EP1220031A2 - Film support with improved adhesion upon annealing - Google Patents

Film support with improved adhesion upon annealing Download PDF

Info

Publication number
EP1220031A2
EP1220031A2 EP01204947A EP01204947A EP1220031A2 EP 1220031 A2 EP1220031 A2 EP 1220031A2 EP 01204947 A EP01204947 A EP 01204947A EP 01204947 A EP01204947 A EP 01204947A EP 1220031 A2 EP1220031 A2 EP 1220031A2
Authority
EP
European Patent Office
Prior art keywords
layer
support
annealing
adhesion
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01204947A
Other languages
German (de)
French (fr)
Other versions
EP1220031A3 (en
Inventor
Brian K. Brady
Charles L. Bauer
Dennis J. Eichorst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/751,116 external-priority patent/US6306568B1/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP1220031A2 publication Critical patent/EP1220031A2/en
Publication of EP1220031A3 publication Critical patent/EP1220031A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/7614Cover layers; Backing layers; Base or auxiliary layers characterised by means for lubricating, for rendering anti-abrasive or for preventing adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/85Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/795Photosensitive materials characterised by the base or auxiliary layers the base being of macromolecular substances
    • G03C2001/7952Cellulose ester

Definitions

  • the present invention relates to light sensitive imaging elements in general and in particular to film supports whose ability to adhere to other layers is improved upon annealing.
  • an advanced photo system (APS) film uses a polyethylene naphthalate based support that must be annealed before applying the emulsion layers.
  • the film support can be prepared by purchasing oriented PEN base, annealing the base, and then applying the adhesive (subbing) and backing layers forming the following structure:
  • the PEN support To reduce manufacturing costs it would be desirable to manufacture the PEN support and apply as many of the support coatings in-line with the base manufacturing before annealing in a wound roll format.
  • the current magnetics coated support undergoes degradation with annealing resulting in poor magnetics layer adhesion.
  • One method of improving adhesion is the addition of crosslinking agents to the magnetics layer, such as isocyanates, a known skin and respiratory sensitizor. Because of health and safety concerns with handling isocyanates it is desirable to use an alternative crosslinking agent.
  • crosslinking agents such as isocyanates, a known skin and respiratory sensitizor. Because of health and safety concerns with handling isocyanates it is desirable to use an alternative crosslinking agent.
  • We have found that good adhesion can be achieved by the use of heat activated blocked isocyanates in the magnetics layer. These materials will crosslink the coating during the annealing stage of manufacturing (application of heat over a long period of time). The added advantage of these materials is that
  • U.S. 4225665 describes an antistat layer that contains a carboxylic acid functionalized polymer which is crosslinked with aziridine.
  • U.S. 5198499 describes an antistat layer that is crosslinked with a melamine which provides good abrasion resistance, adhesion and antistatic properties.
  • U.S. 5427900 describes a photographic film with a magnetics layer on the backside.
  • the preferred binder for the magnetics layer is cellulose diacetate which may be crosslinked with isocyanates, aziridines or melamines.
  • U.S. 5432050 describes a magnetics layer with filler particles which may be crosslinked with isocyanates, aziridines or melamines.
  • the magnetics package is applied before the annealing process, the adhesion of the backings is degraded because of the annealing process. It would be advantageous to coat as many backside layers as possible in-line before annealing.
  • the present invention discloses that by adding blocked isocyanates to the magnetics layer and then annealing the package results in good adhesion. This allows the manufacture of a polyester support to be coated in-line with several backing layers. Hence, the present invention describes:
  • the advantages of the invention are many.
  • the use of blocked isocyanate for an annealable backing package gives good adhesion to preferred antistatic layer or non-blocking protective layers.
  • Significant manufacturing and environmental advantages are offered compared with conventional isocyanate cross-linkers since the blocked isocyanates do not react at room temperature.
  • blocked isocyanates can extend coating solution life, provide easy clean-up and reduce operator exposure to reactive chemistries.
