EP1231331B1 - Reinforcing bar with ribs and reinforced concrete - Google Patents

Reinforcing bar with ribs and reinforced concrete Download PDF

Info

Publication number
EP1231331B1
EP1231331B1 EP02002017A EP02002017A EP1231331B1 EP 1231331 B1 EP1231331 B1 EP 1231331B1 EP 02002017 A EP02002017 A EP 02002017A EP 02002017 A EP02002017 A EP 02002017A EP 1231331 B1 EP1231331 B1 EP 1231331B1
Authority
EP
European Patent Office
Prior art keywords
reinforcing steel
rib
ribs
concrete reinforcing
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02002017A
Other languages
German (de)
French (fr)
Other versions
EP1231331A2 (en
EP1231331A3 (en
Inventor
Jürgen Schulz
Richard Langenecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Badische Stahlwerke AG
Original Assignee
Badische Stahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Badische Stahlwerke AG filed Critical Badische Stahlwerke AG
Publication of EP1231331A2 publication Critical patent/EP1231331A2/en
Publication of EP1231331A3 publication Critical patent/EP1231331A3/en
Application granted granted Critical
Publication of EP1231331B1 publication Critical patent/EP1231331B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/03Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete

Definitions

  • the present invention relates to a rod-shaped reinforcing steel with ribs.
  • the present invention finds application wherever reinforcing bars are used to produce reinforced concrete.
  • the present invention is used in particular in the production of reinforced concrete, in particular here in the production of welded steel mesh and reinforcing steel, preferably in rings application.
  • a rod-shaped reinforcing steel according to the preamble of claim 1 is known from FR-A-0399910.
  • reinforcing mats In reinforcing mats, several reinforcing bars are cross-stacked and welded at their points of contact. Usually, cold-rolled reinforcing steel is used for this reinforcing steel. Furthermore, reinforcing steel is often wound on spools, so-called “rings", and transported on to the customer. For further processing of this reinforcing steel, this is fed to a straightening or bending and cutting machine, or for example a mat machine, to produce welded meshes. The reinforcing steel is straightened in so-called roller straightening sets or alternatively in rotor straightening sets. For a higher quality rebar, hot rolled reinforcing steel is increasingly being used.
  • the rib geometries prescribed in the corresponding reinforcing steel standards result in relatively pronounced ribs.
  • the directed rods tend when they are fed via a rod magazine for further processing, as often customary, when singulating or pulling out of the magazine to hook each other.
  • the angle of inclination ⁇ of the ribs present on the surface is usually about 60 °. This geometric arrangement of the ribs affects the bonding behavior of the reinforcing steel in the reinforced concrete.
  • reinforcing bars without ribs are not possible in most applications, as the ribs play an important role in composite behavior, as these ribs direct the forces from the concrete into the reinforcing steel.
  • FIGS. 1a to 1d show prior art reinforcing bars as described in DIN 488 or in building inspectorate approvals.
  • the reinforcing steel 1 has in the present embodiment, four rows of (in the drawing from top to bottom) ribs 2.
  • the rib inclination angle ⁇ between the longitudinal direction of the considered rib and the direction of the longitudinal axis A of the reinforcing steel is approximately 60 ° in the case of prior art reinforcing bars.
  • the distance between two ribs 2 in the longitudinal direction (rib distance) is c
  • the rib head width of a rib 2 transverse to the longitudinal direction of the considered rib is denoted by b.
  • Fig. 1d shows a section through the reinforcing steel 1 along the section line D shown in Fig. 1b.
  • FIG. 1c is the rib head surface
  • 2b designates the rib flank (on the other side of the fin head surface 2a is also a rib flank not visible in the drawing)
  • 8 is the sink between two adjacent ribs 2.
  • the approximately circular contour is created by the backdrops appearing one behind the other and thus the circumferential contour forming ribs 2.
  • the sectional contour 4 itself appears rather irregular. However, it quite regularly arises in the production of reinforcing steel.
  • the approximately square basic shape 5 with optionally rounded edges and the ribs 2 are rolled by rolling into the raw material. This can be hot rolling or cold rolling.
  • the overall structure in cross-sectional area can thus be thought of as ribs 2, which rest on a basic body with a square cross section (reference numeral 5).
  • the actual cross-sectional contour 4 results depending on where the cross section intersects the respective ribs.
  • the rows of ribs are formed by webs 6 extending in the longitudinal direction of the material (fin row spacing or rolling gap) and, depending on the basic shape (eg round, square, hexagonal, etc.) and the rib penetration depth, e.g. T. separated by further webs 7 ..
  • Fig. 2a the composite behavior of concrete steel is outlined in concrete.
  • the composite behavior indicates with which force F the reinforcing steel has to be pulled so that there is a displacement ⁇ 1 of the reinforcing steel in the concrete.
  • the bond stress is displayed via the pull-out path.
  • the composite voltage reaches a maximum.
  • the force decreases again, since the composite of the reinforcing steel is weakened by shearing the concrete base between the ribs.
  • FIG. 2b shows the expansion behavior of reinforcing steel.
  • the reinforcing steel expands in a first linear range, the elastic range, in proportion to the applied force F up to a yield strength F s . Subsequently, the reinforcing steel deforms plastically. This deformation is not reversible. Furthermore, a fatigue test is shown in which the reinforcing steel is subjected to a periodically changing force which is less than F s . Although the applied force is so small that it does not yet come to a plastic deformation, such a load can lead to a fatigue fracture of the reinforcing steel.
  • An object of the present invention is to provide a reinforcing steel which can be used in mat machines or straightening and ironing machines, without causing problems during processing on the machine.
  • the rib inclination angle ⁇ to the longitudinal axis of the reinforcing steel may be 25 to 55 °, preferably 35 to 45 °, more preferably 37 to 42 °.
  • This small rib inclination angle ⁇ relative to the reinforcing steel axis has several advantages: Studies have shown that in a Such a low rib inclination angle substantially improved fatigue properties can be achieved, ie a fatigue fracture of the reinforcing steel occurs less often or only after a longer time than in conventional reinforcing steel with a greater rib inclination angle. There are less pronounced edges in the longitudinal direction of the reinforcing steel in the reinforcing bar according to the invention with reduced rib inclination angle.
  • the rib inclination angle is substantially the same for all ribs of the reinforcing steel. This achieves the above advantages over the entire length of the reinforcing steel.
  • the rib head width b of the ribs is greater than 0.2 times, preferably less than 0.5 times the nominal diameter, and more preferably 0.3 to 0.4 times the nominal diameter. This results in an improved rib filling in the rolling process, which leads to a lower ovality or uniform roundness of the outer diameter of the reinforcing steel. As a result, the reinforcing steel can be better processed. In the case of possibly round reinforcing steels, i. with the least possible ovality, the steel rests more uniformly on the roll. If the rod is guided, for example, between two opposing rollers, then the play between the rollers with rods that are as round as possible does not depend on the position of the rod. A rotation of the preferably rod-shaped reinforcing steel about its own longitudinal axis does not change this game if the rod is round and not oval. In addition, the force parameters are then more uniform.
  • the ratio of the rib width in the longitudinal direction b 'to the rib distance c in the direction of the reinforcing steel axis may be greater than 0.35, preferably greater than 0.4, more preferably greater than 0.45. This also leads to a more uniform distribution on the enveloping in bar direction, which has the above advantages.
  • This ratio of the rib width in the longitudinal direction to the rib spacing is also suitable for use in high-strength concrete or for use in self-compacting concrete (SVB, slump according to ASTM at least 60 cm, preferably at least 65 cm, more preferably at least 70 cm).
  • the reinforcing steel is produced by hot rolling.
  • the preferably rod-shaped, but often also supplied as a coil reinforcing steel may have a plurality of rows of ribs, preferably 4. However, it may also be provided 2, 3 or 6 rows of ribs.
  • the fin coverage is greater than 50%, preferably greater than 55%.
  • the minimum value of the related rib area is preferably in the range between 30% below and 30% above the minimum value prescribed in DIN 488. This is especially true for reinforcing bars with a nominal diameter greater than or equal to 4 mm.
  • the rib inclination angle ⁇ is between 25 ° and 55 ° and preferably about 40 ° +/- 5%.
  • the rib head width b is greater than 0.2 times, and preferably less than 0.5 times the diameter.
  • the diameter is the nominal diameter (i.e., the diameter of a monoblock rod of uniform cross section).
  • the fin head width b is larger than in the case of reinforcing steel according to the prior art.
  • the ratio of the rib width in the longitudinal direction b 'to the rib spacing c is greater than 0.35, which is not the case with prior art reinforcing steel. There, this ratio is less than 0.35.
  • the rebar according to the invention is shown with four rows of ribs. It may as well be another number of rows of ribs are used.
  • the rows of ribs preferably extend in the longitudinal direction of the reinforcing steel. In Fig. 3b, two of them are indicated by the reference numerals 9 and 10.
  • the rows of ribs are each bounded by webs 6 and optionally 7.
  • reinforcing steels with a related rib area f R less than 130% of the minimum value provided for in DIN 488 appear to be advantageous.
  • the referenced fin area is less than 115%, more preferably less than 100%.
  • a reinforced concrete With a reinforcing steel as described above, a reinforced concrete can be produced.
  • the reinforced concrete then has a concrete and the reinforcing steel described above.
  • the concrete preferably has a strength greater than 55 N / mm 2 .
  • Fig. 4 shows a sketch for determining the degree of rib coverage, where c is the rib distance, b is the rib head width and 1 is the rib length.
  • the degree of rib coverage is, as can be clearly said, the proportion of the hatched area A on the envelope in relation to the total envelope of the reinforcing steel, with the areas of bars 6 and possibly 7 being included.
  • the required rib coverage has the advantage that the smoothness and the Richtonia the reinforced concrete improve. Also, the risk of entanglement during processing is lower, and the weldability is better due to the larger contact surfaces.
  • Typical diameter rod-shaped material of the reinforcing steel are a minimum of 4 mm, a maximum of 65 mm, preferably a minimum of 6 mm, a maximum of 32 mm.
  • Typical lengths of rod-shaped material are a minimum of 2 m, a maximum of 30 m, preferably a minimum of 6 m, a maximum of 24 m.
  • Typical diameters of rings of reinforcing steel are a minimum of 0.5 m, a maximum of 2 m, preferably a minimum of 0.7 m, a maximum of 1.8 m.
  • the reinforcing steel may also be mat-shaped. Here then rods that are formed as above, connected to each other in a grid, preferably welded.
  • the reinforcing steel may also be used as a prefabricated reinforcement, e.g. B. be designed as a lattice girder, reinforcing cage or reinforcing bar or rod in fixed length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

