EP1240354A2 - Single nucleotide polymorphisms in genes - Google Patents
Single nucleotide polymorphisms in genesInfo
- Publication number
- EP1240354A2 EP1240354A2 EP00959964A EP00959964A EP1240354A2 EP 1240354 A2 EP1240354 A2 EP 1240354A2 EP 00959964 A EP00959964 A EP 00959964A EP 00959964 A EP00959964 A EP 00959964A EP 1240354 A2 EP1240354 A2 EP 1240354A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- individual
- vascular disease
- nucleotide
- nucleic acid
- disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002773 nucleotide Substances 0.000 title claims abstract description 167
- 125000003729 nucleotide group Chemical group 0.000 title claims abstract description 165
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 136
- 102000054765 polymorphisms of proteins Human genes 0.000 title abstract description 3
- 208000019553 vascular disease Diseases 0.000 claims abstract description 107
- 108700028369 Alleles Proteins 0.000 claims abstract description 101
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 96
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 83
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 83
- 239000000523 sample Substances 0.000 claims abstract description 76
- 238000003745 diagnosis Methods 0.000 claims abstract description 19
- 238000011161 development Methods 0.000 claims abstract description 15
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 126
- 235000001014 amino acid Nutrition 0.000 claims description 70
- 208000029078 coronary artery disease Diseases 0.000 claims description 47
- 208000010125 myocardial infarction Diseases 0.000 claims description 45
- 108020004414 DNA Proteins 0.000 claims description 44
- 102100036034 Thrombospondin-1 Human genes 0.000 claims description 43
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 42
- 229940024606 amino acid Drugs 0.000 claims description 42
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 39
- 150000001413 amino acids Chemical class 0.000 claims description 38
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 38
- 108010046722 Thrombospondin 1 Proteins 0.000 claims description 35
- 108091034117 Oligonucleotide Proteins 0.000 claims description 23
- 239000012472 biological sample Substances 0.000 claims description 17
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 16
- 201000010099 disease Diseases 0.000 claims description 16
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 15
- 201000001320 Atherosclerosis Diseases 0.000 claims description 15
- 208000018262 Peripheral vascular disease Diseases 0.000 claims description 14
- 208000010378 Pulmonary Embolism Diseases 0.000 claims description 14
- 208000006011 Stroke Diseases 0.000 claims description 14
- 206010014522 Embolism venous Diseases 0.000 claims description 13
- 208000004043 venous thromboembolism Diseases 0.000 claims description 13
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 9
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 9
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 6
- 235000004279 alanine Nutrition 0.000 claims description 6
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 5
- 229960001230 asparagine Drugs 0.000 claims description 5
- 235000009582 asparagine Nutrition 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 108010060815 thrombospondin 4 Proteins 0.000 claims 12
- 102100029219 Thrombospondin-4 Human genes 0.000 claims 6
- 208000005189 Embolism Diseases 0.000 claims 1
- 208000001435 Thromboembolism Diseases 0.000 claims 1
- 108060008245 Thrombospondin Proteins 0.000 abstract description 26
- 238000011282 treatment Methods 0.000 abstract description 21
- 230000004044 response Effects 0.000 abstract description 6
- 239000003814 drug Substances 0.000 abstract description 5
- 238000011160 research Methods 0.000 abstract description 4
- 238000010171 animal model Methods 0.000 abstract description 3
- 238000004113 cell culture Methods 0.000 abstract description 2
- 238000012252 genetic analysis Methods 0.000 abstract description 2
- 239000013615 primer Substances 0.000 abstract 1
- 239000002987 primer (paints) Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 68
- 102000004169 proteins and genes Human genes 0.000 description 46
- 239000000047 product Substances 0.000 description 44
- 235000018102 proteins Nutrition 0.000 description 40
- 241001465754 Metazoa Species 0.000 description 38
- 102000004196 processed proteins & peptides Human genes 0.000 description 34
- 229920001184 polypeptide Polymers 0.000 description 29
- 230000014509 gene expression Effects 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- 101100202932 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) tsp-4 gene Proteins 0.000 description 22
- 101100208249 Rattus norvegicus Thbs4 gene Proteins 0.000 description 22
- 208000035475 disorder Diseases 0.000 description 22
- 239000013598 vector Substances 0.000 description 20
- 230000003321 amplification Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 239000013604 expression vector Substances 0.000 description 18
- 238000003199 nucleic acid amplification method Methods 0.000 description 18
- 238000009396 hybridization Methods 0.000 description 16
- 102100033825 Collagen alpha-1(XI) chain Human genes 0.000 description 15
- 101000710623 Homo sapiens Collagen alpha-1(XI) chain Proteins 0.000 description 15
- 230000002068 genetic effect Effects 0.000 description 15
- 102000002938 Thrombospondin Human genes 0.000 description 14
- 230000035772 mutation Effects 0.000 description 14
- 230000009261 transgenic effect Effects 0.000 description 14
- 108700019146 Transgenes Proteins 0.000 description 13
- 108010034789 Collagen Type XI Proteins 0.000 description 12
- 102000009736 Collagen Type XI Human genes 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 12
- 239000012634 fragment Substances 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 235000019801 trisodium phosphate Nutrition 0.000 description 11
- 238000003556 assay Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 230000002028 premature Effects 0.000 description 9
- 230000010076 replication Effects 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 241000283690 Bos taurus Species 0.000 description 8
- 102100033779 Collagen alpha-4(IV) chain Human genes 0.000 description 8
- 101000710870 Homo sapiens Collagen alpha-4(IV) chain Proteins 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000002596 correlated effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 108010042086 Collagen Type IV Proteins 0.000 description 7
- 102000004266 Collagen Type IV Human genes 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000003259 recombinant expression Methods 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- 108010022514 Collagen Type V Proteins 0.000 description 6
- 102000012432 Collagen Type V Human genes 0.000 description 6
- 102100031457 Collagen alpha-1(V) chain Human genes 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 101000941708 Homo sapiens Collagen alpha-1(V) chain Proteins 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 210000004962 mammalian cell Anatomy 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 101150060219 tsp-1 gene Proteins 0.000 description 6
- 101150009186 tsp-4 gene Proteins 0.000 description 6
- 102000008186 Collagen Human genes 0.000 description 5
- 108010035532 Collagen Proteins 0.000 description 5
- 101000585663 Homo sapiens Myocilin Proteins 0.000 description 5
- 101000834850 Mus musculus KICSTOR complex protein SZT2 Proteins 0.000 description 5
- 102100029839 Myocilin Human genes 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 229920001436 collagen Polymers 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000007717 exclusion Effects 0.000 description 5
- 210000002744 extracellular matrix Anatomy 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 235000013336 milk Nutrition 0.000 description 5
- 210000004080 milk Anatomy 0.000 description 5
- 239000008267 milk Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 102100036217 Collagen alpha-1(X) chain Human genes 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 4
- 108090000288 Glycoproteins Proteins 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 101000875027 Homo sapiens Collagen alpha-1(X) chain Proteins 0.000 description 4
- 108091092878 Microsatellite Proteins 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000001488 breeding effect Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000007834 ligase chain reaction Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- -1 nucleoside triphosphates Chemical class 0.000 description 4
- 200000000007 Arterial disease Diseases 0.000 description 3
- 230000004544 DNA amplification Effects 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108020005196 Mitochondrial DNA Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 108090000190 Thrombin Proteins 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000000556 agonist Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 208000028922 artery disease Diseases 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000003850 cellular structure Anatomy 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 239000002853 nucleic acid probe Substances 0.000 description 3
- 210000000287 oocyte Anatomy 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 229960004072 thrombin Drugs 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102100024335 Collagen alpha-1(VII) chain Human genes 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108091029865 Exogenous DNA Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000909498 Homo sapiens Collagen alpha-1(VII) chain Proteins 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 108091005461 Nucleic proteins Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 2
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012742 biochemical analysis Methods 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 208000017568 chondrodysplasia Diseases 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000003935 denaturing gradient gel electrophoresis Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000002550 fecal effect Effects 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 102000054766 genetic haplotypes Human genes 0.000 description 2
- 230000002414 glycolytic effect Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000000250 revascularization Effects 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 210000000582 semen Anatomy 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000001138 tear Anatomy 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229940099456 transforming growth factor beta 1 Drugs 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- 230000034512 ubiquitination Effects 0.000 description 2
- 238000010798 ubiquitination Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 208000002197 Ehlers-Danlos syndrome Diseases 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 206010014989 Epidermolysis bullosa Diseases 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 208000031953 Hereditary hemorrhagic telangiectasia Diseases 0.000 description 1
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 241000042032 Petrocephalus catostoma Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 241000269319 Squalius cephalus Species 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- 208000027276 Von Willebrand disease Diseases 0.000 description 1
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 210000003433 aortic smooth muscle cell Anatomy 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000112 colonic effect Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009223 counseling Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 201000010064 diabetes insipidus Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 108010091897 factor V Leiden Proteins 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 238000004374 forensic analysis Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010359 gene isolation Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 244000144980 herd Species 0.000 description 1
- 208000009601 hereditary spherocytosis Diseases 0.000 description 1
- 229940094991 herring sperm dna Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 238000003499 nucleic acid array Methods 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 238000005222 photoaffinity labeling Methods 0.000 description 1
- 208000030761 polycystic kidney disease Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 208000015768 polyposis Diseases 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000018477 regulation of fibrinolysis Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 208000007056 sickle cell anemia Diseases 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 208000037369 susceptibility to malaria Diseases 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 208000009999 tuberous sclerosis Diseases 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 208000012137 von Willebrand disease (hereditary or acquired) Diseases 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/78—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- the variant form may confer an evolutionary advantage or disadvantage relative to a progenitor form, or may be neutral.
