EP1239453B1 - Method and apparatus for generating sound signals - Google Patents

Method and apparatus for generating sound signals Download PDF

Info

Publication number
EP1239453B1
EP1239453B1 EP01810245A EP01810245A EP1239453B1 EP 1239453 B1 EP1239453 B1 EP 1239453B1 EP 01810245 A EP01810245 A EP 01810245A EP 01810245 A EP01810245 A EP 01810245A EP 1239453 B1 EP1239453 B1 EP 1239453B1
Authority
EP
European Patent Office
Prior art keywords
signal
time variable
sound signal
accordance
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01810245A
Other languages
German (de)
French (fr)
Other versions
EP1239453A1 (en
Inventor
Fritz Menzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE50112930T priority Critical patent/DE50112930D1/en
Priority to AT01810245T priority patent/ATE371922T1/en
Priority to EP01810245A priority patent/EP1239453B1/en
Publication of EP1239453A1 publication Critical patent/EP1239453A1/en
Application granted granted Critical
Publication of EP1239453B1 publication Critical patent/EP1239453B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/0008Associated control or indicating means

Definitions

  • the invention relates to a method for generating a sound signal according to the preamble of claim 1.
  • the invention further relates to a device for generating a sound signal according to the preamble of claim 11.
  • a time-varying sound signal such as a sine, triangle or square wave signal
  • a digital value representing the amplitude of the sound signal at regular time intervals can be calculated on the basis of the mathematical definition by calculating a digital value representing the amplitude of the sound signal at regular time intervals.
  • the thus generated, digital sound signal is then converted into an analog sound signal and can, for example, with an electroacoustic transducer such as a speaker, be converted into an acoustic, perceivable by the human ear as a sound or as a sound vibration.
  • This fader is not suitable for a method for generating sound signal, since it can produce no novel sounds.
  • the inventive sound signal generation method which is also referred to as a sound synthesis method, allows to generate a variety of different sounds, both interesting, unusual sounds, as well as natural-sounding sounds.
  • the inventive sound signal generation method allows to produce much more complex sounds than is possible with conventional synthesizers.
  • the sound signal generation method offers various ways to influence the sounds, such as the tone, in addition to influence.
  • the required for sound signal generation device can be very simple and inexpensive be configured, and comprises in a preferred embodiment, essentially a computer with memory, input and output means such as a keyboard and / or a computer mouse, and a corresponding control program or software for controlling the computer.
  • the inventive method for generating sound signal essentially comprises two sub-methods.
  • a first partial procedure becomes a time-variable, preferably digital signal r (t) is generated, which is mapped in a second sub-process using a mapping function f in a time-variable sequence of real numbers, which form a digital sound signal o (t), as an electrical signal or for example via a speaker can be issued.
  • a signal generator 2 supplies a time-variable, digital signal r (t).
  • digital signal generators 2a, 2b, .. 2n are arranged, each having a separate partial signal r yields (t) i, namely, the sub-signals r 1 (t), r 2 (t), ... rn (t) ,
  • the signal generators 2a, 2b, .. 2n are connected via electrical signal lines 5 to an imaging device 3.
  • the imaging device 3 is connected via a signal line 6 and a high-pass filter 4 to an output line 7, to which an analog or digital sound signal o (t) is applied.
  • a digital-to-analog converter can be arranged so that an analog sound signal is applied to the output line 7, while the high-pass filter is designed as a digital filter.
  • the range of values of the analog sound signal o (t) may be, for example, between -5 volts and 5 volts.
  • the value range of the digital sound signal o (t) can be, for example, between -2 15 and 2 15 -1.
  • the digital signal r (t) comprising the sub-signals r 1 (t), r 2 (t), ... r n (t) can also be referred to as a multi-dimensional time-variable signal.
  • a time-variable, periodic, digital signal r (t) is generated in the signal generator 2, wherein its parameters, such as the waveform, the frequency, the center and / or the amplitude, can be predetermined. Middle is understood to be the offset or the analog DC voltage component.
  • a time-variable signal r (t) may also be permanently stored, for example in a memory designated as ROM (Read Only Memory).
  • the sub-signals r i (t), ie the sub-signals r 1 (t), r 2 (t), ... r n (t) are generated.
  • these partial signals r i (t) are imaged into a sound signal o (t) using an imaging function f.
  • This mapping function f maps the digital sub-signals r i (t) as a discrete-time sequence of real numbers, this sequence having a DC component.
  • a digital value is generated at regular time intervals.
  • the high-pass filter 4 is a DC-free sound signal o (t) on.
  • the mapping function f thus has the property, the vector r (t) including the sub-signals r 1 (t), r 2 (t), ... r n (t) in the sound signal o (t) transform.
  • the n-dimensional vector r (t) is thus mapped by the mapping function f into a one-dimensional function o (t) which defines the sound signal or an audio signal.
  • An advantage of the novel synthesis method lies in the hitherto unknown division of the control or influencing the sound parameters.
  • the fundamental frequency of the sound signal o (t) preferably depends solely or essentially on the fundamental frequency of the signal r 1 (t).
  • time-variable signal r (t) depends both the fundamental frequency of the sound signal o (t) and other frequency components of the respective fundamental frequency of the individual sub-signals r 1 (t), r 2 (t), ... r n (t) from.
  • the spectrum of the sound signal o (t) is in addition to the properties of the signal r (t) essentially determined by the mapping function f. For example, indicates the signal r (t) and / or the mapping function f discontinuities or discontinuities, so is a sound signal o (t) with a demanding frequency spectrum expect.
  • the frequency spectrum of the sound signal o (t) thus also depends on the properties of the imaging function f, in particular on the spatial spectrum of the imaging function f.
  • a partial signal r i (t) is generated.
  • the frequency ⁇ and the signal generator 2b, the frequency ⁇ and the factor k is adjustable.
  • both partial signals have the same frequency ⁇ .
  • the time-variable signal becomes r (t ) mapped by the mapping function f to the sound signal o (t).
  • the calculation of r 1 (t), r 2 (t) and o (t) takes place digitally in time-discrete steps, and also simultaneously or simultaneously or substantially simultaneously.
  • the value of r 1 (t1) and r 2 (t1) is initially charged and subsequently determine directly the value of o (t1).
  • the value of the discrete-time time t1 + .DELTA.T is calculated by initially calculating the value of r 1 (t1 + At) and r 2 (t1 + At), and then immediately the value of o (t1 + At) is calculated.
  • the values of r 1 (t), r 2 (t) and o (t) are constantly calculated, wherein the signals r 1 (t), r 2 (t) can be changed by interventions on the signal generator 2 a, 2 b, where the effect achieved can be heard immediately via the sound signal o (t).
  • the mapping function f can be changed by, for example, changing a factor in a mapping function, or by exchanging a given mapping function with another predetermined mapping function. The effect achieved thereby can also be heard immediately via the sound signal o (t).
  • the sound signal o (t) can thus be interactively changed and adjusted as desired and personal taste.
  • the factor a (t) it is thus possible, for example, to modulate an attack, a conclusion or a velocity.
  • the time-variable signal r (t) and the mapping function f can be changed by changing parameters, causing a change in the visual display.
  • the parameters of the time-variable signal r ( t ) and the mapping function f are interactively changed via the visual display, for example by displaying the time-variable signal r ( t ) is shifted with respect to the representation of the mapping function f in the xy plane, which results in a change of the parameters and thus a change of the sound signal o (t).
  • mapping function f not only could a mathematical function be used, as shown in FIG. 5 or 6, but an arbitrary three-dimensional surface.
  • the mapping function f shown in FIGS. 5 and 6 is calculated digitally, the values being calculated precisely at the intersections of two straight lines running in the x and y directions. These digitally represented values of the mapping function f are also referred to below as a three-dimensional surface. The values between the Intersections are preferably interpolated in each case.
  • An imaging function f for example, is also an image, for example a photographic, digitized image whose color values or gray scale values form the value f of the imaging function f.
  • Fig. 2 shows schematically a sound signal generating device 1 for carrying out the inventive method.
  • the illustrated embodiment shows a computer with a microprocessor 11, interfaces 13, user interfaces 14, memory 15, and a digital signal processor (DSP) 16, all of which communicate via a common data bus 12.
  • DSP digital signal processor
  • the required parameters for specifying or for calculating the partial signals r i (t) and the mapping function 2 are input via the user interface 14.
  • the partial signal r i (t) is then calculated by means of the DSP software executable in the memory 17 by the digital signal processor 16, and mapped to the sound signal o (t) via the mapping function f.
  • a digital high-pass filter can also be realized so that the sound signal o (t) calculated by the digital signal processor 16 is supplied to the electrical signal line 7 via the interface 13, for example as an audio signal.
  • Fig. 7 shows with equations 1 to 7 further examples of mapping functions f, and with equations 8 to 13 further examples of time-variable signals r (t).
  • the sound signal generating apparatus 1 may comprise an arbitrary number of n signal generators 2a, 2b, .. 2n, so that the vector describing the time-variable signal r (t) r (t) has n dimensions.
  • the mapping function f is designed to be the n-dimensional vector r (t) again into a one-dimensional sound signal o (t).
  • FIG. 8 shows the time profile of an analog sound signal g (t) as well as the temporal course of the same, digitized sound signal g [n], which consists of a sequence of digital support values which are spaced by the regular time duration ⁇ T.
  • g [0], g [1] and g [5] are specifically indicated.
  • Fig. 9 shows the third example of a mapping function f.
  • a meandering track 21 is shown in an xy plane.
  • the track 21 has a continuous series of mutually equally spaced points, with each of these points being assigned a support value g [n].
  • the values g [0], g [1] and g [5] are specially marked. All support values g [n] of the sound signal g (t) shown in FIG. 8 are assigned along the track 21 in this way.
  • These support values g [n] similar to those shown in three dimensions in FIGS. 5 or 6, form an imaging function f 3 that extends three-dimensionally over the xy plane.
  • the mapping of the signal r (t) with the mapping function f shown in FIG. 9 the following peculiarity results: If the signal r (t) is chosen such that its values in the xy plane coincide exactly with those in FIG corresponds to the output points o (t), the digitized signal g (t) and the digital signal g [n]. Thus, it is possible to use the mapping function the digital sound signal g [n] produce. If the signal r (t) is selected to be slightly offset with respect to the track 21, as shown in FIG.
  • the output signal o (t) has similarities to the sound signal g [n]. on.
  • the sound distortion of the sound signal g [n] will be of different magnitude. This method thus makes it possible to reproduce a sound signal g [n] as recorded as original sound, or to vary it by changing the parameters of the signal r (t) in a variety of ways.
  • the course of the track 21 may be defined in an x-y plane in a variety of ways.
  • Fig. 10 shows a spiral track 21 along which the digital values of the sound signal g [n] are plotted.
  • the digital values are preferably arranged along the track 21 at equidistant intervals and thus define a three-dimensional surface consisting of a multiplicity of support values, or the imaging function f.
  • the signal r (t) for the mapping function f of the spiral track 21 shown in FIG. 10 must follow.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)
  • Studio Devices (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Devices For Supply Of Signal Current (AREA)