Reinforcing steel comprises ribs (2) having a rib head width (b) greater than 0.2 times, preferably smaller than 0.5 times, especially 0.3-0.4 times, particularly 0.32-0.37 times the nominal diameter. Preferred Features: The angle ( beta ) of the rib to the longitudinal axis of the reinforcing steel is 25-55, preferably 35-45, especially 37-42 degrees , and is identical for all ribs. The reinforcing steel is rod-like and made by hot rolling.

Description

Die vorliegende Erfindung betrifft einen stabförmigen Betonstahl mit Rippen. Die vorliegende Erfindung findet überall dort Anwendung, wo Betonstähle zur Herstellung von Stahlbeton verwendet werden. Die vorliegende Erfindung findet insbesondere bei der Herstellung von Stahlbeton, insbesondere hier bei der Herstellung von Betonstahlmatten und Betonstahl vorzugsweise in Ringen Anwendung.The present invention relates to a rod-shaped reinforcing steel with ribs. The present invention finds application wherever reinforcing bars are used to produce reinforced concrete. The present invention is used in particular in the production of reinforced concrete, in particular here in the production of welded steel mesh and reinforcing steel, preferably in rings application.

Ein stabförmiger Betonstahl nach dem Oberbegriff des Anspruchs 1 ist aus der FR-A-0399910 bekannt.A rod-shaped reinforcing steel according to the preamble of claim 1 is known from FR-A-0399910.