- a variant form confers a lethal disadvantage and is not transmitted to subsequent generations of the organism.
- a variant form confers an evolutionary advantage to the species and is eventually incorporated into the DNA of many or most members of the species and effectively becomes the progenitor form.
- a restriction fragment length polymo ⁇ hism is a variation in DNA sequence that alters the length of a restriction fragment (Botstein et al., Am. J. Hum. Genet. 32, 314-331 (1980)).
- the restriction fragment length polymo ⁇ hism may create or delete a restriction site, thus changing the length of the restriction fragment.
- RFLPs have been widely used in human and animal genetic analyses (see WO 90/13668; W090/11369; Donis-Keller, Cell 51, 319-337 (1987); Lander et al., Genetics 121, 85-99 (1989)). When a heritable trait can be linked to a particular RFLP, the presence of the RFLP in an individual can be used to predict the likelihood that the animal will also exhibit the trait.
- VNTR variable number tandem repeat
- polymo ⁇ hisms take the form of single nucleotide variations between individuals of the same species. Such polymo ⁇ hisms are far more frequent than RFLPs, STRs and VNTRs. Some single nucleotide polymo ⁇ hisms (SNP) occur in protein-coding nucleic acid sequences (coding sequence SNP (cSNP)), in which case, one of the polymo ⁇ hic forms may give rise to the expression of a defective or otherwise variant protein and, potentially, a genetic disease.
- SNP single nucleotide polymo ⁇ hisms
- cSNP protein-coding nucleic acid sequences
- genes in which polymo ⁇ hisms within coding sequences give rise to genetic disease include ⁇ -globin (sickle cell anemia), apoE4 (Alzheimer's Disease), Factor V Leiden (thrombosis), and CFTR (cystic fibrosis).
- cS Ps can alter the codon sequence of the gene and therefore specify an alternative amino acid. Such changes are called “missense” when another amino acid is substituted, and "nonsense" when the alternative codon specifies a stop signal in protein translation. When the cSNP does not alter the amino acid specified the cSNP is called "silent".
- Single nucleotide polymo ⁇ hisms occur in noncoding regions. Some of these polymo ⁇ hisms may also result in defective protein expression (e.g., as a result of defective splicing). Other single nucleotide polymo ⁇ hisms have no phenotypic effects. Single nucleotide polymo ⁇ hisms can be used in the same manner as
- Single nucleotide polymo ⁇ hisms occur with greater frequency and are spaced more uniformly throughout the genome than other forms of polymo ⁇ hism.
- the greater frequency and uniformity of single nucleotide polymo ⁇ hisms means that there is a greater probability that such a polymo ⁇ hism will be found in close proximity to a genetic locus of interest than would be the case for other polymo ⁇ hisms.
- the different forms of characterized single nucleotide polymo ⁇ hisms are often easier to distinguish than other types of polymo ⁇ hism (e.g., by use of assays employing allele-specific hybridization probes or primers).
- the invention relates to a gene which comprises a single nucleotide polymo ⁇ hism at a specific location.
- the invention relates to the variant allele of a gene having a single nucleotide polymo ⁇ hism, which variant allele differs from a reference allele by one nucleotide at the site(s) identified in the Table and Fig. 3.
- Complements of these nucleic acid sequences are also included.
- the nucleic acid molecules can be DNA or RNA, and can be double- or single-stranded. Nucleic acid molecules can be, for example, 5-10, 5-15, 10-20, 5-25, 10-30, 10-50 or 10-100 bases long.
- the invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymo ⁇ hism or to the complement thereof. These oligonucleotides can be probes or primers.
- the invention further provides a method of analyzing a nucleic acid from an individual.
- the method determines which base is present at any one of the polymo ⁇ hic sites shown in the Table and/or Fig. 3.
- a set of bases occupying a set of the polymo ⁇ hic sites shown in the Table and /or Fig. 3 is determined.
- This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymo ⁇ hic site or sites in the individuals tested.
- the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype.
- the method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymo ⁇ hic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.
- thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation.
- ECM extracellular matrix
- Thrombospondins also known as thrombin sensitive proteins or TSPs
- TSPs thrombin sensitive proteins
- SNPs in these genes which are associated with premature coronary artery disease (CAD)(or coronary heart disease) and myocardial infarction (MI) have been identified and represent a potentially vital marker of upstream biology influencing the complex process of atherosclerotic plaque generation and vulnerability.
- CAD premature coronary artery disease
- MI myocardial infarction
- the invention relates to the TSP gene SNPs identified as described herein, both singly and in combination, as well as to the use of these SNPs, and others in TSP genes, particularly those nearby in linkage disequilibrium with these SNPs, for diagnosis, prediction of clinical course and treatment response for vascular disease, development of new treatments for vascular disease based upon comparison of the variant and normal versions of the gene or gene product, and development of cell-culture based and animal models for research and treatment of vascular disease.
- the invention further relates to novel compounds and pharmaceutical compositions for use in the diagnosis and treatment of such disorders.
- the vascular disease is CAD or MI.
- the invention relates to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-1 (e.g., as exemplified by SEQ ID NO: 1), and to isolated nucleic acid molecules comprising all or a portion of the variant allele of TSP-4 (e.g., as exemplified by SEQ ID NO: 3).
- Preferred portions are at least 10 contiguous nucleotides and comprise the polymo ⁇ hic site, e.g., a portion of SEQ ID NO: 1 which is at least 10 contiguous nucleotides and comprises the "G" at position 2210, or a portion of SEQ ID NO: 3 which is at least 10 contiguous nucleotides and comprises the "C" at position 1186.
- the invention further relates to isolated gene products, e.g., polypeptides or proteins, which are encoded by a nucleic acid molecule comprising all or a portion of the variant allele of TSP-1 or TSP-4 (e.g., SEQ ID NO: 1 or SEQ ID NO: 3, respectively).
- the invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
- the invention further relates to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-1 (e.g., as exemplified by SEQ ID NO: 2), and to isolated proteins or polypeptides comprising all or a portion of the variant amino acid sequence of TSP-4 (e.g., as exemplified by SEQ ID NO: 4).
- Preferred polypeptides are at least 10 contiguous amino acids and comprise the polymo ⁇ hic amino acid, e.g., a portion of SEQ ID NO: 2 which is at least 10 contiguous amino acids and comprises the serine at residue 700, or a portion of SEQ ID NO: 4 which is at least 10 contiguous amino acids and comprises the proline at residue 387.
- the invention further relates to isolated nucleic acid molecules encoding such proteins and polypeptides, as well as to antibodies which bind, e.g., specifically, to such proteins and polypeptides.
- the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1 ; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual.
- the method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1 ; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference nucleotide at one or more of said positions.
- the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- the vascular disease is selected from the group consisting of CAD and MI.
- the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a G at nucleotide position 2210 of SEQ ID NO: 1; or (b) a C at nucleotide position 1186 of SEQ ID NO: 3 in an individual.
- the method comprises obtaining a nucleic acid sample from the individual and determining the nucleotide present at one or more of the indicated nucleotide positions, wherein presence of one or more of (a) an A at nucleotide position 2210 of SEQ ID NO: 1; or (b) a G at nucleotide position 1186 of SEQ ID NO: 3 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant nucleotide at said position.
- the disorder is a vascular disease selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- the vascular disease is selected from the group consisting of CAD and MI.
- the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of SEQ ID NO: 1 or 1186 of SEQ ID NO: 3.
- the presence of the reference nucleotide at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant nucleotide at one or more of these positions, or a lower likelihood of having severe symptomology.
- the individual is an individual at risk for development of a vascular disease.
- the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with the presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual.
- the method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 is indicative of increased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the reference amino acid at one or more of said positions.
- the invention further relates to a method of diagnosing or aiding in the diagnosis of a disorder associated with one or more of (a) a serine at amino acid position 700 of SEQ ID NO: 2; or (b) a proline at amino acid position 387 of SEQ ID NO: 4 in an individual.
- the method comprises obtaining a biological sample containing the TSP-1 and/or TSP-4 protein or relevant portion thereof from the individual and determining the amino acid present at one or more of the indicated amino acid positions, wherein presence of one or more of (a) an asparagine at amino acid position 700 of SEQ ID NO: 2; or (b) an alanine at amino acid position 387 of SEQ ID NO: 4 is indicative of decreased likelihood of said disorder in the individual as compared with an appropriate control, e.g., an individual having the variant amino acid at one or more of said positions.
- the invention relates to a method for predicting the likelihood that an individual will have a vascular disease (or aiding in the diagnosis of a vascular disease), comprising the steps of obtaining a biological sample comprising the TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of SEQ ID NO: 2 or 387 of SEQ ID NO: 4.
- the presence of the reference amino acid at one or more of these positions indicates that the individual has a lower likelihood of having a vascular disease than an individual having the variant amino acid at one or more of these positions, or a lower likelihood of having severe symptomology.
- the individual is an individual at risk for development of a vascular disease.
- the invention in another embodiment, relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product, or active portion thereof, for use in the treatment of vascular diseases.
