EP1238435A1 - Intermediate suction support and use thereof for making a thin-layered structure - Google Patents

Intermediate suction support and use thereof for making a thin-layered structure

Info

Publication number
EP1238435A1
EP1238435A1 EP00993461A EP00993461A EP1238435A1 EP 1238435 A1 EP1238435 A1 EP 1238435A1 EP 00993461 A EP00993461 A EP 00993461A EP 00993461 A EP00993461 A EP 00993461A EP 1238435 A1 EP1238435 A1 EP 1238435A1
Authority
EP
European Patent Office
Prior art keywords
suction
support
film
substrate
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00993461A
Other languages
German (de)
French (fr)
Inventor
Claude Jaussaud
Michel Bruel
Bernard Aspar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1238435A1 publication Critical patent/EP1238435A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/11Methods of delaminating, per se; i.e., separating at bonding face
    • Y10T156/1126Using direct fluid current against work during delaminating
    • Y10T156/1132Using vacuum directly against work during delaminating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/19Delaminating means
    • Y10T156/1928Differential fluid pressure delaminating means
    • Y10T156/1944Vacuum delaminating means [e.g., vacuum chamber, etc.]

Definitions

  • the present invention relates to an intermediate suction support and its use for producing a thin layer structure.
  • this substrate is brought into intimate contact, by its implanted face with a stiffener and that a heat treatment is applied at a sufficient temperature, an interaction takes place between the microcavities or the microbubbles leading to a separation of the semiconductor substrate into two parts : a thin semiconductor film adhering to the stiffener on the one hand, the rest of the semiconductor substrate on the other hand.
  • the separation takes place in the area where the microcavities or microbubbles are present.
  • the heat treatment is such that the interaction between the microbubbles or microcavities created by implantation is capable of inducing a separation between the thin film and the rest of the substrate.
  • the thin film If the thin film is thick enough to be self-supporting, it can be separated by fracture at the weakened area, from the rest of its substrate, without support. On the other hand, in the opposite case, the separation by fracture of the thin film requires the use of a support or stiffener which allows both the gripping of the film and authorizes the fracture while avoiding the appearance on the surface of blistering film. (or "blisters" in English).
  • the stiffeners used are secured to the thin film either by depositing an appropriate layer, or by transferring a support and bonding by molecular adhesion or by an appropriate adhesive.
  • the current solution which consists in using a bonding by molecular adhesion requires a surface preparation which can be delicate and expensive.
  • the bonding by adhesive of a support does not make it possible to carry out operations at high temperature subsequently on the thin layer, due in particular to the limit of temperature resistance of the organic adhesives, and to the stresses induced by the temperature operations. and contaminations in the case of inorganic adhesives.
  • photovoltaic cells are currently produced either from large-grain monocrystalline or multicrystalline semiconductor material (1 mm), or from small-grain amorphous or polycrystalline semiconductor material (of the order of 1 ⁇ m).
  • monocrystalline material mention may be made of silicon, GaAs and in general materials of type III-V.
  • coarse-grained multicrystalline material silicon may be mentioned.
  • amorphous or polycrystalline material mention may be made of amorphous silicon or compound materials such as CdTe or CIS (Copper-Indium-Selenium).
  • Solid monocrystalline or multicrystalline materials are expensive and we are trying to reduce their thickness to reduce costs.
  • the thicknesses are typically 200 to 300 ⁇ m and it is sought to reduce them to 100 ⁇ . Below 100 ⁇ m in thickness, it becomes very difficult to handle the large area films used to make the cells (> 100 cm 2 ).
  • Amorphous or polycrystalline materials have lower conversion yields than monocrystalline materials. For example, for monocrystalline silicon the best yields obtained are 24.8% while the best yields obtained on amorphous silicon are only 12.7%.
  • a particularly interesting solution would be to have thin films (from a few ⁇ m to a few tens of ⁇ m) of monocrystalline or multicristalline semiconductor material on a large substrate and of low cost such as glass or ceramic.
  • the substrate is then separated at the sacrificial layers of porous silicon by application of mechanical forces.
  • This process has some drawbacks: consumption of silicon (the porous layers are sacrificed), the porous layers are formed in several stages so as to have three different porosities, the process is certainly difficult to industrialize.
  • the present invention overcomes the drawbacks of the prior art. It makes it possible to obtain a structure comprising thin films
  • a low-cost substrate for example glass, ceramic or plastic. It minimizes the consumption of semiconductor material. It is simple to implement and industrialize. It allows reuse to
  • a first object of the invention consists of an intermediate suction support, characterized in that
  • intermediate support being the face of at least one suction element comprising suction means provided so that, when the weakened layer is subjected to a treatment leading to the separation of the film from the rest of the substrate, the film can be recovered.
  • a weakened layer can be a porous layer or a layer in which an implantation of gaseous species has been carried out. Separation treatment (which can be a combination of different
  • 10 treatments can in particular be a heat treatment or a mechanical treatment.
  • the support of 1 invention makes it possible to avoid the formation of blisters and therefore makes it possible to avoid recovering the film in the form of shavings.
  • Support - j e sucking invention therefore plays a holding role, a stiffener and promotes further separation, for example by adding in some cases stresses at the weakened layer.
  • the suction element may be made of porous material, the pores of this element constituting the suction means.
  • micro-holes constituting the suction means, the distribution of the holes and their size being provided for the recovery of the film.
  • the intermediate suction support comprises a wall pierced with holes, this wall supporting at least one suction element, the distribution and the size of the
  • 35 plate and the support is obtained by suction and, if the surface condition allows, by molecular adhesion with controlled bonding forces.
  • the intermediate suction support comprises a wall pierced with holes, this wall supporting a plate also pierced with holes, the plate supporting several suction elements, the distribution and size of the holes of the elements being provided for allow recovery of the film.
  • the suction surface can have a curved, convex or concave shape, making it possible to produce mechanical stress on the film when it is separated from the rest of the substrate. These shapes help promote separation.
  • the face of the suction element may be a face allowing molecular adhesion with said first face of the substrate.
  • a second object of the invention consists in a process for producing a thin layer structure, comprising the transfer of at least one film onto a support known as a definitive support by means of an intermediate support, characterized in that it includes the following steps:
  • the suction surface being the face of a suction element comprising suction means provided so that, when the weakened layer is subjected to a treatment leading to the separation of the film from the rest of the substrate, film can be recovered, - submission of the weakened layer to said separation treatment, the first face of the substrate being secured to the intermediate support by suction, - transfer of the film obtained to the final support,
  • the contacting of the first face of the substrate with the suction surface of the intermediate support can be reinforced by molecular adhesion. This adhesion can be controlled by appropriate treatments to allow reversibility of the bonding.
