EP1239911A2 - Inspired-volume-dependent gas dosage - Google Patents

Inspired-volume-dependent gas dosage

Info

Publication number
EP1239911A2
EP1239911A2 EP00993379A EP00993379A EP1239911A2 EP 1239911 A2 EP1239911 A2 EP 1239911A2 EP 00993379 A EP00993379 A EP 00993379A EP 00993379 A EP00993379 A EP 00993379A EP 1239911 A2 EP1239911 A2 EP 1239911A2
Authority
EP
European Patent Office
Prior art keywords
gas
oxygen
gas supply
supply system
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00993379A
Other languages
German (de)
French (fr)
Inventor
Rainer Muellner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INO Therapeutics GmbH
Original Assignee
Messer Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Austria GmbH filed Critical Messer Austria GmbH
Publication of EP1239911A2 publication Critical patent/EP1239911A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0266Nitrogen (N)
    • A61M2202/0275Nitric oxide [NO]

Definitions

  • the invention relates to a gas supply system for the inhalative treatment of humans or mammals with a controlled gas dosage of at least one gas, a method for operating the gas supply system and its use.
  • Ventilation devices are used for mechanical ventilation, for anesthesia and for respiratory therapy by treatment with gases, e.g. B. Oxygen donation or treatment with nitrogen monoxide (NO).
  • gases e.g. B. Oxygen donation or treatment with nitrogen monoxide (NO).
  • a normally portable oxygen dispenser Such patients are referred to as spontaneously breathing patients, in contrast to patients who are intubated to a ventilator in the clinic.
  • LOT long-term oxygen therapy
  • CPAP continuous positive airways pressure
  • the gases are administered either through so-called nasal cannula or nasal tube (nasal application; in the simplest case, a gas supply hose, the opening of which is open below the patient's nostrils) or via a breathing mask (especially with CPAP).
  • WO 98/31282 (internal designation TMG 2028/67) describes a gas supply system for ventilated or spontaneously breathing patients, in which one or more gases (e.g. NO, oxygen) by means of a controller (program controller, sensor controller or combined program / Sensor control) are metered into the breathing gas unevenly (continuously or discontinuously).
  • a controller program controller, sensor controller or combined program / Sensor control
  • the tidal volume increases or decreases depending on the demands of the spontaneously breathing patient.
  • the breathing frequency and the characteristic of the breath curve (inspiration curve) change.
  • the invention has for its object to optimize the gas metering in inhalation therapy, especially in spontaneous breathing.
  • the gas supply system for the inhalative treatment of humans or mammals is a device for dosing gases or aerosols, in particular medical gases (e.g. oxygen, NO-containing gas) or aerosols (e.g. asthma agents).
  • the dosing dependent on the breathing curve can be used for all types of gases (also in combination), especially oxygen and a NO-containing gas or a NO-containing gas and hydrogen; Oxygen and hydrogen; Oxygen and helium; Oxygen, a NO-containing gas and hydrogen; Oxygen, a NO-containing gas and helium; Oxygen, carbon dioxide and helium; or oxygen, an NO-containing gas, carbon dioxide and hydrogen, and aerosols can be used.
  • the gas supply system with gas metering dependent on the tidal volume, ie metering of gases or aerosols, is used in ventilated or particularly preferably in spontaneously breathing patients.
  • the basic apparatus design of gas supply systems for ventilated or spontaneously breathing patients is described in WO 98/31282 (internal name TMG 2028/67), to which reference is hereby made.
  • the gas supply system for controlling the metering of gases or aerosols depending on the tidal volume preferably contains an additional gas line with a sensor which leads to the patient (human or mammal).
  • the additional gas line is connected to nasal cannula or breathing mask, for example.
  • the sensor preferably detects the pressure or gas flow (gas flow) in the nose or mouth area of the patient.
  • the pressure in the nose or mouth area is called breathing pressure
  • the gas flow (gas flow) in the nose or mouth area is called breathing gas flow.
  • a breath curve is the time course of respiratory pressure or respiratory gas flow.
  • the course of the breath curve is determined in particular by measuring the
  • the change in the tidal volume detected by the sensor is advantageously transmitted to a control unit which now controls the metered quantity of the gas or aerosol accordingly and z.
  • controllable metering valves respond so that the metering quantity is changed (e.g. by a longer opening time of the metering valves).
  • the amount of gas to be metered or the metered amount of gas V is calculated using the following formula:
  • V (ml) [desired concentration (%) * tidal volume (ml)] / 100.
  • the controlled adaptation of the gas quantity to the condition of the patient can ensure that the gas quantity or gas concentration required for the specific therapy is changed in accordance with the change in the tidal volume.
  • the gas concentration supplied can be kept constant in relation to the tidal volume or the gas quantity or gas concentration can be increased compared to the idle state due to the detected load condition of the patient. This means that the dosing device does not keep the concentration of the gas in the lungs constant but increases it in order to increase the effect under load.