  • crosslinking the magnetic layer has been the only method found to provide an annealable magnetic backing having a cellulose diacetate magnetic layer and a vanadium oxide antistatic layer.
  • the imaging support of this invention is suitable for use in various imaging elements including, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording, and thermal dye transfer imaging elements. Details with respect to the composition and function of this wide variety of imaging elements are provided in U.S. Patent No. 5,719,016. Imaging elements that can be provided with a support in accordance with this invention can differ widely in structure and composition. For example, they can vary in regard to the type of support, the number and composition of the image forming layers, and the number and kinds of auxiliary layers included in the elements.
  • the image forming layer(s) of a typical photographic imaging element includes a radiation sensitive agent (e.g., silver halide) dispersed in a hydrophilic water-permeable colloid.
  • a radiation sensitive agent e.g., silver halide
  • Suitable hydrophilic colloids include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic, and the like; as well as synthetic polymers, for example, water-soluble polyvinyl compounds such as poly (vinylpyrrolidone), acrylamide polymers, and the like.
  • a common example of an image-forming photographic layer is a gelatin-silver halide emulsion layer.
  • the photographic elements can be still films, motion picture films, x-ray films, graphic arts films or microfiche. They can be black-and-white elements, color elements adapted for use in negative-positive process or color elements adapted for use in a reversal process.
  • Polymer film supports which are useful for the present invention include polyester supports such as -1,4-cyclohexanedimethylene terephthalate, polyethylene 1,2-diphenoxyethane-4,4'-dicarboxylate, polybutylene terephthalate, and polyethylene naphthalate and the like; and blends or laminates thereof. Particularly preferred are polyethylene naphthalate and blends of polyethylene naphthalate with polyethylene terephthalate. Additional suitable polyester supports, polyester copolymers and polyester blends are disclosed in detail in U.S. Pat. No. 5,580,707.
  • Film supports can be surface-treated on either or both sides prior to application of the gelatin subbing layer by various processes including corona discharge, glow discharge, LTV exposure, flame treatment, electron-beam treatment or treatment with adhesion-promoting agents including dichloroacetic acid and trichloroacetic acid, phenol derivatives such as resorcinol and p-chloro-m-cresol, solvent washing prior to overcoating with a subbing layer of the present invention.
  • additional adhesion promoting primer or tie layers containing polymers such as vinylidene chloride-containing copolymers, butadiene-based copolymers, glycidyl acrylate or methacrylate-containing copolymers, maleic anhydride-containing copolymers, condensation polymers such as polyesters, polyamides, polyurethanes, polycarbonates, mixtures and blends thereof, and the like may be applied to the polyester support.
  • Particularly preferred primer or tie layers comprise a chlorine containing latex or solvent coatable chlorine containing polymeric layer. Vinyl chloride and vinylidene chloride containing polymers are preferred as primer or subbing layers of the present invention.
  • the subbing or primer composition may be applied to the polyester base using an in-line process during the base manufacture or by an off-line process.
  • the layer When applied in an in-line process, the layer may be coated on the polyester base prior to orientation, after orientation, or after uniaxial orientation but before biaxial orientation.
  • the primer composition described is typically applied in accordance with U.S. Pat. Nos. 2,627,088 and 3,143,421.
  • the coating formulation is coated onto the amorphous support material, dried, and then the resulting film is oriented by stretching and other steps applied to the film such as heat setting, as described in detail in U.S. Pat. No. 2,779,684. Accordingly, the particular support film used, the procedure and apparatus for the coating thereof and the orientation of the film are not limitations of the present invention. Any of the usual coating apparatus and processing steps employed in the art may be employed in treating the film product of the present invention.
  • a hydrophilic subbing layer containing gelatin is applied to the polyester film base prior to heat-treatment.
  • the subbing layer may be applied to a polyester support which has been surface treated or be superposed on any suitable primer layer.
  • a preferred subbing layer for the imaging side of the support is described in USSN 09/067,306.