Bei Bewehrungsmatten werden mehrere Betonstahlstäbe kreuzweise übereinandergelegt und an ihren Berührungspunkten verschweißt. Üblicherweise wird für diesen Betonstahl kaltgewalzter Betonstahl verwendet. Weiterhin wird Betonstahl häufig auf Spulen, sog. "Ringe", aufgewickelt und so weiter zum Abnehmer transportiert. Zur Weiterverarbeitung dieses Betonstahls wird dieser einer Richt-oder Biege- und Schneidemaschine zugeführt, oder beispielsweise einer Mattenmaschine, um Betonstahlmatten herzustellen. Dabei wird der Betonstahl in sogenannten Rollenrichtsätzen oder alternativ in Rotorrichtsätzen gerade gerichtet. Für einen Betonstahl höherer Güte wird in zunehmendem Maß warmgewalzter Betonstahl verwendet. Durch die in den entsprechenden Betonstahlnormen vorgeschriebenen Rippengeometrien ergeben sich relativ stark ausgeprägte Rippen. Damit neigen die gerichteten Stäbe wenn sie, wie oft üblich, über ein Stabmagazin zur Weiterverarbeitung zugeführt werden, beim Vereinzeln oder Herausziehen aus dem Magazin zum Verhaken miteinander. Weiterhin erhält man beim kreuzweisen Übereinanderlegen für das Verschweißen z. Teil ungünstig kleine Kontaktflächen. Aufgrund der obengenannten Nachteile mit warmgewalztem Betonstahl wurde dieser bisher zur Herstellung von Bewehrungsmatten kaum verwendet. Bei Betonstählen nach dem Stand der Technik, beispielsweise Betonstahl nach DIN 488, beträgt der Neigungswinkel β der auf der Oberfläche vorhandenen Rippen üblicherweise ca. 60°. Diese geometrische Anordnung der Rippen beeinflußt das Verbundverhalten des Betonstahls in dem Stahlbeton.In reinforcing mats, several reinforcing bars are cross-stacked and welded at their points of contact. Usually, cold-rolled reinforcing steel is used for this reinforcing steel. Furthermore, reinforcing steel is often wound on spools, so-called "rings", and transported on to the customer. For further processing of this reinforcing steel, this is fed to a straightening or bending and cutting machine, or for example a mat machine, to produce welded meshes. The reinforcing steel is straightened in so-called roller straightening sets or alternatively in rotor straightening sets. For a higher quality rebar, hot rolled reinforcing steel is increasingly being used. The rib geometries prescribed in the corresponding reinforcing steel standards result in relatively pronounced ribs. Thus, the directed rods tend when they are fed via a rod magazine for further processing, as often customary, when singulating or pulling out of the magazine to hook each other. Furthermore, one obtains the crosswise overlapping for welding z. Part unfavorably small contact surfaces. Due to the above-mentioned disadvantages with hot-rolled reinforcing steel, it has hitherto scarcely been used for the production of reinforcing mats. In the case of prior art reinforcing steels, for example reinforcing steel according to DIN 488, the angle of inclination β of the ribs present on the surface is usually about 60 °. This geometric arrangement of the ribs affects the bonding behavior of the reinforcing steel in the reinforced concrete.

Die Verwendung von Betonstahl ohne Rippen ist für die meisten Anwendungsgebiete nicht möglich, da die Rippen beim Verbundverhalten eine bedeutende Rolle spielen, da über diese Rippen die Kräfte aus dem Beton in den Betonstahl geleitet werden.The use of reinforcing bars without ribs is not possible in most applications, as the ribs play an important role in composite behavior, as these ribs direct the forces from the concrete into the reinforcing steel.

Die Fig. 1a bis 1d zeigen Betonstähle nach dem Stand der Technik, wie er in der DIN-Nummer 488 bzw. in bauaufsichtlichen Zulassungen beschrieben ist. Der Betonstahl 1 weist in der vorliegenden Ausführungsform vier Reihen von (in der Zeichnung von oben nach unten verlaufende) Rippen 2 auf. Der Rippenneigungswinkel β zwischen Längsrichtung der betrachteten Rippe und der Richtung der Längsachse A des Betonstahls beträgt bei Betonstählen nach dem Stand der Technik ungefähr 60°. Der Abstand zweier Rippen 2 in Längsrichtung (Rippenabstand) beträgt c, die Rippenkopfbreite einer Rippe 2 quer zur Längsrichtung der betrachteten Rippe wird mit b bezeichnet. Jeweils zwischen zwei benachbarten Rippen 2 liegt eine Senke 8. Fig. 1d zeigt einen Schnitt durch den Betonstahl 1 entlang der in Fig. 1b gezeigten Schnittlinie D.FIGS. 1a to 1d show prior art reinforcing bars as described in DIN 488 or in building inspectorate approvals. The reinforcing steel 1 has in the present embodiment, four rows of (in the drawing from top to bottom) ribs 2. The rib inclination angle β between the longitudinal direction of the considered rib and the direction of the longitudinal axis A of the reinforcing steel is approximately 60 ° in the case of prior art reinforcing bars. The distance between two ribs 2 in the longitudinal direction (rib distance) is c, the rib head width of a rib 2 transverse to the longitudinal direction of the considered rib is denoted by b. In each case between two adjacent ribs 2 is a sink 8. Fig. 1d shows a section through the reinforcing steel 1 along the section line D shown in Fig. 1b.

2a in Fig. 1c ist die Rippenkopffläche, 2b bezeichnet die Rippenflanke (auf der anderen Seite der Rippenkopffläche 2a ist ebenfalls eine in der Zeichnung nicht sichtbare Rippenflanke vorhanden), und 8 ist die Senke zwischen zwei benachbarten Rippen 2. In Fig. 1d bezeichnet 3 die Projektion eines Betonstahls in Längsrichtung. Die näherungsweise kreisförmige Kontur entsteht durch die kulissenhaft hintereinander erscheinenden und so die Umfangskontur bildenden Rippen 2. Die Schnittkontur 4 selbst erscheint eher unregelmäßig. Jedoch entsteht sie durchaus regelmäßig bei der Herstellung des Betonstahls. Hierbei werden die etwa quadratische Grundform 5 mit gegebenenfalls verrundeten Kanten und die Rippen 2 durch Walzen in das Rohmaterial gewalzt. Dies kann Warmwalzen oder Kaltwalzen sein. Dem Gesamtaufbau in Querschnittsfläche kann man sich somit als Rippen 2 vorstellen, die auf einem Grundkörper mit quadratischem Querschnitt (Bezugsziffer 5) aufsitzen. Die eigentliche Querschnittskontur 4 ergibt sich in Abhängigkeit davon, wo der Querschnitt die jeweiligen Rippen schneidet. Das eben Gesagte gilt für Betonstähle mit vier Rippenreihen. Die Rippenreihen sind durch in Längsrichtung des Materials verlaufende Stege 6 (Rippenreihenabstand oder Walzspalt) und, abhängig von der Grundform (z. B. rund, quadratisch, sechseckig, usw) und der Rippeneinfräßtiefe, z. T. durch weitere Stege 7 voneinander getrennt..2a in FIG. 1c is the rib head surface, 2b designates the rib flank (on the other side of the fin head surface 2a is also a rib flank not visible in the drawing), and 8 is the sink between two adjacent ribs 2. In FIG the projection of a reinforcing steel in the longitudinal direction. The approximately circular contour is created by the backdrops appearing one behind the other and thus the circumferential contour forming ribs 2. The sectional contour 4 itself appears rather irregular. However, it quite regularly arises in the production of reinforcing steel. Here, the approximately square basic shape 5 with optionally rounded edges and the ribs 2 are rolled by rolling into the raw material. This can be hot rolling or cold rolling. The overall structure in cross-sectional area can thus be thought of as ribs 2, which rest on a basic body with a square cross section (reference numeral 5). The actual cross-sectional contour 4 results depending on where the cross section intersects the respective ribs. The above applies to reinforcing bars with four rows of ribs. The rows of ribs are formed by webs 6 extending in the longitudinal direction of the material (fin row spacing or rolling gap) and, depending on the basic shape (eg round, square, hexagonal, etc.) and the rib penetration depth, e.g. T. separated by further webs 7 ..