  • Another criterion that can be determined for the patient's stress level is the number of breaths per minute.
  • the patient's stress level can be inferred and the therapy adapted accordingly.
  • the tidal volume is advantageously recorded through a second line to the patient (nasal cannula or mask) in which the applied pressure is measured during the entire time.
  • the metering of the gas takes place, for example, synchronized with inspiration, the duration of the metering and / or the amount of the metered gas being changed per unit of time in accordance with the detected load condition of the patient.
  • the breathing gas flow in particular the breathing gas flow during inspiration (inspiration flow), is e.g. B. recorded by detecting the pressure (negative pressure) during the entire inspiration phase, which is proportional to the gas flow or inspiration flow.
  • This negative pressure is advantageously recorded by means of a relative pressure sensor.
  • Another possibility is the direct measurement of the gas flow using a flow meter. Any errors resulting from the metering of the gas (excess pressure) are advantageously compensated for using algorithms in a control program, generally in the control unit.
  • the tidal volume can be determined particularly advantageously by interpolation of the recorded pressure or gas flow curve over time.
  • the amount of gas in one gas can be kept constant while the second amount of gas changes at the same time.
  • the time of dispensing can also be chosen arbitrarily, since it is precisely defined by the inclusion of the inspiration curve. In this way, one gas can be dosed at the start of triggering, a second gas only later.
  • the amount of gas is varied in such a way that the amount of gas supplied is adapted to the tidal volume (e.g. increasing amount of gas with increasing tidal volume).
  • the gas flow in the breathing gas line could also be changed by a control valve and adapted to the respective curve shape.
  • gas spike mistidal gas surge
  • Another possibility is dosing via a control valve, so that the dosing flow is adapted to the pressure curve and doses this pressure curve accordingly.
  • the gas curve-dependent gas metering of one or more gases and / or aerosols can generally be used for all types of metering control, in particular for program control, sensor control or a combined program / sensor control for inspiration-synchronized gas metering, which is pulse-modulated or in sequences ,
  • program control sensor control
  • a combined program / sensor control for inspiration-synchronized gas metering, which is pulse-modulated or in sequences
  • WO 98/31282 internal name TMG 2028/67
  • the tidal volume is recorded simultaneously (for the same breathing cycle) and the gas dosage is controlled, or the tidal volume of the previous breathing cycle is used to control the gas dosage for the subsequent breathing cycle.
  • FIG. 1 schematically shows a breath curve (respiratory pressure P in mbar versus time t in s) for the resting state a and for the stress state b of a patient.
  • a predetermined threshold value (trigger value) c is reached, the gas metering is triggered.
  • the volume flow V (in l / min.) Of the metered gas resulting from the breath curve-dependent control as a function of time t (in seconds s) is shown in FIG. 2 for the states a (rest) and b (load).
  • FIG. 3 shows schematically how the breath curve is interpolated from individual measured breath pressure values.
  • FIG. 4 schematically shows a gas supply system, in particular for spontaneously breathing patients (spontaneous breathers).
  • the gas is metered via controllable solenoid valves 3, 4, which are connected to the control unit 12 via the control lines 10, 11.
  • the triggering of the metering (triggering) is a defined signal of the pressure or flow sensor 8, which is passed on to the control unit 12 through the control line 9.
  • the gas supply system shown is used, for example, for metering two gases, such as oxygen (gas source 1) and NO-containing gas (gas source 2).
  • the pressure or flow in the nasal cavity is via the pressure measuring line 6
  • the trigger trigger signal can be chosen, e.g. B. at the beginning of inspiration (change from positive pressure to negative pressure, e.g. 0.1 mbar negative pressure) or to any pressure or flow during the inspiration.
  • the actual gas metering of the gases from gas sources 1 and 2 takes place via the separate gas line 5. As a result, the pressure increase for the determination of the breath curve is not or only slightly disturbed. This allows the
  • Breath or inspiration curve can also be recorded during gas metering.
  • FIG. 5 shows an example of how the metered amount of gas or the gas volume flow V is adjusted as a function of the breath curves in different states (a, b) of the patient (FIG. 5a) (FIG. 5b).
  • the gas flow of the metered gas is changed by a controllable valve, so that an increased gas surge occurs at a constant gas volume flow V (gas pike) in state b.
  • FIG. 6 shows an adaptation of a variable gas volume flow V of a metered gas (FIG. 6b) to the determined breath curve (FIG. 6a).
  • controllable valve e.g. solenoid valve