Abstract

The method involves generating or selecting a time variable signal (rn(t)), generating or selecting an imaging function (f) that forms an image of the signal as a sequence of real numbers and computing a sound signal (o(t)) by imaging the time variable signal using the imaging function. The time variable signal and/or the sound signal is computed in time discrete steps. Independent claims are also included for the following: an arrangement for implementing the method.

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen eines Klangsignals gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter eine Vorrichtung zum Erzeugen eines Klangsignals gemäss dem Oberbegriff von Anspruch 11.The invention relates to a method for generating a sound signal according to the preamble of claim 1. The invention further relates to a device for generating a sound signal according to the preamble of claim 11.

Es ist bekannt, Klangsignale mit Hilfe mathematischer Funktionen zu berechnen. So kann beispielsweise ein zeitvariables Klangsignal, wie ein Sinus-, Dreieck- oder Rechtecksignal, auf Grund der mathematischen Definition berechnet werden, indem in regelmässigen zeitlichen Abständen ein digitaler, die Amplitude des Klangsignals repräsentierender Wert berechnet wird. Das derart erzeugte, digitale Klangsignal wird anschliessend in ein analoges Klangsignal gewandelt und kann, beispielsweise mit einem elektroakustischen Wandler wie einem Lautsprecher, in eine akustische, vom menschlichen Ohr als Ton oder als Klang wahrnehmbare Schwingung gewandelt werden.It is known to calculate sound signals using mathematical functions. Thus, for example, a time-varying sound signal, such as a sine, triangle or square wave signal, can be calculated on the basis of the mathematical definition by calculating a digital value representing the amplitude of the sound signal at regular time intervals. The thus generated, digital sound signal is then converted into an analog sound signal and can, for example, with an electroacoustic transducer such as a speaker, be converted into an acoustic, perceivable by the human ear as a sound or as a sound vibration.

Bekannte Verfahren zur Klangsignalerzeugung weisen den Nachteil auf, dass nur relativ einfache Klänge erzeugbar sind, oder dass die Klänge in nur beschränktem Masse verändert werden können.Known methods for generating sound signal have the disadvantage that only relatively simple sounds can be generated, or that the sounds can be changed to only a limited extent.

Aus der Druckschrift EP 1 005 017 ist zudem ein Überblendregler bekannt, welchem zwei Signale zugeführt werden. Mit Hilfe dieses Überblendreglers können die Amplituden der beiden Signale verändert werden und aus den beiden Signalen die Summe gebildet werden.From the publication EP 1 005 017 In addition, a cross-fader is known to which two signals are supplied. With the aid of this fader, the amplitudes of the two signals can be changed and the sum of the two signals can be formed.

Dieser Überblendregler ist für ein Verfahren zur Klangsignalerzeugung nicht geeignet, da sich damit keine neuartigen Klänge erzeugen lassen.This fader is not suitable for a method for generating sound signal, since it can produce no novel sounds.

Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren vorzuschlagen, das anspruchsvolle Klänge zu erzeugen erlaubt.It is an object of the present invention to propose a method that allows to produce sophisticated sounds.

Diese Aufgabe wird gelöst mit einem Verfahren aufweisend die Merkmale von Anspruch 1 und mit einer Vorrichtung aufweisend die Merkmale von Anspruch 11. Die Unteransprüche 2 bis 10 betreffen weitere, vorteilhafte Verfahrensschritte.This object is achieved by a method comprising the features of claim 1 and having a device comprising the features of claim 11. The dependent claims 2 to 10 relate to further advantageous method steps.

