassen z.B. in Mengen von 20 bis 40 Vol.-%, bevorzugt von 25 bis 35 Vol.-%, besonders bevorzugt 29 Vol.-%, enthalten.The injection molding compositions contain the acid amide preferably in concentrations of 15 to 25 vol.%, Particularly preferably 18 vol.%. The wax, in particular the paraffin wax, is present in the injection molding compositions, for example in amounts of from 20 to 40% by volume, preferably from 25 to 35% by volume, particularly preferably 29% by volume.

Die thermoplastische Polymermischung ist in der Spritzgußmischung bevorzugt in Mengen von 2,5 bis 17 Vol.-% bevorzugt 3,5 bis 10 Vol.-% enthalten. Bei der Mischung von Polyvinylether und Ethylen-Vinylacetat-Copolymer als thermoplastisches Polymer liegt das Ethylen-Vinylacetat-Copolymer bevorzugt in Mengen von 0,5 bis 7 Vot.-%, bevorzugt 0,5 bis 5 Vol.-%, besonders bevorzugt 2 Vol.-%, und der Polyvinylether bevorzugt in Mengen von 2 bis 10 Vol.-%, bevorzugt 4 Vol.-%, in der Spritzgußmasse vor.The thermoplastic polymer mixture is preferably contained in the injection molding mixture in amounts of from 2.5 to 17% by volume, preferably from 3.5 to 10% by volume. When mixing polyvinyl ether and ethylene-vinyl acetate copolymer as a thermoplastic polymer, the ethylene-vinyl acetate copolymer is preferably present in amounts of from 0.5 to 7% by volume, preferably 0.5 to 5% by volume, more preferably 2% by volume .-%, and the polyvinyl ether preferably in amounts of 2 to 10 vol .-%, preferably 4 vol .-%, in the injection molding prior to.

Die Binderzusätze werden in einer bevorzugten Ausführungsform im Verhältnis 3-7 Vol. % Polyvinylether (PVE), 0,5-3 Vol. % EVA und 20-40 Vol. % Paraffinwachs (PW) versetzt. Besonders bevorzugt sind die Verhältnisse 4 PVE, 2 EVA, 29 PW und 18 Stearinsäureamid (Vol.-%).The binder additives are added in a preferred embodiment in a ratio of 3-7 vol.% Polyvinyl ether (PVE), 0.5-3 vol.% EVA and 20-40 vol.% Paraffin wax (PW). The ratios are particularly preferably 4 PVE, 2 EVA, 29 PW and 18 stearic acid amide (% by volume).

Unter Verwendung der Prozeßhilfsmittel EVA-Copolymer, Polyvinylether, Paraffinwachs und Stearinsäureamid gelang die Herstellung eines Spritzgußversatzes mit einem Pulvergehalt von bis zu 47 Vol.-% an nanoskaligen Teilchen. Beispielsweise liegen die Mischverhältnisbereiche bei 46,98 Vol.-% Al2O3, 1,91 Vol.-% EVA Copolymer Elvax 210, 3,83 Vol.-% Polyvinylether Luwax V; 29,02 Vol.-% Paraffinwachs Terhell 5405 und 18,26 Vol.% Stearinsäureamid.Using the processing aids EVA copolymer, polyvinyl ether, paraffin wax and stearic acid amide, it was possible to produce an injection molding offset with a powder content of up to 47% by volume of nanoscale particles. For example, the mixing ratio ranges are 46.98 vol.% Al 2 O 3 , 1.91 vol.% EVA copolymer Elvax 210, 3.83 vol.% Polyvinyl ether Luwax V; 29.02% by volume of paraffin wax Terhell 5405 and 18.26% by volume of stearic acid amide.

