EP1239304B1 - Improvements of processes for tomographic inversion of picked events in migrated seismic data - Google Patents

Improvements of processes for tomographic inversion of picked events in migrated seismic data Download PDF

Info

Publication number
EP1239304B1
EP1239304B1 EP02290520A EP02290520A EP1239304B1 EP 1239304 B1 EP1239304 B1 EP 1239304B1 EP 02290520 A EP02290520 A EP 02290520A EP 02290520 A EP02290520 A EP 02290520A EP 1239304 B1 EP1239304 B1 EP 1239304B1
Authority
EP
European Patent Office
Prior art keywords
reflector
time
migrated
depth
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290520A
Other languages
German (de)
French (fr)
Other versions
EP1239304A1 (en
Inventor
Patrice Guillaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CGG SA
Original Assignee
Compagnie Generale de Geophysique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale de Geophysique SA filed Critical Compagnie Generale de Geophysique SA
Publication of EP1239304A1 publication Critical patent/EP1239304A1/en
Application granted granted Critical
Publication of EP1239304B1 publication Critical patent/EP1239304B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times

Definitions

  • the present invention relates to methods of tomographic inversion of events pointed on seismic traces.
  • geologists or geophysicists To reconstruct images of the subsoil, geologists or geophysicists conventionally use acoustic emitters placed for example on the surface. These emitters emit waves that propagate in the basement and are reflected on the surfaces of the different layers of it (reflectors). Acoustic waves reflected to the surface are recorded as a function of time by receivers. The signals recorded by the receivers are called seismic traces.
  • Tomographic inversion techniques consist in determining, according to the acquired seismic traces and a selection of events, modelizations of the velocity fields in the subsoil.
  • a deep migration before adding the seismic data consists in determining for each position x, y of surface a collection of migrated traces carrying events which describe the subsurface vertically above said surface position (x, y).
  • Such a collection of traces is generally arranged by source-receiver distance classes (distances also known as offset or offset distances) and also by classes of increasing specular angles, and more rarely by orientation classes of the source-receiver segment. .
  • the depth associated with an event reflected at the plumb of a surface position is substantially constant regardless of the offset distance or the orientation of the trace considered (or the specular angle).
  • An object of the invention is to propose an inversion technique which substantially reduces the number of depth migrations to be performed in order to construct an optimum model and does not require a large computing power.
  • the in-depth migration before data addition is implemented for a plurality of velocity fields (CRP scan for example) and to determine the depth and the dip of the reflector, one selects the one of these velocity fields which minimizes the difference in the horizontality of the curve depth / distance of offset or depth curve / specular angle.
  • the reflector depth can be advantageously determined for different offsets or specular angles.
  • the distance between the reflector portions seen for different offsets of the collection being the one that minimizes this distance.
  • a speed field parameterization that optimizes the alignment of points that are migrated from the time and time gradient data
  • depth differences between intercept points are determined. between a given vertical and reflector portions which are parallel to the previously updated reflector and which pass through the newly migrated points, the selected rate field parameterization being the one that minimizes this difference.
  • the dips considered for each offset of the same collection may not be parallel, in which case they may be determined from the spokes.
  • the processing illustrated in FIG. 1 comprises a first step 1 which consists in deeply migrating the seismic data to determine for a given X, Y coordinate surface point the events which on a collection of seismic traces correspond to a reflection at the Plumb of this point.
  • This migration is determined with an initial ground speed model.
  • This model can be made up of several layers.
  • the migration migration depth before addition can also advantageously be implemented for a plurality of speed models corresponding to different possible disturbances with respect to the initial speed model.
  • disturbances are for example of linear type and function of a perturbation coefficient which is given different values to have different models neighboring the initial velocity field model.
  • the disturbance can be applied either to a single layer or to the entire model.
  • step 2 in Figure 1 After migration, it is determined in a second step (step 2 in Figure 1) the depth and dip of the reflector that is to be updated vertically above the coordinate surface point x, y considered.
  • the one of these models is pointed out which corresponds to the difference in horizontality of the curve depth / distance of the weakest offset, the depth Z ⁇ and the dip D ⁇ that the it is determined for the reflector then being a function of the model thus pointed.
  • This treatment - called demigration treatment ( Figure 2) - consists of lines of spokes for each offset and depending on the source-receiver orientation from a reflector (reflector Ref in the figure) that corresponds to the depth ( function of the offset) and the dip that has been determined plumb with the surface point of coordinates x, y.
  • the data obtained by this pattern of inverse spokes from the reflector to the surface have the advantage of being totally independent of the speed model considered.
  • These data are in particular the positions on the surface of the source-receiver pairs (S, R) corresponding to a reflection on the reflector Ref, as well as the travel times and time gradients that correspond to the calculated rulers, these travel times and gradients time being independent of the velocity model considered when they are related to the coefficient ⁇ in which the demigration treatment has been implemented (t / ⁇ and ⁇ t / ⁇ in FIG. 2 in the case of a perturbation applied to the model ).
  • step 4 in FIG. 1 the data thus obtained are used to process, for a chosen offset distance h, to migrate by drawing of spokes to determine the point of reflection of the source couple. / receiver S, R which corresponds to this offset distance h and which honors the travel times and time gradients previously formed.
  • This kinematic migration is done either in the migration model, or after introducing a perturbation on the speed model used in step 3 of demigration.
  • this new migration makes it possible to determine a new migrated point Pmi, this point being defined by its depth Zi, as well as by the coordinates Xi, Yi which correspond to the coordinates of the surface point at the base of which this Pmi point is found.
  • This migration is implemented for different offset distances - or different specular angles, which is equivalent - of the trace collection obtained at the end of step 3.
  • the proposed method takes advantage of the fact that when the speed model used correctly reflects reality, these different migrated points must be aligned on the same reflector portion.
  • Still another criterion can consist in minimizing the differences between the depths of the intercepts points between a vertical (for example the one perpendicular to the centroid of the migrated places) and the reflector portions more or less parallel to the updated reflector j previously and passing through the new points migrated (difference between the coordinates Zi, Z'i in Figure 3).
  • the minimizations are implemented by modifying by successive iterations the parameterizations of the speed model.
  • the selection processing of the speed field parameterization may take into account other criteria in addition to optimizing the alignment of points that are migrated from said trace collection.

Description

La présente invention est relative aux procédés d'inversion tomographique d'événements pointés sur des traces sismiques.The present invention relates to methods of tomographic inversion of events pointed on seismic traces.

Pour reconstruire des images du sous-sol, les géologues ou géophysiciens utilisent classiquement des émetteurs acoustiques placés par exemple en surface. Ces émetteurs émettent des ondes qui se propagent dans le sous-sol et se réfléchissent sur les surfaces des différentes couches de celui-ci (réflecteurs). Les ondes acoustiques réfléchies vers la surface sont enregistrées en fonction du temps par des récepteurs. Les signaux enregistrés par les récepteurs sont appelés traces sismiques.To reconstruct images of the subsoil, geologists or geophysicists conventionally use acoustic emitters placed for example on the surface. These emitters emit waves that propagate in the basement and are reflected on the surfaces of the different layers of it (reflectors). Acoustic waves reflected to the surface are recorded as a function of time by receivers. The signals recorded by the receivers are called seismic traces.