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

The gas supply system, for inhalative treatment of humans or mammals with a controlled gas dosage of at least one gas, is characterised by an inspired-volume-dependent control of the gas dosage.

Description

Atemzugsvolumenabhängige GasdosierungTidal volume-dependent gas dosing
Die Erfindung betrifft ein Gasversorgungssystem zur inhalativen Behandlung von Mensch oder Säugetier mit einer gesteuerten Gasdosierung von mindestens ei- nem Gas, ein Verfahren zum Betrieb des Gasversorgungssystems und dessen Verwendung.The invention relates to a gas supply system for the inhalative treatment of humans or mammals with a controlled gas dosage of at least one gas, a method for operating the gas supply system and its use.
Geräte zur Beatmung werden eingesetzt für die maschinelle Beatmung, für die Anaesthesie und für die Atemtherapie durch Behandlung mit Gasen, z. B. Sauerstoffspende oder Behandlung mit Stickstoffmonoxid (NO).Ventilation devices are used for mechanical ventilation, for anesthesia and for respiratory therapy by treatment with gases, e.g. B. Oxygen donation or treatment with nitrogen monoxide (NO).
Patienten mit chronischen Atembeschwerden (z. B. Asthma und COPD (chronisch obstruktive Atemwegserkrankung / Chronic Obstructive Pulmonary Disea- se)) werden durch einen in der Regel transportablen Sauerstoffspender in der Sauerstoffversorgung des Körpers unterstützt. Solche Patienten werden als spontanatmende Patienten bezeichnet, im Unterschied zu Patienten, die in der Klinik intubiert an ein Beatmungsgerät angeschlossen sind. Spontanatmende Patienten erhalten so zum Beispiel eine zusätzliche Sauerstoffspende (LOT = Langzeitsauerstofftherapie) oder eine Atmungsunterstützung (per CPAP = conti- nuous posit. airways pressure). Verabreicht werden die Gase entweder über eine sogenannte Nasenbrille oder Nasensonde (Nasalapplikation; im einfachsten Fall ein Gasversorgungsschlauch, dessen Öffnung unterhalb der Nasenöffnungen des Patienten offen angeordnet ist) oder per Atemmaske (besonders bei CPAP).Patients with chronic breathing difficulties (eg asthma and COPD (Chronic Obstructive Pulmonary Disease)) are supported in the oxygen supply of the body by a normally portable oxygen dispenser. Such patients are referred to as spontaneously breathing patients, in contrast to patients who are intubated to a ventilator in the clinic. Spontaneously breathing patients receive, for example, an additional oxygen donation (LOT = long-term oxygen therapy) or breathing support (via CPAP = continuous positive airways pressure). The gases are administered either through so-called nasal cannula or nasal tube (nasal application; in the simplest case, a gas supply hose, the opening of which is open below the patient's nostrils) or via a breathing mask (especially with CPAP).
In WO 98/31282 (interne Bezeichnung TMG 2028/67) wird ein Gasversorgungssystem für beatmete oder spontanatmende Patienten beschrieben, bei dem ein oder mehrere Gase (z. B. NO, Sauerstoff) mittels einer Steuerung (Programmsteuerung, Sensorsteuerung oder kombinierte Programm- /Sensorsteuerung) ungleichmäßig (kontinuierlich oder diskontinuierlich) in das Atemgas dosiert werden. Je nach Beanspruchung des spontanatmenden Patienten nimmt sein Atemzugvolumen zu oder ab. Dabei ändert sich die Atemfrequenz sowie die Charakteristik der Atemzugskurve (Inspirationskurve).WO 98/31282 (internal designation TMG 2028/67) describes a gas supply system for ventilated or spontaneously breathing patients, in which one or more gases (e.g. NO, oxygen) by means of a controller (program controller, sensor controller or combined program / Sensor control) are metered into the breathing gas unevenly (continuously or discontinuously). The tidal volume increases or decreases depending on the demands of the spontaneously breathing patient. The breathing frequency and the characteristic of the breath curve (inspiration curve) change.
Bisher war es nicht möglich die Inspirationskurve bei spontanatmenden Patienten aufzunehmen (offener Beatmungskreislauf) und gleichzeitig ein oder mehrere Gase oder Aerosole zu dosieren. Geräte, die nur die Tiefe des Atemzuges zu Beginn der Dosierung aufnehmen, lassen nur sehr ungenau auf das tatsächliche Atemzugsvolumen schließen, da der gesamte Kurvenverlauf nicht bekannt ist. Außerdem kann sich gerade unter Belastung der gesamte Kurvenverlauf bzw. die Kurvencharakteristik erheblich ändern.So far it has not been possible to record the inspiration curve for spontaneously breathing patients (open ventilation circuit) and to dose one or more gases or aerosols at the same time. Devices that only record the depth of the breath at the beginning of the dose can only very inaccurately deduce the actual tidal volume, since the entire course of the curve is not known. In addition, the entire curve shape or curve characteristic can change considerably, particularly under load.
Der Erfindung liegt die Aufgabe zugrunde, die Gasdosierung bei der Inhalationstherapie, insbesondere bei Spontanatmem, zu optimieren.The invention has for its object to optimize the gas metering in inhalation therapy, especially in spontaneous breathing.
Gelöst wurde die Aufgabe durch ein Gasversorgungssystem mit den in Anspruch 1 beschriebenen Merkmalen.The object was achieved by a gas supply system with the features described in claim 1.