- the invention further relates to the use of agonists and antagonists of TSP-1 and TSP-4 activity for use in the treatment of vascular diseases.
- the vascular disease is selected from the group consisting of atherosclerosis, coronary heart or artery disease, MI, stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- the vascular disease is selected from the group consisting of CAD and MI.
- Figs. 1A-1D show the reference nucleotide (SEQ ID NO: 1) and amino acid (SEQ ID NO: 2) sequences for TSP-1.
- Figs. 2A-2C show the reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4.
- Fig. 3 shows a table providing detailed information about the SNPs identified herein. Column one shows the internal polymo ⁇ hism identifier. Column two shows the accession number for the reference sequence in the TIGR database
- the present invention relates to a gene which comprises a single nucleotide polymo ⁇ hism (SNP) at a specific location.
- the gene which includes the SNP has at least two alleles, referred to herein as the reference allele and the variant allele.
- the reference allele (prototypical or wild type allele) has been designated arbitrarily and typically corresponds to the nucleotide sequence of the gene which has been deposited with GenBank or TIGR under a given Accession number.
- the variant allele differs from the reference allele by one nucleotide at the site(s) identified in the Table.
- the present invention also relates to variant alleles of the described genes and to complements of the variant alleles.
- the invention also relates to nucleic acid molecules which hybridize to and/or share identity with the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
- the invention further relates to portions of the variant alleles and portions of complements of the variant alleles which comprise (encompass) the site of the SNP and are at least 5 nucleotides in length. Portions can be, for example, 5-10, 5-15, 10- 20, 5-25, 10-30, 10-50 or 10-100 bases long.
- a portion of a variant allele which is 21 nucleotides in length includes the single nucleotide polymo ⁇ hism (the nucleotide which differs from the reference allele at that site) and twenty additional nucleotides which flank the site in the variant allele. These nucleotides can be on one or both sides of the polymo ⁇ hism.
- Polymo ⁇ hisms which are the subject of this invention are defined in the Table with respect to the reference sequence deposited in GenBank or TIGR under the Accession number indicated.
- the invention relates to a portion of a gene (e.g., AT3) having a nucleotide sequence as deposited in GenBank (e.g., UI 1270) comprising a single nucleotide polymo ⁇ hism at a specific position (e.g., nucleotide 11918).
- the reference nucleotide for AT3 is shown in column 8, and the variant nucleotide is shown in column 9 of the Table.
- the nucleotide sequences of the invention can be double- or single-stranded.
- the invention further provides allele-specific oligonucleotides that hybridize to the reference or variant allele of a gene comprising a single nucleotide polymo ⁇ hism or to the complement thereof. These oligonucleotides can be probes or primers.
- the invention further provides a method of analyzing a nucleic acid from an individual.
- the method determines which base is present at any one of the polymo ⁇ hic sites shown in the Table and/or Fig. 3.
- a set of bases occupying a set of the polymo ⁇ hic sites shown in the Table and/or Fig. 3 is determined.
- This type of analysis can be performed on a number of individuals, who are tested for the presence of a disease phenotype. The presence or absence of disease phenotype is then correlated with a base or set of bases present at the polymo ⁇ hic site or sites in the individuals tested.
- the invention further relates to a method of predicting the presence, absence, likelihood of the presence or absence, or severity of a particular phenotype or disorder associated with a particular genotype.
- the method comprises obtaining a nucleic acid sample from an individual and determining the identity of one or more bases (nucleotides) at polymo ⁇ hic sites of genes described herein, wherein the presence of a particular base is correlated with a specified phenotype or disorder, thereby predicting the presence, absence, likelihood of the presence or absence, or severity of the phenotype or disorder in the individual.
- a nucleic acid molecule or oligonucleotide can be DNA or RNA, and single- or double-stranded. Nucleic acid molecules and oligonucleotides can be naturally occurring or synthetic, but are typically prepared by synthetic means. Preferred nucleic acid molecules and oligonucleotides of the invention include segments of DNA, or their complements, which include any one of the polymo ⁇ hic sites shown in the Table. The segments can be between 5 and 250 bases, and, in specific embodiments, are between 5-10, 5-20, 10-20, 10-50, 20-50 or 10-100 bases. For example, the segment can be 21 bases. The polymo ⁇ hic site can occur within any position of the segment.
- the segments can be from any of the allelic forms of DNA shown in the Table.
- the terms “nucleotide”, “base” and “nucleic acid” are intended to be equivalent.
- the terms “nucleotide sequence”, “nucleic acid sequence”, “nucleic acid molecule” and “segment” are intended to be equivalent.
- Hybridization probes are oligonucleotides which bind in a base-specific manner to a complementary strand of nucleic acid. Such probes include peptide nucleic acids, as described in Nielsen et al., Science 254, 1497-1500 (1991). Probes can be any length suitable for specific hybridization to the target nucleic acid sequence. The most appropriate length of the probe may vary depending upon the hybridization method in which it is being used; for example, particular lengths may be more appropriate for use in micro fabricated arrays, while other lengths may be more suitable for use in classical hybridization methods. Such optimizations are known to the skilled artisan. Suitable probes and primers can range from about 5 nucleotides to about 30 nucleotides in length.
- probes and primers can be 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 28 or 30 nucleotides in length.
- the probe or primer preferably overlaps at least one polymo ⁇ hic site occupied by any of the possible variant nucleotides.
- the nucleotide sequence can correspond to the coding sequence of the allele or to the complement of the coding sequence of the allele.
- primer refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and an agent for polymerization, such as DNA or RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.
- the appropriate length of a primer depends on the intended use of the primer, but typically ranges from 15 to 30 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.
- a primer need not reflect the exact sequence of the template, but must be sufficiently complementary to hybridize with a template.
- primer site refers to the area of the target DNA to which a primer hybridizes.
- primer pair refers to a set of primers including a 5' (upstream) primer that hybridizes with the 5' end of the DNA sequence to be amplified and a 3' (downstream) primer that hybridizes with the complement of the 3' end of the sequence to be amplified.
- linkage describes the tendency of genes, alleles, loci or genetic markers to be inherited together as a result of their location on the same chromosome. It can be measured by percent recombination between the two genes, alleles, loci or genetic markers.
- polymo ⁇ hism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population.
- a polymo ⁇ hic marker or site is the locus at which divergence occurs.
- Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population.
- a polymo ⁇ hic locus may be as small as one base pair.
- Polymo ⁇ hic markers include restriction fragment length polymo ⁇ hisms, variable number of tandem repeats (VNTR's), hypervariable regions, minisatellites, dinucleotide repeats, trinucleotide repeats, tetranucleotide repeats, simple sequence repeats, and insertion elements such as Alu.
- the first identified allelic form is arbitrarily designated as the reference form and other allelic forms are designated as alternative or variant alleles.
- the allelic form occurring most frequently in a selected population is sometimes referred to as the wildtype form. Diploid organisms may be homozygous or heterozygous for allelic forms.
- a diallelic or biallelic polymo ⁇ hism has two forms.
- a triallelic polymo ⁇ hism has three forms.
- Work described herein pertains to the resequencing of large numbers of genes in a large number of individuals to identify polymo ⁇ hisms which can predispose individuals to disease.
- polymo ⁇ hisms in genes which are expressed in liver may predispose individuals to disorders of the liver.
- SNPs may alter the function of the encoded proteins.
- the discovery of the SNP facilitates biochemical analysis of the variants and the development of assays to characterize the variants and to screen for pharmaceutical that would interact directly with one or another form of the protein.
- SNPs include silent SNPs
- a single nucleotide polymo ⁇ hism occurs at a polymo ⁇ hic site occupied by a single nucleotide, which is the site of variation between allelic sequences.
- the site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations).
- a single nucleotide polymo ⁇ hism usually arises due to substitution of one nucleotide for another at the polymo ⁇ hic site.
- a transition is the replacement of one purine by another purine or one pyrimidine by another pyrimidine.
- a transversion is the replacement of a purine by a pyrimidine or vice versa.
- Single nucleotide polymo ⁇ hisms can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele.
- the polymo ⁇ hic site is occupied by a base other than the reference base. For example, where the reference allele contains the base "T" at the polymo ⁇ hic site, the altered allele can contain a "C", "G" or "A" at the polymo ⁇ hic site.
- the invention also relates to nucleic acid molecules which hybridize to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
- Hybridizations are usually performed under stringent conditions, for example, at a salt concentration of no more than 1 M and a temperature of at least 25°C.
- stringent conditions for example, at a salt concentration of no more than 1 M and a temperature of at least 25°C.
- 5X SSPE 750 mM NaCl, 50 mM NaPhosphate, 5 mM EDTA, pH 7.4
- a temperature of 25-30°C, or equivalent conditions are suitable for allele-specific probe hybridizations.
- Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of identity or similarity between the target nucleotide sequence and the primer or probe used.
- the invention also relates to nucleic acid molecules which share substantial sequence identity to the variant alleles identified herein (or their complements) and which also comprise the variant nucleotide at the SNP site.
- nucleic acid molecules and fragments which have at least about 60%, preferably at least about 70, 80 or 85%, more preferably at least about 90%, even more preferably at least about 95%, and most preferably at least about 98% identity with nucleic acid molecules described herein.
- the percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison pu ⁇ oses (e.g., gaps can be introduced in the sequence of a first sequence).