Die nanoskaligen Pulver werden mit den Polymeren und den Wachsen und dem Carbonsäureamid in üblichen Misch- oder Knetanlagen compoundiert. Für das Homogenisieren können handelsübliche Knetaggregate bevorzugt bei Temperaturen im Bereich von 80 bis 120°C genutzt werden, wobei das resultierende Drehmoment bevorzugt zwischen 10 und 30 Nm liegt. Geignete Vorrichtungen zum Compoundieren sind z.B. Kneter, Doppelschneckenextruder oder Scherwalzenkompaktoren. Für den Mischvorgang wird das Bindermaterial z.B. unter vorstehend genannter Temperatureinwirkung in einen schmelzförmigen Zustand gebracht und dann das Pulver und Säureamid zugegeben. Der Misch- oder Knetprozeß wird so lange durchgeführt, bis eine homogene Mischung erreicht ist. Die geeignete Einstellung der Parameter, wie Temperatur und erforderliche Scherwirkung, zur optimalen Compoundierung sind dem Fachmann bekannt. Durch eine erhöhte Scherwirkung können z.B. gegebenfalls vorhandene Pulveragglomerate aufgebrochen werden. Nach dem Homogenisieren kann die keramische Masse z.B. in Form eines Granulats gewonnen werden, das dann weiterverarbeitet wird.The nanoscale powders are compounded with the polymers and the waxes and the carboxylic acid amide in conventional mixing or kneading. Commercially available kneading units can preferably be used at temperatures in the range from 80 to 120 ° C. for homogenization, the resulting torque preferably being between 10 and 30 Nm. Suitable devices for compounding are eg kneaders, twin-screw extruders or shear roller compactors. For the mixing process, the binder material is brought into a melt-shaped state, for example under the above-mentioned temperature effect, and then the powder and acid amide are added. The mixing or kneading process is carried out until a homogeneous mixture is achieved. The appropriate adjustment of the parameters, such as temperature and required shearing, for optimal Compounding are known in the art. By an increased shearing effect, for example, existing powder agglomerates may be broken up. After homogenization, the ceramic mass can be obtained, for example in the form of granules, which is then processed further.

Die Spritzgußmasse kann an üblichen Spritzguß- oder Spritzpressanlagen zu Grünkörpern verarbeitet werden. Der dafür notwendige Spritzdruck liegt zwischen 10 und 120 bar, bevorzugt zwischen 20 und 90 bar und besonders bevorzugt zwischen 30 und 60 bar.The injection molding compound can be processed in conventional injection molding or transfer molding equipment to green bodies. The necessary injection pressure is between 10 and 120 bar, preferably between 20 and 90 bar and more preferably between 30 and 60 bar.

Nach dem Spritzgießen muß der Binder wieder aus den Formteilen entfernt werden, ohne daß diese dabei in ihrer Struktur geschädigt werden. Das gängigste Verfahren zum Entbindem von Grünkörpern ist ein rein thermisches Verfahren. Zum fehlerfreien Entbindem von Grünkörpern, die aus sehr feinen Pulvern aufgebaut sind, ist es notwendig, geringe Aufheizraten zu wählen, so daß häufig ein Zeitraum von mehreren Tagen zum Entbindem notwendig ist. Hieraus ist ersichtlich, daß ein einstufiges thermisches Entbindem von spritzgegossenen Formteilen aus nanoskaligen Pulvern mit eminent hohen Verarbeitungszeiträumen und hohen Energiekosten verbunden ist. Diese Zeiträume und Kosten lassen sich mit den erfindungsgemäßen Spritzgußmassen dadurch verkürzen, daß man einen Großteil des Bindergemisches über Extraktion entfernt, wobei die Extraktion mit einem organischen Lösungsmittel oder mit einem überkritischen Fluid durchgeführt werden kann. Die erfindungsgemäße Spritzgußmasse erlaubt die Realisierung eines Spritzgußversatzes, bei dem ein Großteil der organischen Prozeßhilfsmittel (> 50 Gew.-%) über ein Extraktionsverfahren entfembar ist. Die verbleibenden organischen Prozeßhilfsmittel verleihen dem Grünkörper die notwendige Stabilität, die er für einen weitergehenden Sinterprozeß benötigt, der dann thermisch ausgeführt wird.After injection molding, the binder must be removed again from the moldings, without this being damaged in their structure. The most common method of debinding green bodies is a purely thermal process. For the error-free debonding of green bodies, which are composed of very fine powders, it is necessary to choose low heating rates, so that often a period of several days is necessary for Entbindem. From this it can be seen that a one-stage thermal debindering of injection-molded parts made of nanoscale powders is associated with extremely high processing times and high energy costs. These time periods and costs can be reduced with the injection molding compositions according to the invention by removing a large part of the binder mixture via extraction, wherein the extraction can be carried out with an organic solvent or with a supercritical fluid. The injection molding compound according to the invention allows the realization of an injection molding offset in which a large part of the organic processing aids (> 50 wt .-%) is removable via an extraction process. The remaining organic processing aids give the green body the necessary stability that it needs for a more extensive sintering process, which is then carried out thermally.