  • the final support can support the film by means of molecular adhesion bonding or by means of adhesive bonding.
  • the adhesive material can be a flowable material placed on the final support and / or on the thin film.
  • the method comprises the transfer of monolayer or multilayer semiconductor films to form a tiling on the final support and the treatment of these films to obtain the photovoltaic cells from these films .
  • These films can be, before transfer, partially or completely treated in order to obtain said photovoltaic cells. They can also, after postponement, be treated in order to obtain said photovoltaic cells.
  • the films can be transferred onto a support made of a material chosen from glass, ceramic and plastic. It can be done according to a paving having a shape chosen from the shapes rectangular, hexagonal and circular.
  • the deferred films can be films of semiconductor material chosen from monocrystalline and multicrystalline materials with large grains.
  • FIG. 1A to IF illustrate the production of a structure comprising thin-film photovoltaic cells on a support, according to the present invention
  • - Figure 2 shows a first intermediate support 1 according to the invention capable of supporting thin films by vacuum
  • - Figure 3 shows a second intermediate support 1 according to the invention capable of supporting thin films by vacuum
  • FIG. 4 shows a third intermediate support 1 according to the invention capable of supporting thin films by vacuum
  • FIG. 5 shows, in detail, an element of an intermediate support according to the invention capable of supporting thin films by vacuum.
  • the invention will now be described, taking as an example the production of a structure comprising thin-film photovoltaic cells on a support.
  • FIG. 1A shows a silicon substrate 41 in which a film 44 has been defined by a buried fragile layer containing microcavities 43 obtained by ion implantation.
  • the implantation can be carried out on a bare substrate, which has possibly already undergone technological operations, or having a surface texturing.
  • the implantation can also be carried out through a layer (oxide or nitride for example) deposited on the substrate.
  • the implanted substrates can also undergo technological operations. These operations can have an impact on the fracture conditions, in particular an epitaxy intended to increase the thickness of the silicon film.
  • the embrittlement operations by ion implantation must be made compatible with the technological operations. Reference may be made to this document in document FR-A-2 748 851.
  • FIG. 1B shows two substrates 41 transferred to a suction support 50 on the side of their films 44.
  • FIG. 1C shows the result obtained after separation of the films 44 from their substrates, the separation being for example obtained by heat treatment.
  • An epitaxial can then be produced from the free faces of the films 44 and various technological operations can be carried out to obtain the result shown in FIG. 1D. These operations can include making N and P contacts with their associated dopings (or regions).
  • the films 44 are then bonded by their faces free on the final support 40 which comprises for example interconnections 48 between cells (see FIG. 1E).
  • the final support 40 can be made of glass, ceramic or plastic. Depending on the nature of this final support, bonding can be obtained by means of metal layers, by means of a layer of glass or of low-temperature fluent oxide or of an adhesive substance.
  • the intermediate support is removed by stopping the depression and possibly by a slight overpressure allowing easier separation of the intermediate support and the films.
  • the thickness of the semiconductor films can be increased, after transfer to a support, by epitaxy. If the support can be brought to a temperature sufficient for the epitaxy, this can be carried out in conventional manner in the vapor or liquid phase. If the support cannot be brought to high temperature (case of silicon on a glass support or of a technology already partially carried out), the thickness of the silicon film can be increased by depositing a polycrystalline or amorphous silicon at low temperature and recrystallize this film by laser heat treatment (fusion of this deposited layer and of part of the thin film of monocrystalline silicon, so as to obtain an epitaxy during cooling).
  • the technology for making the cells can be done in the conventional way (heat treatment in an oven) if the substrates and the chosen bonding mode withstand high temperatures. Yes this is not the case (in particular if the final support is made of glass or if bonding with materials that do not withstand high temperatures is used), heat treatments (epitaxial, doping by diffusion, annealing, etc.) can be produced by means of a laser beam, which makes it possible to heat (until liquefaction if necessary) the thin film on the surface, without heating the glass.
  • the suction support may include a plate pierced with numerous small diameter holes or a plate of porous material.
  • the thin films, placed on the front face of the plate, are held there by creating a depression on the rear face of the plate.
  • Figure 2 is a sectional view of a first intermediate support capable of supporting thin films by vacuum. It consists of an enclosure 60, the interior of which can be connected to a vacuum device by means of a neck 61.
  • the enclosure 60 has a flat wall 62 pierced with small diameter holes or micro holes 63.
  • the size and the spacing of the microholes are determined by the rigidity of the thin films to be handled. The microholes should be smaller and closer as the films are less rigid. Likewise, the surface condition of the wall 62 must be all the better as the stiffness of the film is lower.
  • Figure 3 is a sectional view of a second intermediate support capable of supporting thin films by vacuum. It includes, like the intermediate support of FIG. 2, an enclosure 70 provided with a neck 71.
  • the enclosure 70 also has a planar wall 72 pierced with holes and supporting a planar plate 73 pierced with microt holes 74.
  • the plate 73 fixed to the wall 72 by elements not shown and not disturbing its functions. Distribution and size of the holes in the wall 72 and the distribution and the size of the microholes in the plate 73 are such that the plate 73 provides a uniformly suction active surface.
  • This configuration makes it possible to have an appropriate pierced plate, for example having the possibility of producing the microholes by a collective process and / or in a material adapted to the coefficient of thermal expansion of thin films.
  • Figure 4 is a sectional view of a third intermediate support capable of supporting thin films by vacuum.
  • the enclosure 80 also has a planar wall 82 pierced with holes and supporting a planar plate 83 pierced with holes of smaller diameter.
  • the flat plate 83 in turn supports flat parts 84 pierced with micro-holes.
  • the diameters of the holes and their spacings in the wall 82, the plate 83 and the parts 84 are such that the parts 84 each offer a uniformly suction surface.
  • This configuration has the advantage of greater ease of production and use.
  • the parts 84 can be made from the same material as that constituting the films to be transferred. This avoids the problems associated with differential expansions during heat treatments. For example, they can be made of silicon if the thin films are made of silicon. In addition, the production of small silicon parts is easier than the production of a large silicon plate.
  • FIG. 5 is a perspective view of an example of a part referenced 84 in FIG. 4.
  • This part is said to be flat in the sense that it offers, on the front face side, a flat surface 91 to the film to be supported.
  • a piece 84 of silicon can be obtained by etching a silicon wafer 500 ⁇ m thick. Longitudinal cavities 92 1 mm wide and 450 ⁇ m deep are etched from the rear face of the plate. There remains, on the front face side, a thin wall 93 of 50 ⁇ m thickness in which holes 94 are made of 20 ⁇ m in diameter and spaced 100 ⁇ m apart for example. The holes 94 can also be 5 ⁇ m in diameter and be spaced 20 ⁇ m apart. A film of 1 ⁇ m thickness can be maintained on such a part without breaking and having a slight deformation.
  • the thin wall 93 can be replaced by a porous film produced for example by anodic oxidation of silicon.
  • the thickness of this porous film can typically be 10 ⁇ m.