In Fig. 2a ist das Verbundverhalten von Betonstahl in Beton skizziert. Das Verbundverhalten gibt an, mit welcher Kraft F der Betonstahl gezogen werden muß, damit sich eine Verschiebung Δ1 des Betonstahls im Beton ergibt. Als Kennlinie wird die Verbundspannung über den Ausziehweg dargestellt. Wie aus Fig. 2a zu erkennen ist, erreicht die Verbundspannung ein Maximum. Bei weiterer Verschiebung des Betonstahls in dem Beton nimmt die Kraft wieder ab, da der Verbund des Betonstahls durch Abscheren der Betonsockel zwischen den Rippen geschwächt wird.In Fig. 2a, the composite behavior of concrete steel is outlined in concrete. The composite behavior indicates with which force F the reinforcing steel has to be pulled so that there is a displacement Δ1 of the reinforcing steel in the concrete. As a characteristic curve, the bond stress is displayed via the pull-out path. As can be seen from Fig. 2a, the composite voltage reaches a maximum. With further displacement of the reinforcing steel in the concrete, the force decreases again, since the composite of the reinforcing steel is weakened by shearing the concrete base between the ribs.

In Fig. 2b ist das Dehnverhalten von Betonstahl abgebildet. Der Betonstahl dehnt sich in einem ersten linearen Bereich, dem elastischen Bereich, proportional zur angelegten Kraft F bis zu einer Streckgrenze FS. Anschließend verformt sich der Betonstahl plastisch. Diese Verformung ist nicht reversibel. Weiterhin ist ein Dauerschwingversuch abgebildet, bei dem der Betonstahl einer periodisch sich ändernden Kraft unterworfen wird, die geringer als FS ist. Obwohl die angelegte Kraft so gering ist, daß es noch nicht zu einer plastischen Verformung kommt, kann eine derartige Belastung zu einem Ermüdungsbruch des Betonstahls führen.FIG. 2b shows the expansion behavior of reinforcing steel. The reinforcing steel expands in a first linear range, the elastic range, in proportion to the applied force F up to a yield strength F s . Subsequently, the reinforcing steel deforms plastically. This deformation is not reversible. Furthermore, a fatigue test is shown in which the reinforcing steel is subjected to a periodically changing force which is less than F s . Although the applied force is so small that it does not yet come to a plastic deformation, such a load can lead to a fatigue fracture of the reinforcing steel.

Diese mechanischen/dynamischen Eigenschaften (Dauerschwingeigenschaften) sind verbesserbar. Die eingeleiteten statischen und dynamischen Kräfte können dann sicher und dauerhaft aufgefangen werden.These mechanical / dynamic properties (fatigue properties) can be improved. The initiated static and dynamic forces can then be safely and permanently absorbed.

Eine Aufgabe der vorliegenden Erfindung liegt darin, einen Betonstahl anzugeben, der in Mattenmaschinen oder Richt- und Bügelautomaten verwendet werden kann, ohne daß hierbei bei der Verarbeitung auf der Maschine Probleme auftreten.An object of the present invention is to provide a reinforcing steel which can be used in mat machines or straightening and ironing machines, without causing problems during processing on the machine.

Diese Aufgabe wird erfindungsgemäß mit dem Merkmalen des Anspruchs 1 gelöst.This object is achieved with the features of claim 1.

Der Rippenneigungswinkel β zur Längsachse des Betonstahls kann 25 bis 55°, vorzugsweise 35 bis 45°, weiter vorzugsweise 37 bis 42° beträgen. Dieser geringe Rippenneigungswinkel β relativ zur Betonstahlachse hat mehrere Vorteile: Untersuchungen haben ergeben, daß bei einem derart geringen Rippenneigungswinkel wesentlich verbesserte Dauerschwingeigenschaften erreicht werden können, d.h. ein Ermüdungsbruch des Betonstahl tritt seltener beziehungsweise erst nach längerer Zeit als bei herkömmlichem Betonstahl mit größerem Rippenneigungswinkel auf. Es treten bei dem erfindungsgemäßen Betonstahl mit verringertem Rippenneigungswinkel weniger markante Kanten in Längsrichtung des Betonstahls auf. Dadurch kommt es im Betonstahl und im Beton zu geringeren Spannungsüberhöhungen bzw. Kerbspannungen, die üblicherweise an derartigen Kanten auftreten. Durch die Schrägstellung ergibt sich in Richtung der Längsachse eine kleinere Steigung als bei einer Rippe mit gleicher Höhe, aber einem größeren Rippenneigungswinkel. Damit können Spannungsüberhöhungen beziehungsweise die Kerbwirkung des erfindungsgemäßen Betonstahls verringert werden. Weiterhin ist die Flächenverteilung auf der Umhüllung des Betonstahls in Richtung der Längsachse gleichmäßiger als bei einem gerippten Betonstahl mit einem steileren Rippenneigungswinkel.The rib inclination angle β to the longitudinal axis of the reinforcing steel may be 25 to 55 °, preferably 35 to 45 °, more preferably 37 to 42 °. This small rib inclination angle β relative to the reinforcing steel axis has several advantages: Studies have shown that in a Such a low rib inclination angle substantially improved fatigue properties can be achieved, ie a fatigue fracture of the reinforcing steel occurs less often or only after a longer time than in conventional reinforcing steel with a greater rib inclination angle. There are less pronounced edges in the longitudinal direction of the reinforcing steel in the reinforcing bar according to the invention with reduced rib inclination angle. As a result, in the reinforcing steel and in the concrete lower stress levels or notch stresses that usually occur at such edges. Due to the inclination results in the direction of the longitudinal axis a smaller pitch than a rib with the same height, but a larger rib inclination angle. This voltage overshoots or the notch effect of the reinforcing steel according to the invention can be reduced. Furthermore, the area distribution on the sheathing of the reinforcing steel in the direction of the longitudinal axis is more uniform than in a ribbed reinforcing steel with a steeper rib inclination angle.

In einer bevorzugten Ausführungsform ist der Rippenneigungswinkel für alle Rippen des Betonstahls im wesentlichen gleich. Damit erreicht man die obengenannten Vorteile über die gesamte Länge des Betonstahls.In a preferred embodiment, the rib inclination angle is substantially the same for all ribs of the reinforcing steel. This achieves the above advantages over the entire length of the reinforcing steel.