Das Gasversorgungssystem zur inhalativen Behandlung von Mensch oder Säu- getier ist ein Gerät zur Dosierung von Gasen oder Aerosolen, insbesondere medizinischen Gasen (z. B. Sauerstoff, NO-haltiges Gas) oder Aerosolen (z. B. Asthmamittel). Die atemzuskurvenabhängige Dosierung kann bei allen Arten von Gasen (auch in Kombination), vor allem Sauerstoff und ein NO-haltiges Gas oder ein NO-haltiges Gas und Wasserstoff; Sauerstoff und Wasserstoff; Sauerstoff und Helium; Sauerstoff, ein NO-haltiges Gas und Wasserstoff; Sauerstoff, ein NO-haltiges Gas und Helium; Sauerstoff, Kohlendioxid und Helium; oder Sauerstoff, ein NO-haltiges Gas, Kohlendioxid und Wasserstoff, sowie Aerosolen angewendet werden. Das Gasversorgungssystem mit atemzugsvolumenabhängiger Gasdosierung, das heißt Dosierung von von Gasen oder Aerosolen, wird bei be- atmeten oder besonders bevorzugt bei spontanatmenden Patienten eingesetzt. Die grundlegende apparative Gestaltung von Gasversorgungssystemen für beatmete oder spontanatmende Patienten ist in WO 98/31282 (interne Bezeichnung TMG 2028/67) beschrieben, worauf hiermit Bezug genommen wird.The gas supply system for the inhalative treatment of humans or mammals is a device for dosing gases or aerosols, in particular medical gases (e.g. oxygen, NO-containing gas) or aerosols (e.g. asthma agents). The dosing dependent on the breathing curve can be used for all types of gases (also in combination), especially oxygen and a NO-containing gas or a NO-containing gas and hydrogen; Oxygen and hydrogen; Oxygen and helium; Oxygen, a NO-containing gas and hydrogen; Oxygen, a NO-containing gas and helium; Oxygen, carbon dioxide and helium; or oxygen, an NO-containing gas, carbon dioxide and hydrogen, and aerosols can be used. The gas supply system with gas metering dependent on the tidal volume, ie metering of gases or aerosols, is used in ventilated or particularly preferably in spontaneously breathing patients. The basic apparatus design of gas supply systems for ventilated or spontaneously breathing patients is described in WO 98/31282 (internal name TMG 2028/67), to which reference is hereby made.
Das Gasversorgungssystem für eine atemzugsvolumenabhängige Steuerung der Dosierung von Gasen oder Aerosolen enthält vorzugsweise eine zusätzliche Gasleitung mit einem Sensor, die zum Patienten (Mensch oder Säugetier) führt. Die zusätzliche Gasleitung ist beispielsweise mit einer Nasenbrille oder Atemmaske verbunden. Der Sensor erfaßt vorzugsweise den Druck oder Gasfluß (Gasflow) im Nasen- oder Mundbereich des Patienten. Der Druck im Nasen- oder Mundbereich wird als Atemdruck, der Gasfluß (Gasflow) im Nasen- oder Mundbereich wird als Atemgasflow bezeichnet. Eine Atemzugskurve ist der zeitliche Verlauf von Atemdruck oder Atemgasflow.The gas supply system for controlling the metering of gases or aerosols depending on the tidal volume preferably contains an additional gas line with a sensor which leads to the patient (human or mammal). The additional gas line is connected to nasal cannula or breathing mask, for example. The sensor preferably detects the pressure or gas flow (gas flow) in the nose or mouth area of the patient. The pressure in the nose or mouth area is called breathing pressure, the gas flow (gas flow) in the nose or mouth area is called breathing gas flow. A breath curve is the time course of respiratory pressure or respiratory gas flow.
Der Verlauf der Atemzugskurve wird insbesondere durch eine Messung desThe course of the breath curve is determined in particular by measuring the
Druckverlaufes während eines Atemzykluses (Exspiration und Inspiration), z. B. in oder an der Nasenbrille, in der Regel mittels eines Drucksensors oder Flow- sensors (oder darauf basierende Systeme) erfaßt. Wird die Atemzugskurve, insbesondere während der Inspiration, kontinuierlich aufgenommen, ist zu jedem Zeitpunkt das Atemzugsvolumen bekannt. Weiters kann durch Aufnahme derPressure course during a breathing cycle (expiration and inspiration), e.g. B. in or on the nasal cannula, usually by means of a pressure sensor or flow sensor (or systems based thereon). If the breath curve is recorded continuously, especially during inspiration, the breath volume is known at all times. Furthermore, by including the
Atemzugskurve im Ruhezustand des Patienten (Ruhe) und durch die ersichtliche Veränderung der Atemzugskurve auf den augenblicklichen Belastungszustand des Patienten (Belastung) geschlossen werden. Die vom Sensor erfaßte Änderung des Atemzugsvolumens wird vorteilhaft einer Steuereinheit übermittelt, die nun entsprechend die Dosiermenge des Gases oder Aerosol steuert und z. B. steuerbare Dosierventile anspricht, so daß die Dosiermenge verändert wird (z.B. durch eine längere Öffnungszeit der Dosierventile).Breath curve when the patient is at rest (rest) and the change in the breath curve shows the patient's current load (load). The change in the tidal volume detected by the sensor is advantageously transmitted to a control unit which now controls the metered quantity of the gas or aerosol accordingly and z. B. controllable metering valves respond so that the metering quantity is changed (e.g. by a longer opening time of the metering valves).
Die zu dosierende Menge des Gases bzw. die dosierte Gasmenge V errechnet sich nach folgender Formel:The amount of gas to be metered or the metered amount of gas V is calculated using the following formula:
V (ml) = [gewünschte Konzentration (%) * Atemzugsvolumen (ml)] / 100 . Durch die gesteuerte Anpassung der Gasmenge an den Zustand des Patienten kann gewährleistet werden, daß die für die spezifische Therapie notwendige Gasmenge oder auch Gaskonzentration entsprechend der Änderung des Atemzugsvolumens geändert wird. Beispielsweise kann die zugeführte Gaskonzentra- tion bezogen auf das Atemzugsvolumen konstant gehalten werden oder durch den erfaßten Belastungszustand des Patienten die Gasmenge oder Gaskonzentration gegenüber dem Ruhezustand erhöht werden. Dies bedeutet, daß vom Dosiergerät die Konzentration des Gases in der Lunge nicht konstant gehalten sondern erhöht wird, um die Wirkung unter Belastung zu erhöhen.V (ml) = [desired concentration (%) * tidal volume (ml)] / 100. The controlled adaptation of the gas quantity to the condition of the patient can ensure that the gas quantity or gas concentration required for the specific therapy is changed in accordance with the change in the tidal volume. For example, the gas concentration supplied can be kept constant in relation to the tidal volume or the gas quantity or gas concentration can be increased compared to the idle state due to the detected load condition of the patient. This means that the dosing device does not keep the concentration of the gas in the lungs constant but increases it in order to increase the effect under load.