Abstract

The invention concerns an intermediate suction support, having at least a suction surface (62) designed to receive a first surface of at least a substrate comprising an embrittled layer, a film being thus defined between the first surface of the substrate and the embrittled layer, the suction surface (62) of the intermediate support being the surface of at least a suction element (63) including suction means designed so that, when the embrittled layer is subjected to a treatment causing the film to be separated from the rest of the substrate, the film can be recovered. The invention is useful for making a thin-layered structure.

Description

SUPPORT INTERMEDIAIRE ASPIRANT ET SON UTILISATION POUR REALISER UNE STRUCTURE EN COUCHE MINCE SUCTION INTERMEDIATE SUPPORT AND ITS USE FOR REALIZING A THIN FILM STRUCTURE
Domaine techniqueTechnical area
La présente invention concerne un support intermédiaire aspirant et son utilisation pour réaliser une structure en couche mince.The present invention relates to an intermediate suction support and its use for producing a thin layer structure.
Etat de la technique antérieureState of the art
Antroduction d'espèces gazeuses dans un matériau solide peut être avantageusement réalisée par implantation ionique. Ainsi, le document FR-A-2 681 472 (correspondant au brevet américain N° 5 374 564) décrit un procédé de fabrication de films minces de matériau semiconducteur. Ce document divulgue que 1 Amplantation d'un gaz rare ou d'hydrogène dans un substrat en matériau semiconducteur est susceptible d'induire, dans certaines conditions, la formation de microcavités ou de microbulles (encore désignées par le terme "platelets" dans la terminologie anglo-saxonne) à une profondeur voisine de la profondeur moyenne de pénétration des ions implantés. Si ce substrat est mis en contact intime, par sa face implantée avec un raidisseur et qu'un traitement thermique est appliqué à une température suffisante, il se produit une interaction entre les microcavités ou les microbulles conduisant à une séparation du substrat semiconducteur en deux parties : un film mince semiconducteur adhérant au raidisseur d'une part, le reste du substrat semiconducteur d'autre part. La séparation a lieu au niveau de la zone où les microcavités ou microbulles sont présentes. Le traitement thermique est tel que l'interaction entre les microbulles ou microcavités créées par implantation est apte à induire une séparation entre le film mince et le reste du substrat.Introduction of gaseous species into a solid material can advantageously be carried out by ion implantation. Thus, document FR-A-2 681 472 (corresponding to American patent No. 5,374,564) describes a process for manufacturing thin films of semiconductor material. This document discloses that 1 Installation of a rare gas or hydrogen in a substrate made of semiconductor material is capable of inducing, under certain conditions, the formation of microcavities or microbubbles (also designated by the term "platelets" in the terminology Anglo-Saxon) at a depth close to the average penetration depth of the implanted ions. If this substrate is brought into intimate contact, by its implanted face with a stiffener and that a heat treatment is applied at a sufficient temperature, an interaction takes place between the microcavities or the microbubbles leading to a separation of the semiconductor substrate into two parts : a thin semiconductor film adhering to the stiffener on the one hand, the rest of the semiconductor substrate on the other hand. The separation takes place in the area where the microcavities or microbubbles are present. The heat treatment is such that the interaction between the microbubbles or microcavities created by implantation is capable of inducing a separation between the thin film and the rest of the substrate.
On peut donc obtenir le transfert d'un film mince depuis un substrat initial jusqu'à un raidisseur servant de support à ce film mince.It is therefore possible to obtain the transfer of a thin film from an initial substrate to a stiffener serving as a support for this thin film.
Si le film mince est suffisamment épais pour être autoporté, il peut être séparé par fracture au niveau de la zone fragilisé, du reste de son substrat, sans support. Par contre, dans le cas contraire, la séparation par fracture du film mince nécessite l'utilisation d'un support ou raidisseur qui permet à la fois la préhension du film et autorise la fracture en évitant l'apparition sur la surface du film de cloques (ou "blisters" en anglais).If the thin film is thick enough to be self-supporting, it can be separated by fracture at the weakened area, from the rest of its substrate, without support. On the other hand, in the opposite case, the separation by fracture of the thin film requires the use of a support or stiffener which allows both the gripping of the film and authorizes the fracture while avoiding the appearance on the surface of blistering film. (or "blisters" in English).
Actuellement les raidisseurs utilisés sont solidarisés sur le film mince soit par dépôt d'une couche appropriée, soit par report d'un support et collage par adhésion moléculaire ou par une colle appropriée. Or, la solution actuelle qui consiste à utiliser un collage par adhésion moléculaire nécessite une préparation de surface qui peut être délicate et coûteuse. Par ailleurs, le collage par colle d'un support ne permet pas de réaliser des opérations à haute température ultérieurement sur la couche mince, du fait notamment de la limite de tenue en température des colles organiques, et des contraintes induites par les opérations en température et les contaminations dans le cas des colles inorganiques.Currently the stiffeners used are secured to the thin film either by depositing an appropriate layer, or by transferring a support and bonding by molecular adhesion or by an appropriate adhesive. However, the current solution which consists in using a bonding by molecular adhesion requires a surface preparation which can be delicate and expensive. Furthermore, the bonding by adhesive of a support does not make it possible to carry out operations at high temperature subsequently on the thin layer, due in particular to the limit of temperature resistance of the organic adhesives, and to the stresses induced by the temperature operations. and contaminations in the case of inorganic adhesives.
Par ailleurs, les cellules photovoltaïques sont actuellement réalisées soit à partir de matériau semiconducteur monocristallin ou multicristallin à gros grains (1 mm) , soit à partir de matériau semiconducteur amorphe ou polycristallin à petits grains (de l'ordre de 1 μm) . Comme matériau monocristallin on peut citer le silicium, le GaAs et en général les matériaux de type III-V. Comme matériau multicristallin à gros grains on peut citer le silicium. Comme matériau amorphe ou polycristallin on peut citer le silicium amorphe ou les matériaux composés tels que CdTe ou CIS (Cuivre-Indium-Sélénium) .Furthermore, photovoltaic cells are currently produced either from large-grain monocrystalline or multicrystalline semiconductor material (1 mm), or from small-grain amorphous or polycrystalline semiconductor material (of the order of 1 μm). As monocrystalline material, mention may be made of silicon, GaAs and in general materials of type III-V. As coarse-grained multicrystalline material, silicon may be mentioned. As amorphous or polycrystalline material, mention may be made of amorphous silicon or compound materials such as CdTe or CIS (Copper-Indium-Selenium).
Les matériaux massifs monocristallins ou multicristallins sont chers et on cherche à réduire leur épaisseur pour réduire les coûts. Actuellement, pour le silicium, les épaisseurs sont typiquement de 200 à 300 μm et on cherche à les réduire à 100 μ . Au- dessous de 100 μm d'épaisseur, il devient très difficile de manipuler les films de grande surface utilisés pour la réalisation des cellules (>100 cm2) .Solid monocrystalline or multicrystalline materials are expensive and we are trying to reduce their thickness to reduce costs. Currently, for silicon, the thicknesses are typically 200 to 300 μm and it is sought to reduce them to 100 μ. Below 100 μm in thickness, it becomes very difficult to handle the large area films used to make the cells (> 100 cm 2 ).
Les matériaux amorphes ou polycristallins présentent des rendements de conversion plus faibles que les matériaux monocristallins. Par exemple, pour le silicium monocristallin les meilleurs rendements obtenus sont de 24,8% alors que les meilleurs rendements obtenus sur silicium amorphe ne sont que de 12,7%.Amorphous or polycrystalline materials have lower conversion yields than monocrystalline materials. For example, for monocrystalline silicon the best yields obtained are 24.8% while the best yields obtained on amorphous silicon are only 12.7%.
Une solution particulièrement intéressante serait de disposer de films minces (de quelques μm à quelques dizaines de μm) de matériau semiconducteur monocristallin ou multicristallin sur un substrat de grande taille et de faible coût tel que le verre ou la céramique. Cependant, on ne sait pas actuellement réaliser ce type de structure à un coût compatible avec le coût des cellules photovoltaïques .A particularly interesting solution would be to have thin films (from a few μm to a few tens of μm) of monocrystalline or multicristalline semiconductor material on a large substrate and of low cost such as glass or ceramic. However, we do not currently know how to make this type of structure at a cost compatible with the cost of photovoltaic cells.
Plusieurs procédés ont été proposés pour réaliser des films ou des structures minces en silicium monocristallin pour la fabrication de cellules solaires. Trois d'entre eux vont être décrits ci- dessous .Several methods have been proposed for making films or thin structures in monocrystalline silicon for the manufacture of solar cells. Three of them will be described below.