Die Rippenkopfbreite b der Rippen ist größer als das 0,2fache, vorzugsweise kleiner als das 0,5fache des Nenndurchmessers, und in dem sie weiter vorzugsweise das 0,3fache bis 0,4fache des Nenndurchmessers beträgt. Hierdurch ergibt sich eine verbesserte Rippenfüllung beim Walzprozeß, was zu einer geringeren Ovalität beziehungsweise gleichmäßigen Rundheit des Außendurchmessers des Betonstahls führt. Hierdurch kann der Betonstahl besser weiterverarbeitet werden. Bei möglichst runden Betonstählen, d.h. mit möglichst geringer Ovalität, liegt der Stahl gleichmäßiger an der Rolle an. Wird der Stab beispielsweise zwischen zwei gegenüberliegenden Rollen geführt , so ist das Spiel zwischen den Rollen bei möglichst runden Stäben nicht von der Lage des Stabes abhängig. Eine Rotation des vorzugsweise stabförmigen Betonstahls um die eigene Längsachse verändert dieses Spiel nicht, wenn der Stab rund und nicht oval ist. Außerdem sind die Kraftparameter dann gleichmäßiger.The rib head width b of the ribs is greater than 0.2 times, preferably less than 0.5 times the nominal diameter, and more preferably 0.3 to 0.4 times the nominal diameter. This results in an improved rib filling in the rolling process, which leads to a lower ovality or uniform roundness of the outer diameter of the reinforcing steel. As a result, the reinforcing steel can be better processed. In the case of possibly round reinforcing steels, i. with the least possible ovality, the steel rests more uniformly on the roll. If the rod is guided, for example, between two opposing rollers, then the play between the rollers with rods that are as round as possible does not depend on the position of the rod. A rotation of the preferably rod-shaped reinforcing steel about its own longitudinal axis does not change this game if the rod is round and not oval. In addition, the force parameters are then more uniform.

Weiterhin ergibt sich hierdurch ebenfalls eine gleichmäßigere Flächenverteilung auf der Umhüllenden in Stabrichtung. Dies ist für die Verschweißung der Betonstähle zu Betonstahlmatten vorteilhaft, da die Schweißflächen von zwei aufeinanderliegenden Betonstahlstäben größer sind als bei herkömmlichen Betonstählen mit größerem Rippenneigungswinkel und schmälerer Rippe.Furthermore, this also results in a more uniform surface distribution on the envelope in the bar direction. This is advantageous for the welding of the reinforcing bars to welded mesh, since the welding surfaces of two superimposed Reinforcing steel bars are larger than conventional reinforcing bars with a larger rib inclination angle and a narrower rib.

Das Verhältnis der Rippenbreite in Längsrichtung b' zum Rippenabstand c in Richtung der Betonstahlachse kann größer als 0,35, vorzugsweise größer 0,4, weiter vorzugssweise größer als 0,45 sein. Dies führt ebenso zu einer gleichmäßigeren Verteilung auf der umhüllenden in Stabrichtung, was die obengenannten Vorteile aufweist. Dieses Verhältnis der Rippenbreite in Längsrichtung zum Rippenabstand eignet sich auch bei Anwendung in hochfestem Beton oder für eine Anwendung in selbstverdichtendem Beton (SVB, Ausbreitmaß nach ASTM mindestens 60 cm, vorzugsweise mindestens 65 cm, weiter vorzugsweise mindestens 70 cm).The ratio of the rib width in the longitudinal direction b 'to the rib distance c in the direction of the reinforcing steel axis may be greater than 0.35, preferably greater than 0.4, more preferably greater than 0.45. This also leads to a more uniform distribution on the enveloping in bar direction, which has the above advantages. This ratio of the rib width in the longitudinal direction to the rib spacing is also suitable for use in high-strength concrete or for use in self-compacting concrete (SVB, slump according to ASTM at least 60 cm, preferably at least 65 cm, more preferably at least 70 cm).

Der Betonstahl wird durch Warmwalzen hergestellt.The reinforcing steel is produced by hot rolling.

Weiterhin kann der vorzugsweise stabförmige, oft aber auch als Coil ausgelieferte Betonstahl mehrere Rippenreihen aufweisen, vorzugsweise 4. Es können jedoch ebenso 2, 3 oder 6 Rippenreihen vorgesehen sein.Furthermore, the preferably rod-shaped, but often also supplied as a coil reinforcing steel may have a plurality of rows of ribs, preferably 4. However, it may also be provided 2, 3 or 6 rows of ribs.

Der Rippenbedeckungsgrad ist größer 50 %, vorzugsweise größer 55%.The fin coverage is greater than 50%, preferably greater than 55%.

Der Mindestwert der bezogenen Rippenfläche liegt vorzugsweise im Bereich zwischen 30 % unter und 30 % über dem in DIN 488 vorgeschriebenen Mindestwert. Dies gilt vor allem für Betonstähle mit einem Nenndurchmesser von größer gleich 4 mm.The minimum value of the related rib area is preferably in the range between 30% below and 30% above the minimum value prescribed in DIN 488. This is especially true for reinforcing bars with a nominal diameter greater than or equal to 4 mm.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beiliegenden schematischen Zeichnungen anhand eines Ausführungsbeispiels näher erläutert. Hierbei zeigen:

Fig. 1a bis 1d
eine Seitenansicht, eine um die Längsachse um 90° gedrehte Seitenansicht, eine perspektivische Ansicht sowie einen Schnitt an der Linie D von Fig. 1b eines Betonstahls nach dem Stand der Technik,
Fig. 2a
schematisch das Verbundverhalten von Betonstahl in Beton und Fig. 2b eine Dehnungskurve für Betonstahl,
Fig. 3a und 3b
zwei um 90° um die Längsachse gedrehte Ansichten eines erfindungsgemäßen Betonstahls, und
Fig. 4
eine Skizze zur Ermittlung des Rippenbedeckungsgrades.
The invention will be explained in more detail with reference to the accompanying schematic drawings using an exemplary embodiment. Hereby show:
Fig. 1a to 1d
a side view, a rotated about the longitudinal axis by 90 ° side view, a perspective view and a section on the line D of Fig. 1b of a reinforcing steel according to the prior art,
Fig. 2a
schematically the composite behavior of reinforcing steel in concrete and Fig. 2b a strain curve for reinforcing steel,
Fig. 3a and 3b
two rotated by 90 ° about the longitudinal axis views of a reinforcing steel according to the invention, and
Fig. 4
a sketch to determine the degree of rib coverage.

In den Figuren bedeuten allgemein gleiche Bezugszeichen gleiche Komponenten bzw. Merkmale.In the figures, the same reference numerals generally designate the same components or features.