On sait classiquement pointer sur de telles traces sismiques des portions qui correspondent à la réflexion d'impulsions acoustiques émises en surface et qui correspondent à des réflecteurs d'intérêt, ainsi que déterminer les temps de trajet qui correspondent à ces réflexions.It is known conventionally to point on such seismic traces portions that correspond to the reflection of acoustic pulses emitted at the surface and which correspond to reflectors of interest, as well as to determine the travel times that correspond to these reflections.

Les techniques d'inversion tomographique consistent à déterminer, en fonction des traces sismiques acquises et d'une sélection d'événements, des modélisations des champs de vitesse dans le sous-sol.Tomographic inversion techniques consist in determining, according to the acquired seismic traces and a selection of events, modelizations of the velocity fields in the subsoil.

De nombreuses techniques d'inversion sont déjà connues.Many inversion techniques are already known.

Il est en particulier classiquement connu d'inverser les temps d'arrivée des ondes réfléchies et notamment de déterminer le champ de vitesse dans le sous-sol en minimisant l'écart entre les temps d'arrivée observés et les temps d'arrivée modélisés, ces derniers étant calculés par tracé de rais, dans le modèle d'inversion, entre les émetteurs et les sources.It is in particular conventionally known to reverse the arrival times of the reflected waves and in particular to determine the velocity field in the subsoil by minimizing the difference between the observed arrival times and the modeled arrival times, the latter being calculated by drawing of spokes, in the model of inversion, between the emitters and the sources.

L'inversion des temps de trajets s'avère difficile à mettre en oeuvre dans le cas de structures géologiques complexes, du fait notamment d'un manque de discrimination des arrivées multiples.The inversion of travel times is difficult to implement in the case of complex geological structures, due in particular to a lack of discrimination of multiple arrivals.

D'autres techniques d'inversion tomographique sont des techniques qui mettent en oeuvre des migrations en profondeur.Other techniques of tomographic inversion are techniques that implement deep migrations.

Une migration en profondeur avant addition des données sismiques consiste à déterminer pour chaque position x,y de surface une collection de traces migrées portant des événements qui décrivent le sous-sol à l'aplomb de ladite position de surface (x, y). Une telle collection de traces est généralement rangée par classes de distances source-récepteur (distances également appelées distances de déport ou d'offset) et également par classes d'angles spéculaires croissants, et plus rarement par classes d'orientation du segment source- récepteur.A deep migration before adding the seismic data consists in determining for each position x, y of surface a collection of migrated traces carrying events which describe the subsurface vertically above said surface position (x, y). Such a collection of traces is generally arranged by source-receiver distance classes (distances also known as offset or offset distances) and also by classes of increasing specular angles, and more rarely by orientation classes of the source-receiver segment. .

Lorsque le modèle de vitesse utilisé reflète correctement la réalité, la profondeur associée à un événement se réfléchissant à l'aplomb d'une position de surface est sensiblement constante quelle que soit la distance de déport ou l'orientation de la trace considérée (ou encore l'angle spéculaire).When the speed model used correctly reflects the reality, the depth associated with an event reflected at the plumb of a surface position is substantially constant regardless of the offset distance or the orientation of the trace considered (or the specular angle).

Des procédés d'inversion tomographique en profondeur utilisent cette caractéristique pour définir le critère d'inversion à minimiser.In depth tomographic inversion methods use this feature to define the inversion criterion to be minimized.

Notamment, il a été proposé dans :

  • "Velocity analysis by iterative profile migration" - Kamal Al-Yahya - Geophysics, Vol. 54, n°6, 1989, p. 718-729

un procédé d'inversion dans lequel on détermine le modèle de vitesse du sous-sol en minimisant l'écart à l'horizontalité de la courbe profondeur/distance d'une collection de traces migrées.In particular, it has been proposed in:
  • "Velocity analysis by iterative profile migration" - Kamal Al-Yahya - Geophysics, Vol. 54, No. 6, 1989, p. 718-729

an inversion method in which the basement velocity model is determined by minimizing the horizontality deviation of the depth / distance curve of a migrated trace collection.

La mise en oeuvre de cette technique suppose que plusieurs migrations en profondeur soient effectuées, ce qui est particulièrement fastidieux à mettre en oeuvre lorsque plusieurs itérations sont nécessaires pour converger.The implementation of this technique assumes that several migrations in depth are performed, which is particularly tedious to implement when multiple iterations are necessary to converge.

Un but de l'invention est de proposer une technique d'inversion qui réduit sensiblement le nombre de migrations profondeur à effectuer pour construire un modèle optimum et ne nécessite pas une puissance de calcul importante.An object of the invention is to propose an inversion technique which substantially reduces the number of depth migrations to be performed in order to construct an optimum model and does not require a large computing power.

Elle propose à cet effet un procédé pour la mise à jour d'un modèle de vitesse d'un sous-sol, selon lequel :

  • on met en oeuvre sur un ensemble de traces sismiques acquises au droit dudit sous-sol une migration profondeur avant addition des données, cette migration étant mise en oeuvre à l'aide d'au moins un modèle de vitesse de départ et permettant de déterminer une ou plusieurs collection de traces qui décrivent chacune le sous-sol à l'aplomb d'un point de surface,
  • on pointe sur au moins une collection de traces obtenue à l'aide de cette migration un ou plusieurs événements qui se réfléchissent à l'aplomb du point de surface considéré et on détermine pour chaque événement pointé une profondeur et un pendage de réflecteur et un pendage de réflecteur au droit dudit point de surface,
  • on met en oeuvre un tracé de rais entre ce réflecteur et la surface pour déterminer des collections de couples source acoustique-récepteur, ainsi que données caractéristiques des temps de trajet et des gradients temps qui correspondent aux tracés de rais associés à ces couples,

caractérisé en ce qu'on met ensuite en oeuvre un traitement selon lequel on itère les étapes consistant à :
  • migrer cinématiquement des données de temps de trajet et de gradient temps obtenues précédemment à l'aide d'une paramétrisation du champ de vitesse,
  • caractériser l'alignement des points migrés ainsi obtenus,
  • mettre à jour la paramétrisation,

le traitement sélectionnant la paramétrisation de champ de vitesse qui optimise l'alignement desdits points migrés.To this end, it proposes a method for updating a model of speed of a subsoil, according to which:
  • a set of seismic traces acquired at the right of said subsoil is used to migrate depth before addition of the data, this migration being implemented using at least one starting speed model and making it possible to determine one or more collection of traces which each describe the subsoil directly above a surface point,
  • we point to at least one collection of traces obtained using this migration one or more events that are reflected vertically above the surface point considered and is determined for each event pointed a depth and a reflector dip and a dip reflector at the right of said surface point,
  • a ray line is used between this reflector and the surface to determine collections of acoustic-receiver source pairs, as well as characteristic data of the travel times and time gradients that correspond to the wave traces associated with these pairs,

characterized in that a treatment is then implemented according to which the steps of:
  • to kinematically migrate time travel and gradient data obtained previously using a speed field parameterization,
  • characterize the alignment of the migrated points thus obtained,
  • update the parameterization,

the processing selecting the speed field parameterization which optimizes the alignment of said migrated points.