L'article "Thin-film crystalline silicon solar cells obtained by séparation of a porous silicon sacrificial layer" de H. TAYANAKA et al., paru dans 2nd World Conférence and Exhibition on Photovoltaic Solar Energy Conversion, 6-10 juillet 1998, Vienne (Autriche), pages 1272-1277, divulgue une solution mettant en œuvre la structure suivante : substrat de silicium-couches de silicium poreux-couche de silicium monocristallin épitaxié. Les cellules solaires sont réalisées dans la couche épitaxiée qui est ensuite collée à un film de plastique transparent. Le substrat est ensuite séparé au niveau des couches sacrificielles de silicium poreux par application de forces mécaniques. Ce procédé présente quelques inconvénients : consommation de silicium (les couches poreuses sont sacrifiées) , les couches poreuses sont formées en plusieurs étapes de manière à avoir trois porosités différentes, le procédé est certainement difficile à industrialiser.The article "Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer "by H. TAYANAKA et al., published in 2 nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, July 6-10, 1998, Vienna (Austria), pages 1272-1277, discloses a solution implementing the following structure : silicon substrate-porous silicon layers-epitaxial monocrystalline silicon layer. The solar cells are made in the epitaxial layer which is then glued to a transparent plastic film. The substrate is then separated at the sacrificial layers of porous silicon by application of mechanical forces This process has some drawbacks: consumption of silicon (the porous layers are sacrificed), the porous layers are formed in several stages so as to have three different porosities, the process is certainly difficult to industrialize.
L'article "Waffle cells fabricated by the perforated silicon (Ψ) process" de R. BRENDEL, paru dans l'ouvrage cité ci-dessus, pages 1242-1247, divulgue une solution mettant en œuvre un dépôt de silicium poreux sur un substrat de silicium texture. Une couche de silicium est ensuite épitaxiée sur le silicium poreux. Le film épitaxié est séparé du substrat par application de forces mécaniques. Cette solution est très voisine de celle divulguée dans 1 ' article précédent et comporte les mêmes inconvénients .The article "Waffle cells fabricated by the perforated silicon (Ψ) process" by R. BRENDEL, published in the work cited above, pages 1242-1247, discloses a solution using a deposition of porous silicon on a substrate silicon texture. A layer of silicon is then epitaxied on the porous silicon. The epitaxial film is separated from the substrate by application of mechanical forces. This solution is very similar to that disclosed in the previous article and has the same drawbacks.
L'article "Characterisation of silicon epitaxial layers for solar cell applications" de K.R. CATCHPOLE et al., paru également dans l'ouvrage cité ci-dessus, pages 1336-1339, divulgue une solution mettant en œuvre une épitaxié en phase liquide sur un substrat de silicium sur lequel on a déposé un masque d'oxyde présentant des motifs. Le silicium ne s ' épitaxié que sur les zones non recouvertes d'oxyde, ce qui conduit à des bandes épitaxiées présentant, vues en coupe, une forme de losange. La couche épitaxiée est ensuite détachée de son support par dissolution chimique sélective de zones plus fortement dopées à l'interface substrat-couche épitaxiée. Cette solution pose certainement le problème de la réutilisation du substrat un grand nombre de fois .The article "Characterization of silicon epitaxial layers for solar cell applications" by KR CATCHPOLE et al., Also published in the work cited above, pages 1336-1339, discloses a solution using an epitaxial in liquid phase on a silicon substrate on which an oxide mask having patterns has been deposited. Silicon does s' epitaxied only on the areas not covered with oxide, which leads to epitaxial bands having, seen in section, a diamond shape. The epitaxial layer is then detached from its support by selective chemical dissolution of more heavily doped areas at the substrate-epitaxial layer interface. This solution certainly poses the problem of reusing the substrate a large number of times.
Ces trois articles ne font pas mention duThese three articles do not mention the
10 report de films ou de structures sur un support de grande taille pour la réalisation collective de cellules. Ils font référence à des technologies souvent délicates à mettre en œuvre.10 transfer of films or structures on a large support for the collective production of cells. They refer to technologies that are often difficult to implement.
*,*- Exposé de l'invention*, * - Statement of the invention
La présente invention permet de remédier aux inconvénients de l'art antérieur. Elle permet l'obtention d'une structure comportant des films mincesThe present invention overcomes the drawbacks of the prior art. It makes it possible to obtain a structure comprising thin films
20 déposés sur un substrat de faible coût (par exemple en verre, en céramique ou en plastique) . Elle permet de réduire au minimum la consommation de matériau semiconducteur. Elle est simple à mettre en œuvre et à industrialiser. Elle permet la réutilisation à de20 deposited on a low-cost substrate (for example glass, ceramic or plastic). It minimizes the consumption of semiconductor material. It is simple to implement and industrialize. It allows reuse to
25 nombreuses reprises du substrat fournissant les films minces. Elle permet une réalisation collective de cellules photovoltaïques .25 many times of the substrate providing the thin films. It allows collective production of photovoltaic cells.
Un premier objet de l'invention consiste en un support intermédiaire aspirant, caractérisé en ceA first object of the invention consists of an intermediate suction support, characterized in that
30 qu'il présente au moins une surface d'aspiration destinée à recevoir une première face d'au moins un substrat comprenant une couche fragilisée, un film étant ainsi délimité entre la première face du substrat et la couche fragilisée, la surface d'aspiration du30 that it has at least one suction surface intended to receive a first face of at least one substrate comprising a weakened layer, a film being thus delimited between the first face of the substrate and the weakened layer, the suction surface of
35 support intermédiaire étant la face d'au moins un élément d'aspiration comportant des moyens d'aspiration prévus pour que, lorsque la couche fragilisée est soumise à un traitement conduisant à la séparation du film d'avec le reste du substrat, le film puisse être récupéré.35 intermediate support being the face of at least one suction element comprising suction means provided so that, when the weakened layer is subjected to a treatment leading to the separation of the film from the rest of the substrate, the film can be recovered.
Une couche fragilisée peut être une couche poreuse ou une couche dans laquelle on a réalisé une implantation d'espèces gazeuses. Le traitement de séparation (qui peut être une combinaison de différentsA weakened layer can be a porous layer or a layer in which an implantation of gaseous species has been carried out. Separation treatment (which can be a combination of different
10 traitements) peut notamment être un traitement thermique ou un traitement mécanique.10 treatments) can in particular be a heat treatment or a mechanical treatment.
Le support de 1 Anvention permet d'éviter la formation de cloques et donc permet d'éviter de récupérer le film sous forme de copeaux. Le support -je aspirant de l'invention joue donc un rôle de maintien, un rôle de raidisseur et favorise en outre la séparation , par exemple en ajoutant dans certains cas des contraintes au niveau de la couche fragilisée.The support of 1 invention makes it possible to avoid the formation of blisters and therefore makes it possible to avoid recovering the film in the form of shavings. Support - j e sucking invention therefore plays a holding role, a stiffener and promotes further separation, for example by adding in some cases stresses at the weakened layer.
L'élément d'aspiration peut être en 20 matériau poreux, les pores de cet élément constituant les moyens d'aspiration.The suction element may be made of porous material, the pores of this element constituting the suction means.
Il peut être percé de microtrous, les microtrous constituant les moyens d'aspiration, la répartition des trous et leur taille étant prévues pour 25 la récupération du film.It can be pierced with micro-holes, the micro-holes constituting the suction means, the distribution of the holes and their size being provided for the recovery of the film.
Selon un autre mode de réalisation, le support intermédiaire aspirant comprend une paroi percée de trous, cette paroi supportant au moins un élément d'aspiration, la répartition et la taille desAccording to another embodiment, the intermediate suction support comprises a wall pierced with holes, this wall supporting at least one suction element, the distribution and the size of the
30 trous de la paroi étant prévues en fonction des moyens d'aspiration dudit élément d'aspiration pour que l'élément d'aspiration puisse permettre la récupération du film.30 holes in the wall being provided as a function of the suction means of said suction element so that the suction element can allow the film to be recovered.
Selon une variante, le contact entre laAlternatively, the contact between the
35 plaque et le support est obtenu par aspiration et, si l'état de surface le permet, par adhésion moléculaire avec forces de collage contrôlées.35 plate and the support is obtained by suction and, if the surface condition allows, by molecular adhesion with controlled bonding forces.
Selon encore un autre mode de réalisation, le support intermédiaire aspirant comprend une paroi percée de trous, cette paroi supportant une plaque percée également de trous, la plaque supportant plusieurs éléments d'aspiration, la répartition et la taille des trous des éléments étant prévues pour permettre la récupération du film.According to yet another embodiment, the intermediate suction support comprises a wall pierced with holes, this wall supporting a plate also pierced with holes, the plate supporting several suction elements, the distribution and size of the holes of the elements being provided for allow recovery of the film.
La surface d'aspiration peut présenter une forme incurvée, convexe ou concave, permettant de produire une contrainte mécanique sur le film lors de sa séparation d'avec le reste du substrat. Ces formes permettent de favoriser la séparation. La face de l'élément d'aspiration peut être une face permettant une adhérence moléculaire avec ladite première face du substrat.The suction surface can have a curved, convex or concave shape, making it possible to produce mechanical stress on the film when it is separated from the rest of the substrate. These shapes help promote separation. The face of the suction element may be a face allowing molecular adhesion with said first face of the substrate.
