EP1237360A1 - Contour correction device - Google Patents
Contour correction device Download PDFInfo
- Publication number
- EP1237360A1 EP1237360A1 EP00979016A EP00979016A EP1237360A1 EP 1237360 A1 EP1237360 A1 EP 1237360A1 EP 00979016 A EP00979016 A EP 00979016A EP 00979016 A EP00979016 A EP 00979016A EP 1237360 A1 EP1237360 A1 EP 1237360A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- luminance level
- signal
- output
- luminance
- processor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
- H04N5/205—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
- H04N5/208—Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction
Definitions
- the present invention relates to an image contour correcting device.
- contour correction circuits for correcting video signals have been used so as to emphasize contours of the picture signals.
- contour correction circuits generate a contour correction signal from high-frequency components which may be extracted from an input video signal, by passing it through a high-pass filter, by a differentiation process or the like, and superimpose the extracted contour correction signal over the delayed input video signal by an adder, to thereby produce a video signal enhanced in sharpness at contours.
- conventional contour correction method performs contour correction by emphasizing the supplied reproduction luminance signal over the range from low-luminance to high-luminance in the same manner, in some cases noise existing at areas where the luminance signal is low may also be enhanced; in other cases while excessive overshoots or undershoots of large amplitudes may occur around rising edges at which the luminance signal sharply rises from black to white levels or around falling edges at which the luminance signal sharply drops from white to black levels, whereby boundaries between black and white areas are unnaturally emphasized producing contour blurs or noise is also emphasized at the same time, resulting in degradation of image quality.
- the system disclosed in Japanese Patent Application Laid-open Hei 7 No.7636 includes a correcting means for performing contour correction of emphasizing the levels of all the tones of the luminance signal in like manner; a halftone emphasizing means for emphasizing only the levels corresponding to halftones of the luminance signal; and a multiplying means for multiplying the luminance signal, which has been contour corrected by, and is output from, the correcting means, by the halftone emphasized signal, or the signal which has been emphasized as to the levels corresponding halftones only and is output from the halftone emphasizing means, and is characterized in that only the contours with their luminance signal belonging to medium levels are corrected.
- this method emphasizes the medium tone levels only, without emphasizing noises that exist in the areas where the luminance signal level is low, it is possible to obtain high quality images free from conspicuous noises. Further, since no level emphasis will be achieved for rising edges at which the luminance signal sharply changes from black to white levels or for falling edges at which the luminance signal sharply drops from white to black levels, no excessive overshoots or undershoots of large amplitudes will occur. As a result, contours at the boundaries between black and white areas will be never emphasized unnaturally, so this method can be thought as an invention which is able to make such boundary areas markedly clear.
- the present invention is to provide a contour correcting device free from the above problems.
- the present invention is configured as follows.
- a contour correcting device of the present invention includes: an edge extractor for calculating the strength of a contour in a picture signal; a mean luminance calculator for calculating a mean luminance level in a specified area in the picture signal and calculating the deviation of the mean luminance level from a predetermined luminance level; a first processor for controlling the output from the edge extractor based on the output from the mean luminance calculator; a waveform corrector which divides the picture signal into a plurality of luminance level ranges and controls a luminance level characteristic for each of the classified ranges; a second processor for calculating the variation of the output from the waveform corrector from the picture signal; and a third processor for generating a contour correcting signal by multiplying the output from the first processor by the output from the second processor.
- a contour correcting device may comprise: an edge extractor for calculating the strength of contours in a picture signal; a mean luminance calculator for calculating the mean luminance level in a specified area in the picture signal and calculating the deviation of the mean luminance level from a predetermined luminance level; a first processor for controlling the output from the edge extractor based on the output from the mean luminance calculator; a filter for extracting the signal component of a predetermined frequency range from the output from the first processor; a waveform corrector which divides the picture signal into a plurality of luminance level ranges and controls the luminance level characteristic for each of the classified ranges; a second processor for calculating the variation of the output from the waveform corrector from the picture signal; and a third processor for generating a contour correcting signal by multiplying the output from the filter by the output from the second processor.
- the waveform corrector divides the picture signal into high-luminance level, medium-luminance level and low-luminance level ranges, and the ratio of an input signal to an output signal in the medium-luminance level range is set greater than the ratio of an input signal to an output signal in the high-luminance level range and/or in the low-luminance level range.