- the length of a sequence aligned for comparison pu ⁇ oses is at least 30%, preferably at least 40%, more preferably at least 60%, and even more preferably at least 70%, 80% or 90% of the length of the reference sequence.
- the actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm. A preferred, non- limiting example of such a mathematical algorithm is described in Karlin et al., Proc. Natl. Acad. Sci.
- an isolated nucleic acid of the invention may be substantially isolated with respect to the complex cellular milieu in which it naturally occurs.
- the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix.
- the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC.
- an isolated nucleic acid comprises at least about 50, 80 or 90 percent (on a molar basis) of all macromolecular species present.
- Some of the novel polymo ⁇ hisms of the invention are shown in the Table. Columns one and two show designations for the indicated polymo ⁇ hism. Column three shows the Genbank or TIGR Accession number for the wild type (or reference) allele. Column four shows the location of the polymo ⁇ hic site in the nucleic acid sequence with reference to the Genbank or TIGR sequence shown in column three. Column five shows common names for the gene in which the polymo ⁇ hism is located. Column six shows the polymo ⁇ hism and a portion of the 3' and 5' flanking sequence of the gene. Column seven shows the type of mutation; N, non-sense, S, silent, M, missense.
- Polymo ⁇ hisms are detected in a target nucleic acid from an individual being analyzed.
- genomic DNA virtually any biological sample (other than pure red blood cells) is suitable.
- tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair.
- tissue sample must be obtained from an organ in which the target nucleic acid is expressed.
- the target nucleic acid is a cytochrome P450
- the liver is a suitable source.
- LCR ligase chain reaction
- NASBA nucleic acid based sequence amplification
- the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
- ssRNA single stranded RNA
- dsDNA double stranded DNA
- the first type of analysis is carried out to identify polymo ⁇ hic sites not previously characterized (i.e., to identify new polymo ⁇ hisms). This analysis compares target sequences in different individuals to identify points of variation, i.e., polymo ⁇ hic sites.
- de novo characterization is carried out to identify polymo ⁇ hic sites not previously characterized (i.e., to identify new polymo ⁇ hisms).
- This analysis compares target sequences in different individuals to identify points of variation, i.e., polymo ⁇ hic sites.
- groups of individuals representing the greatest ethnic diversity among humans and greatest breed and species variety in plants and animals patterns characteristic of the most common alleles/haplotypes of the locus can be identified, and the frequencies of such alleles/haplotypes in the population can be determined. Additional allelic frequencies can be determined for subpopulations characterized by criteria such as geography, race, or gender.
- the de novo identification of polymo ⁇ hisms of the invention is described in the Examples section.
- the second type of analysis determines which form(s) of a characterized (known) polymo ⁇ hism are present in individuals under test. There are a variety of suitable procedures, which are discussed in turn.
- Allele-specific probes for analyzing polymo ⁇ hisms is described by e.g., Saiki et al, Nature 324, 163-166 (1986); Dattagupta, EP 235,726, Saiki, WO 89/11548. Allele-specific probes can be designed that hybridize to a segment of target DNA from one individual but do not hybridize to the co ⁇ esponding segment from another individual due to the presence of different polymo ⁇ hic forms in the respective segments from the two individuals. Hybridization conditions should be sufficiently stringent that there is a significant difference in hybridization intensity between alleles, and preferably an essentially binary response, whereby a probe hybridizes to only one of the alleles.
- Some probes are designed to hybridize to a segment of target DNA such that the polymo ⁇ hic site aligns with a central position (e.g., in a 15-mer at the 7 position; in a 16-mer, at either the 8 or 9 position) of the probe.
- This design of probe achieves good discrimination in hybridization between different allelic forms. Allele-specific probes are often used in pairs, one member of a pair showing a perfect match to a reference form of a target sequence and the other member showing a perfect match to a variant form. Several pairs of probes can then be immobilized on the same support for simultaneous analysis of multiple polymo ⁇ hisms within the same target sequence.
- the polymo ⁇ hisms can also be identified by hybridization to nucleic acid arrays, some examples of which are described in WO 95/11995.
- nucleic acid arrays Some examples of which are described in WO 95/11995.
- One form of such arrays is described in the Examples section in connection with de novo identification of polymo ⁇ hisms.
- the same array or a different array can be used for analysis of characterized polymo ⁇ hisms.
- WO 95/11995 also describes subarrays that are optimized for detection of a variant form of a precharacterized polymo ⁇ hism.
- Such a subarray contains probes designed to be complementary to a second reference sequence, which is an allelic variant of the first reference sequence.
- the second group of probes is designed by the same principles as described in the Examples, except that the probes exhibit complementarity to the second reference sequence.
- a second group (or further groups) can be particularly useful for analyzing short subsequences of the primary reference sequence in which multiple mutations are expected to occur within a short distance commensurate with the length of the probes (e.g., two or more mutations within 9 to 21 bases).
- An allele-specific primer hybridizes to a site on target DNA overlapping a polymo ⁇ hism and only primes amplification of an allelic form to which the primer exhibits perfect complementarity. See Gibbs, Nucleic Acid Res. 17, 2427-2448 (1989). This primer is used in conjunction with a second primer which hybridizes at a distal site. Amplification proceeds from the two primers, resulting in a detectable product which indicates the particular allelic form is present. A control is usually performed with a second pair of primers, one of which shows a single base mismatch at the polymo ⁇ hic site and the other of which exhibits perfect complementarity to a distal site. The single-base mismatch prevents amplification and no detectable product is formed.
- the method works best when the mismatch is included in the 3'-most position of the oligonucleotide aligned with the polymo ⁇ hism because this position is most destabilizing to elongation from the primer (see, e.g., WO 93/22456).
- Amplification products generated using the polymerase chain reaction can be analyzed by the use of denaturing gradient gel electrophoresis. Different alleles can be identified based on the different sequence-dependent melting properties and electrophoretic migration of DNA in solution. Erlich, ed., PCR Technology, Principles and Applications for DNA Amplification, (W.H. Freeman and Co, New York, 1992), Chapter 7.
- Single-Strand Conformation Polymo ⁇ hism Analysis Alleles of target sequences can be differentiated using single-strand conformation polymo ⁇ hism analysis, which identifies base differences by alteration in electrophoretic migration of single stranded PCR products, as described in Orita et al, Proc. Nat. Acad. Sci. 86, 2766-2770 (1989).
- Amplified PCR products can be generated as described above, and heated or otherwise denatured, to form single stranded amplification products.
- Single-stranded nucleic acids may refold or form secondary structures which are partially dependent on the base sequence.
- the different electrophoretic mobilities of single-stranded amplification products can be related to base-sequence differences between alleles of target sequences.
- An alternative method for identifying and analyzing polymo ⁇ hisms is based on single-base extension (SBE) of a fluorescently-labeled primer coupled with fluorescence resonance energy transfer (FRET) between the label of the added base and the label of the primer.
- SBE single-base extension
- FRET fluorescence resonance energy transfer
- the method such as that described by Chen et al, (PNAS 94: 10756-61 (1997), inco ⁇ orated herein by reference) uses a locus- specific oligonucleotide primer labeled on the 5' terminus with 5-carboxyfluorescein (FAM). This labeled primer is designed so that the 3' end is immediately adjacent to the polymo ⁇ hic site of interest.
- FAM 5-carboxyfluorescein
- the labeled primer is hybridized to the locus, and single base extension of the labeled primer is performed with fluorescently labeled dideoxyribonucleotides (ddNTPs) in dye-terminator sequencing fashion, except that no deoxyribonucleotides are present.
- ddNTPs dideoxyribonucleotides
- An increase in fluorescence of the added ddNTP in response to excitation at the wavelength of the labeled primer is used to infer the identity of the added nucleotide.
- this information can be used in a number of methods.
- polymo ⁇ hisms of the invention are often used in conjunction with polymo ⁇ hisms in distal genes.
- Preferred polymo ⁇ hisms for use in forensics are biallelic because the population frequencies of two polymo ⁇ hic forms can usually be determined with greater accuracy than those of multiple polymo ⁇ hic forms at multi-allelic loci.
- the capacity to identify a distinguishing or unique set of forensic markers in an individual is useful for forensic analysis. For example, one can determine whether a blood sample from a suspect matches a blood or other tissue sample from a crime scene by determining whether the set of polymo ⁇ hic forms occupying selected polymo ⁇ hic sites is the same in the suspect and the sample. If the set of polymo ⁇ hic markers does not match between a suspect and a sample, it can be concluded (barring experimental error) that the suspect was not the source of the sample. If the set of markers does match, one can conclude that the DNA from the suspect is consistent with that found at the crime scene.
- p(ID) is the probability that two random individuals have the same polymo ⁇ hic or allelic form at a given polymo ⁇ hic site. In biallelic loci, four genotypes are possible: AA, AB, BA, and BB.
- the probability of identity p(ID) for a 3-allele system where the alleles have the frequencies in the population of x, y and z, respectively is equal to the sum of the squares of the genotype frequencies: p(ID) - x 4 + (2xy) 2 + (2yz) 2 + (2xz) 2 + z 4 + y 4
- the object of paternity testing is usually to determine whether a male is the father of a child. In most cases, the mother of the child is known and thus, the mother's contribution to the child's genotype can be traced. Paternity testing investigates whether the part of the child's genotype not attributable to the mother is consistent with that of the putative father. Paternity testing can be performed by analyzing sets of polymo ⁇ hisms in the putative father and the child.