  • the gelatin subbing layer is typically used in an amount of from 0.25 to 5 weight percent, preferably 0.5 to 1 weight percent
  • the subbing layer may include addenda such as dispersants, surface active agents, plasticizers, coalescing aids, solvents, co-binders, soluble dyes, solid particle dyes, haze reducing agents, adhesion promoting agents, hardeners, antistatic agents, matting agents, etc.
  • surface active agents coating aids
  • Suitable solvents include ketones such as acetone or methyl ethyl ketone, and alcohols such as ethanol, methanol, isopropanol, n-propanol, and butanol.
  • Underlying subbing, primer or tie layers may also be surface treated, for example by corona. discharge treatment, to aid wetting by the gelatin subbing formulation.
  • Coated supports in accordance with the present invention are subjected to an extended heat treatment or annealing step after conventional support film manufacturing heat treatment to reduce core-set curling tendencies of the support.
  • Such "post manufacture” heat tempering or annealing includes heating the coated film support at a temperature that is 50 to 5°C less than the glass transition temperature of the support for at least 6 hours.
  • the heat tempering or annealing step for reducing core-set curling tendencies is distinguishable from typical support manufacturing heat treatment in that it is performed after the support is wound on a roll rather than as part of the primary support manufacturing process.
  • the imaging support consists of a polyethylene-2,6-naphthalate film base which is coated with vinylidene chloride primer layers.
  • a gelatin subbing layer is applied on one side of the support.
  • the Tg is about 140° C
  • the heat treatment temperature is from 90° C to 120° C, preferably from 100° C to 115° C, and more preferably from 105° C to 115 ° C.
  • Photographic elements in accordance with the preferred embodiment of the invention can be single color elements or multicolor elements.
  • Multicolor elements contain image dye-forming units sensitive to each of the three primary regions of the spectrum.
  • Each unit can comprise a single emulsion layer or multiple emulsion layers sensitive to a given region of the spectrum.
  • the layers of the element, including the layers of the image-forming; units can be arranged in various orders as known in the art.
  • the emulsions sensitive to each of the three primary regions of the spectrum can be disposed as a single segmented layer.
  • a typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dyeforming coupler, magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler.
  • the element can contain additional layers, such as filter layers, interlayers, antihalation layers, overcoat layers, subbing layers, and the like.
  • a thick sheet of polyethylene naphthalate (PEN) was melt extruded, a poly(acrylonitrile-co-vinylidene chloride-co-acrylic acid) adhesion promoting layer was applied to both sides of the support.
  • the support was then stretched and tentered forming a 95 micrometers thick PEN film with approximately 60 nm thick layer of the adhesion layer.
  • To one side of the support was applied approximately 0.09 g/m 2 of a gelatin subbing layer.
  • an antistat layer was applied from water.
  • the antistat layer designated A1 is a two layered structure with the first layer comprising poly(acrylonitrile-co-vinylidene chloride-co-acrylic acid) : vanadium pentoxide : Tx-100 at a 1:1:1 wt ratio, 0.015 g/m 2 dry, and the second layer comprising a mixture of hydroxypropyl methyl cellulose (E3 Dow Chemical) and a polyurethane, Witcobond W236 (Witco Corp), 25/75 wt. ratio, 0.22 g/m 2 dry coverage.
  • the antistat layer, designated A2 is a layer comprising a mixture of zinc antimonate and gelation (90/10 wt. ratio) at 0.605 g/m 2 dry coverage.
  • a magnetics layer was applied as described in Table 1. This layer was coated from a solvent mixture of dichloromethane/acetone/methylacetoacetate at a wet coverage of 44.1 cc/m 2 and then dried. Before coating, a blocked isocyanate, BL-3175A from Bayer Chem., was added to the coating solution at levels indicated in Table 2 (as % based on total solids in the coating).
  • the amount and type of block isocyanate in the magnetics layer was varied.
  • the support was generated in the same manner in the examples above except the antistat layer used, designated A3 , is a layer comprising a mixture of zinc antimonate and gelation (80/20 wt. ratio) at 0.605 g/m 2 dry coverage.
  • the magnetics layer was prepared and tested as in Example 1 but with the amount and type of blocked isocyanate crosslinker varying as described in Table 3. The amount of crosslinker added is given as a percent based on the total solids in the coating solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