- the waveform corrector divides the picture signal into high-luminance level, medium-luminance level and low-luminance level ranges, and the ratio of an input signal to an output signal in the high-luminance level range and/or in the low-luminance level range is set smaller than the ratio of an input signal to an output signal in the medium-luminance level range.
- the input and output characteristic may have an approximate S shape.
- the filter is preferably a low-pass filter.
- Fig.1 is a block diagram showing the concept of a contour correcting device of the present invention.
- Fig.1 designates a correction range setting portion for determining areas and ranges in which contour correction is to be done.
- This correction range setting portion 1 is comprised of an edge extractor 2, a mean luminance calculator 3 for detecting the mean luminance of a designated area and a first processor 4 that receives the outputs from the edge extractor 2 and mean luminance calculator 3 and performs predetermined operations.
- Designated at 5 is a look-up table (which will be referred to hereinbelow as LUT) in which conversion characteristics, various threshold values are stored.
- Figs.3, 5 and 7 show the example of input/output characteristics.
- Reference numeral 6 designates a waveform corrector which converts the input signal in accordance with the conversion characteristics given by LUT 5 and outputs the converted input signal and 7 designates a second processor which extracts components to be corrected, based on the operation between the input signal and the converted waveform.
- LPF low-pass filter
- 8 designates a third processor which extracts the amounts of contour correction in the area determined by correction range setting portion 1
- 11 designates a contour corrector for implementing contour correction to the input signal.
- Fig.2 is a block diagram showing in detail each constituent of the above block diagram.
- edge detector 2 is comprised of a target pixel extracting portion 2a for edge extraction, an adjacent pixel extracting portion 2b, an absolute difference calculator 2c for calculating the absolute difference between the target pixel and each adjacent pixel, a maximum absolute difference detecting portion 2d and a first coring portion 2e.
- the mean luminance calculator 3 is comprised of a target pixel extracting portion 3a for calculating the average of the luminance of a specified area, an adjacent pixel extracting portion 3b, a mean luminance calculating portion 3c and a second coring portion 3d.
- the first processor 4 is composed of a subtracter 4a and a clipping portion 4b.
- the level adjuster 10 is comprised of a step-down processor 10a and a normalizer 10b.
- the main feature of the present invention is that waveform correction is performed in such a manner that the slope in the medium luminance range is set greater for the pattern edges of the pictures while the slopes in the high-luminance and low-luminance ranges are set smaller, whereby the edges will be depicted with more vividness while flat fields are reproduced directly as natural pictures.
- the method includes three steps: the first step for extracting the variation from the original input signal to the signal which has been uniformly converted therefrom based on the conversion characteristic stored in LUT 5; the second step for determining correction areas; and the third step for determining the amount of correction and implementing contour correction.
- the input picture signal is supplied to waveform corrector 6 and second processor 7.
- the waveform corrector 6 the input picture signal is corrected based on the characteristic stored in LUT 5 as shown in Fig.3, or based on the approximate S-shapedconversion characteristic in which the slope of the medium-luminance (i.e., input/output signal ratio) is set equal to or greater than 45 degrees while the slopes in the high-luminance and the low-luminance ranges are set smaller. (It is also possible that the slopes in the high-luminance and the low-luminance ranges are set smaller while the slope in the medium-luminance is fixed as is.
- the slope in the medium-luminance may be made steeper while the slopes in the high-luminance and the low-luminance ranges may be set as they are).
- both the horizontal and vertical axes represent luminance values (Y-signals), for example, ranging from 0 to 255, for input and output when the luminance signal has 8 bit tones.
- the input picture signal which has been corrected through the waveform corrector 6, is processed through second processor 7 so as to calculate its difference from the input, original picture signal.
- second processor 7 so as to calculate its difference from the input, original picture signal.
- edges as well as their edge strength are detected. This is done in the following manner.
- the picture signal is input to the edge detector 2 and mean luminance calculator 3.
- the picture signal is input to the edge detector 2 where a target pixel TP is extracted from the signal by target pixel extracting portion 2a. Then, adjacent pixels AP, left and right, above and below, and diagonally located with respect to the target pixel PT are extracted by adjacent pixel extracting portion 2b.
- Fig.4 shows the relationship between the target pixel TP and adjacent pixels AP.
- the blank circle represents target pixel TP and the solid circles represent its adjacent pixels AP.