Aus den mit der erfindungsgemäßen Spritzgußmasse hergestellten Grünkörpern kann das beschriebene Bindersystem daher vorteilhafterweise nicht nur rein thermisch (beste Bedingungen: 1 K/min auf 450°C und 5 K/min auf 1600°C) entfernt werden, sondern große Teile des Bindersystems lassen sich auch über eine Extraktion (am günstigsten mit n-Octan bei 60°C) entfernen. Die restlichen Binderanteile gewährleisten die Grünfestigkeit der Bauteile und werden erst in einem zweiten Schritt thermisch entfernt. Da die Extraktion deutlich schneller erfolgen kann als ein thermisches Entbindern, können somit Zeit und Kosten eingespart werden.From the green bodies produced with the injection molding composition according to the invention, the binder system described can therefore advantageously not only purely thermal (best conditions: 1 K / min to 450 ° C and 5 K / min to 1600 ° C) removed but large parts of the binder system can also be removed by extraction (most conveniently with n-octane at 60 ° C). The remaining binder components ensure the green strength of the components and are only thermally removed in a second step. Since the extraction can be done much faster than a thermal debinding, thus time and cost can be saved.

ZrO,-Formteile aus den erfindungsgemäßen Spritzgußmassen mit einer Dicke von 2,5 mm konnten innerhalb von 8 Stunden entbindert werden, davon fiel 1 Stunde auf eine Extraktion mit n-Octan bei 60°C und 7 Stunden auf das thermische Entbindern (1 K/min bis 450°C). Dies entspricht einer Gesamtentbinderungsrate von 0,156 mm/h. Die Gesamtentbinderungsdauer für vergleichbare, aber rein thermisch entbinderte ZrO2-Formteile (d50 = 70 nm) beträgt nach der obengenannten Literatur von Song und Evans bei einer Formteilchendicke von 6 mm 198 Stunden. Daraus ergibt sich eine Entbinderungsrate von 0,015 mm/h, also eine Größenordnung langsamer. Auch kann über die Extraktion das extrahierte Bindergemisch vorteilhafterweise zurückgewonnen werden. Die Extraktion kann mit Hilfe von überkritischem CO2 erfolgen oder mit Hilfe von organischen Lösungsmitteln, bevorzugt Alkanen und besonders bevorzugt Pentan, Hexan, Heptan und Octan.ZrO, molded parts from the injection molding compositions according to the invention with a thickness of 2.5 mm could be debindered within 8 hours, of which 1 hour was an extraction with n-octane at 60 ° C and 7 hours on the thermal debinding (1 K / min to 450 ° C). This corresponds to a total debinding rate of 0.156 mm / h. The Gesamtentbinderungsdauer for comparable, but purely thermally binder ZrO 2 -Formteile (d50 = 70 nm) is according to the above-mentioned literature by Song and Evans at a Formteilchendicke of 6 mm 198 hours. This results in a debindering rate of 0.015 mm / h, ie an order of magnitude slower. Also, the extraction of the extracted binder mixture can advantageously be recovered. The extraction can be carried out with the aid of supercritical CO 2 or with the aid of organic solvents, preferably alkanes and more preferably pentane, hexane, heptane and octane.