Un deuxième objet de l'invention consiste en un procédé de réalisation d'une structure en couche mince, comprenant le report d'au moins un film sur un support dit support définitif au moyen d'un support intermédiaire, caractérisé en ce qu'il comprend les étapes suivantes :A second object of the invention consists in a process for producing a thin layer structure, comprising the transfer of at least one film onto a support known as a definitive support by means of an intermediate support, characterized in that it includes the following steps:
- formation d'une couche enterrée fragilisée dans un substrat, un film étant ainsi délimité entre la première face du substrat et la couche fragilisée,- formation of a weakened buried layer in a substrate, a film thus being delimited between the first face of the substrate and the weakened layer,
- mise en contact de la première face du substrat avec une surface d'aspiration du support intermédiaire, la surface d'aspiration étant la face d'un élément d'aspiration comportant des moyens d'aspiration prévus pour que, lorsque la couche fragilisé sera soumise à un traitement conduisant à la séparation du film d'avec le reste du substrat, film puisse être récupéré, - soumission de la couche fragilisée audit traitement de séparation, la première face du substrat étant solidarisée du support intermédiaire par aspiration, - report du film obtenu sur le support définitif,- bringing the first face of the substrate into contact with a suction surface of the intermediate support, the suction surface being the face of a suction element comprising suction means provided so that, when the weakened layer is subjected to a treatment leading to the separation of the film from the rest of the substrate, film can be recovered, - submission of the weakened layer to said separation treatment, the first face of the substrate being secured to the intermediate support by suction, - transfer of the film obtained to the final support,
- retrait du support intermédiaire par arrêt de l'aspiration.- removal of the intermediate support by stopping the suction.
La mise en contact de la première face du substrat avec la surface d'aspiration du support intermédiaire peut être renforcée par adhérence moléculaire. Cette adhérence peut être contrôlée par des traitements appropriés pour permettre une réversibilité du collage. Le support définitif peut supporter le film au moyen d'un collage par adhérence moléculaire ou au moyen d'un collage par une matière adhesive. La matière adhesive peut être un matériau fluable disposé sur le support définitif et/ou sur le film mince.The contacting of the first face of the substrate with the suction surface of the intermediate support can be reinforced by molecular adhesion. This adhesion can be controlled by appropriate treatments to allow reversibility of the bonding. The final support can support the film by means of molecular adhesion bonding or by means of adhesive bonding. The adhesive material can be a flowable material placed on the final support and / or on the thin film.
Eventuellement, la structure étant une structure comportant des cellules photovoltaïques en couche mince, le procédé comprend le report de films semiconducteurs monocouches ou multicouches pour former un pavage sur le support définitif et le traitement de ces films pour obtenir les cellules photovoltaïques à partir de ces films.Optionally, the structure being a structure comprising thin-film photovoltaic cells, the method comprises the transfer of monolayer or multilayer semiconductor films to form a tiling on the final support and the treatment of these films to obtain the photovoltaic cells from these films .
Ces films peuvent être, avant report, partiellement ou totalement traités en vue d'obtenir lesdites cellules photovoltaïques. Ils peuvent aussi, après report, être traités en vue d'obtenir lesdites cellules photovoltaïques.These films can be, before transfer, partially or completely treated in order to obtain said photovoltaic cells. They can also, after postponement, be treated in order to obtain said photovoltaic cells.
Le report des films peut se faire sur un support en un matériau choisi parmi le verre, la céramique et le plastique. Il peut se faire selon un pavage possédant une forme choisie parmi les formes rectangulaire, hexagonale et circulaire. Les films reportés peuvent être des films de matériau semiconducteur choisi parmi les matériaux monocristallins et multicristallins à gros grains.The films can be transferred onto a support made of a material chosen from glass, ceramic and plastic. It can be done according to a paving having a shape chosen from the shapes rectangular, hexagonal and circular. The deferred films can be films of semiconductor material chosen from monocrystalline and multicrystalline materials with large grains.
Brève description des dessinsBrief description of the drawings
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :The invention will be better understood and other advantages and features will appear on reading the description which follows, given by way of nonlimiting example, accompanied by the appended drawings among which:
- les figures 1A à IF illustrent la réalisation d'une structure comportant des cellules photovoltaïques en couche mince sur un support, selon la présente invention ;- Figures 1A to IF illustrate the production of a structure comprising thin-film photovoltaic cells on a support, according to the present invention;
- la figure 2 représente un premier support intermédiaire selon 1 ' invention apte à supporter des films minces par dépression ; - la figure 3 représente un deuxième support intermédiaire selon 1 ' invention apte à supporter des films minces par dépression ;- Figure 2 shows a first intermediate support 1 according to the invention capable of supporting thin films by vacuum; - Figure 3 shows a second intermediate support 1 according to the invention capable of supporting thin films by vacuum;
- la figure 4 représente un troisième support intermédiaire selon 1 ' invention apte à supporter des films minces par dépression ;- Figure 4 shows a third intermediate support 1 according to the invention capable of supporting thin films by vacuum;
- la figure 5 représente, de manière détaillée, un élément d'un support intermédiaire selon l'invention apte à supporter des films minces par dépression.- Figure 5 shows, in detail, an element of an intermediate support according to the invention capable of supporting thin films by vacuum.
Description détaillée de modes de réalisation de 1 ' inventionDetailed description of embodiments of the invention
L'invention va être maintenant décrite en prenant comme exemple la réalisation d'une structure comportant des cellules photovoltaïques en couche mince sur un support .The invention will now be described, taking as an example the production of a structure comprising thin-film photovoltaic cells on a support.
La figure 1A montre un substrat de silicium 41 dans lequel un film 44 a été défini par une couche fragile enterrée contenant des microcavités 43 obtenue par implantation ionique. L'implantation peut être réalisée sur un substrat nu, qui a éventuellement déjà subi des opérations technologiques, ou présentant une texturation de surface. L'implantation peut aussi être réalisée au travers d'une couche (oxyde ou nitrure par exemple) déposée sur le substrat. Les substrats implantés peuvent aussi subir des opérations technologiques. Ces opérations peuvent avoir un impact sur les conditions de fracture, en particulier une épitaxié destinée à augmenter l'épaisseur du film de silicium. Les opérations de fragilisation par implantation ionique doivent être rendues compatibles avec les opérations technologiques. On pourra se reporter à ce sujet au document FR-A-2 748 851.FIG. 1A shows a silicon substrate 41 in which a film 44 has been defined by a buried fragile layer containing microcavities 43 obtained by ion implantation. The implantation can be carried out on a bare substrate, which has possibly already undergone technological operations, or having a surface texturing. The implantation can also be carried out through a layer (oxide or nitride for example) deposited on the substrate. The implanted substrates can also undergo technological operations. These operations can have an impact on the fracture conditions, in particular an epitaxy intended to increase the thickness of the silicon film. The embrittlement operations by ion implantation must be made compatible with the technological operations. Reference may be made to this document in document FR-A-2 748 851.
La figure 1B montre deux substrats 41 reportés sur un support aspirant 50 du côté de leurs films 44.FIG. 1B shows two substrates 41 transferred to a suction support 50 on the side of their films 44.
La figure 1C montre le résultat obtenu après séparation des films 44 de leurs substrats, la séparation étant par exemple obtenue par traitement thermique .FIG. 1C shows the result obtained after separation of the films 44 from their substrates, the separation being for example obtained by heat treatment.
Une épitaxié peut alors être réalisée à partir des faces libres des films 44 et on peut procéder à diverses opérations technologiques pour obtenir le résultat représenté à la figure 1D. Ces opérations peuvent comprendre la réalisation de contacts N et P avec leurs dopages (ou régions) associés .An epitaxial can then be produced from the free faces of the films 44 and various technological operations can be carried out to obtain the result shown in FIG. 1D. These operations can include making N and P contacts with their associated dopings (or regions).
Les films 44, toujours maintenus sur leur support aspirant 50, sont alors collés par leurs faces libres sur le support définitif 40 qui comprend par exemple des interconnexions 48 entre cellules (voir la figure 1E) . Le support définitif 40 peut être en verre, en céramique ou en plastique. En fonction de la nature de ce support définitif, le collage peut être obtenu par l'intermédiaire de couches métalliques, par l'intermédiaire d'une couche de verre ou d'oxyde fluant à basse température ou d'une substance adhesive.The films 44, still held on their suction support 50, are then bonded by their faces free on the final support 40 which comprises for example interconnections 48 between cells (see FIG. 1E). The final support 40 can be made of glass, ceramic or plastic. Depending on the nature of this final support, bonding can be obtained by means of metal layers, by means of a layer of glass or of low-temperature fluent oxide or of an adhesive substance.