- absolute difference calculating portion 2c the absolute differences in tonal level between the extracted target pixel TP and each of the eight adjacent pixels AP are calculated. Then, at maximum value detector 2d, the maximum value of the absolute differences as to tonal level is determined.
- first coring processor 2e signals of low levels among the maximum values extracted through maximum value detector 2d are regarded as having been detected erroneously due to noise and removed to implement a coring process.
- the characteristic of this first coring process should be stored in LUT 5 and it preferably has the feature shown in Fig.5, for example. That is, this coring process preferably has the characteristic that the output value remains "0" up to a predetermined input level and increases from that point as the input value increases.
- the output from the first coring processor 2e will function as an index that represents the edge strength of the target pixel. Accordingly, an area where this value is "0" is regarded as a flat field.
- the picture signal is also supplied to mean luminance calculator 3 (Fig.2), as stated above.
- mean luminance calculator 3 Fig.2
- the above conversion characteristic shown in Fig.3 is effective to correct the medium luminance levels only, if the mean luminance around a target pixel TP is too low or too high there is a risk that the area might be darkened too far or whitened too far, or reversely emphasized.
- an effective range for the mean luminance is preset so that correction cannot be made to other than this range. In this case, it is preferred that this effective range approximately coincides with the medium luminance range shown in Fig.3.
- the picture signal is supplied to mean luminance calculating unit 3, where a target pixel TP is extracted at target pixel extracting portion 3a and then surrounding pixels around the target pixel TP are extracted by surrounding pixel extracting portion 3b.
- Fig.6 shows the relationship between the target pixel TP and surrounding pixels SP.
- the blank circle represents target pixel TP and the solid circles represent its surrounding pixels SP.
- thirty-two surrounding pixels SP may be selected in the 11 ⁇ 3 pixels (11 horizontal pixels ⁇ 3 lines of pixels) that surround the target pixel.
- mean luminance calculating portion 3c the average of the 32 luminance values of the surrounding pixels SP is calculated.
- the mean luminance value, calculated in mean luminance calculating portion 3c, is converted based on a predetermined conversion characteristic.
- This predetermined conversion characteristic is stored in LUT 5.
- this coring process preferably has the characteristic shown in Fig. 7 that the output value remains "0" across a certain effective input range and gradually increases as the level of input becomes away from the designated range.
- the above characteristic of the second coring process represents the degree of deviation from the correction effective range, determined based on the mean luminance.
- the value of the edge strength thus determined at edge detector 2 as well as the degree of deviation of the mean luminance, determined through mean luminance calculating portion 3, from the effective range is input to the first calculating portion 4 (Fig.2).
- this first processor 4 subtraction of the edge strength value and the degree of deviation of the mean luminance from the effective range is performed in subtracter 4a and then the data is subjected to a clipping treatment in clipping portion 4b where the data is regulated based of a fixed value.
- the output edge index
- the output is set to be zero when the input ranges from 0 to 16.
- the amount of correction is determined and the correction is implemented.
- the output from the clipping portion 4b is supplied to LPF 9 (Fig.2).
- LPF 9 Fig.2
- one pixel of two adjacent pixels, left and right may have a maximum level (e.g., 16) and the other may have a minimum level (0).
- the former pixel of the adjacent pixels is corrected maximally while the latter is uncorrected.
- a sharp variation would occur in the image at the boundary between the corrected and uncorrected area, failing to produce a natural image.
- passing the data from the correction range setting portion through the LPF makes it possible to gradate the area where there is a step between left and right pixels.
- a series of six pixels having data of '0, 0, 0, 16, 16, 16' can be gradated into data of '0, 0, 4, 12, 16, 16' so as to reduce the sharp variation.
- the LPF will smoothen the data in the horizontal direction.
- the signal having passed through LPF 9 is supplied as the data representing the correction efficiency to level adjuster 10 (Fig.2).
- the signal supplied to the level adjuster 10 is stepped down uniformly by step-down processor 10a and then the input signal is normalized to 0 to 1 by the normalizer 10b.
- Third processor 8 multiplies the variation determined at the step 1 and the normalized output from level adjuster 10.
- the correcting component i.e., the output from the third processor 8 is added to the input picture signal, whereby a contour corrected output signal is obtained.