Das erfindungsgemässe Klangsignalerzeugungsverfahren, welches auch als Klangsyntheseverfahren bezeichnet wird, ermöglicht eine Vielzahl unterschiedlicher Klänge zu erzeugen, sowohl interessante, ausgefallene Klänge, als auch natürlich klingende Klänge. Das erfindungsgemässe Klangsignalerzeugungsverfahren erlaubt wesentlich komplexere Klänge zu erzeugen, als dies mit üblichen Synthesizern möglich ist. Zudem bietet das Klangsignalerzeugungsverfahren verschiedene Eingriffsmöglichkeiten um die Klänge, beispielsweise die Klangfarbe, zusätzlich zu beeinflussen. Die zur Klangsignalerzeugung erforderliche Vorrichtung kann sehr einfach und kostengünstig ausgestaltet sein, und umfasst in einer bevorzugten Ausführungsform im wesentlichen einen Rechner mit Speicher, Ein- und Ausgabemittel wie eine Tastatur und/oder eine Computermaus, sowie ein entsprechendes Ansteuerprogramm beziehungsweise eine Software zur Ansteuerung des Rechners.The inventive sound signal generation method, which is also referred to as a sound synthesis method, allows to generate a variety of different sounds, both interesting, unusual sounds, as well as natural-sounding sounds. The inventive sound signal generation method allows to produce much more complex sounds than is possible with conventional synthesizers. In addition, the sound signal generation method offers various ways to influence the sounds, such as the tone, in addition to influence. The required for sound signal generation device can be very simple and inexpensive be configured, and comprises in a preferred embodiment, essentially a computer with memory, input and output means such as a keyboard and / or a computer mouse, and a corresponding control program or software for controlling the computer.

Das erfindungsgemässe Verfahren zur Klangsignalerzeugung umfasst im Wesentlichen zwei Teilverfahren. In einem ersten Teilverfahren wird ein zeitvariables, vorzugsweise digitales Signal r(t) erzeugt, welches in einem zweiten Teilverfahren mit Hilfe einer Abbildungsfunktion f in eine zeitvariable Folge reeller Zahlen abgebildet wird, welche ein digitales Klangsignal o(t) bilden, das als elektrisches Signal oder beispielsweise über einen Lautsprecher ausgegeben werden kann.The inventive method for generating sound signal essentially comprises two sub-methods. In a first partial procedure becomes a time-variable, preferably digital signal r (t) is generated, which is mapped in a second sub-process using a mapping function f in a time-variable sequence of real numbers, which form a digital sound signal o (t), as an electrical signal or for example via a speaker can be issued.

Das erfindungsgemässe Klangsignalerzeugungsverfahren weist die Vorteile auf,

  • dass damit Klänge erzeugbar sind, welche mit anderen bekannten Verfahren nicht erzeugbar sind,
  • dass eine Veränderung der Klänge in Echtzeit möglich ist,
  • dass der Rechenaufwand zur Berechung des Klangsignals o(t) gering ist,
  • und dass die Klänge über eine entsprechend ausgestaltete Schnittstelle interaktiv, zum Beispiel durch eine Handbewegung beziehungsweise über eine Computermaus, veränderbar sind.
The inventive sound signal generation method has the advantages
  • that sounds can thus be generated which can not be produced by other known methods,
  • that a change of the sounds in real time is possible,
  • that the computational effort for the calculation of the sound signal o (t) is low,
  • and that the sounds are interactively changeable via an appropriately configured interface, for example by a hand movement or via a computer mouse.

Die Erfindung wir nachfolgend an Hand mehrerer Ausführungsbeispiele beschrieben. Es zeigen

Fig. 1
ein Signalflussdiagramm einer Klangsignalerzeugungsvorrichtung;
Fig. 2
schematisch den Aufbau einer Klangsignalerzeugungsvorrichtung;
Fig. 3
ein erstes Beispiel eines zweidimensionalen, zeitvariablen Signals r(t);
Fig. 4
ein zweites Beispiel eines zweidimensionalen, zeitvariabeln Signals r(t);
Fig. 5
ein erstes Beispiel einer Abbildungsfunktion;
Fig. 6
ein zweites Beispiel einer Abbildungsfunktion;
Fig. 7
Beispiele für Abbildungsfunktionen und zeitvariable Signale;
Fig. 8
ein analoges und digitalisiertes Klangsignal;
Fig. 9
ein drittes Beispiel einer Abbildungsfunktion;
Fig. 10
ein viertes Beispiel einer Abbildungsfunktion.
The invention will be described below with reference to several embodiments. Show it
Fig. 1
a signal flow diagram of a sound signal generating device;
Fig. 2
schematically the structure of a sound signal generating device;
Fig. 3
a first example of a two-dimensional, time-variable signal r (t);
Fig. 4
a second example of a two-dimensional, time-variable signal r (t);
Fig. 5
a first example of a mapping function;
Fig. 6
a second example of a mapping function;
Fig. 7
Examples of mapping functions and time-varying signals;
Fig. 8
an analog and digitized sound signal;
Fig. 9
a third example of a mapping function;
Fig. 10
a fourth example of a mapping function.

Fig. 1 zeigt schematisch das Signalflussdiagramm einer Klangsignalerzeugungsvorrichtung 1. Ein Signalgenerator 2 liefert ein zeitvariables, digitales Signal r(t). Im dargestellten Ausführungsbeispiel sind n digitale Signalgeneratoren 2a, 2b, .. 2n angeordnet, wobei jeder ein eigenes Teilsignal ri(t) liefert, nämlich die Teilsignale r1(t), r2(t), ... rn(t). Die Signalgeneratoren 2a, 2b, .. 2n sind über elektrische Signalleitungen 5 mit einer Abbildungsvorrichtung 3 verbunden. Die Abbildungsvorrichtung 3 ist über eine Signalleitung 6 und ein Hochpassfilter 4 mit einer Ausgangsleitung 7 verbunden, an welcher ein analoges oder digitales Klangsignal o(t) anliegt. Nach dem Hochpassfilter 4 kann ein Digital-Analog-Wandler angeordnet sein, sodass an der Ausgangsleitung 7 ein analoges Klangsignal anliegt, dabei ist das Hochpassfilter als digitales Filter ausgestaltet. Der Wertebereich des analogen Klangsignals o(t) kann beispielsweise zwischen -5 Volt und 5 Volt liegen. Der Wertebereich des digitalen Klangsignals o(t) kann beispielsweise zwischen -215 und 215-1 liegen. Das digitale Signal r(t) umfassend die Teilsignale r1(t), r2(t), ... rn(t) kann auch als mehrdimensionales zeitvariables Signal bezeichnet werden.1 shows schematically the signal flow diagram of a sound signal generating device 1. A signal generator 2 supplies a time-variable, digital signal r (t). In the illustrated embodiment n digital signal generators 2a, 2b, .. 2n are arranged, each having a separate partial signal r yields (t) i, namely, the sub-signals r 1 (t), r 2 (t), ... rn (t) , The signal generators 2a, 2b, .. 2n are connected via electrical signal lines 5 to an imaging device 3. The imaging device 3 is connected via a signal line 6 and a high-pass filter 4 to an output line 7, to which an analog or digital sound signal o (t) is applied. After the high-pass filter 4, a digital-to-analog converter can be arranged so that an analog sound signal is applied to the output line 7, while the high-pass filter is designed as a digital filter. The range of values of the analog sound signal o (t) may be, for example, between -5 volts and 5 volts. The value range of the digital sound signal o (t) can be, for example, between -2 15 and 2 15 -1. The digital signal r (t) comprising the sub-signals r 1 (t), r 2 (t), ... r n (t) can also be referred to as a multi-dimensional time-variable signal.