- the set of polymo ⁇ hisms in the child attributable to the father does not match the set of polymo ⁇ hisms of the putative father, it can be concluded, barring experimental error, that the putative father is not the real father. If the set of polymo ⁇ hisms in the child attributable to the father does match the set of polymo ⁇ hisms of the putative father, a statistical calculation can be performed to determine the probability of coincidental match.
- the cumulative probability of exclusion of a random male is very high. This probability can be taken into account in assessing the liability of a putative father whose polymo ⁇ hic marker set matches the child's polymo ⁇ hic marker set attributable to his/her father.
- the polymo ⁇ hisms of the invention may contribute to the phenotype of an organism in different ways. Some polymo ⁇ hisms occur within a protein coding sequence and contribute to phenotype by affecting protein structure. The effect may be neutral, beneficial or detrimental, or both beneficial and detrimental, depending on the circumstances. For example, a heterozygous sickle cell mutation confers resistance to malaria, but a homozygous sickle cell mutation is usually lethal. Other polymo ⁇ hisms occur in noncoding regions but may exert phenotypic effects indirectly via influence on replication, transcription, and translation. A single polymo ⁇ hism may affect more than one phenotypic trait. Likewise, a single phenotypic trait may be affected by polymo ⁇ hisms in different genes.
- polymo ⁇ hisms predispose an individual to a distinct mutation that is causally related to a certain phenotype.
- Phenotypic traits include diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulimenia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-Aldrich syndrome, Fabry's disease, familial hypercholesterolemia, polycystic kidney disease, hereditary spherocytosis, von Willebrand's disease, tuberous sclerosis, hereditary hemorrhagic telangiectasia, familial colonic polyposis, Ehlers-Danlos syndrome, osteogenesis imperfecta, and acute intermittent po ⁇ hyria).
- diseases that have known but hitherto unmapped genetic components (e.g., agammaglobulimenia, diabetes insipidus, Lesch-Nyhan syndrome, muscular dystrophy, Wiskott-
- Phenotypic traits also include symptoms of, or susceptibility to, multifactorial diseases of which a component is or may be genetic, such as autoimmune diseases, inflammation, cancer, diseases of the nervous system, and infection by pathogenic microorganisms.
- autoimmune diseases include rheumatoid arthritis, multiple sclerosis, diabetes (insulin-dependent and non-independent), systemic lupus erythematosus and Graves disease.
- Some examples of cancers include cancers of the bladder, brain, breast, colon, esophagus, kidney, leukemia, liver, lung, oral cavity, ovary, pancreas, prostate, skin, stomach and uterus.
- Phenotypic traits also include characteristics such as longevity, appearance (e.g., baldness, obesity), strength, speed, endurance, fertility, and susceptibility or receptivity to particular drugs or therapeutic treatments.
- the correlation of one or more polymo ⁇ hisms with phenotypic traits can be facilitated by knowledge of the gene product of the wild type (reference) gene.
- the genes in which cSNPs of the present invention have been identified are genes which have been previously sequenced and characterized in one of their allelic forms.
- Correlation is performed for a population of individuals who have been tested for the presence or absence of a phenotypic trait of interest and for polymo ⁇ hic markers sets.
- a set of polymo ⁇ hisms i.e. a polymo ⁇ hic set
- the alleles of each polymo ⁇ hism of the set are then reviewed to determine whether the presence or absence of a particular allele is associated with the trait of interest.
- Correlation can be performed by standard statistical methods such as a K-squared test and statistically significant correlations between polymo ⁇ hic form(s) and phenotypic characteristics are noted.
- allele Al at polymo ⁇ hism A correlates with heart disease.
- allele Bl at polymo ⁇ hism B correlates with increased milk production of a farm animal.
- Such correlations can be exploited in several ways.
- detection of the polymo ⁇ hic form set in a human or animal patient may justify immediate administration of treatment, or at least the institution of regular monitoring of the patient.
- Detection of a polymo ⁇ hic form correlated with serious disease in a couple contemplating a family may also be valuable to the couple in their reproductive decisions.
- the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymo ⁇ hism from her husband to her offspring.
- Y, jkpn ⁇ + YS, + P. + X k + ⁇ , + ... ⁇ 17 + PE n + a profession +e p
- Y ljknp is the milk, fat, fat percentage, SNF, SNF percentage, energy concentration, or lactation energy record
- ⁇ is an overall mean
- YS is the effect common to all cows calving in year-season
- X k is the effect common to cows in either the high or average selection line
- ⁇ , to ⁇ , 7 are the binomial regressions of production record on mtDNA D-loop sequence polymo ⁇ hisms
- PE n is permanent environmental effect common to all records of cow n
- a municipality is effect of animal n and is composed of the additive genetic contribution of sire and dam breeding values and a Mendelian sampling effect
- e p is a random residual. It was found that eleven of seventeen polymo ⁇ hisms tested influenced at least one production trait. Bovines
- D. Genetic Mapping of Phenotypic Traits The previous section concerns identifying correlations between phenotypic traits and polymo ⁇ hisms that directly or indirectly contribute to those traits.
- the present section describes identification of a physical linkage between a genetic locus associated with a trait of interest and polymo ⁇ hic markers that are not associated with the trait, but are in physical proximity with the genetic locus responsible for the trait and co-segregate with it.
- Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al, Proc. Natl. Acad. Sci.
- Linkage studies are typically performed on members of a family. Available members of the family are characterized for the presence or absence of a phenotypic trait and for a set of polymo ⁇ hic markers. The distribution of polymo ⁇ hic markers in an informative meiosis is then analyzed to determine which polymo ⁇ hic markers co-segregate with a phenotypic trait. See, e.g., Kerem et al, Science 245, 1073-1080 (1989); Monaco et al, Nature 316, 842 (1985); Yamoka et al, Neurology 40, 222- 226 (1990); Rossiter et al, FASEB Journal 5, 21-27 (1991).
- Linkage is analyzed by calculation of LOD (log of the odds) values.
- a lod value is the relative likelihood of obtaining observed segregation data for a marker and a genetic locus when the two are located at a recombination fraction ⁇ , versus the situation in which the two are not linked, and thus segregating independently (Thompson & Thompson, Genetics in Medicine (5th ed, W.B. Saunders Company, Philadelphia, 1991); Strachan, "Mapping the human genome” in The Human Genome (BIOS Scientific Publishers Ltd, Oxford), Chapter 4).
- the likelihood at a given value of ⁇ is: probability of data if loci linked at ⁇ to probability of data if loci unlinked.
- the computed likelihoods are usually expressed as the log 10 of this ratio (i.e., a lod score). For example, a lod score of 3 indicates 1000:1 odds against an apparent observed linkage being a coincidence.
- the use of logarithms allows data collected from different families to be combined by simple addition. Computer programs are available for the calculation of lod scores for differing values of ⁇ (e.g., LIPED, MLINK (Lathrop, Proc. Nat. Acad. Sci. (USA) 81, 3443-3446 (1984)).
- a recombination fraction may be determined from mathematical tables. See Smith et al, Mathematical tables for research workers in human genetics (Churchill, London, 1961); Smith, Ann. Hum. Genet. 32, 127-150 (1968). The value of ⁇ at which the lod score is the highest is considered to be the best estimate of the recombination fraction. Positive lod score values suggest that the two loci are linked, whereas negative values suggest that linkage is less likely (at that value of ⁇ ) than the possibility that the two loci are unlinked. By convention, a combined lod score of +3 or greater (equivalent to greater than 1000:1 odds in favor of linkage) is considered definitive evidence that two loci are linked.
- Negative linkage data are useful in excluding a chromosome or a segment thereof from consideration. The search focuses on the remaining non- excluded chromosomal locations.
- nucleic acids comprise one of the sequences described in the Table, column 5, in which the polymo ⁇ hic position is occupied by one of the alternative bases for that position.
- Some nucleic acids encode full-length variant forms of proteins.
- variant proteins have the prototypical amino acid sequences encoded by nucleic acid sequences shown in the Table, column 5, (read so as to be in- frame with the full-length coding sequence of which it is a component) except at an amino acid encoded by a codon including one of the polymo ⁇ hic positions shown in the Table. That position is occupied by the amino acid coded by the corresponding codon in any of the alternative forms shown in the Table.
- Variant genes can be expressed in an expression vector in which a variant gene is operably linked to a native or other promoter.
- the promoter is a eukaryotic promoter for expression in a mammalian cell.
- the transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host.
- the selection of an appropriate promoter for example t ⁇ , lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected.
- Commercially available expression vectors can be used.
- Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.
- the means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra.
- a wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.
- gene product includes mRNA, peptide and protein products.
- the protein may be isolated by conventional means of protein biochemistry and purification to obtain a substantially pure product, i.e., 80, 95 or 99% free of cell component contaminants, as described in Jacoby, Methods in Enzymology Volume 104, Academic Press, New York (1984); Scopes, Protein Purification, Principles and Practice, 2nd Edition, Springer- Verlag, New York (1987); and Deutscher (ed), Guide to Protein Purification, Methods in Enzymology, Vol. 182 (1990). If the protein is secreted, it can be isolated from the supernatant in which the host cell is grown. If not secreted, the protein can be isolated from a lysate of the host cells.