Ein weiteres, erfaßbares Kriterium für den Belastungszustand des Patienten ist die Anzahl der Atemzüge pro Minute.Another criterion that can be determined for the patient's stress level is the number of breaths per minute.
Durch Auswertung der Parameter Atemzugsvolumen, Anzahl der Atemzüge und Charakteristik der Inspirationskurve kann auf den Belastungszustand des Patienten geschlossen werden und die Therapie dementsprechend angepaßt werden.By evaluating the parameters tidal volume, number of breaths and characteristics of the inspiration curve, the patient's stress level can be inferred and the therapy adapted accordingly.
Aufgenommen wird das Atemzugsvolumen vorteilhaft durch eine zweite Leitung zum Patienten (Nasenbrille oder Maske) in der während der gesamten Zeit der anliegende Druck gemessen wird.The tidal volume is advantageously recorded through a second line to the patient (nasal cannula or mask) in which the applied pressure is measured during the entire time.
Die Dosierung des Gases erfolgt beispielsweise inspirationssynchronisiert, wobei die Dauer der Dosierung und/oder die Menge des dosierten Gases pro Zeitein- heit entsprechend dem erfaßten Belastungszustand des Patienten verändert wird.The metering of the gas takes place, for example, synchronized with inspiration, the duration of the metering and / or the amount of the metered gas being changed per unit of time in accordance with the detected load condition of the patient.
Der Atemgasflow, insbesondere der Atemgasflow während der Inspiration (Inspi- rationsflow), wird z. B. durch Erfassung des Druckes (Unterdruck) während der gesamten Inspirationsphase aufgenommen, der proportional zum Gasflow bzw. Inspirationsflow ist. Dieser Unterdruck wird vorteilhaft mittels eines Relativdrucksensors aufgenommen. Ein weitere Möglichkeit ist die direkte Messung des Gasflows mittels eines Flowmeters. Eventuelle Fehler die durch die Dosierung des Gases (Überdruck) herrühren werden vorteilhaft mittels Algorithmen in einem Steuerprogramm, in der Regel in der Steuereinheit, kompensiert. Besonders vorteilhaft kann durch Interpolation der aufgenommenen Druck- oder Gasflowkurve über die Zeit das Atemzugsvolumen bestimmt werden.The breathing gas flow, in particular the breathing gas flow during inspiration (inspiration flow), is e.g. B. recorded by detecting the pressure (negative pressure) during the entire inspiration phase, which is proportional to the gas flow or inspiration flow. This negative pressure is advantageously recorded by means of a relative pressure sensor. Another possibility is the direct measurement of the gas flow using a flow meter. Any errors resulting from the metering of the gas (excess pressure) are advantageously compensated for using algorithms in a control program, generally in the control unit. The tidal volume can be determined particularly advantageously by interpolation of the recorded pressure or gas flow curve over time.
Bei der Dosierung von mehreren Gasen (z. B. O2 und NO-haltiges Gas) kann die Gasmenge eines Gases konstant gehalten werden bei gleichzeitiger Änderung der zweiten Gasmenge. Auch der Dosierzeitpunkt kann beliebig gewählt werden, da er durch die Aufnahme der Inspirationskurve genau definiert wird. So kann ein Gas zu Beginn der Dosierauslösung (Triggerung) dosiert werden, ein zweites Gas erst entsprechend später.When metering several gases (e.g. O 2 and NO-containing gas), the amount of gas in one gas can be kept constant while the second amount of gas changes at the same time. The time of dispensing can also be chosen arbitrarily, since it is precisely defined by the inclusion of the inspiration curve. In this way, one gas can be dosed at the start of triggering, a second gas only later.
Um die Konzentration des Gases konstant zu halten, wird die Gasmenge so variiert, daß die zugeführte Gasmenge an das Atemzugsvolumen angepaßt wird (z. B. steigende Gasmenge bei steigendem Atemzugsvolumen).In order to keep the concentration of the gas constant, the amount of gas is varied in such a way that the amount of gas supplied is adapted to the tidal volume (e.g. increasing amount of gas with increasing tidal volume).
Durch ein Regelventil könnte auch der Gasflow in der Atemgasleitung verändert werden und an die jeweilige Kurvenform angepaßt werden.The gas flow in the breathing gas line could also be changed by a control valve and adapted to the respective curve shape.
So kann ein sogenannter Gasspike (momentaner Gasstoß) gesetzt werden, der bewirkt, das selbst bei veränderlichen Atemzugsvolumen immer die selben Areale am Wirkort (in der Regel in der Lunge) angeströmt werden.A so-called gas spike (momentary gas surge) can be set, which ensures that the same areas at the site of action (usually in the lungs) are always flowed to, even with variable tidal volumes.
Eine weitere Möglichkeit besteht in der Dosierung über ein Regelventil, so daß der Dosierflow an die Druckkurve angepaßt wird und dieser Druckkurve entsprechend dosiert.Another possibility is dosing via a control valve, so that the dosing flow is adapted to the pressure curve and doses this pressure curve accordingly.
Die atemzugskurvenabhängige Gasdosierung eines oder mehrerer Gase und/oder Aerosole kann im allgemeinen bei allen Arten der Steuerung der Dosierung eingesetzt werden, insbesondere bei einer Programmsteuerung, einer Sensorsteuerung oder eine kombinierte Programm-/ Sensorsteuerung zur inspirati- onssynchronisierten Gasdosierung, die pulsmoduliert oder in Sequenzen erfolgt. Diese Steuerungsarten der Gasdosierung sind in WO 98/31282 (interne Bezeichnung TMG 2028/67) beschrieben, worauf hiermit Bezug genommen wird.The gas curve-dependent gas metering of one or more gases and / or aerosols can generally be used for all types of metering control, in particular for program control, sensor control or a combined program / sensor control for inspiration-synchronized gas metering, which is pulse-modulated or in sequences , These types of control of gas metering are described in WO 98/31282 (internal name TMG 2028/67), to which reference is hereby made.