In Fig. 3 ist ein erfindungsgemäßer Betonstahl dargestellt. Der Rippenneigungswinkel β liegt zwischen 25° und 55° und vorzugsweise bei ca. 40° +/- 5 %. Die Rippenkopfbreite b ist größer als das 0,2fache und vorzugsweise kleiner als das 0,5 fache des Durchmessers. Der Durchmesser ist der Nenndurchmesser (d.h. der Durchmesser eines gleichschweren Stabes mit kreisrundem Querschnitt).In Fig. 3, an inventive reinforcing steel is shown. The rib inclination angle β is between 25 ° and 55 ° and preferably about 40 ° +/- 5%. The rib head width b is greater than 0.2 times, and preferably less than 0.5 times the diameter. The diameter is the nominal diameter (i.e., the diameter of a monoblock rod of uniform cross section).

Die Rippenkopfbreite b ist größer als bei Betonstahl nach dem Stand der Technik. Das Verhältnis der Rippenbreite in Längsrichtung b' zum Rippenabstand c ist größer als 0,35, was bei Betonstahl nach dem Stand der Technik nicht der Fall ist. Dort ist dieses Verhältnis kleiner als 0,35. In der dargestellten Ausführungsform ist der erfindungsgemäße Betonstahl mit vier Rippenreihen dargestellt. Es kann jedoch ebensogut eine andere Anzahl von Rippenreihen verwendet werden. Die Rippenreihen erstrecken sich vorzugsweise in Längsrichtung des Betonstahls. In Fig. 3b sind zwei von ihnen durch die Bezugsziffern 9 und 10 angedeutet. Die Rippenreihen sind jeweils durch Stege 6 und gegebenenfalls 7 begrenzt.The fin head width b is larger than in the case of reinforcing steel according to the prior art. The ratio of the rib width in the longitudinal direction b 'to the rib spacing c is greater than 0.35, which is not the case with prior art reinforcing steel. There, this ratio is less than 0.35. In the illustrated embodiment, the rebar according to the invention is shown with four rows of ribs. It may as well be another number of rows of ribs are used. The rows of ribs preferably extend in the longitudinal direction of the reinforcing steel. In Fig. 3b, two of them are indicated by the reference numerals 9 and 10. The rows of ribs are each bounded by webs 6 and optionally 7.

Die Verbindung der größeren Rippenbreite in Längsrichtung b' und des kleineren Rippenneigungswinkel β führt vor allem in Kombination zu einer besseren Rippenfüllung und dadurch zu einer geringeren Ovalität. Hierdurch ergibt sich eine möglichst große und in Stablängsrichtung gleichmäßig verteilte Fläche auf der Umhüllenden. Durch diese geometrischen Eigenschaften verbessern sich die Verarbeitungsmöglichkeiten auf den Verarbeitungsmaschinen, ein Verhaken der Betonstähle in der Maschine wird verhindert. Ebenso steht eine größere Schweißfläche zur Verfügung, wodurch die Verbindung zweier verschweißter Betonstähle verbessert wird.The combination of the larger rib width in the longitudinal direction b 'and the smaller rib inclination angle β leads, especially in combination, to a better rib filling and thus to a lower ovality. This results in the largest possible and evenly distributed in rod longitudinal direction surface on the envelope. These geometric properties improve the processing options on the processing machines, a hooking of the reinforcing steel in the machine is prevented. Likewise, a larger welding surface is available, whereby the connection of two welded reinforcing bars is improved.

Die bezogene Rippenfläche fR berechnet sich nach der Formel f R = 1 Π d s Σ n = 1 k 1 m Σ l = 1 m F R ( n , l ) sinβ n , l c s ( n ) ,

Figure imgb0001
wobei F R = Σ n = 1 x h s ( n ) Δl
Figure imgb0002
die Längsschnittfläche einer Rippe in deren Achse

hS
die mittlere Höhe eines beliebigen Schrärippenabschnitts der Länge Δl der in x Abschnitte unterteilten Schrägrippe
β
die Neigung der Rippen zur Stabachse hin
dS
der Nenndurchmesser des Stabes in mm
cS
der Mittenabstand der Schrärippen in mm
k
die Anzahl der Schrägrippen am Umfang
m
die Anzahl der Schrägrippen je Reihe
i
die Anzahl der Längsrippen
hl
die Höhe der Längsrippen
(n), (n, l)
Laufvariablen sind.
The related rib area f R is calculated according to the formula f R = 1 Π d s Σ n = 1 k 1 m Σ l = 1 m F R ( n . l ) sinβ n . l c s ( n ) .
Figure imgb0001
in which F R = Σ n = 1 x H s ( n ) .DELTA.l
Figure imgb0002
the longitudinal sectional area of a rib in its axis
h S
The average height of any Schrarippenabschnitts the length .DELTA.l of the divided into x sections Schrägrippe
β
the inclination of the ribs towards the rod axis
d S
the nominal diameter of the bar in mm
c p
the center distance of the Schrärippen in mm
k
the number of helical ribs on the circumference
m
the number of helical ribs per row
i
the number of longitudinal ribs
h l
the height of the longitudinal ribs
(n), (n, l )
Running variables are.

Sie ist ein Maß dafür, wieviel Rippenquerschnittsfläche relativ gesehen auf dem Betonstahl vorhanden ist. A priori ist eine hohe bezogene Rippenfläche gewünscht, da dann ein guter Verbund zwischen Betonstahl und dem umgebenden Beton erwartet werden kann. Unter bestimmten Bedingungen und insbesondere in Verbindung mit hochfesten Betonen (Festigkeit größer 55 N/mm2) kann eine vergleichsweise geringe bezogene Rippenfläche gleiche oder sogar bessere Ergebnisse liefern. Erfindungsgemäß erscheinen Betonstähle mit einer bezogenen Rippenfläche fR kleiner als 130 % des in DIN 488 vorgesehenen Mindestwertes als vorteilhaft. Vorzugsweise ist die bezogene Rippenfläche kleiner als 115 %, weiter vorzugsweise kleiner als 100 %.It is a measure of how much rib cross-sectional area is relatively present on the reinforcing steel. A priori, a high related rib area is desired because then a good bond between reinforcing steel and the surrounding concrete can be expected. Under certain conditions and in particular in connection With high-strength concretes (strength greater than 55 N / mm 2 ), a comparatively small rib area can produce the same or even better results. According to the invention, reinforcing steels with a related rib area f R less than 130% of the minimum value provided for in DIN 488 appear to be advantageous. Preferably, the referenced fin area is less than 115%, more preferably less than 100%.

Bei der Verarbeitung des Stahlbetons ergibt sich durch die verbesserte Geometrie eine geringere Geräuschentwicklung, insbesondere in Rollenrichtanlagen und Rollenführungen und ein geringerer Einfluß auf mechanische, dynamische und geometrische Eigenschaften durch die verwendeten Verarbeitungsautomaten. Dies bedeutet, daß die Verarbeitung von warmgewalztem Stahl dadurch erheblich verbessert wird.In the processing of reinforced concrete results from the improved geometry less noise, especially in Rollenrichtanlagen and roller guides and a lesser influence on mechanical, dynamic and geometric properties by the processing machines used. This means that the processing of hot-rolled steel is thereby significantly improved.