A photographic element comprising a polyester support; an antistatic layer; and a transparent magnetic layer comprising a cellulose binder, ferromagnetic particles and a blocked isocyanate.

Description

  • The present invention relates to light sensitive imaging elements in general and in particular to film supports whose ability to adhere to other layers is improved upon annealing.
  • Because of curl and core-set specifications, an advanced photo system (APS) film uses a polyethylene naphthalate based support that must be annealed before applying the emulsion layers. The film support can be prepared by purchasing oriented PEN base, annealing the base, and then applying the adhesive (subbing) and backing layers forming the following structure:
    Figure 00010001
  • To reduce manufacturing costs it would be desirable to manufacture the PEN support and apply as many of the support coatings in-line with the base manufacturing before annealing in a wound roll format. The current magnetics coated support undergoes degradation with annealing resulting in poor magnetics layer adhesion. One method of improving adhesion is the addition of crosslinking agents to the magnetics layer, such as isocyanates, a known skin and respiratory sensitizor. Because of health and safety concerns with handling isocyanates it is desirable to use an alternative crosslinking agent. We have found that good adhesion can be achieved by the use of heat activated blocked isocyanates in the magnetics layer. These materials will crosslink the coating during the annealing stage of manufacturing (application of heat over a long period of time). The added advantage of these materials is that they do not react at room temperature and thereby extend the life of a coating solution and provide easy clean-up.
  • U.S. 4225665 describes an antistat layer that contains a carboxylic acid functionalized polymer which is crosslinked with aziridine.
  • U.S. 5198499 describes an antistat layer that is crosslinked with a melamine which provides good abrasion resistance, adhesion and antistatic properties.
  • U.S. 5427900 describes a photographic film with a magnetics layer on the backside. The preferred binder for the magnetics layer is cellulose diacetate which may be crosslinked with isocyanates, aziridines or melamines.
  • U.S. 5432050 describes a magnetics layer with filler particles which may be crosslinked with isocyanates, aziridines or melamines.
  • If the magnetics package is applied before the annealing process, the adhesion of the backings is degraded because of the annealing process. It would be advantageous to coat as many backside layers as possible in-line before annealing.
  • The present invention discloses that by adding blocked isocyanates to the magnetics layer and then annealing the package results in good adhesion. This allows the manufacture of a polyester support to be coated in-line with several backing layers. Hence, the present invention describes:
  • A photographic element comprising:
    • a polyester support;
    • an antistatic layer; and
    • a transparent magnetic layer comprising a cellulose binder, ferromagnetic particles and a blocked isocyanate.
  • The advantages of the invention are many. The use of blocked isocyanate for an annealable backing package gives good adhesion to preferred antistatic layer or non-blocking protective layers. Significant manufacturing and environmental advantages are offered compared with conventional isocyanate cross-linkers since the blocked isocyanates do not react at room temperature. In particular, blocked isocyanates can extend coating solution life, provide easy clean-up and reduce operator exposure to reactive chemistries. To date, crosslinking the magnetic layer has been the only method found to provide an annealable magnetic backing having a cellulose diacetate magnetic layer and a vanadium oxide antistatic layer.