- the contour emphasis based on the waveform correction according to the present invention is implemented using the emphasis component calculated from the absolute level of luminance, instead of that obtained from the variations of luminance in the horizontal and vertical directions, it is possible to reproduce video images markedly stable and consistent without disordering the gradations of oblique lines etc.
- the conversion characteristic and coring characteristics were assumed to be fixed in the description of the above embodiment, the conversion characteristic and the effective ranges of the coring characteristics may be dynamically changed in accordance with the luminance distribution across the whole frame of image.
- the same process can be effected on the luminance signal which can be generated by the appropriate matrix process.
- the waveform correcting means having a correction characteristic, such as approximately S-shaped characteristic, that the correction slope for the medium luminance range is set greater than that for the high-luminance and/or low-luminance range is used to implement waveform correction it is possible to transform data of a gentle rise into data of a steep rise without causing any overshoot or undershoot. Therefore, it is possible to improve the apparent contrast and implement the correction at edges only, whereby the edges can be depicted with more vividness while flat fields are reproduced directly so as to produce a natural picture with its gradational representation retained.
- the variation extracted by the variation extracting means differing from the variational component extracted through a high-pass filter which has been typically used, is extracted based on the luminance of each pixel, this configuration has strong resistance to noise and makes it possible to reproduce even oblique lines without degrading their gradations.
- the average of the luminance values in a predetermined area is also used as the condition for determining whether or not correction is to be made, it is possible to suppress degradation of particular areas being darkened too far or whitened too far.
- edge detection of the edge detecting means is carried out based on the maximum value in absolute difference with the surrounding pixels, this as well makes detection of oblique edges easy, hence it is possible to make appropriate correction to contours of oblique lines and the like.
- the contour correcting device is suitably applied to general visual apparatuses which reproduce natural pictures on the display by improving the apparent contrast of the picked up video signal while enhancing vividness at pattern edges.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Picture Signal Circuits (AREA)
- Image Processing (AREA)
- Studio Circuits (AREA)
Abstract
Description
Claims (8)
- A contour correcting device comprising:an edge extractor for calculating the strength of a contour in a picture signal;a mean luminance calculator for calculating a mean luminance level in a specified area in the picture signal and calculating a deviation of the mean luminance level from a predetermined luminance level;a first processor for controlling an output from the edge extractor based on an output from the mean luminance calculator;a waveform corrector which divides the picture signal into a plurality of luminance level ranges and controls a luminance level characteristic for each of the classified ranges;a second processor for calculating a variation of an output from the waveform corrector from the picture signal; anda third processor for generating a contour correcting signal by multiplying an output from the first processor by an output from the second processor.
- A contour correcting device comprising:an edge extractor for calculating the strength of a contour in a picture signal;a mean luminance calculator for calculating a mean luminance level in a specified area in the picture signal and calculating a deviation of the mean luminance level from a predetermined luminance level;a first processor for controlling an output from the edge extractor based on an output from the mean luminance calculator;a filter for extracting a signal component of a predetermined frequency range from an output from the first processor;a waveform corrector which divides the picture signal into a plurality of luminance level ranges and controls a luminance level characteristic for each of the classified ranges;a second processor for calculating a variation of an output from the waveform corrector from the picture signal; anda third processor for generating a contour correcting signal by multiplying an output from the filter by an output from the second processor.
- The contour correcting device according to Claim 1 or 2, wherein the waveform corrector divides the picture signal into high-luminance level, medium-luminance level and low-luminance level ranges, and a ratio of an input signal to an output signal in the medium-luminance level range is set greater than a ratio of an input signal to an output signal in the high-luminance level range or in the low-luminance level range.
- The contour correcting device according to Claim 1 or 2, wherein the waveform corrector divides the picture signal into high-luminance level, medium-luminance level and low-luminance level ranges, and a ratio of an input signal to an output signal in the medium-luminance level range is set greater than a ratio of an input signal to an output signal in the high-luminance level range or in the low-luminance level range.
- The contour correcting device according to Claim 1 or 2, wherein the waveform corrector divides the picture signal into high-luminance level, medium-luminance level and low-luminance level ranges, and a ratio of an input signal to an output signal in the high-luminance level range or in the low-luminance level range is set smaller than a ratio of an input signal to an output signal in the medium-luminance level range.