Nach dem Entbindern erfolgt die Sinterung des Formkörpers unter Erhalt des gesinterten keramischen Formkörpers. Der gesinterte Formkörper kann z.B. für Mikrotechniken, im Maschinenbau, im Anlagenbau und im Gerätebau, in der Mikromechanik und für implantate verwendet werden. Es lassen sich kleine filigrane keramische Bauteile mit Mikrostrukturen wie sie z.B. in der Mikromechanik benötigt werden mit hoher Qualität und Dimensionstreue herstellen. Beispielsweise können keramische Zahnräder hergestellt werden, die sich für die Mikromechanik eignen.After debinding, the sintering of the shaped body takes place to obtain the sintered ceramic shaped body. The sintered molded article may e.g. for microtechniques, in mechanical engineering, in plant construction and in device construction, in micromechanics and for implants. Small filigree ceramic components with microstructures such as e.g. needed in micromechanics are producing with high quality and dimensional accuracy. For example, ceramic gears can be produced which are suitable for micromechanics.

Das folgende Beispiel erläutert die Erfindung.The following example illustrates the invention.

BEISPIELEXAMPLE

Die Verarbeitung eines nanoskaligen Pulvers aus Nanoteilchen über Spritzgießen erfolgt zunächst in einem kommerziell verfügbaren Knetaggregat, wobei der Pulvergehalt zunächst auf 43 Vol-% eingestellt wird. Hierzu werden zunächst 11 g Elvax 210, 21,8 g LuwaxV und 161 g Paraffinwachs 5405 vermischt. Danach werden 817 g nanoskaliges Al2O3 und 81,7 g Stearinsäureamid hinzugegeben. Die Homogenisierung erfolgt bei 120°C. Anschließend wird der Versatz an einem Scherwalzenkompakter aufkonzentriert, um die Endkonzentration an Nanoteilchen von 47 Vol-% zu erreichen, und granuliert. Insgesamt bedeutet dies die Zugabe von weiteren 200 g nanoskaligem Al2O3, und 20 g Stearinsäure. Das erhaltene Granulat wird anschließend in einer Spritzgußmaschine verarbeitet.The processing of a nanoscale powder of nanoparticles via injection molding is carried out initially in a commercially available kneading unit, wherein the powder content is initially set to 43% by volume. For this purpose, first 11 g of Elvax 210, 21.8 g LuwaxV and 161 g paraffin wax 5405 are mixed. Thereafter, 817 g of nanoscale Al 2 O 3 and 81.7 g of stearic acid amide are added. Homogenization takes place at 120 ° C. Subsequently, the offset is concentrated on a shear roller compact to achieve the final concentration of nanoparticles of 47 vol%, and granulated. Overall, this means the addition of another 200 g of nanoscale Al 2 O 3 , and 20 g of stearic acid. The resulting granules are then processed in an injection molding machine.

Claims (16)