Mit einem wie oben beschriebenen Betonstahl kann ein Stahlbeton hergestellt werden. Der Stahlbeton weist dann einen Beton und den oben beschriebenen Betonstahl auf. Der Beton hat vorzugsweise eine Festigkeit, die größer als 55 N/ mm2 ist.With a reinforcing steel as described above, a reinforced concrete can be produced. The reinforced concrete then has a concrete and the reinforcing steel described above. The concrete preferably has a strength greater than 55 N / mm 2 .

Fig. 4 zeigt eine Skizze zur Ermittlung des Rippenbedeckungsgrades, wobei c der Rippenabstand, b die Rippenkopfbreite und l'die Rippenlänge ist. Der Rippenbedeckungsgrad ist - anschaulich gesprochen - der Anteil der schraffierten Fläche A auf der Umhüllenden im Verhältnis zur Gesamtumhüllenden des Betonstahls, wobei die Flächen von Stegen 6 und ggf. 7 mitgerechnet werden.Fig. 4 shows a sketch for determining the degree of rib coverage, where c is the rib distance, b is the rib head width and 1 is the rib length. The degree of rib coverage is, as can be clearly said, the proportion of the hatched area A on the envelope in relation to the total envelope of the reinforcing steel, with the areas of bars 6 and possibly 7 being included.

Der Rippenbedeckungsgrad ist ein relatives Maß für die von Rippenköpfen 2a und Stegen 6, 7 auf der Umhüllenden eines Betonstahls eingenommene Fläche. Der Rippenbedeckungsgrad RBG berechnet sich vorzugsweise gemäß folgender Formel:

Figure imgb0003
mit

  • b = Rippenkopfbreite,
  • l' = Länge der Rippen in Rippenrichtung innerhalb einer Schrittweite c,
  • e = Stegbreite (Rippenreihenabstand),
  • c = Rippenabstand in Längsrichtung,
  • d = Nenndurchmeser.
The fin coverage is a relative measure of the area occupied by rib heads 2a and lands 6, 7 on the envelope of a rebar. The rib coverage RBG is preferably calculated according to the following formula:
Figure imgb0003
With
  • b = rib head width,
  • l '= length of the ribs in rib direction within a step size c,
  • e = web width (rib row spacing),
  • c = rib distance in the longitudinal direction,
  • d = nominal diameter.

Die Summierung erfolgt über den Umfang.The summation takes place over the circumference.

Der geforderte Rippenbedeckungsgrad hat den Vorteil, daß sich die Laufruhe und die Richtbarkeit des Stahlbetons verbessern. Ebenso ist das Verhakungsrisiko bei der Verarbeitung geringer, und die Verschweißbarkeit ist durch die größeren Kontaktflächen besser.The required rib coverage has the advantage that the smoothness and the Richtbarkeit the reinforced concrete improve. Also, the risk of entanglement during processing is lower, and the weldability is better due to the larger contact surfaces.

Typische Durchmesser stabförmigen Materials des Betonstahls sind minimal 4 mm, maximal 65 mm, vorzugsweise minimal 6 mm, maximal 32 mm. Typische Längen stabförmigen Materials sind minimal 2 m, maximal 30 m, vorzugsweise minimal 6m, maximal 24 m. Typische Durchmesser von Ringen des Betonstahls sind minimal 0,5 m, maximal 2 m, vorzugsweise minimal 0,7 m, maximal 1,8 m. Der Betonstahl kann auch mattenförmig ausgebildet sein. Hier sind dann Stäbe, die wie oben ausgebildet sind, gitterförmig miteinander verbunden, vorzugsweise verschweißt. Der Betonstahl kannauch als vorgefertigte bzw. eingebaute Bewehrung, z. B. als Gitterträger, Bewehrungskorb oder Bewehrungsbügel bzw. Stab in Fixlänge ausgebildet sein.Typical diameter rod-shaped material of the reinforcing steel are a minimum of 4 mm, a maximum of 65 mm, preferably a minimum of 6 mm, a maximum of 32 mm. Typical lengths of rod-shaped material are a minimum of 2 m, a maximum of 30 m, preferably a minimum of 6 m, a maximum of 24 m. Typical diameters of rings of reinforcing steel are a minimum of 0.5 m, a maximum of 2 m, preferably a minimum of 0.7 m, a maximum of 1.8 m. The reinforcing steel may also be mat-shaped. Here then rods that are formed as above, connected to each other in a grid, preferably welded. The reinforcing steel may also be used as a prefabricated reinforcement, e.g. B. be designed as a lattice girder, reinforcing cage or reinforcing bar or rod in fixed length.

Claims (7)

  1. Rod-like concrete reinforcing steel, applicable also as coil, comprising ribs (2) and ligaments (6), the ribs (2) having a rib inclination angle (β) with respect to the longitudinal axis of the concrete reinforcing steel (1) and the ligaments extending in longitudinal direction of the concrete reinforcing steel (1), wherein the width b of the rib heads of the ribs (2) is larger than 0,2 times the nominal diameter of the concrete reinforcing steel (1), characterized in that
    the concrete reinforcing steel is made by hot rolling and that the rib covering degree on the enveloping surface is larger than 50 %, the rib covering degree being the relative measure for the area covered by the rib heads (2a) of the ribs (2) and by the ligaments (6) on the enveloping surface, wherein the enveloping surface has circular cross-section with the nominal diameter of the concrete reinforcing steel as diameter of the circle.
  2. Concrete reinforcing steel (1) of claim 1, characterized in that the rib inclination angle (β) with respect to the longitudinal axis of the concrete reinforcing steel is between 25 ° and 55 °, preferably between 35 ° and 45 °, further preferably between 37 ° and 42 °.
  3. Concrete reinforcing steel (1) of claim 1, characterized in that the rib inclination angle is substantially the same for all ribs (2).
  4. Concrete reinforcing steel (1) according to one of the preceding claims, characterized in that the ratio of rib width in longitudinal direction b' and rib distance c in direction of the concrete reinforcing steel axis (A) is larger than 0,35.
  5. Concrete reinforcing steel (1) according to one of the preceding claims, characterized in that it comprises a plurality of, preferably four, rows of ribs.
  6. Concrete reinforcing steel (1) according to one of the preceding claims, characterized in that the rib covering degree is larger than 55 %.
  7. Concrete reinforcing steel (1) according to one of the preceding claims, characterized in that the related rib area fR is smaller than 130 % of the value prescribed in DIN 488, preferably smaller than 115 %, further preferably smaller than 100 %.
EP02002017A 2001-02-08 2002-02-06 Reinforcing bar with ribs and reinforced concrete Expired - Lifetime EP1231331B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10105667A DE10105667A1 (en) 2001-02-08 2001-02-08 Reinforcing steel with ribs, reinforced concrete
DE10105667 2001-02-08