- The contour correcting device according to Claim 1 or 2, wherein the waveform corrector divides the picture signal into high-luminance level, medium-luminance level and low-luminance level ranges, and a ratio of an input signal to an output signal in the high-luminance level range or in the low-luminance level range is set smaller than a ratio of an input signal to an output signal in the medium-luminance level range.
- The contour correcting device according to Claim 1 or 2, wherein the waveform corrector has an input and output characteristic of an approximate S shape.
- The contour correcting device according to any one of Claims 2 to 5, wherein the filter is a low-pass filter.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33901599 | 1999-11-30 | ||
JP33901599A JP3545979B2 (en) | 1999-11-30 | 1999-11-30 | Contour correction device |
PCT/JP2000/008428 WO2001041425A1 (en) | 1999-11-30 | 2000-11-29 | Contour correction device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1237360A1 true EP1237360A1 (en) | 2002-09-04 |
EP1237360A4 EP1237360A4 (en) | 2004-04-14 |
EP1237360B1 EP1237360B1 (en) | 2009-01-28 |
Family
ID=18323476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00979016A Expired - Lifetime EP1237360B1 (en) | 1999-11-30 | 2000-11-29 | Contour correcting device |
Country Status (10)
Country | Link |
---|---|
US (1) | US6915023B2 (en) |
EP (1) | EP1237360B1 (en) |
JP (1) | JP3545979B2 (en) |
KR (1) | KR100435178B1 (en) |
CN (1) | CN1168289C (en) |
AU (1) | AU767050B2 (en) |
DE (1) | DE60041503D1 (en) |
ES (1) | ES2317854T3 (en) |
HU (1) | HUP0204070A3 (en) |
WO (1) | WO2001041425A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1542162A2 (en) * | 2003-12-12 | 2005-06-15 | Sony Corporation | Contour enhancement in digital images |
US7457486B2 (en) | 2003-09-30 | 2008-11-25 | Panasonic Corporation | Imaging device |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4153715B2 (en) * | 2002-04-08 | 2008-09-24 | 松下電器産業株式会社 | Video signal processing apparatus and video signal processing method |
JP4044826B2 (en) | 2002-07-25 | 2008-02-06 | 富士通株式会社 | Semiconductor integrated circuit |
WO2006040960A1 (en) * | 2004-10-08 | 2006-04-20 | Matsushita Electric Industrial Co., Ltd. | Image processing apparatus and image processing program |
JP4200381B2 (en) * | 2004-12-16 | 2008-12-24 | 船井電機株式会社 | Video display device and video display method |
JP4534756B2 (en) * | 2004-12-22 | 2010-09-01 | ソニー株式会社 | Image processing apparatus, image processing method, imaging apparatus, program, and recording medium |
CN100362850C (en) * | 2005-01-17 | 2008-01-16 | 深圳创维-Rgb电子有限公司 | Method for strengthening edge of TV image |
FR2887978B1 (en) * | 2005-06-29 | 2007-10-12 | Snecma Moteurs Sa | METHOD FOR CONTROLLING THE PROFILE OF THE CONNECTING AREA BETWEEN THE CYLINDRICAL PART AND THE BOTTOM OF A ROLLER FOR A TURBOMACHINE BEARING BEARING |
TWI272853B (en) | 2005-09-21 | 2007-02-01 | Quanta Comp Inc | Image edge enhancement apparatus and method thereof |
US8009903B2 (en) * | 2006-06-29 | 2011-08-30 | Panasonic Corporation | Image processor, image processing method, storage medium, and integrated circuit that can adjust a degree of depth feeling of a displayed high-quality image |
KR100786094B1 (en) | 2006-08-07 | 2007-12-21 | 엘지전자 주식회사 | The display device for displaying a screen of enhanced sharpness, and the method for controlling the same |
JP4221434B2 (en) * | 2006-10-04 | 2009-02-12 | 株式会社ナナオ | Outline correction method, image processing apparatus, and display apparatus |
JP5082549B2 (en) * | 2007-03-30 | 2012-11-28 | ソニー株式会社 | Video signal processing apparatus and video signal processing method |
JP2009104055A (en) * | 2007-10-25 | 2009-05-14 | Seiko Epson Corp | Driving device and driving method, and electrooptical device and electronic equipment |
JP4875647B2 (en) * | 2008-03-12 | 2012-02-15 | パナソニック株式会社 | Contour correction circuit |
KR100989719B1 (en) | 2008-12-31 | 2010-10-26 | 엠텍비젼 주식회사 | Apparatus For Processing Image Signal, Method For Enhancing Edge Of Image Signal Processing Apparatus And Recorded Medium For Perfoming Method Of Enhancing Edge |