In einer bevorzugten Ausgestaltung wird im Signalgenerator 2 ein zeitvariables, periodisches, digitales Signal r(t) erzeugt, wobei dessen Parameter, beispielsweise die Wellenform, die Frequenz, die Mitte und/oder die Amplitude, vorgebbar sind. Unter Mitte wird der Offset beziehungsweise der analoge Gleichspannungsanteil verstanden. Somit kann beispielsweise in jedem Signalgenerator 2a, 2b, .. 2n ein individuelles Teilsignal ri(t) erzeugt werden. Im Signalgenerator 2 kann jedoch auch ein zeitvariables Signal r(t) fest abgespeichert sein, beispielsweise in einem als ROM (Read Only Memory) bezeichneten Speicher.In a preferred embodiment, a time-variable, periodic, digital signal r (t) is generated in the signal generator 2, wherein its parameters, such as the waveform, the frequency, the center and / or the amplitude, can be predetermined. Middle is understood to be the offset or the analog DC voltage component. Thus, for example, in each signal generator 2a, 2b, .. 2n an individual partial signal r i (t) can be generated. In the signal generator 2, however, a time-variable signal r (t) may also be permanently stored, for example in a memory designated as ROM (Read Only Memory).

Im ersten Teilverfahren zur Klangsignalerzeugung werden die Teilsignale ri(t), d.h. die Teilsignale r1(t), r2(t), ... rn(t) erzeugt. In einem zweiten Teilverfahren werden diese Teilsignale ri(t) unter Verwendung einer Abbildungsfunktion f in ein Klangsignal o(t) abgebildet. Diese Abbildungsfunktion f bildet die digitalen Teilsignale ri(t) als eine zeitdiskrete Folge reeller Zahlen ab, wobei diese Folge einen Gleichspannungsanteil aufweisen kann. Vorzugsweise wird, wie in der Digitaltechnik üblich, in regelmässigen zeitlichen Abständen ein digitaler Wert erzeugt. Nach dem Hochpassfilter 4 liegt ein gleichspannungsfreies Klangsignal o(t) an.In the first partial method for generating sound signal, the sub-signals r i (t), ie the sub-signals r 1 (t), r 2 (t), ... r n (t) are generated. In a second partial method, these partial signals r i (t) are imaged into a sound signal o (t) using an imaging function f. This mapping function f maps the digital sub-signals r i (t) as a discrete-time sequence of real numbers, this sequence having a DC component. Preferably, as is customary in digital technology, a digital value is generated at regular time intervals. After the high-pass filter 4 is a DC-free sound signal o (t) on.

Umfasst die Klangsignalerzeugungsvorrichtung 1 zwei und mehr Teilsignale ri(t), so lässt sich das zeitvariable Signal auch als Vektor r(t) umfassend die Teilsignale r1(t), r2(t), ... rn(t) darstellen, sodass für das Klangsignal o(t) gilt: o ( t ) = f r t

Figure imgb0001
If the sound signal generating device 1 comprises two and more sub-signals r i (t), the time-variable signal can also be used as a vector r (t) representing the sub-signals r 1 (t), r 2 (t), ... r n (t), so that for the sound signal o (t): O ( t ) = f r t
Figure imgb0001

Die Abbildungsfunktion f hat somit die Eigenschaft, den Vektor r(t) umfassend die Teilsignale r1(t), r2(t), ... rn(t) in das Klangsignal o(t) zu transformieren. Der n-dimensionale Vektor r(t) wird somit durch die Abbildungsfunktion f in eine eindimensionale Funktion o(t) abgebildet, welche das Klangsignal bzw. ein Audiosignal definiert.The mapping function f thus has the property, the vector r (t) including the sub-signals r 1 (t), r 2 (t), ... r n (t) in the sound signal o (t) transform. The n-dimensional vector r (t) is thus mapped by the mapping function f into a one-dimensional function o (t) which defines the sound signal or an audio signal.

Dieses Verfahren weist im Gegensatz zu herkömmlichen, in Synthesizern angewandten Klangerzeugungsverfahren den Vorteil auf, dass verschiedene Eingriffsmöglichkeiten zur Beeinflussung des Klangs bestehen, in dem:

  • die einzelnen Teilsignale ri(t) bezüglich Frequenz und/oder Amplitude und/oder Phase und/oder Offset veränderbar sind
  • und/oder die Abbildungsfunktion f veränderbar ist
  • und/oder die gegenseitige Lage der Teilsignale ri(t) und der Abbildungsfunktion f veränderbar ist.
This method has the advantage, in contrast to conventional sound generation methods used in synthesizers, that there are various possibilities for influencing the sound, in which:
  • the individual sub-signals r i (t) are variable with respect to frequency and / or amplitude and / or phase and / or offset
  • and / or the mapping function f is changeable
  • and / or the mutual position of the sub-signals r i (t) and the mapping function f is variable.

Ein Vorteil des erfindungsgemässen Syntheseverfahrens liegt in der bisher nicht bekannten Aufteilung der Kontrolle beziehungsweise der Beeinflussung der Klangparameter.An advantage of the novel synthesis method lies in the hitherto unknown division of the control or influencing the sound parameters.

Bei einem eindimensionalen zeitvariablen Signal r1(t) hängt die Grundfrequenz des Klangsignals o(t) vorzugsweise alleine oder im wesentlichen von der Grundfrequenz des Signals r1(t) ab. Bei einem mehrdimensionalen, zeitvariablen Signal r (t) hängt sowohl die Grundfrequenz des Klangsignals o(t) als auch weitere Frequenzanteile von der jeweiligen Grundfrequenz der einzelnen Teilsignale r1(t), r2(t), ... rn(t) ab.In the case of a one-dimensional time-variable signal r 1 (t), the fundamental frequency of the sound signal o (t) preferably depends solely or essentially on the fundamental frequency of the signal r 1 (t). For a multi-dimensional, time-variable signal r (t) depends both the fundamental frequency of the sound signal o (t) and other frequency components of the respective fundamental frequency of the individual sub-signals r 1 (t), r 2 (t), ... r n (t) from.

Es kann sich als Vorteil erweisen, dass das Spektrum des Ausgangssignals durch die Frequenzen des Signals r(t) vorgebbar ist.It may prove to be an advantage that the spectrum of the output signal through the frequencies of the signal r (t) can be specified.

Das Spektrum des Klangsignals o(t) wird nebst den Eigenschaften des Signals r(t) im wesentlichen durch die Abbildungsfunktion f bestimmt. Weist beispielsweise das Signal r(t) und/oder die Abbildungsfunktion f Diskontinuitäten beziehungsweise Sprungstellen auf, so ist ein Klangsignal o(t) mit einem anspruchsvollen Frequenzspektrum zu erwarten. Das Frequenzspektrum des Klangsignals o(t) hängt somit auch von den Eigenschaften der Abbildungsfunktion f, insbesondere vom räumlichen Spektrum der Abbildungsfunktion f ab.The spectrum of the sound signal o (t) is in addition to the properties of the signal r (t) essentially determined by the mapping function f. For example, indicates the signal r (t) and / or the mapping function f discontinuities or discontinuities, so is a sound signal o (t) with a demanding frequency spectrum expect. The frequency spectrum of the sound signal o (t) thus also depends on the properties of the imaging function f, in particular on the spatial spectrum of the imaging function f.