- the invention further provides transgenic nonhuman animals capable of expressing an exogenous variant gene and/or having one or both alleles of an endogenous variant gene inactivated.
- Expression of an exogenous variant gene is usually achieved by operably linking the gene to a promoter and optionally an enhancer, and microinjecting the construct into a zygote.
- Inactivation of endogenous variant genes can be achieved by forming a transgene in which a cloned variant gene is inactivated by insertion of a positive selection marker. See Capecchi, Science 244, 1288-1292 (1989). The transgene is then introduced into an embryonic stem cell, where it undergoes homologous recombination with an endogenous variant gene. Mice and other rodents are preferred animals. Such animals provide useful drug screening systems.
- the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides.
- biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding.
- Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.
- Antibodies that specifically bind to variant gene products but not to corresponding prototypical gene products are also provided.
- Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof. Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.
- kits comprising at least one allele-specific oligonucleotide as described herein.
- the kits contain one or more pairs of allele-specific oligonucleotides hybridizing to different forms of a polymo ⁇ hism.
- the allele-specific oligonucleotides are provided immobilized to a substrate.
- the same substrate can comprise allele-specific oligonucleotide probes for detecting at least 10, 100 or all of the polymo ⁇ hisms shown in the Table.
- kits include, for example, restriction enzymes, reverse-transcriptase or polymerase, the substrate nucleoside triphosphates, means used to label (for example, an avidin-enzyme conjugate and enzyme substrate and chromogen if the label is biotin), and the appropriate buffers for reverse transcription, PCR, or hybridization reactions.
- the kit also contains instructions for carrying out the methods.
- the thrombospondins are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation.
- Thrombospondins also known as thrombin sensitive proteins or TSPs
- TSPs are large molecular weight glycoproteins composed of three identical disulfide-linked polypeptide chains.
- TSPs are stored in the alpha-granules of platelets and secreted by a variety of mesenchymal and epithelial cells (Majack et al, Cell Membrane 3:51-11 (1987)). Platelets secrete TSPs when activated in the blood by such physiological agonists such as thrombin. TSPs have lectin properties and a broad function in the regulation of fibrinolysis and as a component of the ECM, and are one of a group of ECM proteins which have adhesive properties.
- TSPs bind to fibronectin and fibrinogen (Lahav et al, Eur J Biochem 145:151-6 (1984)), and these proteins are known to be involved in platelet adhesion to substratum and platelet aggregation (Leung, J Clin Invest 74: 1164-1112 (1986)). Recent work has implicated TSPs in response of cells to growth factors. Submitogenic doses of PDGF induce a rapid but transitory, increase in TSP synthesis and secretion by rat aortic smooth muscle cells (Majack et al, J Biol Chem 101: 1059-10 (1985)).
- TSP mRNA levels rise rapidly in response to PDGF (Majack et al, JBiol Chem 262:8821-5 (1987)).
- TSPs act synergistically with epidermal growth factor to increase DNA synthesis in smooth muscle cells (Majack et al, Proc Natl Acad Sci S3 :9050-4 (1986)), and monoclonal antibodies to TSPs inhibit smooth muscle cell proliferation (Majack et al, JBiol Chem 106:415-22 (1988)).
- TSPs modulate local adhesions in endothelial cells
- TSPs particularly TSP-1 primarily derived from platelet granules
- TGFB-1 transforming growth factor beta-1
- Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI.
- CAD CAD
- sequences for TSP-1 are shown in Figs. 1 A- ID.
- Specific reference nucleotide (SEQ ID NO: 3) and amino acid (SEQ ID NO: 4) sequences for TSP-4 are shown in Figs. 2A-2C. It is understood that the invention is not limited by these exemplified reference sequences, as variants of these sequences which differ at locations other than the SNP sites identified herein can also be utilized. The skilled artisan can readily determine the SNP sites in these other reference sequences which correspond to the SNP sites identified herein by aligning the sequence of interest with the reference sequences specifically disclosed herein, and programs for performing such alignments are commercially available. For example, the ALIGN program in the GCG software package can be used, utilizing a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4, for example. Two SNPs have been specifically studied as described herein. The first
- G334u4 is a change from A (reference nucleotide) to G (alternate or variant nucleotide) at nucleotide position 2210 of the nucleic acid sequence of TSP-1 (Figs. 1A-1D), resulting in a missense amino acid mutation from asparagine (reference) to serine (alternate) at amino acid 700.
- the second SNP is a change from G (reference) to C (alternate) at nucleotide position 1186 of the nucleic acid sequence of TSP-4 (Figs. 2A-2C), resulting in a missense amino acid alteration from alanine (reference) to proline (alternate) at amino acid 387.
- polymo ⁇ hism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population.
- a polymo ⁇ hic marker or site is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population.
- a polymo ⁇ hic locus may be as small as one base pair, in which case it is referred to as a single nucleotide polymo ⁇ hism (SNP).
- the invention relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a DNA sample from an individual to be assessed and determining the nucleotide present at one or more of nucleotide positions 2210 of the TSP-1 gene or 1186 of the TSP-4 gene. In a preferred embodiment, the nucleotides present at both of these nucleotide positions are determined.
- the TSP-1 gene has the nucleotide sequence of SEQ ID NO: 1 and the TSP-4 gene has the nucleotide sequence of SEQ ID NO: 3.
- the presence of one or more of a G (the variant nucleotide) at position 2210 of SEQ ID NO: 1 or a C (the variant nucleotide) at position 1186 of SEQ ID NO: 1186 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference nucleotide at one or more of these positions.
- the presence of one or more of an A (the reference nucleotide) at position 2210 of SEQ ID NO: 1 or a G (the reference nucleotide) at position 1186 of SEQ ID NO: 3 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease than if that individual had the variant nucleotide at one or more of these positions.
- the individual is an individual at risk for development of a vascular disease.
- the individual exhibits clinical symptomology associated with a vascular disease.
- the individual has been clinically diagnosed as having a vascular disease.
- Vascular diseases include, but are not limited to, atherosclerosis, coronary heart disease, myocardial infarction (MI), stroke, peripheral vascular diseases, venous thromboembolism and pulmonary embolism.
- the vascular disease is CAD or MI.
- the genetic material to be assessed can be obtained from any nucleated cell from the individual.
- genomic DNA virtually any biological sample (other than pure red blood cells) is suitable.
- tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, skin and hair.
- tissue sample For assay of cDNA or mRNA, the tissue sample must be obtained from a tissue or organ in which the target nucleic acid is expressed.
- Many of the methods described herein require amplification of DNA from target samples. This can be accomplished by e.g., PCR. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al, Academic Press, San Diego, CA, 1990); Mattila et al, Nucleic Acids Res. 19, 4967 (1991); Eckert et al, PCR Methods and
- LCR ligase chain reaction
- NASBA nucleic acid based sequence amplification
- the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
- ssRNA single stranded RNA
- dsDNA double stranded DNA
- the nucleotide which occupies the polymo ⁇ hic site of interest can be identified by a variety of methods, such as Southern analysis of genomic DNA; direct mutation analysis by restriction enzyme digestion; Northern analysis of RNA; denaturing high pressure liquid chromatography (DHPLC); gene isolation and sequencing; hybridization of an allele-specific oligonucleotide with amplified gene products; single base extension (SBE).
- determination of the allelic form of TSP is carried out using SBE-FRET methods as described herein, or using chip-based oligonucleotide arrays as described herein.
- the invention also relates to a method for predicting the likelihood that an individual will have a vascular disease, or for aiding in the diagnosis of a vascular disease, or predicting the likelihood of having altered symptomology associated with a vascular disease, comprising the steps of obtaining a biological sample comprising TSP-1 and/or TSP-4 protein or relevant portion thereof from an individual to be assessed and determining the amino acid present at one or more of amino acid positions 700 of the TSP-1 gene product (e.g., as exemplified by SEQ ID NO: 2) or 387 of the TSP-4 gene product (e.g., as exemplified by SEQ ID NO: 4). In a preferred embodiment, the amino acids present at both of these amino acid positions are determined.
- the term "relevant portion" of the TSP-1 and TSP-4 proteins is intended to encompass any portion of the protein which comprises the polymo ⁇ hic amino acid positions.
- the presence of one or more of a serine (the variant amino acid) at position 700 of SEQ ID NO: 2, or a proline (the variant amino acid) at position 387 of SEQ ID NO: 4 indicates that the individual has a greater likelihood of having a vascular disease, or a greater likelihood of having severe symptomology associated with a vascular disease, than if that individual had the reference amino acid at one or more of these positions.
- the presence of one or more of an asparagine (the reference amino acid) at position 700 of SEQ ID NO: 2, or an alanine (the reference amino acid) at position 387 of SEQ I D NO: 4 indicates that the individual has a reduced likelihood of having a vascular disease or a likelihood of having reduced symptomology associated with a vascular disease, than if that individual had the varaint amino acid at one or more of these positions.
- the individual is an individual at risk for development of a vascular disease.
- the individual exhibits clinical symptomology associated with a vascular disease.
- the individual has been clinically diagnosed as having a vascular disease.
- the biological sample contains protein molecules from the test subject.
- In vitro techniques for detection of protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
- in vivo techniques for detection of protein include introducing into a subject a labeled anti-protein antibody.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- Polyclonal and/or monoclonal antibodies that specifically bind to variant gene products but not to corresponding reference gene products, and vice versa, are also provided.