  • The imaging support of this invention is suitable for use in various imaging elements including, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording, and thermal dye transfer imaging elements. Details with respect to the composition and function of this wide variety of imaging elements are provided in U.S. Patent No. 5,719,016. Imaging elements that can be provided with a support in accordance with this invention can differ widely in structure and composition. For example, they can vary in regard to the type of support, the number and composition of the image forming layers, and the number and kinds of auxiliary layers included in the elements. The image forming layer(s) of a typical photographic imaging element includes a radiation sensitive agent (e.g., silver halide) dispersed in a hydrophilic water-permeable colloid. Suitable hydrophilic colloids include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic, and the like; as well as synthetic polymers, for example, water-soluble polyvinyl compounds such as poly (vinylpyrrolidone), acrylamide polymers, and the like. A common example of an image-forming photographic layer is a gelatin-silver halide emulsion layer. In particular, the photographic elements can be still films, motion picture films, x-ray films, graphic arts films or microfiche. They can be black-and-white elements, color elements adapted for use in negative-positive process or color elements adapted for use in a reversal process.
  • Polymer film supports which are useful for the present invention include polyester supports such as -1,4-cyclohexanedimethylene terephthalate, polyethylene 1,2-diphenoxyethane-4,4'-dicarboxylate, polybutylene terephthalate, and polyethylene naphthalate and the like; and blends or laminates thereof. Particularly preferred are polyethylene naphthalate and blends of polyethylene naphthalate with polyethylene terephthalate. Additional suitable polyester supports, polyester copolymers and polyester blends are disclosed in detail in U.S. Pat. No. 5,580,707.
  • Film supports can be surface-treated on either or both sides prior to application of the gelatin subbing layer by various processes including corona discharge, glow discharge, LTV exposure, flame treatment, electron-beam treatment or treatment with adhesion-promoting agents including dichloroacetic acid and trichloroacetic acid, phenol derivatives such as resorcinol and p-chloro-m-cresol, solvent washing prior to overcoating with a subbing layer of the present invention. In addition to surface treatment or treatment with adhesion promoting agents, additional adhesion promoting primer or tie layers containing polymers such as vinylidene chloride-containing copolymers, butadiene-based copolymers, glycidyl acrylate or methacrylate-containing copolymers, maleic anhydride-containing copolymers, condensation polymers such as polyesters, polyamides, polyurethanes, polycarbonates, mixtures and blends thereof, and the like may be applied to the polyester support. Particularly preferred primer or tie layers comprise a chlorine containing latex or solvent coatable chlorine containing polymeric layer. Vinyl chloride and vinylidene chloride containing polymers are preferred as primer or subbing layers of the present invention.
  • The subbing or primer composition may be applied to the polyester base using an in-line process during the base manufacture or by an off-line process. When applied in an in-line process, the layer may be coated on the polyester base prior to orientation, after orientation, or after uniaxial orientation but before biaxial orientation. The primer composition described is typically applied in accordance with U.S. Pat. Nos. 2,627,088 and 3,143,421. The coating formulation is coated onto the amorphous support material, dried, and then the resulting film is oriented by stretching and other steps applied to the film such as heat setting, as described in detail in U.S. Pat. No. 2,779,684. Accordingly, the particular support film used, the procedure and apparatus for the coating thereof and the orientation of the film are not limitations of the present invention. Any of the usual coating apparatus and processing steps employed in the art may be employed in treating the film product of the present invention.