Le support intermédiaire est retiré par arrêt de la dépression et éventuellement par une légère surpression permettant une séparation plus facile du support intermédiaire et des films.The intermediate support is removed by stopping the depression and possibly by a slight overpressure allowing easier separation of the intermediate support and the films.
Comme le montre la figure IF, le retrait du support intermédiaire permet d'achever, de manière collective, les cellules de la structure (réalisation de connexions, etc.).As shown in Figure IF, the removal of the intermediate support collectively completes the cells of the structure (making connections, etc.).
D'une manière générale, l'épaisseur des films semiconducteurs peut être augmentée, après report sur un support, par épitaxié. Si le support peut être porté à une température suffisante pour l' épitaxié, celle-ci peut être réalisée de façon classique en phase vapeur ou liquide. Si le support ne peut pas être porté à haute température (cas du silicium sur un support en verre ou d'une technologie déjà partiellement réalisée), on peut augmenter l'épaisseur du film de silicium en réalisant un dépôt de silicium polycristallin ou amorphe à basse température et recristalliser ce film par un traitement thermique laser (fusion de cette couche déposée et d'une partie du film mince de silicium monocristallin, de manière à obtenir une épitaxié lors du refroidissement) .In general, the thickness of the semiconductor films can be increased, after transfer to a support, by epitaxy. If the support can be brought to a temperature sufficient for the epitaxy, this can be carried out in conventional manner in the vapor or liquid phase. If the support cannot be brought to high temperature (case of silicon on a glass support or of a technology already partially carried out), the thickness of the silicon film can be increased by depositing a polycrystalline or amorphous silicon at low temperature and recrystallize this film by laser heat treatment (fusion of this deposited layer and of part of the thin film of monocrystalline silicon, so as to obtain an epitaxy during cooling).
La technologie de réalisation des cellules peut être faite de façon classique (traitement thermique en four) si les substrats et le mode de collage choisis supportent des températures élevées. Si ce n'est pas le cas (en particulier si le support final est en verre ou si on utilise un collage par des matériaux ne supportant pas les hautes températures), les traitements thermiques (épitaxié, dopage par diffusion, recuits, etc..) peuvent être réalisés au moyen d'un faisceau laser, ce qui permet de chauffer (jusqu'à liquéfaction si nécessaire) le film mince en surface, sans chauffer le verre.The technology for making the cells can be done in the conventional way (heat treatment in an oven) if the substrates and the chosen bonding mode withstand high temperatures. Yes this is not the case (in particular if the final support is made of glass or if bonding with materials that do not withstand high temperatures is used), heat treatments (epitaxial, doping by diffusion, annealing, etc.) can be produced by means of a laser beam, which makes it possible to heat (until liquefaction if necessary) the thin film on the surface, without heating the glass.
Le support aspirant peut comprendre une plaque percée de nombreux trous de petit diamètre ou une plaque de matériau poreux. Les films minces, posés sur la face avant de la plaque, y sont maintenus en créant une dépression sur la face arrière de la plaque.The suction support may include a plate pierced with numerous small diameter holes or a plate of porous material. The thin films, placed on the front face of the plate, are held there by creating a depression on the rear face of the plate.
La figure 2 est une vue en coupe d'un premier support intermédiaire apte à supporter des films minces par dépression. Il est constitué par une enceinte 60 dont l'intérieur peut être relié à un dispositif de mise en dépression au moyen d'un col 61. L'enceinte 60 possède une paroi plane 62 percée de trous de petit diamètre ou microtrous 63. La taille et 1 ' écartement des microtrous sont déterminés par la rigidité des films minces à manipuler. Les microtrous doivent être d'autant plus petits et plus proches que les films sont moins rigides. De même, l'état de surface de la paroi 62 doit être d'autant meilleur que la rigidité du film est plus faible.Figure 2 is a sectional view of a first intermediate support capable of supporting thin films by vacuum. It consists of an enclosure 60, the interior of which can be connected to a vacuum device by means of a neck 61. The enclosure 60 has a flat wall 62 pierced with small diameter holes or micro holes 63. The size and the spacing of the microholes are determined by the rigidity of the thin films to be handled. The microholes should be smaller and closer as the films are less rigid. Likewise, the surface condition of the wall 62 must be all the better as the stiffness of the film is lower.
La figure 3 est une vue en coupe d'un deuxième support intermédiaire apte à supporter des films minces par dépression. Il comprend, comme le support intermédiaire de la figure 2, une enceinte 70 pourvue d'un col 71. L'enceinte 70 possède aussi une paroi plane 72 percée de trous et supportant une plaque plane 73 percée de microtrous 74. La plaque 73 est fixée à la paroi 72 par des éléments non représentés et ne perturbant pas ses fonctions. La distribution et la taille des trous de la paroi 72 et la distribution et la taille des microtrous de la plaque 73 sont telles que la plaque 73 offre une surface active uniformément aspirante. Cette configuration permet de disposer d'une plaque percée appropriée, par exemple présentant la possibilité de réaliser les microtrous par un procédé collectif et/ou en un matériau adapté au coefficient de dilatation thermique des films minces.Figure 3 is a sectional view of a second intermediate support capable of supporting thin films by vacuum. It includes, like the intermediate support of FIG. 2, an enclosure 70 provided with a neck 71. The enclosure 70 also has a planar wall 72 pierced with holes and supporting a planar plate 73 pierced with microt holes 74. The plate 73 fixed to the wall 72 by elements not shown and not disturbing its functions. Distribution and size of the holes in the wall 72 and the distribution and the size of the microholes in the plate 73 are such that the plate 73 provides a uniformly suction active surface. This configuration makes it possible to have an appropriate pierced plate, for example having the possibility of producing the microholes by a collective process and / or in a material adapted to the coefficient of thermal expansion of thin films.
La figure 4 est une vue en coupe d'un troisième support intermédiaire apte à supporter des films minces par dépression. Comme pour le support de la figure 3, on retrouve une enceinte 80 pourvue d'un col 81. L'enceinte 80 possède aussi une paroi plane 82 percée de trous et supportant une plaque plane 83 percée de trous de plus petit diamètre. La plaque plane 83 supporte à son tour des pièces plates 84 percées de microtrous . Les diamètres des trous et leurs écartements dans la paroi 82, la plaque 83 et les pièces 84 sont tels que les pièces 84 offrent chacune une surface uniformément aspirante. Cette configuration présente l'avantage d'une plus grande facilité de réalisation et d'utilisation. En effet, les pièces 84 peuvent être réalisées à partir du même matériau que celui constituant les films à reporter. On évite ainsi les problèmes liés aux dilatations différentielles lors des traitements thermiques. Par exemple, elles peuvent être en silicium si les films minces sont en silicium. En outre, la réalisation de pièces en silicium de petites dimensions est plus facile que la réalisation d'une plaque de silicium de grandes dimensions.Figure 4 is a sectional view of a third intermediate support capable of supporting thin films by vacuum. As for the support of FIG. 3, there is an enclosure 80 provided with a neck 81. The enclosure 80 also has a planar wall 82 pierced with holes and supporting a planar plate 83 pierced with holes of smaller diameter. The flat plate 83 in turn supports flat parts 84 pierced with micro-holes. The diameters of the holes and their spacings in the wall 82, the plate 83 and the parts 84 are such that the parts 84 each offer a uniformly suction surface. This configuration has the advantage of greater ease of production and use. Indeed, the parts 84 can be made from the same material as that constituting the films to be transferred. This avoids the problems associated with differential expansions during heat treatments. For example, they can be made of silicon if the thin films are made of silicon. In addition, the production of small silicon parts is easier than the production of a large silicon plate.
La figure 5 est une vue en perspective d'un exemple de pièce référencée 84 sur la figure 4. Cette pièce est dite plate en ce sens qu'elle offre, côté face avant, une surface plate 91 au film à supporter. Une pièce 84 en silicium peut être obtenue par gravure d'une plaque de silicium de 500 μm d'épaisseur. Des cavités longitudinales 92 de 1 mm de largeur et de 450 μm de profondeur sont gravées à partir de la face arrière de la plaque. Il subsiste, côté face avant, une paroi mince 93 de 50 μm d'épaisseur dans laquelle on réalise des trous 94 de 20 μm de diamètre et espacés de 100 μm par exemple. Les trous 94 peuvent aussi avoir 5 μm de diamètre et être espacés de 20 μm. Un film de 1 μm d'épaisseur peut être maintenu sur une telle pièce sans casser et en présentant une faible déformation.FIG. 5 is a perspective view of an example of a part referenced 84 in FIG. 4. This part is said to be flat in the sense that it offers, on the front face side, a flat surface 91 to the film to be supported. A piece 84 of silicon can be obtained by etching a silicon wafer 500 μm thick. Longitudinal cavities 92 1 mm wide and 450 μm deep are etched from the rear face of the plate. There remains, on the front face side, a thin wall 93 of 50 μm thickness in which holes 94 are made of 20 μm in diameter and spaced 100 μm apart for example. The holes 94 can also be 5 μm in diameter and be spaced 20 μm apart. A film of 1 μm thickness can be maintained on such a part without breaking and having a slight deformation.
La paroi mince 93 peut être remplacée par un film poreux réalisé par exemple par oxydation anodique du silicium. L'épaisseur de ce film poreux peut typiquement être de 10 μm. The thin wall 93 can be replaced by a porous film produced for example by anodic oxidation of silicon. The thickness of this porous film can typically be 10 μm.