- Antibodies can be made by injecting mice or other animals with the variant gene product or synthetic peptide fragments thereof comprising the variant portion.
- Monoclonal antibodies are screened as are described, for example, in Harlow & Lane, Antibodies, A Laboratory Manual, Cold Spring Harbor Press, New York (1988); Goding, Monoclonal antibodies, Principles and Practice (2d ed.) Academic Press, New York (1986). Monoclonal antibodies are tested for specific immunoreactivity with a variant gene product and lack of immunoreactivity to the corresponding prototypical gene product. These antibodies are useful in diagnostic assays for detection of the variant form, or as an active ingredient in a pharmaceutical composition.
- the polymo ⁇ hisms of the invention may be associated with vascular disease in different ways.
- the polymo ⁇ hisms may exert phenotypic effects indirectly via influence on replication, transcription, and translation. Additionally, the described polymo ⁇ hisms may predispose an individual to a distinct mutation that is causally related to a certain phenotype, such as susceptibility or resistance to vascular disease and related disorders.
- the discovery of the polymo ⁇ hisms and their correlation with CAD and MI facilitates biochemical analysis of the variant and reference forms and the development of assays to characterize the variant and reference forms and to screen for pharmaceutical agents that interact directly with one or another form of the protein.
- these particular polymo ⁇ hisms may belong to a group of two or more polymo ⁇ hisms in the TSP gene(s) which contributes to the presence, absence or severity of vascular disease.
- An assessment of other polymo ⁇ hisms within the TSP gene(s) can be undertaken, and the separate and combined effects of these polymo ⁇ hisms, as well as alternations in other, distinct genes, on the vascular disease phenotype can be assessed.
- Correlation between a particular phenotype, e.g., the CAD or MI phenotype, and the presence or absence of a particular allele is performed for a population of individuals who have been tested for the presence or absence of the phenotype.
- Correlation can be performed by standard statistical methods such as a Chi-squared test and statistically significant correlations between polymo ⁇ hic form(s) and phenotypic characteristics are noted. This correlation can be exploited in several ways. In the case of a strong correlation between a particular polymo ⁇ hic form, e.g., the variant allele for TSP-1 and/or TSP-4, and a disease for which treatment is available, detection of the polymo ⁇ hic form in an individual may justify immediate administration of treatment, or at least the institution of regular monitoring of the individual. Detection of a polymo ⁇ hic form correlated with a disorder in a couple contemplating a family may also be valuable to the couple in their reproductive decisions.
- the female partner might elect to undergo in vitro fertilization to avoid the possibility of transmitting such a polymo ⁇ hism from her husband to her offspring.
- immediate therapeutic intervention or monitoring may not be justified.
- the individual can be motivated to begin simple life-style changes (e.g., diet modification, therapy or counseling) that can be accomplished at little cost to the individual but confer potential benefits in reducing the risk of conditions to which the individual may have increased susceptibility by virtue of the particular allele.
- identification of a polymo ⁇ hic form correlated with enhanced receptiveness to one of several treatment regimes for a disorder indicates that this treatment regimen should be followed for the individual in question.
- CAD CAD
- MI genetic locus associated with a trait of interest
- Such analysis is useful for mapping a genetic locus associated with a phenotypic trait to a chromosomal position, and thereby cloning gene(s) responsible for the trait. See Lander et al, Proc. Natl. Acad.
- the invention in another embodiment, relates to pharmaceutical compositions comprising a reference TSP-1 and/or TSP-4 gene or gene product for use in the treatment of vascular disease, e.g., CAD and MI.
- a reference TSP gene product is intended to mean gene products which are encoded by the reference allele of the TSP gene.
- the present invention includes biologically active fragments of the polypeptides, or analogs thereof, including organic molecules which simulate the interactions of the peptides.
- Biologically active fragments include any portion of the full-length polypeptide which confers a biological function on the variant gene product, including ligand binding, and antibody binding.
- Ligand binding includes binding by nucleic acids, proteins or polypeptides, small biologically active molecules, or large cellular structures.
- the polypeptide or protein, or fragment thereof, of the present invention can be formulated with a physiologically acceptable medium to prepare a pharmaceutical composition.
- the particular physiological medium may include, but is not limited to, water, buffered saline, polyols (e.g., glycerol, propylene glycol, liquid polyethylene glycol) and dextrose solutions.
- the optimum concentration of the active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to medicinal chemists, and will depend on the ultimate pharmaceutical formulation desired.
- Methods of introduction of exogenous peptides at the site of treatment include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, oral and intranasal. Other suitable methods of introduction can also include rechargeable or biodegradable devices and slow release polymeric devices.
- the pharmaceutical compositions of this invention can also be administered as part of a combinatorial therapy with other agents and treatment regimens.
- compositions comprising a nucleotide sequence encoding reference or variant TSP-1 and/or TSP-4 gene products.
- reference genes can be expressed in an expression vector in which a reference gene is operably linked to a native or other promoter.
- the promoter is a eukaryotic promoter for expression in a mammalian cell.
- the transcription regulation sequences typically include a heterologous promoter and optionally an enhancer which is recognized by the host.
- the selection of an appropriate promoter for example t p, lac, phage promoters, glycolytic enzyme promoters and tRNA promoters, depends on the host selected.
- Commercially available expression vectors can be used.
- Vectors can include host-recognized replication systems, amplifiable genes, selectable markers, host sequences useful for insertion into the host genome, and the like.
- the means of introducing the expression construct into a host cell varies depending upon the particular construction and the target host. Suitable means include fusion, conjugation, transfection, transduction, electroporation or injection, as described in Sambrook, supra.
- a wide variety of host cells can be employed for expression of the variant gene, both prokaryotic and eukaryotic. Suitable host cells include bacteria such as E. coli, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the variant gene product to produce an appropriate mature polypeptide. Processing includes glycosylation, ubiquitination, disulfide bond formation, general post-translational modification, and the like.
- cells can be engineered to express the reference allele of the invention by gene therapy methods.
- DNA encoding the reference TSP gene product, or an active fragment or derivative thereof can be introduced into an expression vector, such as a viral vector, and the vector can be introduced into appropriate cells in an animal.
- the cell population can be engineered to inducibly or constitutively express active reference TSP gene product.
- the vector is delivered to the bone marrow, for example as described in Corey et al. (Science 244: 1215-1281 (1989)).
- the invention further relates to the use of compositions (i.e., agonists) which enhance or increase the activity of the reference (or variant) TSP (e.g., TSP-1 or TSP-4) gene product, or a functional portion thereof, for use in the treatment of vascular disease.
- compositions i.e., antagonists
- the invention also relates to constructs which comprise a vector into which a sequence of the invention has been inserted in a sense or antisense orientation.
- a vector comprising a nucleotide sequence which is antisense to the variant TSP-1 or TSP-4 allele may be used as an antagonist of the activity of the TSP-1 or TSP-4 variant allele.
- a vector comprising a nucleotide sequence of the TSP-1 or TSP-4 reference allele may be used therapeutically to treat vascular diseases.
- the term "vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
- plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
- vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.
- viral vectors e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses
- Preferred recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell.
- the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
- "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription translation system or in a host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
- the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein .
- the recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra.
- the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
- host cell and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
- a host cell can be any prokaryotic or eukaryotic cell.
- a nucleic acid of the invention can be expressed in bacterial cells (e.g., E.
- Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
- transformation and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
- a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention.
- the invention further provides methods for producing a polypeptide using the host cells of the invention.
- the method comprises culturing the host cell of the invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced.
- the method further comprises isolating the polypeptide from the medium or the host cell.
- the host cells of the invention can also be used to produce nonhuman transgenic animals.
- a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid of the invention has been introduced.
- Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into their genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered.
- Such animals are useful for studying the function and/or activity of the nucleotide sequence and polypeptide encoded by the sequence and for identifying and/or evaluating modulators of their activity.
- a "transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
- Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
- a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
- an "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
- a transgenic animal of the invention can be created by introducing a nucleic acid of the invention into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
- the sequence can be introduced as a transgene into the genome of a non-human animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
- a tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of a polypeptide in particular cells.
- transgenic animals via embryo manipulation and microinjection, particularly animals such as mice
- animals have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, U.S. Patent No. 4,873,191 and in Hogan, Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals.
- a transgenic founder animal can be identified based upon the presence of the transgene in its genome and or expression of mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene.
- transgenic animals carrying a transgene encoding the transgene can further be bred to other transgenic animals carrying other transgenes.
- the invention also relates to the use of the variant and reference gene products to guide efforts to identify the causative mutation for vascular diseases or to identify or synthesize agents useful in the treatment of vascular diseases, e.g., CAD and MI.
- Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al, Science, 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity in vitro, or in vitro activity.
- Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al, J. Mol. Biol, 224:899-904 (1992); de Vos et al. Science, 255:306-312 (1992)).
- Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of proteins of the invention in clinical trials.
- An exemplary method for detecting the presence or absence of proteins or nucleic acids of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the protein, or nucleic acid (e.g., mRNA, genomic DNA) that encodes the protein, such that the presence of the protein or nucleic acid is detected in the biological sample.
- a preferred agent for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein, preferably in an allele-specific manner.
- the nucleic acid probe can be, for example, a full-length nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA.
- oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA.
- Other suitable probes for use in the diagnostic assays of the invention are described herein.