Die beiden Teilverfahren zur Erzeugung des Klangsignals o(t) werden nachfolgend an Hand mehrerer Ausführungsbeispiele für eine Klangsignalerzeugungsvorrichtung 1 mit zwei Signalgeneratoren, d.h. für den Spezialfall von n=2 erläutert.The two sub-methods for generating the sound signal o (t) will be described below with reference to several embodiments of a sound signal generating device 1 with two signal generators, i. explained for the special case of n = 2.

Im ersten Teilverfahren wird ein Teilsignal ri(t) erzeugt.In the first partial method, a partial signal r i (t) is generated.

Im ersten Ausführungsbeispiel erzeugt der Signalgenerator 2a das digitale, zeitdiskrete Teilsignal r1(t) = sin(ωt) und der Signalgenerator 2b das digitale, zeitdiskrete Teilsignal r 2 t = cos ( ω t ) + t k .

Figure imgb0002
Am Signalgenerator 2a ist die Frequenz ω und am Signalgenerator 2b die Frequenz ω und der Faktor k einstellbar. In diesem Ausführungsbeispiel weisen beide Teilsignale dieselbe Frequenz ω auf.In the first exemplary embodiment, the signal generator 2 a generates the digital, time-discrete partial signal r 1 ( t ) = sin (ω t ) and the signal generator 2 b generates the digital, time-discrete partial signal r 2 t = cos ( ω t ) + t k ,
Figure imgb0002
At the signal generator 2a, the frequency ω and the signal generator 2b, the frequency ω and the factor k is adjustable. In this embodiment, both partial signals have the same frequency ω.

Für das zeitvariable Signal r(t) in Vektordarstellung gilt r ( t ) = sin ( ωt ) , cos ( ωt ) + t k

Figure imgb0003
For the time-variable signal r (t) in vector representation applies r ( t ) = sin ( .omega.t ) . cos ( .omega.t ) + t k
Figure imgb0003

Die Abbildungsfunktion f zur Transformation von zwei Teilsignalen sei f ( x , y ) = x 2 y 2 1 + ( x 2 + y 2 ) 2

Figure imgb0004
Let the mapping function f be for the transformation of two partial signals f ( x . y ) = x 2 y 2 1 + ( x 2 + y 2 ) 2
Figure imgb0004

Im zweiten Teilverfahren wird das zeitvariable Signal r(t) durch die Abbildungsfunktion f auf das Klangsignal o(t) abgebildet.
Mit x = r 1 (t) = sin(ωt) und y = r 2 t = cos ( ω t ) + t k

Figure imgb0005

gilt somit: o t = f r t = f x y = x 2 y 2 1 + x 2 + y 2 2
Figure imgb0006
In the second sub-procedure the time-variable signal becomes r (t ) mapped by the mapping function f to the sound signal o (t).
With x = r 1 (t) = sin ( ωt ) and y = r 2 t = cos ( ω t ) + t k
Figure imgb0005

thus: O t = f r t = f x y = x 2 y 2 1 + x 2 + y 2 2
Figure imgb0006

In einem bevorzugten Verfahren erfolgt die Berechung von r1(t), r2(t) und o(t) digital in zeitdiskreten Schritten, und zudem simultan bzw. gleichzeitig oder im wesentlichen gleichzeitig. Zu einem gegeben Zeitpunkt t1 wird vorerst der Wert von r1(t1) und r2(t1) berechnet, und daraufhin unmittelbar der Wert für o(t1) ermittelt. Daraufhin wird der Wert zum zeitdiskreten Zeitpunkt t1+ΔT berechnet, indem vorerst der Wert von r1(t1+ΔT) und r2(t1+ΔT) berechnet, und daraufhin unmittelbar der Wert für o(t1+ΔT) berechnet wird. Derart werden die Werte von r1(t), r2(t) und o(t) ständig berechnet, wobei die Signale r1(t), r2(t) durch Eingriffe am Signalgenerator 2a, 2b geändert werden können, wobei die dadurch erzielte Wirkung sofort über das Klangsignal o(t) abgehört werden kann. Zudem kann die Abbildungsfunktion f verändert werden, in dem beispielsweise ein Faktor in einer Abbildungsfunktion verändert wird, oder indem eine vorgegebene Abbildungsfunktion durch eine andere vorgegebene Abbildungsfunktion ausgetauscht wird. Die dadurch erzielte Wirkung kann ebenfalls sofort über das Klangsignal o(t) abgehört werden. Das Klangsignal o(t) kann somit interaktiv geändert und je nach belieben und persönlichem Geschmack eingestellt werden.In a preferred method, the calculation of r 1 (t), r 2 (t) and o (t) takes place digitally in time-discrete steps, and also simultaneously or simultaneously or substantially simultaneously. At a given time t1, the value of r 1 (t1) and r 2 (t1) is initially charged and subsequently determine directly the value of o (t1). Then, the value of the discrete-time time t1 + .DELTA.T is calculated by initially calculating the value of r 1 (t1 + At) and r 2 (t1 + At), and then immediately the value of o (t1 + At) is calculated. Thus, the values of r 1 (t), r 2 (t) and o (t) are constantly calculated, wherein the signals r 1 (t), r 2 (t) can be changed by interventions on the signal generator 2 a, 2 b, where the effect achieved can be heard immediately via the sound signal o (t). In addition, the mapping function f can be changed by, for example, changing a factor in a mapping function, or by exchanging a given mapping function with another predetermined mapping function. The effect achieved thereby can also be heard immediately via the sound signal o (t). The sound signal o (t) can thus be interactively changed and adjusted as desired and personal taste.

Der Spezialfall n=2 weist den besonderen Vorteil auf, dass das zeitvariable Signal r (t) sowie die Abbildungsfunktion f anschaulich grafisch darstellbar sind.The special case n = 2 has the particular advantage that the time-variable signal r ( t ) as well as the mapping function f are graphically representable.

Figur 3 zeigt den zeitlichen Verlauf 18 des zeitvariablen Signals r(t) = (sin(1.01ωt), cos(ωt)) mit Anfangspunkt 18a und Endpunkt 18b, wobei in der Abszisse das Teilsignal r1(t) = x = sin(1.01ωt) und in der Ordinate das Teilsignal r2(t) = y = cos(ωt) dargestellt ist.FIG. 3 shows the time profile 18 of the time-variable signal r (t) = (sin (1.01 ωt ), cos (ω t )) with starting point 18a and end point 18b, wherein in the abscissa the sub-signal r 1 (t) = x = sin (1.01ω t ) and in the ordinate the sub-signal r 2 (t) = y = cos (ω t ) is shown.

Figur 4 zeigt den zeitlichen Verlauf 18 des zeitvariablen Signals r t = sin ( ω t ) - t 170 , cos ( ω t ) + t 200

Figure imgb0007
mit Anfangspunkt 18a und Endpunkt 18b, wobei in der Abszisse das Teilsignal r 1 t = x = sin ( ω t ) - t 170
Figure imgb0008
und in der Ordinate das Teilsignal r 2 t = y = cos ( ω t ) + t 200
Figure imgb0009
dargestellt ist.FIG. 4 shows the time profile 18 of the time-variable signal r ~ t = sin ( ω t ) - t 170 . cos ( ω t ) + t 200
Figure imgb0007
with starting point 18a and end point 18b, wherein in the abscissa the sub-signal r 1 t = x = sin ( ω t ) - t 170
Figure imgb0008
and in the ordinate the sub-signal r 2 t = y = cos ( ω t ) + t 200
Figure imgb0009
is shown.