  • For the imaging side of the support, a hydrophilic subbing layer containing gelatin is applied to the polyester film base prior to heat-treatment. The subbing layer may be applied to a polyester support which has been surface treated or be superposed on any suitable primer layer. A preferred subbing layer for the imaging side of the support is described in USSN 09/067,306. The gelatin subbing layer is typically used in an amount of from 0.25 to 5 weight percent, preferably 0.5 to 1 weight percent The subbing layer may include addenda such as dispersants, surface active agents, plasticizers, coalescing aids, solvents, co-binders, soluble dyes, solid particle dyes, haze reducing agents, adhesion promoting agents, hardeners, antistatic agents, matting agents, etc. For altering the coating and drying characteristics it is a common practice in the art to use surface active agents (coating aids) or to include a water miscible solvent in an aqueous dispersion. Suitable solvents include ketones such as acetone or methyl ethyl ketone, and alcohols such as ethanol, methanol, isopropanol, n-propanol, and butanol. Underlying subbing, primer or tie layers may also be surface treated, for example by corona. discharge treatment, to aid wetting by the gelatin subbing formulation.
  • Coated supports in accordance with the present invention are subjected to an extended heat treatment or annealing step after conventional support film manufacturing heat treatment to reduce core-set curling tendencies of the support. Such "post manufacture" heat tempering or annealing includes heating the coated film support at a temperature that is 50 to 5°C less than the glass transition temperature of the support for at least 6 hours. The heat tempering or annealing step for reducing core-set curling tendencies is distinguishable from typical support manufacturing heat treatment in that it is performed after the support is wound on a roll rather than as part of the primary support manufacturing process. In a preferred embodiment of the present invention, the imaging support consists of a polyethylene-2,6-naphthalate film base which is coated with vinylidene chloride primer layers. A gelatin subbing layer is applied on one side of the support. With respect to polyethylene-2,6-naphthalate, the Tg is about 140° C, and the heat treatment temperature is from 90° C to 120° C, preferably from 100° C to 115° C, and more preferably from 105° C to 115 ° C.
  • Photographic elements in accordance with the preferred embodiment of the invention can be single color elements or multicolor elements. Multicolor elements contain image dye-forming units sensitive to each of the three primary regions of the spectrum. Each unit can comprise a single emulsion layer or multiple emulsion layers sensitive to a given region of the spectrum. The layers of the element, including the layers of the image-forming; units, can be arranged in various orders as known in the art. In an alternative format, the emulsions sensitive to each of the three primary regions of the spectrum can be disposed as a single segmented layer.
  • A typical multicolor photographic element comprises a support bearing a cyan dye image-forming unit comprised of at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dyeforming coupler, magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, and a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler. The element can contain additional layers, such as filter layers, interlayers, antihalation layers, overcoat layers, subbing layers, and the like.
  • The present invention is illustrated by the following detailed examples of its practice. However, the scope of this invention is by no means limited to these illustrative examples.
  • EXAMPLES Example 1