JP5099275B2 (en) * | 2009-03-16 | 2012-12-19 | 株式会社ニコン | Adaptive overshoot control for sharpening images |
JP4994422B2 (en) * | 2009-05-13 | 2012-08-08 | リズム時計工業株式会社 | Detection system, signal processing method of detection system, and smoke detector |
JP2012249079A (en) * | 2011-05-27 | 2012-12-13 | Semiconductor Components Industries Llc | Contour correction device |
KR20140086632A (en) * | 2012-12-28 | 2014-07-08 | 삼성디스플레이 주식회사 | Image processing device and display device having them |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5420633A (en) * | 1991-06-24 | 1995-05-30 | Canon Kabushiki Kaisha | Apparatus for suppressing pseudo-contours in video signals |
EP0784399A1 (en) * | 1994-09-30 | 1997-07-16 | Matsushita Electric Industrial Co., Ltd. | Image pickup device |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0326070A (en) | 1989-06-22 | 1991-02-04 | Toshiba Corp | Contour emphasis circuit |
JPH03263977A (en) | 1989-11-27 | 1991-11-25 | Hitachi Ltd | Television receiver |
JPH0442668A (en) | 1990-06-08 | 1992-02-13 | Canon Inc | Contour correction circuit |
KR0133515B1 (en) * | 1990-07-21 | 1998-04-22 | 구자홍 | The vertical horizontal contour compensation system |
US5081692A (en) * | 1991-04-04 | 1992-01-14 | Eastman Kodak Company | Unsharp masking using center weighted local variance for image sharpening and noise suppression |
JPH04342375A (en) | 1991-05-20 | 1992-11-27 | Seiko Epson Corp | Contour correction circuit |
JPH0591532A (en) | 1991-09-30 | 1993-04-09 | Toshiba Corp | Image filter and adaptive type image filter learning method |
JPH06326892A (en) | 1993-05-17 | 1994-11-25 | Toshiba Corp | Vertical detail emphasis circuit |
JPH077636A (en) | 1993-06-18 | 1995-01-10 | Victor Co Of Japan Ltd | Aperture correction circuit |
JPH07336717A (en) | 1994-06-10 | 1995-12-22 | Kenwood Corp | Color contour correction circuit |
JP3309941B2 (en) | 1994-12-02 | 2002-07-29 | ソニー株式会社 | Noise detection circuit, noise elimination circuit and contour enhancement circuit |
US6289136B1 (en) * | 1995-03-22 | 2001-09-11 | Canon Kabushiki Kaisha | Image processing method and apparatus |
JP3003561B2 (en) | 1995-09-25 | 2000-01-31 | 松下電器産業株式会社 | Gradation conversion method and circuit, image display method and apparatus, and image signal conversion apparatus |
JP3690882B2 (en) * | 1996-08-16 | 2005-08-31 | 富士写真フイルム株式会社 | Image enhancement processing method and apparatus |
JP3267200B2 (en) | 1997-07-11 | 2002-03-18 | 松下電器産業株式会社 | Image processing device |
JP4019503B2 (en) | 1998-06-09 | 2007-12-12 | ソニー株式会社 | Video signal processing apparatus and video signal processing method |
-
1999
- 1999-11-30 JP JP33901599A patent/JP3545979B2/en not_active Expired - Fee Related
-
2000
- 2000-11-29 EP EP00979016A patent/EP1237360B1/en not_active Expired - Lifetime
- 2000-11-29 US US10/148,424 patent/US6915023B2/en not_active Expired - Fee Related
- 2000-11-29 HU HU0204070A patent/HUP0204070A3/en unknown
- 2000-11-29 AU AU16490/01A patent/AU767050B2/en not_active Ceased
- 2000-11-29 CN CNB008155488A patent/CN1168289C/en not_active Expired - Fee Related
- 2000-11-29 DE DE60041503T patent/DE60041503D1/en not_active Expired - Lifetime
- 2000-11-29 ES ES00979016T patent/ES2317854T3/en not_active Expired - Lifetime
- 2000-11-29 KR KR10-2002-7006886A patent/KR100435178B1/en not_active IP Right Cessation
- 2000-11-29 WO PCT/JP2000/008428 patent/WO2001041425A1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5420633A (en) * | 1991-06-24 | 1995-05-30 | Canon Kabushiki Kaisha | Apparatus for suppressing pseudo-contours in video signals |
EP0784399A1 (en) * | 1994-09-30 | 1997-07-16 | Matsushita Electric Industrial Co., Ltd. | Image pickup device |
Non-Patent Citations (1)
Title |
---|
See also references of WO0141425A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7457486B2 (en) | 2003-09-30 | 2008-11-25 | Panasonic Corporation | Imaging device |
EP1542162A2 (en) * | 2003-12-12 | 2005-06-15 | Sony Corporation | Contour enhancement in digital images |
EP1542162A3 (en) * | 2003-12-12 | 2009-09-30 | Sony Corporation | Contour enhancement in digital images |
Also Published As
Publication number | Publication date |
---|---|
KR100435178B1 (en) | 2004-06-16 |
HUP0204070A3 (en) | 2003-06-30 |