Dabei bildet der Term t 170

Figure imgb0010
beziehungsweise der Term t 200
Figure imgb0011
die Mitte, auch als Offset oder Gleichspannungsanteil bezeichnet.At the same time the term forms t 170
Figure imgb0010
or the term t 200
Figure imgb0011
the middle, also referred to as offset or DC component.

Das zeitvariable Signal r(t) kann zusätzlich beispielsweise bezüglich der Amplitude verändert werden, indem beispielsweise das Teilsignal r 1 t = x = a t sin ( ω t ) - t 170

Figure imgb0012
mit dem Faktor a(t) multipliziert wird. Über den Faktor a(t) kann somit beispielsweise ein Anklang, ein Ausklang oder eine Anschlagstärke aufmoduliert werden.The time-variable signal r (t) can additionally be changed, for example, with respect to the amplitude, for example by the sub-signal r 1 t = x = a t sin ( ω t ) - t 170
Figure imgb0012
is multiplied by the factor a (t). By way of the factor a (t), it is thus possible, for example, to modulate an attack, a conclusion or a velocity.

Figur 5 zeigt in einer dreidimensionalen Darstellung den Verlauf 20 der Abbildungsfunktion f ( x , y ) = x 2 y 2 1 + ( x 2 + y 2 ) 2

Figure imgb0013
FIG. 5 shows the course 20 of the imaging function in a three-dimensional representation f ( x . y ) = x 2 y 2 1 + ( x 2 + y 2 ) 2
Figure imgb0013

Figur 6 zeigt in einer dreidimensionalen Darstellung den Verlauf 20 einer weiteren Abbildungsfunktion
f = f x y = abs sin x 1 + x + y 2

Figure imgb0014
FIG. 6 shows in a three-dimensional representation the course 20 of a further imaging function
f = f x y = Section sin x 1 + x + y 2
Figure imgb0014

Der Spezialfall n=2 weist den weiteren Vorteil auf, dass beispielsweise die Darstellungen der Figuren 3 und 5 übereinanderliegend darstellbar sind. Dadurch ist eine optische Anzeige der Interaktion zwischen dem zeitvariable Signal r (t) sowie der Abbildungsfunktion f möglich. Das zeitvariable Signal r(t) sowie der Abbildungsfunktion f können durch Änderung von Parametern verändert werden, was eine Änderung in der optischen Anzeige bewirkt. Diese ergibt den Vorteil, dass dem Benutzer das erzeugte Klangsignal o(t) nicht nur akustisch hörbar zur Verfügung steht, sondern das Zusammenwirken der Teilschritte zudem noch visuell anzeigt, was den Vorteil ergibt, dass das Klangsignal o(t) einfacher, benutzerfreundlicher und differenzierter einstellbar ist. In einer besonders vorteilhaften Ausgestaltung können die Parameter des zeitvariablen Signals r (t) sowie der Abbildungsfunktion f interaktiv über die visuelle Anzeige verändert werden, indem zum Beispiel die Darstellung des zeitvariablen Signals r (t) bezüglich der Darstellung der Abbildungsfunktion f in der x-y-Ebene verschoben wird, was eine Veränderung der Parameter und somit eine Veränderung des Klangsignals o(t) zur Folge hat.The special case n = 2 has the further advantage that, for example, the representations of FIGS. 3 and 5 can be represented one above the other. This is an optical indication of the interaction between the time-varying signal r ( t ) and the mapping function f possible. The time-variable signal r (t) and the mapping function f can be changed by changing parameters, causing a change in the visual display. This results in the advantage that the user is not only acoustically audible to the generated sound signal o (t), but also visually displays the interaction of the sub-steps, which gives the advantage that the sound signal o (t) easier, more user-friendly and differentiated is adjustable. In a particularly advantageous embodiment, the parameters of the time-variable signal r ( t ) and the mapping function f are interactively changed via the visual display, for example by displaying the time-variable signal r ( t ) is shifted with respect to the representation of the mapping function f in the xy plane, which results in a change of the parameters and thus a change of the sound signal o (t).

Als Abbildungsfunktion f könnte nicht nur, wie in Figur 5 oder 6 dargestellt, eine mathematische Funktion verwendet werden, sondern eine beliebige dreidimensionale Fläche. Die in den Figuren 5 und 6 dargestellte Abbildungsfunktion f ist digital berechnet, wobei jeweils an den Schnittpunkten zweier in x- und y-Richtung verlaufender Geraden die Werte genau berechnet sind. Diese flächig dargestellten, digitalen Werte der Abbildungsfunktion f werden nachfolgend auch als dreidimensionale Fläche bezeichnet. Die Werte zwischen den Schnittpunkten werden vorzugsweise jeweils interpoliert. Als Abbildungsfunktion f ist beispielsweise auch ein Bild, beispielsweise ein fotographisches, digitalisiertes Bild, dessen Farbwerte oder Graustufenwerte den Wert f der Abbildungsfunktion f bilden.As a mapping function f, not only could a mathematical function be used, as shown in FIG. 5 or 6, but an arbitrary three-dimensional surface. The mapping function f shown in FIGS. 5 and 6 is calculated digitally, the values being calculated precisely at the intersections of two straight lines running in the x and y directions. These digitally represented values of the mapping function f are also referred to below as a three-dimensional surface. The values between the Intersections are preferably interpolated in each case. An imaging function f, for example, is also an image, for example a photographic, digitized image whose color values or gray scale values form the value f of the imaging function f.

Fig. 2 zeigt schematisch eine Klangsignalerzeugungsvorrichtung 1 zur Durchführung des erfindungsgemässen Verfahrens. Das dargestellte Ausführungsbeispiel zeigt einen Computer mit einem Mikroprozessor 11, Schnittstellen 13, Benutzerschnittstellen 14, Speicher 15, und einem digitalen Signalprozessor (DSP) 16, welche alle über einen gemeinsamen Datenbus 12 Informationen austauschen. Die erforderlichen Parameter zur Vorgabe beziehungsweise zur Berechung der Teilsignale ri(t) und der Abbildungsfunktion 2 werden über die Benutzerschnittstelle 14 eingegeben. Das Teilsignal ri(t) wird danach mit Hilfe der im Speicher 17 lauffähigen DSP-Software durch den digitalen Signalprozessors 16 berechnet, und über die Abbildungsfunktion f auf das Klangsignal o(t) abgebildet. Mit Hilfe der im Speicher 17 abgelegten Software kann zudem ein digitales Hochpassfilter realisiert werden, sodass das vom digitalen Signalprozessor 16 berechnete Klangsignal o(t) über die Schnittstelle 13, beispielsweise als Audiosignal, der elektrische Signalleitung 7 zugeführt wird.Fig. 2 shows schematically a sound signal generating device 1 for carrying out the inventive method. The illustrated embodiment shows a computer with a microprocessor 11, interfaces 13, user interfaces 14, memory 15, and a digital signal processor (DSP) 16, all of which communicate via a common data bus 12. The required parameters for specifying or for calculating the partial signals r i (t) and the mapping function 2 are input via the user interface 14. The partial signal r i (t) is then calculated by means of the DSP software executable in the memory 17 by the digital signal processor 16, and mapped to the sound signal o (t) via the mapping function f. With the aid of the software stored in the memory 17, a digital high-pass filter can also be realized so that the sound signal o (t) calculated by the digital signal processor 16 is supplied to the electrical signal line 7 via the interface 13, for example as an audio signal.