  • For the following examples, a thick sheet of polyethylene naphthalate (PEN) was melt extruded, a poly(acrylonitrile-co-vinylidene chloride-co-acrylic acid) adhesion promoting layer was applied to both sides of the support. The support was then stretched and tentered forming a 95 micrometers thick PEN film with approximately 60 nm thick layer of the adhesion layer. To one side of the support was applied approximately 0.09 g/m2 of a gelatin subbing layer. On the side opposite the gelatin subbing layer an antistat layer was applied from water. For one example the antistat layer, designated A1 is a two layered structure with the first layer comprising poly(acrylonitrile-co-vinylidene chloride-co-acrylic acid) : vanadium pentoxide : Tx-100 at a 1:1:1 wt ratio, 0.015 g/m2 dry, and the second layer comprising a mixture of hydroxypropyl methyl cellulose (E3 Dow Chemical) and a polyurethane, Witcobond W236 (Witco Corp), 25/75 wt. ratio, 0.22 g/m2 dry coverage. For the other examples the antistat layer, designated A2, is a layer comprising a mixture of zinc antimonate and gelation (90/10 wt. ratio) at 0.605 g/m2 dry coverage.
  • On top of the antistat layer, a magnetics layer was applied as described in Table 1. This layer was coated from a solvent mixture of dichloromethane/acetone/methylacetoacetate at a wet coverage of 44.1 cc/m2 and then dried. Before coating, a blocked isocyanate, BL-3175A from Bayer Chem., was added to the coating solution at levels indicated in Table 2 (as % based on total solids in the coating).
    Component Percent of solution
    cellulose diacetate 2.85
    Toda CSF 4085V2 magnetic particles 0.13
    cellulose triacetate 0.128
    dibutylphthalate 0.153
    Gafac PE510 0.006
    FC431 surfactant from 3M 0.015
    Solsperse 2400 (Zeneca) 0.006
    AKP-50 abrasive particles (Sumitomo) 0.117
    Unannealed Annealed
    Sample Antistat % BL-3 175 used Dry Adhesion (% removed) Wet Adhesion (% removed) Dry Adhesion (% removed) Wet Adhesion (% removed)
    B A1 10 100 100 4 <1
    C A2 10 100 85 0 3
    D A2 20 100 75 0.5 < 2
    The coatings were wound onto a 6 inch core and placed in an oven for 3 days at 100°C and then 2 days at 100°C. To evaluate adhesion both wet and dry tests were performed and results are given in Table 2 for before and after annealing:
  • Dry: 610 Scotch Tape Test = the coating is scored with a razor blade in a grid pattern (5 one inch lines, 0.2 inches apart and another 5 at a 45 degree angle to the first set). A piece a 610 Scotch tape is applied over the scored area and the tape is pulled off by hand. This is repeated ten times with a fresh piece of tape. The amount of removal is then assessed given in units of % removed.
  • Wet: AO abrasion = a 35 mm strip of the coating is soaked at 100F for 3 min 15 sec. in a developer bath. The strip is then scored with a razor blade and placed in a small trough, and a weighted rubber pad is placed on top. The pad is moved back and forth across the strip 100 times. The amount of removal is then assessed given in units of % removed.
  • The results from tables 2 show that after annealing the adhesion of the layers is greatly improved.
  • Example 2
  • In this set of examples the amount and type of block isocyanate in the magnetics layer was varied. The support was generated in the same manner in the examples above except the antistat layer used, designated A3, is a layer comprising a mixture of zinc antimonate and gelation (80/20 wt. ratio) at 0.605 g/m2 dry coverage. The magnetics layer was prepared and tested as in Example 1 but with the amount and type of blocked isocyanate crosslinker varying as described in Table 3. The amount of crosslinker added is given as a percent based on the total solids in the coating solution.
    Annealed Adhesion
    Sample Crosslinker % Crosslinker Dry Adhesion (% removed) Wet Adhesion (% removed)
    E none 0 0 30 comparison
    F BL-3175A 10 0 0 invention
    G BL-3175A 15 0 0 invention
    H BF1540 15 0 0 invention
    I BF1540 20 0 0 invention
    J B1358/100 10 0 0 invention
    K B1370 10 0 0 invention
    L DesmodurN33 00 10 0 0 comparison
    M Cymel 303 10 0 0 comparison
  • These results show that blocked isocyantes after annealing are as effective as fast reacting crosslinkers (the isocyanate and the melamine-formaldehyde) in improving adhesion.