- kits for detecting the presence of proteins or nucleic acid molecules of the invention in a biological sample can comprise a labeled compound or agent (e.g., nucleic acid probe) capable of detecting protein or mRNA in a biological sample; means for determining the amount of protein or mRNA in the sample; and means for comparing the amount of protein or mRNA in the sample with a standard.
- the compound or agent can be packaged in a suitable container.
- the kit can further comprise instructions for using the kit to detect protein or nucleic acid.
- the polymo ⁇ hisms shown in the Table were identified by resequencing of target sequences from individuals of diverse ethnic and geographic backgrounds by hybridization to probes immobilized to microfabricated arrays. The strategy and principles for design and use of such arrays are generally described in WO 95/11995.
- a typical probe aoay used in this analysis has two groups of four sets of probes that respectively tile both strands of a reference sequence.
- a first probe set comprises a plurality of probes exhibiting perfect complementarily with one of the reference sequences.
- Each probe in the first probe set has an interrogation position that corresponds to a nucleotide in the reference sequence. That is, the interrogation position is aligned with the corresponding nucleotide in the reference sequence, when the probe and reference sequence are aligned to maximize complementarily between the two.
- For each probe in the first set there are three corresponding probes from three additional probe sets. Thus, there are four probes corresponding to each nucleotide in the reference sequence.
- probes from the three additional probe sets are identical to the corresponding probe from the first probe set except at the interrogation position, which occurs in the same position in each of the four corresponding probes from the four probe sets, and is occupied by a different nucleotide in the four probe sets.
- probes were 25 nucleotides long. Arrays tiled for multiple different references sequences were included on the same substrate.
- Genomic DNA was amplified in at least 50 individuals using 2.5 pmol each primer, 1.5 mM MgCl 2 , 100 ⁇ M dNTPs, 0.75 ⁇ M AmpliTaq GOLD polymerase, and 19 ng DNA in a 15 ⁇ l reaction.
- Reactions were assembled using a PACKARD MultiPROBE robotic pipetting station and then put in MJ 96-well tetrad thermocyclers (96°C for 10 minutes, followed by 35 cycles of 96°C for 30 seconds, 59°C for 2 minutes, and 72°C for 2 minutes). A subset of the PCR assays for each individual were run on 3% NuSieve gels in 0.5X TBE to confirm that the reaction worked.
- Low-density DNA chips (Affymetrix,CA) were hybridized following the manufacturer's instructions. Briefly, the hybridization cocktail consisted of 3M TMAC1, 10 mM Tris pH 7.8, 0.01% Triton X-100, 100 mg/ml herring sperm DNA (Gibco BRL), 200 pM control biotin-labeled oligo. The processed PCR products were denatured for 7 minutes at 100°C and then added to prewarmed (37°C) hybridization solution. The chips were hybridized overnight at 44°C.
- Chips were washed in IX SSPET and 6X SSPET followed by staining with 2 ⁇ g/ml SARPE and 0.5 mg/ml acetylated BSA in 200 ⁇ l of 6X SSPET for 8 minutes at room temperature. Chips were scanned using a Molecular Dynamics scanner.
- Chip image files were analyzed using Ulysses (Affymetrix, CA) which uses four algorithms to identify potential polymo ⁇ hisms.
- Candidate polymo ⁇ hisms were visually inspected and assigned a confidence value: high confidence candidates displayed all three genotypes, while likely candidates showed only two genotypes (homozygous for reference sequence and heterozygous for reference and variant).
- Some of the candidate polymo ⁇ hisms were confirmed by ABI sequencing. Identified polymo ⁇ hisms were compared to several databases to determine if they were novel. Results are shown in the Table.
- Thrombospondin (TSP) 4 and 1 emerged as important SNPs associated with premature CAD and MI.
- CAD CAD
- COL7A1 collagen, type VII , alpha 1 (epidermolysis bullosa, dystrophic, dominant and
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15335799P | 1999-09-10 | 1999-09-10 | |
US153357P | 1999-09-10 | ||
US22094700P | 2000-07-26 | 2000-07-26 | |
US220947P | 2000-07-26 | ||
US22572400P | 2000-08-16 | 2000-08-16 | |
US225724P | 2000-08-16 | ||
PCT/US2000/024503 WO2001018250A2 (en) | 1999-09-10 | 2000-09-07 | Single nucleotide polymorphisms in genes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1240354A2 true EP1240354A2 (en) | 2002-09-18 |
Family
ID=27387432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00959964A Withdrawn EP1240354A2 (en) | 1999-09-10 | 2000-09-07 | Single nucleotide polymorphisms in genes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1240354A2 (en) |
AU (1) | AU7119400A (en) |
WO (1) | WO2001018250A2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0000995D0 (en) * | 2000-01-18 | 2000-03-08 | Zeneca Ltd | Methods |
US6774209B1 (en) | 2000-04-03 | 2004-08-10 | Dyax Corp. | Binding peptides for carcinoembryonic antigen (CEA) |
EP1403380A1 (en) * | 2002-09-27 | 2004-03-31 | Integragen | Human obesity susceptibility gene and uses thereof |
ES2314206T3 (en) * | 2002-05-15 | 2009-03-16 | Integragen | HUMAN GENE OF PREDISPOSITION TO OBESITY AND USES OF THE SAME. |
JP4143756B2 (en) * | 2002-06-21 | 2008-09-03 | 財団法人名古屋産業科学研究所 | Risk diagnosis method for myocardial infarction |
JP5479663B2 (en) * | 2002-12-20 | 2014-04-23 | セレラ コーポレーション | Genetic polymorphism associated with myocardial infarction, detection method and use thereof |
EP1725684A2 (en) * | 2004-02-27 | 2006-11-29 | Applera Corporation | Genetic polymorphisms associated with stroke, methods of detection and uses thereof |
WO2008018789A2 (en) * | 2006-08-08 | 2008-02-14 | Leiden University Medical Center | Methods and means for diagnosing and treatment of osteoarthritis |
CN102154272B (en) * | 2006-11-30 | 2014-03-12 | 爱科来株式会社 | Primer set for amplification of obesity gene, reagent for amplification of obesity gene comprising primer set, and use of primer set |
EP2322656A1 (en) * | 2009-11-17 | 2011-05-18 | Centre National de la Recherche Scientifique (C.N.R.S) | Methods for diagnosing skin diseases |
EP2599878A4 (en) * | 2010-07-26 | 2014-02-12 | Astellas Pharma Inc | Detection method of novel ret fusion |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5279966A (en) * | 1992-04-02 | 1994-01-18 | The Trustees Of Columbia University In The City Of New York | Cloning, expression and uses of a novel secreted protein, F-spondin |
-
2000
- 2000-09-07 EP EP00959964A patent/EP1240354A2/en not_active Withdrawn
- 2000-09-07 WO PCT/US2000/024503 patent/WO2001018250A2/en not_active Application Discontinuation
- 2000-09-07 AU AU71194/00A patent/AU7119400A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0118250A3 * |
Also Published As
Publication number | Publication date |
---|---|
AU7119400A (en) | 2001-04-10 |
WO2001018250A2 (en) | 2001-03-15 |
WO2001018250A3 (en) | 2002-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5856104A (en) | Polymorphisms in the glucose-6 phosphate dehydrogenase locus | |
EP0955382A2 (en) | Polymorphisms associated with hypertension | |
WO1998020165A2 (en) | Biallelic markers | |
US20060188875A1 (en) | Human genomic polymorphisms | |
US6869762B1 (en) | Crohn's disease-related polymorphisms | |
US20020037508A1 (en) | Human single nucleotide polymorphisms | |
WO1998038846A2 (en) | Genetic compositions and methods | |
WO2001066800A2 (en) | Human single nucleotide polymorphisms | |
EP1240354A2 (en) | Single nucleotide polymorphisms in genes | |
EP0812922A2 (en) | Polymorphisms in human mitochondrial nucleic acid | |
AU3363899A (en) | Coding sequence polymorphisms in vascular pathology genes | |
US6833240B2 (en) | Very low density lipoprotein receptor polymorphisms and uses therefor | |
WO2000058519A2 (en) | Charaterization of single nucleotide polymorphisms in coding regions of human genes | |
WO1998058529A2 (en) | Genetic compositions and methods | |
US20030039973A1 (en) | Human single nucleotide polymorphisms | |
WO2001042511A2 (en) | Ibd-related polymorphisms | |
EP1068354A2 (en) | Biallelic markers | |
US20030175797A1 (en) | Association of protein kinase C zeta polymorphisms with diabetes | |
EP1024200A2 (en) | Genetic compositions and methods | |
WO2001038576A2 (en) | Human single nucleotide polymorphisms | |
WO1999014228A1 (en) | Genetic compositions and methods | |
WO2001034840A2 (en) | Genetic compositions and methods | |
US20030232365A1 (en) | BDNF polymorphisms and association with bipolar disorder | |
US7339049B1 (en) | Polymorphisms in human mitochondrial DNA | |
US6913885B2 (en) | Association of dopamine beta-hydroxylase polymorphisms with bipolar disorder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020319 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DALEY, GEORGE, Q. Inventor name: LANDER, ERIC, S. Inventor name: IRELAND, JAMES, S. Inventor name: MCCARTHY, JEANETTE, J. Inventor name: BOLK, STACEY Inventor name: GARGILL, MICHELE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060404 |