Fig. 7 zeigt mit den Gleichungen 1 bis 7 weitere Beispiele von Abbildungsfunktionen f, und mit den Gleichungen 8 bis 13 weitere Beispiele für zeitvariable Signale r(t) . Die dargestellten Beispiele gelten für den Spezialfall n=2, d.h. eine Klangsignalerzeugungsvorrichtung 1 mit zwei unabhängigen Signalgeneratoren 2a, 2b. Wie in Fig. 1 dargestellt kann die Klangsignalerzeugungsvorrichtung 1 eine beliebig wählbare Anzahl von n Signalgeneratoren 2a, 2b, .. 2n umfassen, sodass der das zeitvariable Signal r(t) beschreibende Vektor r(t) n Dimensionen aufweist. Dazu entsprechend angepasst ist die Abbildungsfunktion f ausgestaltet, um den n-dimensionalen Vektor r(t) wieder in ein eindimensionales Klangsignal o(t) abzubilden.Fig. 7 shows with equations 1 to 7 further examples of mapping functions f, and with equations 8 to 13 further examples of time-variable signals r (t). The illustrated examples apply to the special case n = 2, ie a sound signal generating device 1 with two independent signal generators 2a, 2b. As shown in FIG. 1, the sound signal generating apparatus 1 may comprise an arbitrary number of n signal generators 2a, 2b, .. 2n, so that the vector describing the time-variable signal r (t) r (t) has n dimensions. Corresponding to this, the mapping function f is designed to be the n-dimensional vector r (t) again into a one-dimensional sound signal o (t).

Fig. 8 zeigt den zeitlichen Verlauf eines analogen Klangsignals g(t) sowie den zeitlichen Verlauf desselben, digitalisierten Klangsignals g[n], welches aus einer Folge digitaler Stützwerte besteht, welche um die regelmässige Zeitdauer ΔT beabstandet sind. In Fig. 8 sind die Werte g[0], g[1] und g[5] speziell gekennzeichnet.8 shows the time profile of an analog sound signal g (t) as well as the temporal course of the same, digitized sound signal g [n], which consists of a sequence of digital support values which are spaced by the regular time duration ΔT. In Fig. 8, the values g [0], g [1] and g [5] are specifically indicated.

Fig. 9 zeigt das dritte Beispiel einer Abbildungsfunktion f. In einer x-y-Ebene ist eine mäanderförmig verlaufende Spur 21 eingezeichnet. Die Spur 21 weist eine kontinuierliche Folge gegenseitig gleichmässig beabstandeter Punkte auf, wobei jedem dieser Punkte ein Stützwert g[n] zugeordnet ist. In Figur 9 sind beispielsweise die Werte g[0], g[1] und g[5] speziell gekennzeichnet. Alle Stützwerte g[n] des in Fig. 8 dargestellten Klangsignals g(t) sind derart entlang der Spur 21 zugeordnet. Diese Stützwerte g[n] bilden, ähnlich wie in den Figuren 5 oder 6 dreidimensional dargestellt, eine über der x-y-Ebene dreidimensional verlaufende Abbildungsfunktion f. Diese Abbildungsfunktion kann, wie bereits beschrieben, verwendet werden, um aus einem zeitvariablen Signal r(t) über die Abbildung o(t) = f(r(t)) ein Klangsignal o(t) zu erzeugen. Bei der Abbildung des Signals r(t) mit der in Fig. 9 dargestellten Abbildungsfunktion f ergibt sich die folgende Besonderheit: Wenn das Signal r(t) derart gewählt ist, dass dessen Werte in der x-y-Ebene genau mit den in Fig. 9 dargestellten Punkten übereinstimmt, so ergibt sich als Ausgangssignal o(t) das digitalisierte Signal g(t) beziehungsweise das digitale Signal g[n]. Somit ist es möglich über die Abbildungsfunktion das digitale Klangsignal g[n] zu erzeugen. Wird das Signal r(t) derart gewählt, dass es bezüglich der Spur 21 leicht versetzt verläuft, wie dies in Fig. 9 mit der strichliert dargestellten Spur 22 dargestellt ist, so weist das Ausgangssignal o(t) Ähnlichkeiten zum Klangsignal g[n] auf. Je nach Abstand zwischen der Spur 21 und der vom Signal r(t) bestimmten Spur 22 wird die Klangverfälschung des Klangsignals g[n] unterschiedlich stark ausfallen. Dieses Verfahren ermöglicht somit ein Klangsignal g[n] wie als ursprünglicher Klang aufgezeichnet wiederzugeben, oder durch Änderungen an den Parametern des Signal r(t) in einer Vielzahl von Möglichkeiten zu verändern.Fig. 9 shows the third example of a mapping function f. In an xy plane, a meandering track 21 is shown. The track 21 has a continuous series of mutually equally spaced points, with each of these points being assigned a support value g [n]. In FIG. 9, for example, the values g [0], g [1] and g [5] are specially marked. All support values g [n] of the sound signal g (t) shown in FIG. 8 are assigned along the track 21 in this way. These support values g [n], similar to those shown in three dimensions in FIGS. 5 or 6, form an imaging function f 3 that extends three-dimensionally over the xy plane. As already described, this mapping function can be used to obtain from a time-variable signal r (t) via the mapping o ( t ) = f ( FIG. r (t) ) to generate a sound signal o (t). In the mapping of the signal r (t) with the mapping function f shown in FIG. 9, the following peculiarity results: If the signal r (t) is chosen such that its values in the xy plane coincide exactly with those in FIG corresponds to the output points o (t), the digitized signal g (t) and the digital signal g [n]. Thus, it is possible to use the mapping function the digital sound signal g [n] produce. If the signal r (t) is selected to be slightly offset with respect to the track 21, as shown in FIG. 9 with the dashed line 22, the output signal o (t) has similarities to the sound signal g [n]. on. Depending on the distance between the track 21 and the track 22 determined by the signal r (t), the sound distortion of the sound signal g [n] will be of different magnitude. This method thus makes it possible to reproduce a sound signal g [n] as recorded as original sound, or to vary it by changing the parameters of the signal r (t) in a variety of ways.

Der Verlauf der Spur 21 kann in einer x-y-Ebene in einer Vielzahl von Möglichkeiten definiert sein. Fig. 10 zeigt beispielsweise eine spiralförmig verlaufende Spur 21, entlang welcher die digitalen Werte des Klangsignals g[n] eingetragen sind. Die digitalen Werte sind entlang der Spur 21 vorzugsweise in äquidistanten Abständen angeordnet und definieren derart eine dreidimensionale Fläche bestehend aus einer Vielzahl von Stützwerten, beziehungsweise die Abbildungsfunktion f. Um das ursprüngliche Klangsignal g[n] wiederzugeben muss das Signal r(t) für die in Fig. 10 dargestellte Abbildungsfunktion f der spiralförmigen Spur 21 folgen.The course of the track 21 may be defined in an x-y plane in a variety of ways. For example, Fig. 10 shows a spiral track 21 along which the digital values of the sound signal g [n] are plotted. The digital values are preferably arranged along the track 21 at equidistant intervals and thus define a three-dimensional surface consisting of a multiplicity of support values, or the imaging function f. In order to reproduce the original sound signal g [n], the signal r (t) for the mapping function f of the spiral track 21 shown in FIG. 10 must follow.