  1. Injection-moulding compositions comprising a thermoplastic polymer, at least one wax, at least one nanosize chalcogenide, carbide or nitride powder and at least one acid amide, characterized in that the thermoplastic polymer is a mixture of polyvinyl ether and ethylene-vinyl acetate copolymer.
  2. Injection-moulding compositions according to Claim 1, characterized in that the nanosize chalcogenide powder is an oxide or sulphide powder.
  3. Injection-moulding compositions according to Claim 1 or 2, characterized in that the wax is a paraffin wax.
  4. Injection-moulding compositions according to any of Claims 1 to 3, characterized in that the acid amide is derived from a saturated carboxylic acid having from 12 to 24 carbon atoms.
  5. Injection-moulding compositions according to Claim 4, characterized in that the acid amide is stearamide.
  6. Injection-moulding compositions according to any of Claims 1 to 5, characterized in that the acid amide is present in concentrations of from 15 to 25% by volume, preferably 18% by volume.
  7. Injection-moulding compositions according to any of Claims 1 to 6, characterized in that the ethylene-vinyl acetate copolymer is present in amounts of from 1 to 5% by volume, preferably 2% by volume.
  8. Injection-moulding compositions according to any of Claims 1 to 7, characterized in that the polyvinyl ether is present in amounts of from 2 to 10% by volume, preferably 4% by volume.
  9. Injection-moulding compositions according to any of Claims 1 to 8, characterized in that the wax is present in amounts of from 25 to 35% by volume, preferably 29% by volume.
  10. Injection-moulding compositions according to any of Claims 1 to 9, characterized in that the powder content is from 35 to 60% by volume, preferably 50% by volume.
  11. Injection-moulding compositions according to any of Claims 1 to 10, characterized in that the resulting torques at a powder content of 45% by volume are below 20 Nm.
  12. Process for producing injection-moulding compositions according to any of Claims 1 to 11, characterized in that at least one nanosize chalcogenide, carbide or nitride powder and at least one acid amide are compounded with a mixture of at least one thermoplastic polymer comprising a mixture of polyvinyl ether and ethylene-vinyl acetate copolymer and at least one wax and the injection-moulding composition is obtained in the form of a pelletized material.
  13. Process for producing a sintered shaped body, in which an injection moulding according to any of Claims 1 to 11 is injection moulded in an injection-moulding unit or a transfer-moulding unit and the green body obtained is subjected to binder removal and sintered.
  14. Process according to Claim 13, characterized in that the binder is firstly partly removed by extraction and subsequently by heat treatment.
  15. Sintered shaped body obtainable by a process according to Claim 13 or 14.
  16. Use of the sintered shaped bodies according to Claim 15 for microtechniques, in machine construction, in plant construction and in instrument construction, in micromechanics and for implants.
EP00990642A 1999-12-03 2000-12-04 Injection moulding cross joints made of nanoscalic powders Expired - Lifetime EP1242522B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19958335 1999-12-03
DE19958335A DE19958335A1 (en) 1999-12-03 1999-12-03 Injection molding offsets from nanoscale powders
PCT/EP2000/012180 WO2001040364A1 (en) 1999-12-03 2000-12-04 Injection moulding cross joints made of nanoscalic powders

Publications (2)

Publication Number Publication Date
EP1242522A1 EP1242522A1 (en) 2002-09-25
EP1242522B1 true EP1242522B1 (en) 2006-04-12

Family

ID=7931307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00990642A Expired - Lifetime EP1242522B1 (en) 1999-12-03 2000-12-04 Injection moulding cross joints made of nanoscalic powders

Country Status (5)

Country Link
EP (1) EP1242522B1 (en)
AT (1) ATE323127T1 (en)
DE (2) DE19958335A1 (en)
ES (1) ES2261272T3 (en)
WO (1) WO2001040364A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011102456A1 (en) 2011-05-25 2012-11-29 Karlsruher Institut für Technologie Binder system useful e.g. for thermoplastic molding compositions for low-pressure injection molding, and for preparing feedstock for low pressure injection molding, comprises two waxes exhibiting different melting points

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039246A1 (en) * 2007-08-20 2009-02-26 Robert Bosch Gmbh Molding composition and process for the preparation of a molding composition
DE102015217382A1 (en) 2015-09-11 2017-03-16 Bauerfeind Ag Polymer compositions, fibers and yarns with petrolatum and / or oleic acid oils