Claims

REVENDICATIONS
1. Support intermédiaire aspirant, caractérisé en ce qu'il présente au moins une surface d'aspiration (62, 91) destinée à recevoir une première face d'au moins un substrat (41) comprenant une couche fragilisée (43), un film (44) étant ainsi délimité entre la première face du substrat et la couche fragilisée, la surface d'aspiration (62, 91) du support intermédiaire étant la face d'au moins un élément d'aspiration comportant des moyens d'aspiration (63, 74, 94) prévus pour que, lorsque la couche fragilisée est soumise à un traitement conduisant à la séparation du film d'avec le reste du substrat, le film puisse être récupéré.1. Intermediate suction support, characterized in that it has at least one suction surface (62, 91) intended to receive a first face of at least one substrate (41) comprising a weakened layer (43), a film (44) thus being delimited between the first face of the substrate and the weakened layer, the suction surface (62, 91) of the intermediate support being the face of at least one suction element comprising suction means (63 , 74, 94) provided so that, when the weakened layer is subjected to a treatment leading to the separation of the film from the rest of the substrate, the film can be recovered.
2. Support intermédiaire aspirant selon la revendication 1, caractérisé en ce que l'élément d'aspiration est en matériau poreux, les pores de cet élément constituant les moyens d'aspiration.2. Intermediate suction support according to claim 1, characterized in that the suction element is made of porous material, the pores of this element constituting the suction means.
3. Support intermédiaire aspirant selon la revendication 1, caractérisé en ce que l'élément d'aspiration est percé de microtrous (63), les microtrous constituant les moyens d'aspiration, la répartition des trous et leur taille étant prévues pour permettre la récupération du film.3. Intermediate suction support according to claim 1, characterized in that the suction element is pierced with micro-holes (63), the micro-holes constituting the suction means, the distribution of the holes and their size being provided to allow recovery of the film.
4. Support intermédiaire aspirant selon la revendication 1, caractérisé en ce qu'il comprend une paroi (72) percée de trous, cette paroi supportant au moins un élément d'aspiration (73), la répartition et la taille des trous de la paroi étant prévues en fonction des moyens d'aspiration dudit élément d'aspiration pour que l'élément d'aspiration puisse permettre la récupération du film.4. Intermediate suction support according to claim 1, characterized in that it comprises a wall (72) pierced with holes, this wall supporting at least one suction element (73), the distribution and the size of the holes in the wall being provided according to the suction means of said element suction so that the suction element can allow the recovery of the film.
5. Support intermédiaire aspirant selon la revendication 1, caractérisé en ce qu'il comprend une paroi (82) percée de trous, cette paroi supportant une plaque (83) percée également de trous, la plaque supportant plusieurs éléments d'aspiration (84), la répartition et la taille des trous des éléments (84) étant prévues pour permettre la récupération du film.5. Intermediate suction support according to claim 1, characterized in that it comprises a wall (82) pierced with holes, this wall supporting a plate (83) also pierced with holes, the plate supporting several suction elements (84) , the distribution and the size of the holes of the elements (84) being provided to allow the film to be recovered.
6. Support intermédiaire aspirant selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la surface d'aspiration présente une forme incurvée, convexe ou concave, permettant de produire une contrainte mécanique sur le film lors de sa séparation d'avec le reste du substrat.6. Intermediate suction support according to any one of claims 1 to 5, characterized in that the suction surface has a curved, convex or concave shape, making it possible to produce a mechanical stress on the film during its separation from the rest of the substrate.
7. Support intermédiaire aspirant selon la revendication 1, caractérisé en ce que la face de l'élément d'aspiration est une face permettant une adhérence moléculaire avec ladite première face du substrat.7. Intermediate suction support according to claim 1, characterized in that the face of the suction element is a face allowing molecular adhesion with said first face of the substrate.
8. Procédé de réalisation d'une structure en couche mince, comprenant le report d'au moins un film sur un support dit support définitif au moyen d'un support intermédiaire, caractérisé en ce qu'il comprend les étapes suivantes :8. Method for producing a structure in a thin layer, comprising the transfer of at least one film onto a support known as a definitive support by means of an intermediate support, characterized in that it comprises the following steps:
- formation d'une couche enterrée (43) fragilisée dans un substrat (41), un film (44) étant ainsi délimité entre la première face du substrat et la couche fragilisée,- formation of a buried layer (43) weakened in a substrate (41), a film (44) being thus delimited between the first face of the substrate and the weakened layer,
- mise en contact de la première face du substrat (41) avec une surface d'aspiration du support intermédiaire (50), la surface d'aspiration étant la face d'un élément d'aspiration comportant des moyens d'aspiration prévus pour que, lorsque la couche fragilisé sera soumise à un traitement conduisant à la séparation du film d'avec le reste du substrat, le film (44) puisse être récupéré,- bringing the first face of the substrate (41) into contact with a suction surface of the support intermediate (50), the suction surface being the face of a suction element comprising suction means provided so that, when the weakened layer is subjected to a treatment leading to separation of the film from the rest from the substrate, the film (44) can be recovered,
- soumission de la couche fragilisée (43) audit traitement de séparation, la première face du substrat (41) étant solidarisée du support intermédiaire par aspiration,- subjecting the weakened layer (43) to said separation treatment, the first face of the substrate (41) being secured to the intermediate support by suction,
- report du film (44) obtenu sur le support définitif (40),- transfer of the film (44) obtained on the final support (40),
- retrait du support intermédiaire (50) par arrêt de l'aspiration.- removal of the intermediate support (50) by stopping the suction.
9. Procédé selon la revendication 8, caractérisé en ce que ladite mise en contact de la première face du substrat avec la surface d'aspiration du support intermédiaire est renforcée par adhérence moléculaire .9. Method according to claim 8, characterized in that said bringing the first face of the substrate into contact with the suction surface of the intermediate support is reinforced by molecular adhesion.
10. Procédé selon la revendication 8, caractérisé en ce que le support définitif (40) supporte le film (44) au moyen d'un collage par adhérence moléculaire.10. Method according to claim 8, characterized in that the final support (40) supports the film (44) by means of a bonding by molecular adhesion.
11. Procédé selon la revendication 8, caractérisé en ce que le support définitif supporte le film au moyen d'un collage par une matière adhesive.11. Method according to claim 8, characterized in that the final support supports the film by means of bonding with an adhesive material.
12. Procédé selon la revendication 11, caractérisé en ce que ladite matière adhesive est un matériau fluable disposé sur le support définitif et/ou sur le film mince. 12. The method of claim 11, characterized in that said adhesive material is a flowable material disposed on the final support and / or on the thin film.
13. Procédé selon l'une quelconque des revendications 8 à 12, caractérisé en ce que, la structure étant une structure comportant des cellules photovoltaïques en couche mince, le procédé comprend le report de films semiconducteurs monocouches ou multicouches pour former un pavage sur le support définitif et le traitement de ces films pour obtenir les cellules photovoltaïques à partir de ces films.13. Method according to any one of claims 8 to 12, characterized in that, the structure being a structure comprising photovoltaic cells in thin layer, the method comprises the transfer of monolayer or multilayer semiconductor films to form a paving on the support final and processing of these films to obtain the photovoltaic cells from these films.
14. Procédé selon la revendication 13, caractérisé en ce que les films sont, avant report, partiellement ou totalement traités en vue d'obtenir lesdites cellules photovoltaïques.14. Method according to claim 13, characterized in that the films are, before transfer, partially or completely treated in order to obtain said photovoltaic cells.
15. Procédé selon l'une des revendications 13 ou 14, caractérisé en ce que, après report, les films minces (44) sont traités en vue d'obtenir lesdites cellules photovoltaïques.15. Method according to one of claims 13 or 14, characterized in that, after transfer, the thin films (44) are treated in order to obtain said photovoltaic cells.
16. Procédé selon l'une quelconque des revendications 13 à 15, caractérisé en ce que le report des films minces (44) se fait sur un support en un matériau choisi parmi le verre, la céramique et le plastique.16. Method according to any one of claims 13 to 15, characterized in that the transfer of the thin films (44) is done on a support made of a material chosen from glass, ceramic and plastic.
17. Procédé selon l'une quelconque des revendications 13 à 16, caractérisé en ce que le report se fait selon un pavage possédant une forme choisie parmi les formes rectangulaire, hexagonale et circulaire .17. Method according to any one of claims 13 to 16, characterized in that the transfer is made according to a paving having a shape chosen from rectangular, hexagonal and circular shapes.
18. Procédé selon l'une quelconque des revendications 13 à 17, caractérisé en ce que les films (44) reportés sont des films de matériau semiconducteur choisi parmi les matériaux monocristallins et multicristallins à gros grains. 18. Method according to any one of claims 13 to 17, characterized in that the films (44) carried over are films of semiconductor material chosen from monocrystalline and multicrystalline materials with large grains.
EP00993461A 1999-12-13 2000-12-12 Intermediate suction support and use thereof for making a thin-layered structure Withdrawn EP1238435A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9915667 1999-12-13
FR9915667A FR2802340B1 (en) 1999-12-13 1999-12-13 STRUCTURE COMPRISING PHOTOVOLTAIC CELLS AND METHOD FOR PRODUCING THE SAME
PCT/FR2000/003482 WO2001045178A1 (en) 1999-12-13 2000-12-12 Intermediate suction support and use thereof for making a thin-layered structure