Claims (11)

  1. A method of generating a sound signal (o(t)), comprising the steps:
    - generating or selecting a time variable signal (r(t)), wherein the time variable signal (r(t)) is formed as a vector (r(t)) comprising at least two time-variable part signals (ri(t)), which part signals are each described by a function having at least one periodic component;
    - generating or selecting a non-linear imaging function (f) which images the time variable signal (r(t)) as a sequence of real numbers, wherein this imaging does not correspond to a linear combination of the time variable part signals (ri(t));
    - and calculating the sound signal (o(t)) in that the time variable signal (r(t)) is formed by the imaging function (f).
  2. A method in accordance with claim 1, characterised in that the time variable signal (r(t)) and/or the sound signal (o(t)) is/are computed in time discrete steps.
  3. A method in accordance with any one of the preceding claims, characterised in that the sound signal (o(t)) is filtered using a high pass filter.
  4. A method in accordance with any one of the preceding claims, characterised in that the wave shape and/or the frequency and/or the offset and/or the amplitude can be varied for each time variable part signal (ri(t)).
  5. A method in accordance with any one of the preceding claims, characterised in that the time variable signal (r(t)) and/or the imaging function (f) is/are shown graphically and can in particular be changed interactively.
  6. A method in accordance with any one of the preceding claims, characterised in that the imaging function (f) is configured as a two-dimensional function and defines a three-dimensional area in space.
  7. A method in accordance with claim 6, characterised in that the imaging function (f) is configured as a digital image whose colour values or grey scale values define the three dimensional area in space.
  8. A method in accordance with claim 6 or claim 7, characterised in that the time variable signal (r(t)) comprises two time variable part signals (ri(t)); in that the time variable signal (r(t)) is shown extending in a plane by the two time variable part signals (ri(t)) each defining one dimension of the plane; and in that the time variable part signals (ri(t)) and the imaging function (f) are shown together and can be mutually displaced interactively to vary the sound signal (o(t)) in this manner.
  9. A method in accordance with any one of the claims 6 to 8, characterised in that a track (21) extending in an x-y plane is generated; and in that the imaging function (f) is formed by a digital sound signal (g[n]) whose values are entered along the track (21).
  10. A method in accordance with claim 9, characterised in that the time variable signal (r(t)) is selected to extend along the track (21) such that the sound signal (g[n]) is generated via the imaging function (f).
  11. An apparatus for the carrying out of the method in accordance with any one of the preceding claims, comprising a computer (11), software which, when operated on the computer, causes the computer to carry out all the steps of this method, as well as input and output means (13, 14) with which at least one electroacoustic converter for the acoustic output of the sound signal (o(t)) can be connected in a signal transmitting manner.
EP01810245A 2001-03-09 2001-03-09 Method and apparatus for generating sound signals Expired - Lifetime EP1239453B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50112930T DE50112930D1 (en) 2001-03-09 2001-03-09 Method and device for generating sound signals
AT01810245T ATE371922T1 (en) 2001-03-09 2001-03-09 METHOD AND DEVICE FOR GENERATING SOUND SIGNAL
EP01810245A EP1239453B1 (en) 2001-03-09 2001-03-09 Method and apparatus for generating sound signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810245A EP1239453B1 (en) 2001-03-09 2001-03-09 Method and apparatus for generating sound signals

Publications (2)

Publication Number Publication Date
EP1239453A1 EP1239453A1 (en) 2002-09-11
EP1239453B1 true EP1239453B1 (en) 2007-08-29

Family

ID=8183785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810245A Expired - Lifetime EP1239453B1 (en) 2001-03-09 2001-03-09 Method and apparatus for generating sound signals

Country Status (3)

Country Link
EP (1) EP1239453B1 (en)
AT (1) ATE371922T1 (en)
DE (1) DE50112930D1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004861A1 (en) * 1986-12-23 1988-06-30 Joseph Charles Lyons Audible or visual digital waveform generating system
US5812688A (en) * 1992-04-27 1998-09-22 Gibson; David A. Method and apparatus for using visual images to mix sound
JPH086549A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Melody synthesizing method
WO1999013455A1 (en) * 1997-09-05 1999-03-18 The Board Of Trustees Of The University Of Illinois System and method for interfacing sound synthesis to movement

Also Published As

Publication number Publication date
EP1239453A1 (en) 2002-09-11
DE50112930D1 (en) 2007-10-11
ATE371922T1 (en) 2007-09-15

Similar Documents

Publication Publication Date Title
EP1878308B1 (en) Device and method for generation and processing of sound effects in spatial audio reproduction systems using a graphical user interface
DE60221927T2 (en) Device and program for sound coding
DE112013007075B4 (en) Vehicle proximity alarm device
DE69629934T2 (en) REVERSED TRANSFORM NARROW / BROADBAND TONSYNTHESIS
DE102012014313A1 (en) NUMERICAL CONTROL DEVICE OF A MACHINE TOOL WITH TONE CONVERSION UNIT
DE19726271C2 (en) Method and device for simulating machine noises
EP1194005B1 (en) Method for adjusting the transmission characteristics of an electronic circuit
DE4424192A1 (en) Electronic device for generating three-dimensional acoustic effects
DE10318191A1 (en) Producing and using transfer function for electroacoustic device such as hearing aid, by generating transfer function from weighted base functions and storing
DE3504017C2 (en)
EP1239453B1 (en) Method and apparatus for generating sound signals
EP1620950B1 (en) Pulse modulator and pulse modulation method
EP0777326A2 (en) Method and apparatus for filtering an audio signal
DE102005028892A1 (en) Processing a two-dimensional initial image by dismantling initial image into partial images and residual image, assigning one of the partial images as pilot image and assigning pilot frequency, and determining and summing weighting factors
DE112017006946B4 (en) MACHINE SOUND CONTROL DEVICE, MACHINE SOUND CONTROL METHOD AND MACHINE SOUND CONTROL PROGRAM
DE3037276C2 (en) Sound synthesizer
EP3105753A1 (en) Method for the synthetic generation of a digital audio signal
DE3101590A1 (en) METHOD AND ARRANGEMENT FOR GENERATING A VOICE SIGNAL
DE3246712A1 (en) METHOD FOR COMPOSING A VOICE ANALYSIS
DE102006059764B4 (en) signal processing
DE102020203613A1 (en) Method and system for controlling interior noise of a vehicle
EP1175668A1 (en) Device for calculating and generating signals, especially for digital sound synthesis
DE102012208405A1 (en) Measuring device and method for improved imaging of spectral characteristics
DE2429744C3 (en) Circuit for the synthesis of signals of a certain, given bandwidth
DE10210978C1 (en) Audio signal modification method for music production divides input signal into partail signals for separate processing before recombining

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030305

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20061017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50112930

Country of ref document: DE

Date of ref document: 20071011

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071128

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF & PARTNER INTELLECTUAL PROPERTY

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080129

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080530

BERE Be: lapsed

Owner name: MENZER, FRITZ

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MENZER, FRITZ

Free format text: MENZER, FRITZ#BADSTRASSE 32#8590 ROMANSHORN (CH) -TRANSFER TO- MENZER, FRITZ#BADSTRASSE 32#8590 ROMANSHORN (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 15

Ref country code: CH

Payment date: 20150319

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150319

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112930

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200315

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210308