Publications (3)

Publication Number Publication Date
EP1231331A2 EP1231331A2 (en) 2002-08-14
EP1231331A3 EP1231331A3 (en) 2002-12-04
EP1231331B1 true EP1231331B1 (en) 2006-12-20

Family

ID=7673249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02002017A Expired - Lifetime EP1231331B1 (en) 2001-02-08 2002-02-06 Reinforcing bar with ribs and reinforced concrete

Country Status (3)

Country Link
EP (1) EP1231331B1 (en)
AT (1) ATE348923T1 (en)
DE (2) DE10105667A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206819A1 (en) * 2002-02-18 2003-08-28 Max Aicher Tubular finned reinforcing steel, method of manufacturing a tubular finned reinforcing steel and use of a tubular reinforcing steel
CN101942887A (en) * 2010-09-09 2011-01-12 天津市建科机械制造有限公司 Four-side ribbed bar
CN102102424A (en) * 2011-03-03 2011-06-22 天津市银龙预应力钢材集团有限公司 Spine-free reinforcing steel bar with interrupted spiral ribs
RU2680153C2 (en) * 2016-12-23 2019-02-18 Игорь Николаевич Тихонов Reinforcement bar of periodic profile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350441A1 (en) * 1976-05-07 1977-12-02 Centre Rech Metallurgique Steel reinforcing rod with two opposed longitudinal ribs - has pairs of slanting ribs at spacings related to nominal rod dia.
US4811541A (en) * 1985-05-15 1989-03-14 Ulrich Finsterwalder Threaded bar

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1609638A1 (en) * 1966-01-04 1970-07-30 Filiton Ag Reinforcement bar for reinforced concrete construction
DE1759485A1 (en) * 1968-05-06 1971-07-08 Schwarz & Meissner Bewehrungst Rebar
DE1759969C3 (en) * 1968-06-25 1979-03-29 Baustahlgewebe Gmbh, 4000 Duesseldorf Spot-welded reinforcement mesh
DE1907129A1 (en) * 1969-02-13 1970-09-03 Hochwald Drahtwerk Gmbh Reinforcing bar with ribs on its periphery that are produced in the cold forming process and run obliquely to the longitudinal axis
DE2123818B2 (en) * 1971-05-13 1979-08-16 Helmut 4224 Huenxe Dickmann Welded reinforcement for concrete structure - has rolled ribs subjected to cold rolling without impairing notch strength
DD250972A1 (en) * 1986-07-14 1987-10-28 Brandenburg Stahl Walzwerk PROFILED CONCRETE REINFORCEMENT STICK
FR2647372A1 (en) * 1989-05-26 1990-11-30 Acor Const Rationalises HIGH ADHESIVE RIB STEEL YARN AND MANUFACTURING METHOD THEREOF
DE4011486A1 (en) * 1990-04-09 1991-10-10 Inst Stahlbeton Bewehrung Ev CONCRETE RIBBON STEEL WITH COLD-ROLLED CRANKS AND USE THEREOF

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2350441A1 (en) * 1976-05-07 1977-12-02 Centre Rech Metallurgique Steel reinforcing rod with two opposed longitudinal ribs - has pairs of slanting ribs at spacings related to nominal rod dia.
US4811541A (en) * 1985-05-15 1989-03-14 Ulrich Finsterwalder Threaded bar

Also Published As

Publication number Publication date
DE10105667A1 (en) 2002-09-26
DE50208977D1 (en) 2007-02-01
EP1231331A2 (en) 2002-08-14
EP1231331A3 (en) 2002-12-04
ATE348923T1 (en) 2007-01-15

Similar Documents

Publication Publication Date Title
EP0306887B1 (en) Hot rolled concrete reinforcing rod, particularly a concrete ribbed bar
EP2313216B1 (en) Method for the production of a cold-rolled profile having at least one thickened profile edge
EP2613898A2 (en) Method for producing network-like metal mats and apparatus for carrying out the method
DE1035606B (en) Process for the manufacture of reinforcing steel with transversely grooved parts of its circumference
WO2007121725A1 (en) Axial pin, preferably to be used as a tie rod component
EP1231331B1 (en) Reinforcing bar with ribs and reinforced concrete
DE69007677T2 (en) Rib steel with high adhesive strength and its manufacturing process.
EP1332262B2 (en) Reinforcing mat for reinforced concrete
AT211767B (en) Process for the production of reinforcing steel grooved transversely on parts of its circumference
EP3545210B1 (en) Dampening and spring arrangement and method for its production
DE2406872A1 (en) REINFORCEMENT ELEMENT FOR REINFORCED CONCRETE CONSTRUCTIONS
EP3599320B1 (en) Reinforcing bar and method for its production
DE2337313C3 (en) Method and device for hot rolling metallic, profiled bars with four elevations which are periodically arranged in rows in four rows offset by 90 °
DE3738524A1 (en) Composite girder with steel web
EP0738361B1 (en) Cold-rolled reinforcing steel and process for its manufacture
EP4030013B1 (en) Reinforcing element for increasing transverse force resistance
EP1669508A1 (en) Reinforcing mat for reinforced concrete
DE3049459A1 (en) METHOD FOR THE PRODUCTION OF WAVED DOUBLE T-CARRIERS AND DEVICE FOR IMPLEMENTING THE METHOD
CH717912B1 (en) reinforcement wire.
DE3045007A1 (en) Wedge device for anchoring a prestressed reinforcement
DE102013208413B4 (en) Reinforcing steel, production method for reinforcing steel
DE2160470A1 (en) Ribbed concrete rebar
WO2020157226A1 (en) Method and device for producing a rod-shaped element
DD250972A1 (en) PROFILED CONCRETE REINFORCEMENT STICK
DE2223248A1 (en) Concrete reinforcing bar, method for determining the sizes of the optimal rib spacing and the optimal rib height as well as method for manufacturing such a bar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030403

17Q First examination report despatched

Effective date: 20030505

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50208977

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070423

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150225

Year of fee payment: 14

Ref country code: IE

Payment date: 20150224

Year of fee payment: 14

Ref country code: LU

Payment date: 20150224

Year of fee payment: 14

Ref country code: NL

Payment date: 20150223

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150225

Year of fee payment: 14

Ref country code: GB

Payment date: 20150227

Year of fee payment: 14

Ref country code: FR

Payment date: 20150227

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150218

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 348923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160206

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160206

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160206

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200229

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208977

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901