Für die simultane Steuerung der Gasdosierung in Abhängigkeit vom erfaßten Atemzugsvolumen wird beispielsweise gleichzeitig (beim selben Atemzyklus) das Atemzugsvolumen erfaßt und die Gasdosierung gesteuert oder das Atemzugsvolumen des vorhergehenden Atemzykluses der Steuerung der Gasdosierung für den nachfolgenden Atemzyklus zugrunde gelegt.For the simultaneous control of the gas dosage as a function of the detected tidal volume, the tidal volume is recorded simultaneously (for the same breathing cycle) and the gas dosage is controlled, or the tidal volume of the previous breathing cycle is used to control the gas dosage for the subsequent breathing cycle.
Die Erfindung wird anhand der Zeichnung erläutert.The invention is explained with reference to the drawing.
In Fig. 1 zeigt schematisch eine Atemzugskurve (Atemdruck P in mbar gegen die Zeit t in s) für den Ruhezustand a und für den Belastungszustand b eines Patienten. Bei Erreichen eines vorgegebenen Schwellenwertes (Triggerwertes) c wird die Gasdosierung ausgelöst. Dies wird in Fig. 2 veranschaulicht. Der durch die atemzugskurvenabhängige Steuerung resultierende Volumenstrom V (in l/min.) des dosierten Gases in Abhängigkeit von der Zeit t (in Sekunden s) wird in Fig. 2 für die Zustände a (Ruhe) und b (Belastung) gezeigt.1 schematically shows a breath curve (respiratory pressure P in mbar versus time t in s) for the resting state a and for the stress state b of a patient. When a predetermined threshold value (trigger value) c is reached, the gas metering is triggered. This is illustrated in Figure 2. The volume flow V (in l / min.) Of the metered gas resulting from the breath curve-dependent control as a function of time t (in seconds s) is shown in FIG. 2 for the states a (rest) and b (load).
In Fig. 3 wird schematisch dargestellt, wie aus einzelnen Atemdruck-Meßwerten die Atemzugskurve interpoliert wird.FIG. 3 shows schematically how the breath curve is interpolated from individual measured breath pressure values.
Fig. 4 zeigt schematisch ein Gasversorgungssystem insbesondere für spontanatmende Patienten (Spontanatmer). Die Gasdosierung erfolgt über steuerbare Magnetventile 3, 4, die über die Steuerleitungen 10, 11 mit der Steuereinheit 12 verbunden sind. Der Auslöser der Dosierung (Triggerung) ist ein definiertes Signal des Druck- oder Flowsensors 8, das durch die Steuerleitung 9 an die Steuereinheit 12 weitergeleitet wird. Das gezeigte Gasversorgungssystem dient beispielsweise der Dosierung zweier Gase wie Sauerstoff (Gasquelle 1) und NO- haltiges Gas (Gasquelle 2). Über die Druckmeßleitung 6 wird der Druck oder Flow im Nasenraum4 schematically shows a gas supply system, in particular for spontaneously breathing patients (spontaneous breathers). The gas is metered via controllable solenoid valves 3, 4, which are connected to the control unit 12 via the control lines 10, 11. The triggering of the metering (triggering) is a defined signal of the pressure or flow sensor 8, which is passed on to the control unit 12 through the control line 9. The gas supply system shown is used, for example, for metering two gases, such as oxygen (gas source 1) and NO-containing gas (gas source 2). The pressure or flow in the nasal cavity is via the pressure measuring line 6
(Atemdruck oder Atemgasflow) kontinuierlich aufgenommen und dadurch die Atemzugskurve bestimmt. Das Signal zur Triggerauslösung kann beliebig ge- wählt werden, z. B. zu Beginn der Inspiration (Wechsel von Überdruck zu Unterdruck, z. B. 0,1 mbar Unterdruck) oder zu einem beliebig wählbaren Druck oder Flow während der Inspiration. Die eigentliche Gasdosierung der Gase der Gasquellen 1 und 2 erfolgt über die separate Gasleitung 5. Dadurch wird die Druck- aufnähme für die Bestimmung der Atemzugskurve nicht bzw. nur geringfügig gestört. Dadurch kann die(Respiratory pressure or gas flow) continuously recorded and thereby the breath curve is determined. The trigger trigger signal can be be chosen, e.g. B. at the beginning of inspiration (change from positive pressure to negative pressure, e.g. 0.1 mbar negative pressure) or to any pressure or flow during the inspiration. The actual gas metering of the gases from gas sources 1 and 2 takes place via the separate gas line 5. As a result, the pressure increase for the determination of the breath curve is not or only slightly disturbed. This allows the
Atemzugs- oder Inspirationskurve auch während der Gasdosierung aufgenommen werden.Breath or inspiration curve can also be recorded during gas metering.
Fig. 5 zeigt ein Beispiel, wie in Abhängigkeit der Atemzugskurven bei verschiedenen Zuständen (a, b) des Patienten (Fig. 5a) die dosierte Gasmenge bzw. der Gasvolumenstrom V angepaßt wird (Fig. 5b). Durch ein steuerbares Ventil wird der Gasfluß des dosierten Gases verändert, so daß ein erhöhter Gasstoß bei konstantem Gasvolumenstrom V (Gaspike) im Zustand b erfolgt.FIG. 5 shows an example of how the metered amount of gas or the gas volume flow V is adjusted as a function of the breath curves in different states (a, b) of the patient (FIG. 5a) (FIG. 5b). The gas flow of the metered gas is changed by a controllable valve, so that an increased gas surge occurs at a constant gas volume flow V (gas pike) in state b.
In Fig. 6 wird eine Anpassung eines variablen Gasvolumenstromes V eines dosierten Gases (Fig. 6b) an die ermittelte Atemzugskurve (Fig. 6a) gezeigt. FIG. 6 shows an adaptation of a variable gas volume flow V of a metered gas (FIG. 6b) to the determined breath curve (FIG. 6a).
Bezugszeichenreference numeral
a Ruhe b Belastung c Triggerschwellea Quiet b Stress c Trigger threshold
1 Gasquelle 11 gas source 1
2 Gasquelle 22 gas source 2
3, 4 steuerbares Ventil (z. B. Magnetventil)3, 4 controllable valve (e.g. solenoid valve)
5 Gasleitung5 gas pipe
6 Druckmeßleitung6 pressure measuring line
7 Patient7 patient
8 Sensor (z. B. Drucksensor)8 sensor (e.g. pressure sensor)
9, 10 , 11 Steuerleitung9, 10, 11 control line
12 Steuereinheit 12 control unit

Claims

Patentansprüche claims
1. Gasversorgungssystem zur inhalativen Behandlung von Mensch oder Säugetier mit einer gesteuerten Gasdosierung von mindestens einem Gas, gekennzeichnet durch eine atemzugsvolumenabhängige Steuerung der Gasdosierung.1. Gas supply system for the inhalative treatment of humans or mammals with a controlled gas dosage of at least one gas, characterized by a control of the gas dosage depending on the tidal volume.
2. Gasversorgungssystem nach Anspruch 1 , dadurch gekennzeichnet, daß das Gasversorgungssystem eine zusätzliche Gasleitung (6) mit Sensor (8) zum Messen von Atemdruck oder Atemgasflow enthält.2. Gas supply system according to claim 1, characterized in that the gas supply system contains an additional gas line (6) with sensor (8) for measuring breathing pressure or breathing gas flow.
3. Gasversorgungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Drucksensor oder Flowsensor als Sensor (8) für die Erfassung einer Atemzugsvolumenkurve enthalten ist.3. Gas supply system according to claim 1 or 2, characterized in that a pressure sensor or flow sensor is included as a sensor (8) for the detection of a tidal volume curve.
4. Gasversorgungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Sensor (8) Teil einer Steuerung der Gasdosierung ist.4. Gas supply system according to one of claims 1 to 3, characterized in that the sensor (8) is part of a control of the gas metering.
5. Gasversorgungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Gasversorgungssystem eine Steuereinheit (12) enthält, die mit dem Sensor (8) und steuerbaren Ventilen (3, 4) für die Gasdosierung verbunden ist.5. Gas supply system according to one of claims 1 to 4, characterized in that the gas supply system contains a control unit (12) which is connected to the sensor (8) and controllable valves (3, 4) for gas metering.
6. Gasversorgungssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Gasversorgungssystem eine Gasquelle (1 , 2) für Sauerstoff und ein NO-haltiges Gas; ein NO-haltiges Gas und Wasserstoff; Sauerstoff und Wasserstoff; Sauerstoff und Helium; Sauerstoff, ein NO-haltiges Gas und Wasserstoff; Sauerstoff, ein NO-haltiges Gas und Helium; Sauerstoff, Kohlendioxid und Helium; oder Sauerstoff, ein NO-haltiges Gas, Kohlendioxid und Wasserstoff enthält.6. Gas supply system according to one of claims 1 to 5, characterized in that the gas supply system is a gas source (1, 2) for oxygen and a NO-containing gas; a NO-containing gas and hydrogen; Oxygen and hydrogen; Oxygen and helium; Oxygen, a NO-containing gas and hydrogen; Oxygen, a NO-containing gas and helium; Oxygen, carbon dioxide and helium; or contains oxygen, a gas containing NO, carbon dioxide and hydrogen.
7. Verfahren zum Betrieb von Gasversorgungssystemen für die Gasversorgung von Mensch oder Säugetier, dadurch gekennzeichnet, daß mit Hilfe eines Sensors (8) eine Atemzugsvolumenkurve erfaßt und in Abhängigkeit einer erfaßten Atem- zugsvolumenkurve eine gesteuerte Gasdosierung erfolgt.7. A method of operating gas supply systems for the gas supply of humans or mammals, characterized in that a breath volume curve is detected with the aid of a sensor (8) and is dependent on a detected breath train volume curve a controlled gas metering takes place.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß ein Gasversorgungssystem nach einem der Ansprüche 1 bis 6 verwendet wird.8. The method according to claim 7, characterized in that a gas supply system according to one of claims 1 to 6 is used.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß aus erfaßten Druckwerten eine Atemzugsvolumenkurve interpoliert wird und die interpolierte Atemzugsvolumenkurve einer Steuerung der Dosierung mindestens eines Gases oder Aerosols dient.9. The method according to claim 7 or 8, characterized in that a breath volume curve is interpolated from detected pressure values and the interpolated breath volume curve serves to control the metering of at least one gas or aerosol.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Gasdosierung inspirationssynchronisiert und mittels einer Programmsteuerung, einer Sensorsteuerung oder einer kombinierten Programm-/ Sensorsteuerung pulsmoduliert oder in Sequenzen erfolgt.10. The method according to any one of claims 7 to 9, characterized in that the gas metering inspiration-synchronized and pulse-modulated or in sequences by means of a program control, a sensor control or a combined program / sensor control.
11.Verwendung eines Gasversorgungssystems nach einem der Ansprüche 1 bis 6 zur Gasversorgung von beatmeten oder spontanatmenden Patienten.11. Use of a gas supply system according to one of claims 1 to 6 for the gas supply of ventilated or spontaneously breathing patients.
12. Verwendung nach Anspruch 11 zur Gasversorgung von COPD-Patienten.12. Use according to claim 11 for the gas supply of COPD patients.
13. Verwendung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß Sauerstoff und NO-haltiges Gas; Sauerstoff, NO-haltiges Gas und Helium; Sauerstoff, NO-haltiges Gas, Kohlendioxid und Helium; Sauerstoff, Kohlendioxid und Helium; oder Sauerstoff, NO-haltiges Gas, Kohlendioxid und Wasserstoff dosiert werden. 13. Use according to claim 11 or 12, characterized in that oxygen and NO-containing gas; Oxygen, NO-containing gas and helium; Oxygen, NO-containing gas, carbon dioxide and helium; Oxygen, carbon dioxide and helium; or oxygen, NO-containing gas, carbon dioxide and hydrogen are metered.
EP00993379A 1999-12-18 2000-12-06 Inspired-volume-dependent gas dosage Withdrawn EP1239911A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19961206 1999-12-18
DE19961206A DE19961206A1 (en) 1999-12-18 1999-12-18 Tidal volume-dependent gas dosing
PCT/EP2000/012246 WO2001043806A2 (en) 1999-12-18 2000-12-06 Inspired-volume-dependent gas dosage

Publications (1)

Publication Number Publication Date
EP1239911A2 true EP1239911A2 (en) 2002-09-18

Family

ID=7933241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993379A Withdrawn EP1239911A2 (en) 1999-12-18 2000-12-06 Inspired-volume-dependent gas dosage

Country Status (4)

Country Link
US (1) US20030172929A1 (en)
EP (1) EP1239911A2 (en)
DE (1) DE19961206A1 (en)
WO (1) WO2001043806A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2351217C (en) 2001-06-19 2008-12-02 Teijin Limited An apparatus for supplying a therapeutic oxygen gas
FR2834467B1 (en) 2002-01-08 2004-10-01 Taema VALVE ON DEMAND FOR USE IN OXYGEN THERAPY
DE10212497A1 (en) * 2002-03-21 2003-10-16 Weinmann G Geraete Med Process for controlling a ventilator and device for ventilation
US7380550B2 (en) 2004-01-30 2008-06-03 Hewlett-Packard Development Company, L.P. Systems and methods for particle detection
US7819115B2 (en) * 2004-01-30 2010-10-26 Hewlett-Packard Development Company, L.P. Inhalers and methods of controlling airflow in inhalers
MXPA06013111A (en) * 2004-05-11 2007-05-23 Sensormedics Corp Intermittent dosing of nitric oxide gas.
ITRM20050217A1 (en) * 2005-05-06 2006-11-07 Ginevri S R L PROCEDURE FOR NASAL VENTILATION AND ITS APPARATUS, IN PARTICULAR FOR NEONATAL FLOW-SYNCHRONIZED ASSISTED VENTILATION.
WO2009115076A1 (en) * 2008-03-17 2009-09-24 Technologie Institut Medizin Gmbh Control device for the application of volatile anesthesia gases
CN102056538B (en) 2008-06-06 2014-10-15 柯惠有限合伙公司 Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9795756B2 (en) 2012-12-04 2017-10-24 Mallinckrodt Hospital Products IP Limited Cannula for minimizing dilution of dosing during nitric oxide delivery
WO2014089188A1 (en) 2012-12-04 2014-06-12 Ino Therapeutics Llc Cannula for minimizing dilution of dosing during nitric oxide delivery
US9492629B2 (en) * 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
DE102015108283A1 (en) * 2015-05-26 2016-12-01 Eku Elektronik Gmbh Device for applying a medical gas to a patient
CN106693129B (en) * 2015-07-14 2019-09-17 北京谊安医疗系统股份有限公司 A kind of closed-loop capacity control method of ventilator
EP3793656A1 (en) 2018-05-14 2021-03-24 Covidien LP Systems and methods for respiratory effort detection utilizing signal distortion
AU2019271408A1 (en) * 2018-05-17 2021-01-07 Bellerophon Therapeutics Method and apparatus for pulsatile delivery of nitric oxide
US11717634B2 (en) 2018-10-02 2023-08-08 MaxxO2, LLC Therapeutic oxygen breathing apparatus and exercise system
US11752287B2 (en) 2018-10-03 2023-09-12 Covidien Lp Systems and methods for automatic cycling or cycling detection
JP6667817B1 (en) * 2019-03-13 2020-03-18 住友精化株式会社 Gas composition, method for producing the same, and gas product

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900276A1 (en) * 1989-01-07 1990-07-12 Draegerwerk Ag VENTILATOR WITH BREATHING CIRCUIT AND CONTROLLED FRESH GAS SUPPLY
DE3906202A1 (en) * 1989-02-28 1990-09-06 Medicommerz Gmbh METHOD AND DEVICE FOR SUPPLYING BREATH GAS
DE3924123C2 (en) * 1989-07-20 1994-01-27 Draegerwerk Ag Device for generating and metering a gas mixture
US5803066A (en) * 1992-05-07 1998-09-08 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US5615669A (en) * 1994-07-22 1997-04-01 Siemens Elema Ab Gas mixture and device for delivering the gas mixture to the lungs of a respiratory subject
SE9601719D0 (en) * 1996-05-06 1996-05-06 Siemens Elema Ab Dosage for supply of additive gas or liquid to respiratory gas in anesthesia or ventilator
DE19701617A1 (en) * 1997-01-17 1998-07-23 Messer Griesheim Gmbh Respiration system with sequence-controlled, non-uniform gas metering or sensor-controlled gas-metering
DE19746742A1 (en) * 1997-10-23 1999-05-06 Messer Austria Gmbh Inhalation gas supply
US20020185126A1 (en) 1997-01-17 2002-12-12 Christian Krebs Controlled gas-supply system
US5918596A (en) * 1997-04-22 1999-07-06 Instrumentarium Corp. Special gas dose delivery apparatus for respiration equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0143806A2 *

Also Published As

Publication number Publication date
DE19961206A1 (en) 2001-07-05
WO2001043806A2 (en) 2001-06-21
US20030172929A1 (en) 2003-09-18
WO2001043806A3 (en) 2001-11-01

Similar Documents

Publication Publication Date Title
EP1239911A2 (en) Inspired-volume-dependent gas dosage
EP1239910B1 (en) Expiration-dependent gas dosage
DE60109474T2 (en) BREATHING APPARATUS
DE3636669C2 (en) Arrangement for delivering aerosol to a patient's airways and / or lungs
DE102005045127B3 (en) Breathing apparatus, for patient, comprises breathing gas source, exhaling valve, inhaling line, exhaling line, feed for gas, flow sensor, pressure sensor, control unit, control circuit and control device
DE69829969T2 (en) CONTROL DEVICE FOR SUPPLYING ADDITIONAL BREATHING OXYGEN
DE3537507C2 (en) Device for supportive intermittent pressure ventilation and aerosol therapy
DE69534893T2 (en) Respiratory gas delivery device and method
DE69828033T2 (en) Ventilator with a system for leak and occlusion detection
DE69925957T2 (en) Device for pulsed administration of nitric oxide with accurate dose as well as monitoring device and alarm systems
DE60224964T2 (en) Respiratory equipment for use in examining the respiratory mechanics of a respiratory system
DE60033471T2 (en) METHOD FOR MEASURING THE FUNCTIONAL RESIDUAL CAPACITY
DE102007006689B4 (en) Device and method for detecting obstruction during apnea phases by means of an additional pressure level
EP2563444B1 (en) Device for supplying at least one medical gas to a patient receiving artificial respiration with the aid of an anesthesia machine
DE19880497B4 (en) Device for automated ventilation by positive air pressure on the respiratory tract
EP0973443A1 (en) Controlled gas-supply system
WO2005075013A1 (en) Respiratory device and method for controlling a respiratory device
DE19958532C1 (en) Respiration apparatus uses gas volume sensors coupled to measuring and regulating device for gas feed element and controlled blocking valve for supplying patient with defined respiration gas volume
DE102010054361B4 (en) therapy device
EP2726126A2 (en) Method for controlling the end-expiratory pressure in a respiratory system
EP3653248A2 (en) Respirators and control methods for respirators
DE112011100385T5 (en) Compensation of immeasurable inspiratory flow in an ICU ventilator
DE102018003027A1 (en) breathing device
DE19746742A1 (en) Inhalation gas supply
EP1284774A1 (en) Gas doser with a catheter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020712

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INO THERAPEUTICS GMBH

17Q First examination report despatched

Effective date: 20040928

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050209