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197118A (en) * 1972-06-14 1980-04-08 Parmatech Corporation Manufacture of parts from particulate material
US5155158A (en) * 1989-11-07 1992-10-13 Hoechst Celanese Corp. Moldable ceramic compositions
US5194203A (en) * 1991-02-28 1993-03-16 Mitsui Mining & Smelting Co., Ltd. Methods of removing binder from powder moldings
DE4212593A1 (en) * 1992-04-15 1993-10-21 Bayer Ag Binder for thermoplastic moulding compsn. contg. sintered metal or ceramic prods.
DE4431962A1 (en) * 1994-09-08 1996-03-14 Bayer Ag Binder for ceramic masses, thermally processable mass and process for the production of inorganic sintered molded parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011102456A1 (en) 2011-05-25 2012-11-29 Karlsruher Institut für Technologie Binder system useful e.g. for thermoplastic molding compositions for low-pressure injection molding, and for preparing feedstock for low pressure injection molding, comprises two waxes exhibiting different melting points

Also Published As

Publication number Publication date
ATE323127T1 (en) 2006-04-15
WO2001040364A1 (en) 2001-06-07
EP1242522A1 (en) 2002-09-25
ES2261272T3 (en) 2006-11-16
DE50012585D1 (en) 2006-05-24
DE19958335A1 (en) 2001-06-07

Similar Documents

Publication Publication Date Title
EP1776418B1 (en) Polymer blend of non-compatible polymers
DE2854612C2 (en)
DE4129952C2 (en) Molding compositions for the production of inorganic sintered moldings and processes for the production of inorganic sintered moldings
DE3942745C2 (en)
DE102005001198A1 (en) Metallic powder mixtures
EP0428999A1 (en) Binder for metal or ceramic powder
DE3409385A1 (en) METHOD FOR PRODUCING A MOLDED SILICON CARBIDE PRODUCT
EP1242522B1 (en) Injection moulding cross joints made of nanoscalic powders
DE3725138A1 (en) METHOD FOR PRODUCING CERAMIC MOLDED PARTS
DE4141632A1 (en) Injection-moldable ceramic and metallic composition and process for their manufacture
EP0723529A1 (en) PROCESS FOR PRODUCING TiN SINTERED BODIES AND COATINGS
EP2183067B1 (en) Molding compound and method for producing a molding compound
EP1053214B1 (en) Polymer compound, the production and use thereof, and sintered compacts produced therefrom
WO2007022957A1 (en) High temperature resistant ceramic layers and moulded bodies
EP3524375A1 (en) Mould and method for manufacturing a porous mould
EP0853995B1 (en) Injection moulding composition containing metal oxide for making metal shapes
EP2739417B1 (en) Binder mixture for producing moulded parts using injection methods
DE102009005446A1 (en) Granules, process for its preparation and its use
DE4407760C2 (en) Thermoplastic molding compositions and their use
DE4325483A1 (en) Thermoplastic molding compounds
DE102008062155A1 (en) Ceramic mass for producing a sintered body that is solidifiable in a pressureless thermal treatment, comprises hexagonal boron nitride, and nano-scale powder of silicon and aluminum based on oxides, hydroxides, oxyhydrates or compounds
EP0700881A1 (en) Binder for ceramic compositions, thermally processable compositions and process for the manufacture of inorganic, shaped, sintered bodies
DE19733698C1 (en) Producing ceramic component using interface active substance-modified sintering additive and low viscosity thermoplastic binder
DE3916044C2 (en) Process for the production of a molded or unshaped refractory product and the use of the products made therewith
DE2409942C3 (en) Injection molding compound for ceramic products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20031022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUET

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50012585

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060912

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2261272

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070112

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071222

Year of fee payment: 8

Ref country code: CH

Payment date: 20071219

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071220

Year of fee payment: 8

BERE Be: lapsed

Owner name: *LEIBNIZ-INSTITUT FUR NEUE MATERIALIEN GEMEINNUTZI

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071214

Year of fee payment: 8

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081204

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081204

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091223

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012585

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081204