Publications (1)

Publication Number Publication Date
EP1238435A1 true EP1238435A1 (en) 2002-09-11

Family

ID=9553163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993461A Withdrawn EP1238435A1 (en) 1999-12-13 2000-12-12 Intermediate suction support and use thereof for making a thin-layered structure

Country Status (5)

Country Link
US (2) US20030047289A1 (en)
EP (1) EP1238435A1 (en)
JP (1) JP2003517217A (en)
FR (1) FR2802340B1 (en)
WO (1) WO2001045178A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450126B2 (en) * 2000-01-21 2010-04-14 日新電機株式会社 Method for forming silicon crystal thin film
JP2003017723A (en) * 2001-06-29 2003-01-17 Shin Etsu Handotai Co Ltd Method of manufacturing thin semiconductor film and method of manufacturing solar battery
US7119365B2 (en) * 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
FR2880989B1 (en) * 2005-01-20 2007-03-09 Commissariat Energie Atomique SEMICONDUCTOR DEVICE WITH HETEROJUNCTIONS AND INTERDIGITAL STRUCTURE
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US8124499B2 (en) 2006-11-06 2012-02-28 Silicon Genesis Corporation Method and structure for thick layer transfer using a linear accelerator
EP2168171A4 (en) * 2007-07-03 2016-05-18 Microlink Devices Inc Thin film iii-v compound solar cell
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
KR20120108229A (en) * 2011-03-23 2012-10-05 삼성디스플레이 주식회사 Work table for laser processing
FR2978600B1 (en) 2011-07-25 2014-02-07 Soitec Silicon On Insulator METHOD AND DEVICE FOR MANUFACTURING LAYER OF SEMICONDUCTOR MATERIAL
CN104507853B (en) 2012-07-31 2016-11-23 索泰克公司 The method forming semiconductor equipment
KR102187752B1 (en) * 2013-05-07 2020-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Separation method and separation apparatus
US10978332B2 (en) * 2016-10-05 2021-04-13 Prilit Optronics, Inc. Vacuum suction apparatus
US10170893B1 (en) 2017-08-09 2019-01-01 Waymo Llc Vacuum fixture
US11351677B2 (en) * 2020-06-25 2022-06-07 Oxygen Development LLC Multi-pan insertion tool

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1526933A (en) * 1974-09-13 1978-10-04 Johnson Matthey Co Ltd Vacuum head for handling transfers
US4521995A (en) * 1980-05-23 1985-06-11 Disco Co., Ltd. Wafer attracting and fixing device
JPS60103651U (en) * 1983-12-19 1985-07-15 シチズン時計株式会社 vacuum suction table
JPS63210148A (en) * 1987-02-26 1988-08-31 Nikko Rika Kk Plastic sinter for vacuum chuck
JPH0744135B2 (en) * 1989-08-28 1995-05-15 株式会社東芝 Bonding method and bonding device for semiconductor substrate
US5141212A (en) * 1991-04-08 1992-08-25 Ekstrom Carlson & Co. Vacuum chuck with foam workpiece-supporting surface
FR2681472B1 (en) * 1991-09-18 1993-10-29 Commissariat Energie Atomique PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL.
JPH0851143A (en) * 1992-07-20 1996-02-20 Nikon Corp Board holding apparatus
JPH07110455B2 (en) * 1992-10-27 1995-11-29 住友電気工業株式会社 Wafer fixing device
JPH06268051A (en) * 1993-03-10 1994-09-22 Mitsubishi Electric Corp Wafer stripper
IT1272665B (en) * 1993-09-23 1997-06-26 Eurosolare Spa PROCEDURE FOR THE PREPARATION OF CRYSTALLINE SILICON-BASED PHOTOVOLTAIC MODULES
US5695600A (en) * 1994-10-03 1997-12-09 Goin; Bobby Gene Vacuum table for decal weeding
DE4446546A1 (en) * 1994-12-24 1996-06-27 Philips Patentverwaltung Vacuum maintaining device for green ceramic film in electronic module mfr.
JP3381443B2 (en) * 1995-02-02 2003-02-24 ソニー株式会社 Method for separating semiconductor layer from substrate, method for manufacturing semiconductor device, and method for manufacturing SOI substrate
US5713563A (en) * 1995-03-21 1998-02-03 Hewlett-Packard Co. Wire bonding to flexible substrates
EP0797258B1 (en) * 1996-03-18 2011-07-20 Sony Corporation Method for making thin film semiconductor, solar cell, and light emitting diode
FR2748851B1 (en) * 1996-05-15 1998-08-07 Commissariat Energie Atomique PROCESS FOR PRODUCING A THIN FILM OF SEMICONDUCTOR MATERIAL
JP3628108B2 (en) * 1996-06-10 2005-03-09 株式会社イオン工学研究所 Manufacturing method of solar cell
DE69738307T2 (en) * 1996-12-27 2008-10-02 Canon K.K. Manufacturing method of a semiconductor device and manufacturing method of a solar cell
SG87916A1 (en) * 1997-12-26 2002-04-16 Canon Kk Sample separating apparatus and method, and substrate manufacturing method
US6173948B1 (en) * 1999-01-20 2001-01-16 International Business Machines Corporation Dimensional compensating vacuum fixture
US6964201B2 (en) * 2003-02-25 2005-11-15 Palo Alto Research Center Incorporated Large dimension, flexible piezoelectric ceramic tapes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0145178A1 *

Also Published As

Publication number Publication date
US20050270867A1 (en) 2005-12-08
FR2802340B1 (en) 2003-09-05
FR2802340A1 (en) 2001-06-15
JP2003517217A (en) 2003-05-20
US20030047289A1 (en) 2003-03-13
US7368030B2 (en) 2008-05-06
WO2001045178A1 (en) 2001-06-21

Similar Documents

Publication Publication Date Title
EP1285461B1 (en) Method of manufacturing a thin film
EP1354346B1 (en) Method for producing a thin film comprising implantation of gaseous species
EP1238435A1 (en) Intermediate suction support and use thereof for making a thin-layered structure
EP1338030B1 (en) Method for making a substrate in particular for optics, electronics or optoelectronics and resulting substrate
EP0994503B1 (en) Process for manufacturing a structure comprising a thin layer composed of material containing conductive and isolation regions
EP1114446B1 (en) Method for producing a thin membrane
FR2681472A1 (en) PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL
WO2001097282A1 (en) Method for making substrates and resulting substrates
FR2969664A1 (en) METHOD FOR CLEAVING A SUBSTRATE
EP2342744A1 (en) Process for forming a single-crystal film in the microelectronics field
EP4128328B1 (en) Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic
EP1268884A1 (en) Method and device for making substrates
EP4128329B1 (en) Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic
EP4008020B1 (en) Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on a carrier substrate of polycrystalline sic
EP2422365A1 (en) Microtechnology proven for transferring at least one layer
FR2866982A1 (en) Fabrication of electronic components using a noble support for front end fabrication and a less costly support, with specific desired physical properties, for back end fabrication
WO2023057700A1 (en) Method for manufacturing a composite structure comprising a thin film of monocrystalline sic on a carrier substrate of polycrystalline sic
EP4088309A1 (en) Method of joining two semi-conductor substrates
FR3120737A1 (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR STRUCTURE BASED ON SILICON CARBIDE AND INTERMEDIATE COMPOSITE STRUCTURE
WO2021250333A1 (en) Detachable temporary substrate compatible with very high temperatures and process for transferring a working layer from said substrate
WO2022129726A1 (en) Method for producing a semiconductor structure comprising an interface region including agglomerates
WO2023052704A1 (en) Method for manufacturing a composite structure comprising a thin film of monocrystalline sic on a carrier substrate of polycrystalline sic
FR3120736A1 (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR STRUCTURE BASED ON SILICON CARBIDE AND INTERMEDIATE COMPOSITE STRUCTURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20080627

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081108