Claims (4)

  1. A photographic element comprising:
    a polyester support;
    an antistatic layer; and
    a transparent magnetic layer comprising a cellulose binder, ferromagnetic particles and a blocked isocyanate.
  2. A photographic element comprising:
    a polyester support;
    an antistatic layer; and
    a transparent magnetic layer comprising a cellulose binder, ferromagnetic particles and a blocked isocyanate; and
    an image-forming layer.
  3. The photographic element of claim 2 wherein the image forming layer comprises silver halide.
  4. The photographic element of claim 1 or 2 wherein the polyester support comprises polyethylene naphthalate, polyethylene terephthalate, or blends thereof.
EP01204947A 2000-12-29 2001-12-18 Film support with improved adhesion upon annealing Withdrawn EP1220031A3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US751116 1985-07-02
US09/751,116 US6306568B1 (en) 2000-12-29 2000-12-29 Film support with improved adhesion upon annealing
US854873 2001-05-14
US09/854,873 US6423483B1 (en) 2000-12-29 2001-05-14 Film support with improved adhesion upon annealing

Publications (2)

Publication Number Publication Date
EP1220031A2 true EP1220031A2 (en) 2002-07-03
EP1220031A3 EP1220031A3 (en) 2002-08-14

Family

ID=27115370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01204947A Withdrawn EP1220031A3 (en) 2000-12-29 2001-12-18 Film support with improved adhesion upon annealing

Country Status (2)

Country Link
EP (1) EP1220031A3 (en)
JP (1) JP2002221764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064069A1 (en) * 2008-12-03 2010-06-10 Vadim Gogichev Cellulose-containing mass
WO2011039121A1 (en) * 2009-10-01 2011-04-07 Kremlin Group Corp. Cellulose-containing mass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432050A (en) * 1994-02-08 1995-07-11 Eastman Kodak Company Photographic element having a transparent magnetic recording layer
US5807661A (en) * 1997-01-28 1998-09-15 Eastman Kodak Company Transparent lubricious overcoat containing fluoropolymer microparticles for transparent magnetic recording layer for photographic element
US5998001A (en) * 1996-01-25 1999-12-07 Konica Corporation Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432050A (en) * 1994-02-08 1995-07-11 Eastman Kodak Company Photographic element having a transparent magnetic recording layer
US5998001A (en) * 1996-01-25 1999-12-07 Konica Corporation Magnetic recording medium
US5807661A (en) * 1997-01-28 1998-09-15 Eastman Kodak Company Transparent lubricious overcoat containing fluoropolymer microparticles for transparent magnetic recording layer for photographic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064069A1 (en) * 2008-12-03 2010-06-10 Vadim Gogichev Cellulose-containing mass
US8877919B2 (en) 2008-12-03 2014-11-04 Vadim Gogichev Cellulose-containing mass
WO2011039121A1 (en) * 2009-10-01 2011-04-07 Kremlin Group Corp. Cellulose-containing mass

Also Published As

Publication number Publication date
EP1220031A3 (en) 2002-08-14
JP2002221764A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US5366855A (en) Photographic support comprising an antistatic layer and a protective overcoat
EP0772080B1 (en) Photographic element useful as a motion picture print film
US4301239A (en) Antistatic backing layer for unsubbed polyester film
US5846699A (en) Coating composition including polyurethane for imaging elements
EP0514903A1 (en) Silver halide photographic material
US5536628A (en) Aqueous coating compositions containing dye-impregnated polymers
US6423483B1 (en) Film support with improved adhesion upon annealing
US5550011A (en) Photographic elements containing matte particles of bimodal size distribution
EP1220031A2 (en) Film support with improved adhesion upon annealing
US6451431B1 (en) Film support with annealable layer and improved adhesion
US20020127410A1 (en) Annealable imaging support
EP1223463A1 (en) Film support with annealable layer and improved adhesion
US5824464A (en) Photographic element with improved drying characteristics
GB2038207A (en) Method for adhering hydrophilic colloid layers on plastic film supports
EP1220030B1 (en) Amine modified gelatin layer for improved adhesion of photographic elements after annealing
US6037108A (en) Thermally stable subbing layer for imaging elements
US20020136902A1 (en) Annealable imaging support
US5952164A (en) Photographic element containing gelatin-modified polyurethane
US6235459B1 (en) Method for forming an improved imaging support element and element formed therewith
JP4505402B2 (en) Silver halide photographic material
US6174659B1 (en) Method for forming a base for an imaging element, and an imaging element comprising such base, with improved crosslinking agent
JPH09325452A (en) Picture image formation element having conducting layer
US5910399A (en) Backing layer for motion picture film
US6043014A (en) Imaging elements comprising an electrically-conductive layer and a protective overcoat composition containing a solvent-dispersible polyurethane
EP1220027A2 (en) Annealable imaging support containing a gelatin subbing layer and an antistatic layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030120

AKX Designation fees paid

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040521