Les trois étapes précédentes peuvent être répétées jusqu'à l'obtention d'un alignement jugé suffisant.The previous three steps can be repeated until an alignment deemed sufficient.

On notera que le traitement de sélection de la paramétrisation du champ de vitesse ainsi proposé ne nécessite pas d'effectuer systématiquement une migration profondeur des données sismiques (fort couteuse) après chaque mise à jour des vitesses.It should be noted that the selection processing of the parameterization of the speed field thus proposed does not require systematic migration of the depth of the seismic data (very expensive) after each update of the speeds.

On comprend par conséquent que le procédé proposé par l'invention peut être mis en oeuvre sans nécessiter des puissances de calcul importantes.It is therefore understood that the method proposed by the invention can be implemented without requiring significant computing power.

Dans une mise en oeuvre avantageuse, la migration en profondeur avant addition des données est mise en oeuvre pour une pluralité de champs de vitesses (CRP scan par exemple) et pour déterminer la profondeur et le pendage du réflecteur, on sélectionne celui de ces champs de vitesses qui minimise l'écart à l'horizontalité de la courbe profondeur/distance de déport ou de la courbe profondeur/angle spéculaire.In an advantageous implementation, the in-depth migration before data addition is implemented for a plurality of velocity fields (CRP scan for example) and to determine the depth and the dip of the reflector, one selects the one of these velocity fields which minimizes the difference in the horizontality of the curve depth / distance of offset or depth curve / specular angle.

Par ailleurs, la profondeur de réflecteur peut être avantageusement déterminée pour différents déports ou angles spéculaires.Furthermore, the reflector depth can be advantageously determined for different offsets or specular angles.

Selon un mode de mise en oeuvre préféré possible, pour sélectionner une paramétrisation du champ de vitesse qui optimise l'alignement de points qui sont migrés à partir des données de temps et de gradient temps, on détermine la distance entre les portions de réflecteur vues pour différents déports de la collection, la paramétrisation de champ de vitesse sélectionnée étant celle qui minimise cette distance.According to a possible preferred embodiment, to select a parameterization of the velocity field which optimizes the alignment of points which are migrated from the time and time gradient data, the distance between the reflector portions seen for different offsets of the collection, the selected speed field parameterization being the one that minimizes this distance.

Selon un autre mode de mise en oeuvre, pour sélectionner une paramétrisation du champ de vitesse qui optimise l'alignement de points qui sont migrés à partir des données de temps et de gradient temps, on détermine les différences de profondeurs entre des points d'interception entre une verticale donnée et des portions de réflecteur qui sont parallèles au réflecteur mis à jour précédemment et qui passent par les nouveaux points migrés, la paramétrisation de champ de vitesse sélectionnée étant celle qui minimise cette différence.According to another embodiment, to select a speed field parameterization that optimizes the alignment of points that are migrated from the time and time gradient data, depth differences between intercept points are determined. between a given vertical and reflector portions which are parallel to the previously updated reflector and which pass through the newly migrated points, the selected rate field parameterization being the one that minimizes this difference.

En variante encore, les pendages considérés pour chaque déport d'une même collection peuvent ne pas être parallèles, auquel cas ils peuvent être déterminés à partir des rais.In another variant, the dips considered for each offset of the same collection may not be parallel, in which case they may be determined from the spokes.

Egalement, on peut mettre en oeuvre les étapes suivantes pour sélectionner une paramétrisation du champ de vitesse, :

  • on détermine pour un point migré un réflecteur passant par celui-ci,
  • on trace les rais entre ce point migré et la surface et
  • on détermine une erreur temporelle qui est fonction de l'écart entre le temps de trajet correspondant à au moins un de ces rais et le temps de trajet de la trace qui dans la collection correspond à la même distance de déport ou au même angle spéculaire,
  • on sélectionne une paramétrisation de champ de vitesse qui minimise cette erreur temporelle et optimise l'alignement de points qui sont migrés à partir des données temps et de gradient temps.
Also, the following steps can be implemented to select a parameterization of the speed field:
  • a reflector passing through it is determined for a migrated point,
  • we draw the lines between this migrated point and the surface and
  • a temporal error is determined which is a function of the difference between the travel time corresponding to at least one of these spokes and the travel time of the track which in the collection corresponds to the same offset distance or to the same specular angle,
  • a speed field parameterization is selected which minimizes this time error and optimizes the alignment of points that are migrated from the time and time gradient data.

En variante ou en complément, on peut également mettre en oeuvre les étapes suivantes :

  • on détermine pour un point migré un réflecteur passant par celui-ci,
  • on trace les rais entre ce point migré et la surface et
  • on détermine une erreur temporelle qui est fonction de l'écart entre le gradient de temps de trajet correspondant à au moins un de ces rais et le gradient de temps de trajet de la trace qui dans la collection correspond à la même distance de déport ou au même angle spéculaire,
  • on sélectionne une paramétrisation de champ de vitesse qui minimise cette erreur temporelle et optimise l'alignement de points qui sont migrés à partir des données de temps et de gradient temps.
As a variant or in addition, the following steps can also be implemented:
  • a reflector passing through it is determined for a migrated point,
  • we draw the lines between this migrated point and the surface and
  • a temporal error is determined which is a function of the difference between the path time gradient corresponding to at least one of these spokes and the trace time gradient of the track which in the collection corresponds to the same offset distance or same specular angle,
  • a speed field parameterization is selected that minimizes this time error and optimizes the alignment of points that are migrated from the time and time gradient data.

D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés sur lesquels :

  • la figure 1 est un organigramme qui illustre un mode de mise en oeuvre possible pour l'invention ;
  • la figure 2 est une représentation schématique d'un sous-sol illustrant la mise en oeuvre de certaines étapes du traitement de la figure 1 ;
  • la figure 3 est une représentation schématique illustrant d'autres étapes.
Other features and advantages of the invention will become apparent from the description which follows, which is purely illustrative and nonlimiting and should be read with reference to the accompanying drawings in which:
  • Figure 1 is a flowchart illustrating one possible embodiment for the invention;
  • Figure 2 is a schematic representation of a sub-surface illustrating the implementation of certain processing steps of Figure 1;
  • Figure 3 is a schematic representation illustrating other steps.

Le traitement illustré sur la figure 1 comporte une première étape 1 qui consiste à migrer en profondeur les données sismiques pour déterminer pour un point de surface de coordonnées X, Y données les événements qui sur une collection de traces sismiques correspondent à une réflexion à l'aplomb de ce point.The processing illustrated in FIG. 1 comprises a first step 1 which consists in deeply migrating the seismic data to determine for a given X, Y coordinate surface point the events which on a collection of seismic traces correspond to a reflection at the Plumb of this point.

Cette migration est déterminée avec un modèle initial de vitesse de sous sol. Ce modèle peut être constitué en plusieurs couches.This migration is determined with an initial ground speed model. This model can be made up of several layers.

Pour chacune des couches de ce modèle initial, le champ de vitesse est par exemple du type V ( x , y , z ) = ( V 0 ( x , y ) + k ( x , y ) * z ) * An ( ϵ , δ , 0 phase )

Figure imgb0001

où :

  • x, y et z sont les coordonnées du point du sous-sol que l'on considère, z étant la profondeur ;
  • V(x, y, z) est la vitesse acoustique au point de coordonnées x, y, z du sous-sol ;
  • V0(x, y) et k(x, y) sont deux fonctions qui dépendent des coordonnées x et y
  • An(ε(x, y), δ(x, y), θ) étant un terme décrivant l'anisotropie et pouvant dépendre de x et y, où ε,δ sont par exemple les paramètres d'anisotropie faible décrits par Thomsen (Geophysics 1986), et où θ est l'angle de phase décrivant la direction de propagation des ondes.
For each of the layers of this initial model, the speed field is for example of the type V ( x , there , z ) = ( V 0 ( x , there ) + k ( x , there ) * z ) * Year ( ε , δ , 0 phase )
Figure imgb0001

or :
  • x, y and z are the coordinates of the subsurface point considered, z being the depth;
  • V (x, y, z) is the acoustic velocity at the point of x, y, z coordinates of the subsoil;
  • V0 (x, y) and k (x, y) are two functions that depend on the x and y coordinates
  • An (ε (x, y), δ (x, y), θ) is a term describing the anisotropy and can depend on x and y, where ε, δ are for example the weak anisotropy parameters described by Thomsen ( Geophysics 1986), and where θ is the phase angle describing the propagation direction of the waves.

Le traitement de migration profondeur avant addition peut également avantageusement être mis en oeuvre pour une pluralité de modèles de vitesse correspondant à différentes perturbations possibles par rapport au modèle de vitesse initial.The migration migration depth before addition can also advantageously be implemented for a plurality of speed models corresponding to different possible disturbances with respect to the initial speed model.

Ces perturbations sont par exemple de type linéaire et fonction d'un coefficient de perturbation auquel on donne différentes valeurs pour disposer de différents modèles voisins du modèle de champ de vitesse initial. La perturbation peut s'appliquer soit à une seule couche, soit à l'ensemble du modèle.These disturbances are for example of linear type and function of a perturbation coefficient which is given different values to have different models neighboring the initial velocity field model. The disturbance can be applied either to a single layer or to the entire model.

Pour reprendre l'exemple de modèle de vitesse initial donné précédemment, un modèle de vitesse perturbé pourra être :

  • Vα(x,y,z)=(αV0(x,y)+ K(x,y)*z)*An dans le cas d'une perturbation appliquée uniquement à une couche ou
  • Vα(x,y,z)=α*(V0(x,y)+ K(x,y)*z)*An dans le cas d'une perturbation appliquée uniquement à l'ensemble du modèle,

où α est le paramètre de perturbation et à une valeur qui varie par exemple de 0,8 à 1,2.To use the example of an initial speed model given above, a disturbed speed model could be:
  • V α (x, y, z) = (αV0 (x, y) + K (x, y) * z) * An in the case of a disturbance applied to only one layer or
  • V α (x, y, z) = α * (V0 (x, y) + K (x, y) * z) * An in the case of a perturbation applied only to the whole model,

where α is the perturbation parameter and at a value that varies for example from 0.8 to 1.2.

Cette technique de balayage de plusieurs modèles de vitesse au moyen d'un coefficient linéaire est appelée "CRP-scan" et a par exemple été décrite dans le cas de migration 3D dans l'article suivant :

  • Audebert, Diet, Zhang, "CRP scans for 3D pre-stack Depth Migration : A powerful combination of CRP-gathers and velocity scan", SEG, 1996, Expanded Abstracts - p.515-518.
This technique of scanning several velocity models by means of a linear coefficient is called "CRP-scan" and has for example been described in the case of 3D migration in the following article:
  • Audebert, Diet, Zhang, "CRP scans for 3D pre-stack Depth Migration: A powerful combination of CRP-gathers and velocity scan," SEG, 1996, Expanded Abstracts - p.515-518.

Après migration, on détermine dans une deuxième étape (étape 2 sur la figure 1) la profondeur et le pendage du réflecteur que l'on cherche à mettre à jour à l'aplomb du point de surface de coordonnées x, y considéré.After migration, it is determined in a second step (step 2 in Figure 1) the depth and dip of the reflector that is to be updated vertically above the coordinate surface point x, y considered.

Dans le cas où plusieurs modèles de vitesses ont été balayés, on pointe celui de ces modèles qui correspond à l'écart à l'horizontalité de la courbe profondeur/distance d'offset le plus faible, la profondeur Zα et le pendage Dα que l'on détermine pour le réflecteur étant alors fonction du modèle ainsi pointé.In the case where several velocity models have been scanned, the one of these models is pointed out which corresponds to the difference in horizontality of the curve depth / distance of the weakest offset, the depth Zα and the dip Dα that the it is determined for the reflector then being a function of the model thus pointed.

Une fois ce pendage et cette profondeur déterminée, on met en oeuvre avec le modèle de vitesse considéré (celui du coefficient linéaire α qui correspond à l'écart à l'horizontalité le plus faible) un traitement inverse d'un traitement de migration.Once this dip and this determined depth, it implements with the speed model considered (that of the linear coefficient α which corresponds to the gap at the lowest horizontal) a reverse treatment of a migration treatment.

Ce traitement - appelé traitement de démigration (figure 2) - consiste en des tracés de rais pour chaque déport et en fonction de l'orientation source-récepteur à partir d'un réflecteur (réflecteur Ref sur la figure) qui correspondrait à la profondeur (fonction du déport) et au pendage que l'on a déterminé à l'aplomb du point de surface de coordonnées x, y.This treatment - called demigration treatment (Figure 2) - consists of lines of spokes for each offset and depending on the source-receiver orientation from a reflector (reflector Ref in the figure) that corresponds to the depth ( function of the offset) and the dip that has been determined plumb with the surface point of coordinates x, y.

Les données obtenues par ce tracé de rais inverse du réflecteur vers la surface ont l'avantage d'être totalement indépendantes du modèle de vitesse considéré. Ces données sont notamment les positions à la surface des couples source-récepteur (S, R) correspondant à une réflexion sur le réflecteur Ref, ainsi que les temps de trajets et les gradients temps qui correspondent aux rais calculés, ces temps de trajet et gradients temps étant indépendants du modèle de vitesse considéré lorsqu'ils sont rapportés au coefficient α dans lequel le traitement de démigration a été mis en oeuvre (t/α et ∇t/α sur la figure 2 dans le cas d'une perturbation appliquée au modèle).The data obtained by this pattern of inverse spokes from the reflector to the surface have the advantage of being totally independent of the speed model considered. These data are in particular the positions on the surface of the source-receiver pairs (S, R) corresponding to a reflection on the reflector Ref, as well as the travel times and time gradients that correspond to the calculated rulers, these travel times and gradients time being independent of the velocity model considered when they are related to the coefficient α in which the demigration treatment has been implemented (t / α and ∇t / α in FIG. 2 in the case of a perturbation applied to the model ).

On pourra à cet égard avantageusement se rapporter à l'article :

  • Audebert, Diet, Guillaume, Jones, Zhang - CRP-scans : "3D PreSDM Velocity Analysis via Zero Offset Tomographic Inversion" - 1997 - Expanded Abstracts - Soc. Expl. Geophys. -pp. 1805-1808.
In this respect, it will be advantageous to refer to the article:
  • Audebert, Diet, William, Jones, Zhang - CRP-scans: "3D PreSDM Velocity Analysis via Zero Offset Tomographic Inversion" - 1997 - Expanded Abstracts - Soc. Expl. Geophys. -pp. From 1805 to 1808.

Dans une étape suivante (étape 4 sur la figure 1), on met en oeuvre avec les données ainsi obtenues un traitement consistant, pour une distance d'offset h choisie, à migrer par tracé de rais pour déterminer le point de réflexion du couple source/récepteur S, R qui correspond à cette distance d'offset h et qui honore les temps de trajet et les gradients temps préalablement constitués.In a following step (step 4 in FIG. 1), the data thus obtained are used to process, for a chosen offset distance h, to migrate by drawing of spokes to determine the point of reflection of the source couple. / receiver S, R which corresponds to this offset distance h and which honors the travel times and time gradients previously formed.

Cette migration cinématique est faite soit dans le modèle de migration, soit après avoir introduit une perturbation sur le modèle de vitesse utilisé dans l'étape 3 de démigration.This kinematic migration is done either in the migration model, or after introducing a perturbation on the speed model used in step 3 of demigration.

Comme l'illustre la figure 3, cette nouvelle migration permet de déterminer un nouveau point migré Pmi, ce point étant défini par sa profondeur Zi, ainsi que par les coordonnées Xi, Yi qui correspondent aux coordonnées du point de surface à l'aplomb duquel ce point Pmi se trouve.As illustrated in FIG. 3, this new migration makes it possible to determine a new migrated point Pmi, this point being defined by its depth Zi, as well as by the coordinates Xi, Yi which correspond to the coordinates of the surface point at the base of which this Pmi point is found.

Cette migration est mise en oeuvre pour différentes distances d'offset - ou différents angles spéculaires, ce qui est équivalent - de la collection de traces obtenue à l'issue de l'étape 3.This migration is implemented for different offset distances - or different specular angles, which is equivalent - of the trace collection obtained at the end of step 3.

Comme l'illustre la figure 3, les différents points migrés (en l'occurrence Pmi, P'mi obtenus pour ces différentes distances d'offset (en l'occurrence h, h') - ou ces différents angles spéculaires - sont dispersés latéralement et ne sont pas concentrés sur le point Pα.As illustrated in Figure 3, the various points migrated (in this case Pmi, P'mi obtained for these different offset distances (in this case h, h ') - or these different specular angles - are scattered laterally. and are not focused on the point Pα.

Le procédé proposé tire toutefois partie de ce que lorsque le modèle de vitesse que l'on utilise reflète correctement la réalité, ces différents points migrés doivent être alignés sur une même portion de réflecteur.However, the proposed method takes advantage of the fact that when the speed model used correctly reflects reality, these different migrated points must be aligned on the same reflector portion.

Or, en faisant l'hypothèse que le réflecteur i que l'on cherche à mettre à jour peut se comparer au réflecteur j qui correspond à la couche mise à jour précédemment (ce qui est d'autant plus proche de la réalité que la courbure résiduelle, est faible), il est possible de caractériser le fait que les points remigrés (Pmi, Pmi' sur la figure 3) sont plus ou moins alignés sur une même portion de réflecteur.Now, by making the assumption that the reflector i that one seeks to update can be compared to the reflector j which corresponds to the layer previously updated (which is all the closer to reality as the curvature residual, is weak), it is possible to characterize the fact that the remigrés points (Pmi, Pmi 'in Figure 3) are more or less aligned on the same portion of reflector.

En faisant cette hypothèse, on peut par exemple déterminer le champ de vitesse que l'on recherche en minimisant la distance entre les portions de réflecteur vues par différentes traces de la collection migrée dans l'étape 3 (distance D sur la figure 3), ces portions de réflecteurs étant supposées parallèles ou quasi parallèles au réflecteur j.By making this assumption, one can for example determine the velocity field that one seeks by minimizing the distance between the reflector portions seen by different traces of the migrated collection in step 3 (distance D in FIG. 3), these reflector portions being assumed to be parallel or almost parallel to the reflector j.

Un autre critère encore peut consister à minimiser les écarts entre les profondeurs des points d'intercepts entre une verticale (par exemple celle à l'aplomb du barycentre des lieux migrés) et les portions de réflecteur plus ou moins parallèles au réflecteur j mis à jour précédemment et passant par les nouveaux points migrés (écart entre les coordonnées Zi, Z'i sur la figure 3).Still another criterion can consist in minimizing the differences between the depths of the intercepts points between a vertical (for example the one perpendicular to the centroid of the migrated places) and the reflector portions more or less parallel to the updated reflector j previously and passing through the new points migrated (difference between the coordinates Zi, Z'i in Figure 3).

Dans l'un et l'autre cas, les minimisations sont mises en oeuvre en modifiant par itérations successives les paramétrisations du modèle de vitesse.In either case, the minimizations are implemented by modifying by successive iterations the parameterizations of the speed model.

A titre d'exemples, les perturbations de paramétrisation utilisées successivement peuvent être déterminées en fonction des tracés de rais calculés lors de chaque nouvelle migration, pour les distances d'offset ou les angles spéculaires considérés, de la façon qui est proposée dans :

  • Liu et al., 1994 - "Velocity analysis by perturbation" - Sixty fourth Annual International Meeting, Soc. Expl. Geophys., expended abstracts, 1991-1994 ;
  • Liu et al., 1995 - "Migration velocity analysis : theory and iterative algorithm", Geophysics - 60-142-153 ;
  • Wang et al. - "Macro velocity model estimation through model based globally optimised residual curvature analysis" - Expended abstracts - Soc. Expl. Geophys., 1596-1599 (1998),

les techniques décrites dans ces articles utilisant le fait que les champs de vitesse v et les profondeurs z des points de réflexion des rais vérifient : z / v = A t / v
Figure imgb0002

où t est le temps de trajet du rai et A un paramètre qui est fonction du pendage du sous-sol et est calculable notamment à partir du rai.By way of examples, the parameterization disturbances used successively can be determined as a function of the wave patterns calculated during each new migration, for the offset distances or the specular angles considered, in the way that is proposed in:
  • Liu et al., 1994 - "Velocity analysis by perturbation" - Sixty fourth Annual International Meeting, Soc. Expl. Geophys., Expended Abstracts, 1991-1994;
  • Liu et al., 1995 - "Migration velocity analysis: theory and iterative algorithm", Geophysics - 60-142-153;
  • Wang et al. - "Macro velocity model estimation through model based globally optimized residual curvature analysis" - Expended abstracts - Soc. Expl. Geophys., 1596-1599 (1998),

the techniques described in these articles using the fact that the velocity fields v and the depths z of the points of reflection of the waves verify: z / v = AT t / v
Figure imgb0002

where t is the travel time of the spoke and A a parameter which is a function of the dip of the subsoil and is computable notably from the spoke.

Par ailleurs, le traitement de sélection de la paramétrisation de champ de vitesse peut prendre en considération d'autres critères en plus de l'optimisation de l'alignement de points qui sont migrés à partir de ladite collection de traces.Furthermore, the selection processing of the speed field parameterization may take into account other criteria in addition to optimizing the alignment of points that are migrated from said trace collection.

Notamment, il est également possible de déterminer, par exemple pour la distance de déport qui correspond au point migré Pmi le plus proche du réflecteur Ref, la portion de réflecteur qui correspond à ce point Pmi et qui est parallèle à la couche J mise à jour. Puis, pour chacune des traces de la collection obtenue à l'issue de l'étape 3, on trace le rayon qui se réfléchit sur la portion de ce réflexion No. Les rais ainsi obtenus ont des temps de trajet et des gradients de temps différents de ceux obtenus à l'issue de l'étape 3. Les écarts entre les temps ou gradients de temps obtenus à l'issue de l'étape 3 et ceux obtenus par ces tracés de rais constituent des attributs d'erreurs qui permettent également de caractériser la convergence du champ de vitesse choisi par rapport au champ de vitesse réel.In particular, it is also possible to determine, for example for the offset distance that corresponds to the migrated point Pmi closest to the reflector Ref, the reflector portion that corresponds to this point Pmi and that is parallel to the updated layer J. . Then, for each of the traces of the collection obtained at the end of step 3, we trace the ray that is reflected on the portion of this reflection. The rays thus obtained have different travel times and time gradients. of those obtained at the end of step 3. The differences between the times or gradients of time obtained at the end of step 3 and those obtained by these lines of spokes constitute error attributes which also make it possible to characterize the convergence of the selected velocity field with respect to the real velocity field.

Claims (7)

  1. A method of updating a subsoil velocity model, in which:
    - depth migration prior to data addition is implemented on a set of seismic traces acquired in register with said subsoil, the migration being implemented with the help of at least one starting velocity model and serving to determine one or more trace collections each describing the subsoil vertically below a point on the surface;
    - one or more events which reflect vertically below the surface point under consideration are picked on at least one collection of traces obtained using said migration, and for each picked event a reflector depth and dip in register with said surface point are determined; and
    - ray tracing is implemented between said reflector and the surface to determine collections of sound source and receiver pairs, together with data characteristic of travel times and time gradients which correspond to the ray traces associated with said pairs;

    the method being characterized in that subsequent processing is implemented in which the following steps are iterated:
    - dynamically migrating travel time and time gradient data previously obtained with the help of parameterization of the velocity field by a treatment consisting, for a selected source-receiver distance, in migrating by ray tracing so as to determine the reflection point of the source-receiver pair corresponding to said distance, and which complies with said travel time and time gradient data;
    - characterizing the alignment on the reflector of the migrated points obtained in this way; and
    - updating the parameterization;

    the processing selecting the velocity field parameterization which optimizes the alignment of said migrated points on the reflector.
  2. A method according to claim 1, characterized in that the depth migration prior to addition of the seismic data is implemented for a plurality of velocity fields, and in that in order to determine the reflector depth and dip, that one of the velocity fields is selected which minimizes the departure from the horizontal of the depth/offset distance curve or of the depth/specular angle curve.
  3. A method according to any preceding claim, characterized in that the reflector depth is determined for different offsets or different specular angles.
  4. A method according to claim 1, characterized in that in order to select a velocity field parameterization which optimizes the alignment of the points that are migrated from the time and time gradient seismic data, the distance is determined between the reflector portions seen for different offsets, with the selected velocity field parameterization being that which minimizes said distance.
  5. A method according to claim 1, characterized in that in order to select a velocity field parameterization which optimizes the alignment of the points which are migrated from the time and time gradient data, the depth differences between the intercept points between a given vertical and previously updated reflector portions parallel to the reflector and which pass through the new migrated points, with the selected velocity field parameterization being that which minimizes said difference.
  6. A method according to any preceding claim, characterized in that in order to select a velocity field parameterization:
    - a local reflector passing through a migrated point is determined;
    - the other rays of the collection are traced between said local reflector and the surface;
    - a time error is determined which is a function of the difference between the travel time corresponding to at least one of said rays and the travel time of the trace which, in the collection, corresponds to the same offset distance or the same specular angle; and
    - a velocity field parameterization is selected which minimizes said time error and optimizes the alignment of the points which are migrated from the time and time gradient seismic data.
  7. A method according to any preceding claim, characterized in that in order to select a velocity field parameterization:
    - a reflector is determined passing through a migrated point;
    - the other rays of the collection are traced between said reflector and the surface;
    - a time error is determined which is a function of the difference between the travel time gradient corresponding to at least one of said rays and the travel time gradient of the trace which, in the collection, corresponds to the same offset distance or to the same specular angle; and
    - a velocity field parameterization is selected which minimizes said time error and optimizes the alignment of points which are migrated from the time and time gradient seismic data.
EP02290520A 2001-03-05 2002-03-04 Improvements of processes for tomographic inversion of picked events in migrated seismic data Expired - Lifetime EP1239304B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0102962A FR2821677B1 (en) 2001-03-05 2001-03-05 IMPROVEMENTS TO TOMOGRAPHIC INVERSION PROCESSES OF POINTED EVENTS ON MIGREE SEISMIC DATA
FR0102962 2001-03-05

Publications (2)

Publication Number Publication Date
EP1239304A1 EP1239304A1 (en) 2002-09-11
EP1239304B1 true EP1239304B1 (en) 2006-01-11

Family

ID=8860735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290520A Expired - Lifetime EP1239304B1 (en) 2001-03-05 2002-03-04 Improvements of processes for tomographic inversion of picked events in migrated seismic data

Country Status (6)

Country Link
US (1) US6577955B2 (en)
EP (1) EP1239304B1 (en)
AU (1) AU783607B2 (en)
CA (1) CA2374160C (en)
FR (1) FR2821677B1 (en)
NO (1) NO334846B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008257517B2 (en) * 2007-05-31 2013-09-05 Cggveritas Services Sa Method of seismic data processing

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904368B2 (en) * 2002-11-12 2005-06-07 Landmark Graphics Corporation Seismic analysis using post-imaging seismic anisotropy corrections
FR2854468B1 (en) * 2003-04-29 2005-06-10 Inst Francais Du Petrole METHOD FOR DETERMINING A SEISMIC WAVE SPEED MODEL IN A HETEROGENEOUS SOUTERRRAIN FORMATION
FR2858063B1 (en) * 2003-07-21 2005-09-16 Geophysique Cie Gle METHOD FOR ESTIMATING THE ILLUMINATION COVERAGE RATE IN THE MIGRE DOMAIN
US7065004B2 (en) * 2004-04-22 2006-06-20 Pgs Americas, Inc. Horizon-based residual depth migration velocity analysis
US7388808B2 (en) * 2004-09-23 2008-06-17 Pgs Americas, Inc. Method for depth migrating seismic data using pre-stack time migration, demigration, and post-stack depth migration
FR2878966B1 (en) * 2004-12-07 2007-02-09 Inst Francais Du Petrole METHOD FOR DETERMINING SPECULAR INFORMATION AFTER SEISMIC IMAGERY BEFORE SOMMATION
US7911878B2 (en) * 2006-05-03 2011-03-22 Baker Hughes Incorporated Sub-salt reflection tomography and imaging by walkaway VSP survey
US8203907B2 (en) * 2006-06-12 2012-06-19 Exxonmobile Upstream Research Company Updating velocity models using migration velocity scans
CA2664352C (en) 2006-09-28 2011-09-27 Exxonmobil Upstream Research Company Iterative inversion of data from simultaneous geophysical sources
US9348048B2 (en) 2007-05-31 2016-05-24 Cgg Services Sa Seismic data processing and apparatus
US8892410B2 (en) 2008-08-11 2014-11-18 Exxonmobil Upstream Research Company Estimation of soil properties using waveforms of seismic surface waves
US8537638B2 (en) 2010-02-10 2013-09-17 Exxonmobil Upstream Research Company Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration
US8223587B2 (en) 2010-03-29 2012-07-17 Exxonmobil Upstream Research Company Full wavefield inversion using time varying filters
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
US8756042B2 (en) 2010-05-19 2014-06-17 Exxonmobile Upstream Research Company Method and system for checkpointing during simulations
US8767508B2 (en) 2010-08-18 2014-07-01 Exxonmobil Upstream Research Company Using seismic P and S arrivals to determine shallow velocity structure
EP2622457A4 (en) 2010-09-27 2018-02-21 Exxonmobil Upstream Research Company Simultaneous source encoding and source separation as a practical solution for full wavefield inversion
US8437998B2 (en) 2010-09-27 2013-05-07 Exxonmobil Upstream Research Company Hybrid method for full waveform inversion using simultaneous and sequential source method
CN103238158B (en) 2010-12-01 2016-08-17 埃克森美孚上游研究公司 Utilize the marine streamer data source inverting simultaneously that mutually related objects function is carried out
IT1404170B1 (en) * 2011-02-10 2013-11-15 Eni Spa METHOD OF SEISMIC SURVEY OF THE SUBSULE
EP2506039A3 (en) * 2011-03-28 2013-08-14 Conocophillips Company Methods for Seismic Fracture Parameter Estimation and Gas Filled Fracture Identification From Vertical Well Log Data
CN103703391B (en) 2011-03-30 2017-05-17 埃克森美孚上游研究公司 System of full wavefield inversion using spectral shaping and computer implementing method
CN103460074B (en) 2011-03-31 2016-09-28 埃克森美孚上游研究公司 Wavelet estimators and the method for many subwaves prediction in full wave field inversion
FR2976088B1 (en) 2011-05-30 2014-03-07 Cggveritas Services Sa NON-LINEAR TOMOGRAPHY METHOD FOR A MAIN SYMMETRY AXIS OF AN ANISOTROPIC SPEED MODEL AND DEVICE
ES2640824T3 (en) 2011-09-02 2017-11-06 Exxonmobil Upstream Research Company Use of projection on convex assemblies to limit the inversion of the entire wave field
US9176930B2 (en) 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
CA2861863A1 (en) 2012-03-08 2013-09-12 Exxonmobil Upstream Research Company Orthogonal source and receiver encoding
WO2014084945A1 (en) 2012-11-28 2014-06-05 Exxonmobil Upstream Resarch Company Reflection seismic data q tomography
EP2796899A3 (en) 2013-04-23 2015-01-07 CGG Services SA Seismic data processing and apparatus
CA2909105C (en) 2013-05-24 2018-08-28 Ke Wang Multi-parameter inversion through offset dependent elastic fwi
US10459117B2 (en) 2013-06-03 2019-10-29 Exxonmobil Upstream Research Company Extended subspace method for cross-talk mitigation in multi-parameter inversion
US9702998B2 (en) 2013-07-08 2017-07-11 Exxonmobil Upstream Research Company Full-wavefield inversion of primaries and multiples in marine environment
DK3036566T3 (en) 2013-08-23 2018-07-23 Exxonmobil Upstream Res Co SIMILAR SOURCE APPLICATION DURING BOTH SEISMIC COLLECTION AND SEISMIC INVERSION
US10036818B2 (en) 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
WO2015104640A2 (en) 2014-01-13 2015-07-16 Cgg Services Sa Velocity model building for seismic data processing using pp-ps tomography with co-depthing constraint
US9910189B2 (en) 2014-04-09 2018-03-06 Exxonmobil Upstream Research Company Method for fast line search in frequency domain FWI
AU2015256626B2 (en) 2014-05-09 2017-10-12 Exxonmobil Upstream Research Company Efficient line search methods for multi-parameter full wavefield inversion
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
RU2016150545A (en) 2014-06-17 2018-07-17 Эксонмобил Апстрим Рисерч Компани FAST VISCOACOUSTIC AND VISCOELASTIC INVERSION OF A FULL WAVE FIELD
US20150378039A1 (en) * 2014-06-27 2015-12-31 Chevron U.S.A. Inc. System and method for seismic imaging of a complex subsurface
US10838092B2 (en) 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
AU2015337108B2 (en) 2014-10-20 2018-03-01 Exxonmobil Upstream Research Company Velocity tomography using property scans
EP3234659A1 (en) 2014-12-18 2017-10-25 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
CA2972028C (en) 2015-02-13 2019-08-13 Exxonmobil Upstream Research Company Efficient and stable absorbing boundary condition in finite-difference calculations
RU2017132164A (en) 2015-02-17 2019-03-18 Эксонмобил Апстрим Рисерч Компани MULTI-STAGE PROCESS OF INVERSION OF A FULL WAVE FIELD WHEN EXECUTING WHICH ARE ARRAYING AN ARRAY FREE OF MULTIPLE DATA WAVES
US10345464B2 (en) 2015-03-12 2019-07-09 Cgg Services Sas Boundary layer tomography method and device
CN104777514A (en) * 2015-04-16 2015-07-15 中国海洋石油总公司 Geometric spreading compensation method based on uniform horizontal layered medium model
CN106199692A (en) * 2015-05-30 2016-12-07 中国石油化工股份有限公司 A kind of wave equation inverse migration method based on GPU
SG11201708665VA (en) 2015-06-04 2017-12-28 Exxonmobil Upstream Res Co Method for generating multiple free seismic images
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
CN108139499B (en) 2015-10-02 2020-02-14 埃克森美孚上游研究公司 Q-compensated full wavefield inversion
WO2017065889A1 (en) 2015-10-15 2017-04-20 Exxonmobil Upstream Research Company Fwi model domain angle stacks with amplitude preservation
US10768324B2 (en) 2016-05-19 2020-09-08 Exxonmobil Upstream Research Company Method to predict pore pressure and seal integrity using full wavefield inversion
CN107817516B (en) * 2016-09-12 2020-06-19 中国石油化工股份有限公司 Near-surface modeling method and system based on first-motion wave information
CN109387868A (en) * 2018-09-28 2019-02-26 中国海洋石油集团有限公司 A kind of three-dimensional chromatography imaging method based on seismic wave lineups slope information
CN110068864B (en) * 2019-06-03 2024-02-06 中铁西南科学研究院有限公司 Method for detecting stratum cavity and non-compaction of tunnel
CN113126152A (en) * 2019-12-30 2021-07-16 中国石油天然气集团有限公司 Depth domain velocity model construction method and device
CN111736213B (en) * 2020-07-07 2022-05-20 中油奥博(成都)科技有限公司 Variable offset VSP Kirchhoff offset velocity analysis method and device
CN114594516B (en) * 2020-12-07 2024-03-15 中国石油化工股份有限公司 Imaging domain well-seismic joint multi-scale tomographic inversion method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596005A (en) * 1983-04-20 1986-06-17 Chevron Research Company Method of seismic collection utilizing multicomponent processing receivers and processing resultant conventional and converted P- or S-wave data
US4953142A (en) * 1989-01-06 1990-08-28 Marathon Oil Company Model-based depth processing of seismic data
IL92132A (en) * 1989-10-27 1994-07-31 Gelchinsky Boris Homeomorphical imaging method of analyzing the structure of a medium
US5640368A (en) * 1993-07-26 1997-06-17 Exxon Production Research Company Migration velocity analysis using limited-aperture and monte carlo migration
US5570321A (en) * 1994-03-03 1996-10-29 Atlantic Richfield Company Seismic velocity model optimization method using simulated annearling to determine prestack travel-times
US6253157B1 (en) * 1998-12-14 2001-06-26 Exxonmobil Upstream Research Co. Method for efficient manual inversion of seismic velocity information
US6292754B1 (en) * 1999-11-11 2001-09-18 Bp Corporation North America Inc. Vector recomposition of seismic 3-D converted-wave data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008257517B2 (en) * 2007-05-31 2013-09-05 Cggveritas Services Sa Method of seismic data processing

Also Published As

Publication number Publication date
EP1239304A1 (en) 2002-09-11
CA2374160A1 (en) 2002-09-05
US6577955B2 (en) 2003-06-10
AU783607B2 (en) 2005-11-17
NO20021053D0 (en) 2002-03-01
NO20021053L (en) 2002-09-06
US20020183980A1 (en) 2002-12-05
CA2374160C (en) 2012-10-02
FR2821677B1 (en) 2004-04-30
FR2821677A1 (en) 2002-09-06
NO334846B1 (en) 2014-06-16
AU1885002A (en) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1239304B1 (en) Improvements of processes for tomographic inversion of picked events in migrated seismic data
US6904368B2 (en) Seismic analysis using post-imaging seismic anisotropy corrections
US9651694B2 (en) Specular filter (SF) and dip oriented partial imaging (DOPI) seismic migration
US8456951B2 (en) Method and apparatus for deghosting seismic data
CA2964893C (en) Structure tensor constrained tomographic velocity analysis
US6424920B1 (en) Differential delay-time refraction tomography
US10698126B2 (en) Tomographically enhanced full wavefield inversion
US9250341B2 (en) Device and method for extrapolating specular energy of reverse time migration three dimensional angle gathers
EP2946232B1 (en) Wavefield modelling and 4d-binning for seismic surveys with different acquisition datums
FR2916859A1 (en) METHOD OF PROCESSING SEISMIC DATA
US10795039B2 (en) Generating pseudo pressure wavefields utilizing a warping attribute
WO2022272058A1 (en) Method and system for seismic imaging using s-wave velocity models and machine learning
AU2014200562B2 (en) Systems and methods for detecting swell noise in a seismic gather
US5532976A (en) Curved-ray replacement dynamics
Métivier et al. A review of the use of optimal transport distances for high resolution seismic imaging based on the full waveform
Glogovsky et al. Integrated approach to subsalt depth imaging: Synthetic case study
FR2751757A1 (en) METHOD OF ACQUISITION AND PROCESSING OF SEISMIC REFLECTION DATA FOR THE EXPLORATION OF A COMPLEX TECTONIC MEDIUM
FR2879306A1 (en) METHOD FOR CORRECTING TREATMENT OF SEISMIC TRACES
CA2085617A1 (en) Processing method for obtaining a zero-offset sum section
Yue et al. Common reflection point stacking for ocean-bottom node data
Zhe et al. A new kinematic method for mapping seismic reflectors
Ehinger et al. Calculation of multi-valued traveltimes with a ray bending method
Palmer et al. Computing detailed refraction statics in a hard rock terrain with the GRM and the RCS
WO2021105755A1 (en) Detection and removal of delayed seismic travel times produced by velocity inversions
Operto et al. Accurate velocity macro-model building from global-offset data by frequency-domain full-waveform inversion: application to multiple-arrival ray-based migration of real data

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030310

AKX Designation fees paid

Designated state(s): FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20041227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: IMPROVEMENTS OF PROCESSES FOR TOMOGRAPHIC INVERSION OF PICKED EVENTS IN MIGRATED SEISMIC DATA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061012

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170322

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170322

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331