EP1237360B1 (en) | 2009-01-28 |
AU767050B2 (en) | 2003-10-30 |
HUP0204070A2 (en) | 2003-05-28 |
US6915023B2 (en) | 2005-07-05 |
CN1168289C (en) | 2004-09-22 |
DE60041503D1 (en) | 2009-03-19 |
KR20020059819A (en) | 2002-07-13 |
US20020181800A1 (en) | 2002-12-05 |
AU1649001A (en) | 2001-06-12 |
JP2001157085A (en) | 2001-06-08 |
CN1390419A (en) | 2003-01-08 |
ES2317854T3 (en) | 2009-05-01 |
WO2001041425A1 (en) | 2001-06-07 |
JP3545979B2 (en) | 2004-07-21 |
EP1237360A4 (en) | 2004-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1237360B1 (en) | Contour correcting device | |
US7420623B2 (en) | Image-signal processing apparatus for enhancing specific frequency component of image signal and correcting the edge of reproduced image | |
KR100782845B1 (en) | A digital image enhancement method and system using non-log domain illumination correction | |
EP2216988B1 (en) | Image processing device and method, program, and recording medium | |
EP1111907B1 (en) | A method for enhancing a digital image with noise-dependent control of texture | |
CN106846270B (en) | Image edge enhancement method and device | |
US7853095B2 (en) | Apparatus, method, recording medium and program for processing signal | |
JPH0568147B2 (en) | ||
US7606438B2 (en) | Image signal processor and image signal processing method | |
US20060153446A1 (en) | Black/white stretching system using R G B information in an image and method thereof | |
JPH0944654A (en) | Image processing device and method therefor, and noise eliminating device and method therefor | |
EP1111906A2 (en) | A method for enhancing the edge contrast of a digital image independently from the texture | |
JP2008511048A (en) | Image processing method and computer software for image processing | |
JP2003506925A (en) | Method and apparatus for enhancing a video signal | |
JP3267200B2 (en) | Image processing device | |
JPH0630330A (en) | Gradation correction circuit and image pickup device | |
US6212304B1 (en) | Method and apparatus for imaging processing | |
JP3581270B2 (en) | Image processing apparatus, image processing method, and recording medium recording image processing program | |
US7894686B2 (en) | Adaptive video enhancement gain control | |
JP4289225B2 (en) | Image processing apparatus and image processing method | |
JP4174656B2 (en) | Image display device, image processing device, and image processing method | |
JPH06339017A (en) | Saturation emphasizing method and device for color picture | |
JP3014102B2 (en) | Contour correction circuit | |
US7773824B2 (en) | Signal processing device and method, recording medium, and program | |
JPH10210297A (en) | Image processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020624 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040301 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE ES FR GB LI NL |
|
17Q | First examination report despatched |
Effective date: 20070508 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB NL |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RTI1 | Title (correction) |
Free format text: CONTOUR CORRECTING DEVICE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60041503 Country of ref document: DE Date of ref document: 20090319 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2317854 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20091029 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20121130 Year of fee payment: 13 Ref country code: DE Payment date: 20121121 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121128 Year of fee payment: 13 Ref country code: ES Payment date: 20121123 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20121116 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140601 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131129 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140601 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140603 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60041503 Country of ref document: DE Effective date: 20140603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131129 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131202 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |