EP1218160A1 - Process for preparing a foam component - Google Patents

Process for preparing a foam component

Info

Publication number
EP1218160A1
EP1218160A1 EP00967303A EP00967303A EP1218160A1 EP 1218160 A1 EP1218160 A1 EP 1218160A1 EP 00967303 A EP00967303 A EP 00967303A EP 00967303 A EP00967303 A EP 00967303A EP 1218160 A1 EP1218160 A1 EP 1218160A1
Authority
EP
European Patent Office
Prior art keywords
process according
mixmre
component
extrusion plate
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00967303A
Other languages
German (de)
French (fr)
Inventor
Matthew Grady Mcgoff
Scott Edward Stephens
Hossam Hassan Tantawy
Christopher Charles Driffield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9923393A external-priority patent/GB2355008A/en
Priority claimed from GB9923344A external-priority patent/GB2355014A/en
Priority claimed from GB0010599A external-priority patent/GB2361928A/en
Priority claimed from GB0022499A external-priority patent/GB2366795A/en
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1218160A1 publication Critical patent/EP1218160A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0208Tissues; Wipes; Patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/046Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties

Definitions

  • the present invention relates to a process for preparing foam components and to foam components obtainable therefrom, said process is especially applicable for preparing a foam component which are useful in cleaning compositions such as laundry cleaning compositions.
  • compositions such as cleaning products and personal care products, cosmetic products and pharmaceutical products, often comprise active ingredients which are to be delivered to water or which are required to be active in an aqueous environment. Many of these active ingredients are sensitive to moismre, temperamre changes, light and/or air during storage.
  • the inventors herein provide a process for preparing foam components that are impact robust and do not form dust when acted upon by physical forces typically encountered during handling.
  • the process of the present invention prepares foam components in a single step, thus negating the need for numerous process steps, such as spheronisation.
  • Said process provides a fast, simple, convenient, and cost effective means of providing a foam component, especially spherical foam components.
  • foam components obtainable by the process of the present invention are more impact robust and do not form dust when acted upon by physical forces typically encountered during handling.
  • the present invention provides a process for preparing a foam component, said process comprises the steps of extruding a viscous mixture through an aperture of a rotating extrusion plate, onto a receiving surface, and wherein a gas is incorporated into said viscous mixture either prior to, simultaneous to, or subsequent to, said viscous mixture being extruded through said aperture.
  • the shortest distance between said extrusion plate and said receiving surface is from 50 micrometers to 3000 micrometers, and preferably the aperture is of a size of from 50 micrometers to 3000 micrometers.
  • the present invention also provides foam component obtainable therefrom.
  • the process of the present invention provides a simple, fast, efficient, cost-effective means of preparing foam components, especially foam components for use in cleaning compositions. Said foam component is described in more detail hereinafter.
  • the process herein comprises the steps of extruding a viscous mixmre through an aperture of a rotating extrusion plate, onto a receiving surface, and wherein a gas is incorporated into said viscous mixmre either prior to, simultaneous to, or subsequent to, said viscous mixmre being extruded through said aperture.
  • the shortest distance between said extrusion plate and said receiving surface is from 50 micrometers to 3000 micrometers, and preferably the aperture is of a size of from 50 micrometers to 3000 micrometers.
  • the process is carried out at a temperamre of from -20°C to 100°C, preferably from -10°C, or from 0°C, or from 10°C, and preferably to 90°C, or to 80°C, or to 70°C, or to 60°C, or to 50°C, or to 40°C.
  • the foam component comprises an ingredient, such as an active ingredient, which is sensitive to temperamre, then it is preferred to perform the process at a temperamre which is compatible with said temperature sensitive ingredient.
  • this temperature is typically from 0°C to 50°C, preferably from 10°C to 30°C.
  • the viscous mixture typically has a viscosity of from lmPas to 200000mPas.
  • the mixmre herein is preferably a fluid or liquid.
  • the viscosity of the mixture depends on the chemical and physical properties of the ingredients in the mixmre, which typically depends on the ingredients required in the foam component. However, if the viscosity is too low, then the mixmre will pour too rapidly through the aperture onto the receiving surface and will not form extruded particles.
  • the mixmre will either not be able to pass through the aperture, or will form extruded noodles, as opposed to extruded particles, which will require additional cutting steps and possibly spheronisation steps before a useable foam component is prepared.
  • the viscosity of the mixmre is from 2mPas, or from 5mPas, or from 7mPas, or from lOmPas, or from 12mPas, or from 15mPas, or from 17mPas, or from 20mPas, or from 22mPas, or from 25mPas, or from 50mPas, or from lOOmPas, or from 150mPas, or from 200mPas, and typically to 150000mPas, or to lOOOOOmPas, or to 50000mPas, or to 25000mPas, or to 12000mPas, or to lOOOOmPas, or to 8000mPas, or to 5000mPas.
  • the mixmre typically comprises all or most of the ingredients that will be present in the foam component.
  • the mixmre comprises a polymeric material, a plasticiser and an active ingredient, and preferably also comprises a stabilising agent, a dissolution aid. Said polymeric material, plasticiser, active ingredient, stabilising agent, dissolution aid are described in more detail herein after.
  • the water content of the mixmre affects the physical and chemical properties of the mixmre.
  • the water content of the mixmre is from 0.1 wt% to 80 wt%, preferably from 60 wt% to 80 wt%.
  • the mixmre comprises ingredients especially active ingredients, which are sensitive to water, for example ingredients which degrade in the presence of water, then it is preferred that the water content of the mixmre is as low as possible, possibly being less than 5 wt%, or less than 3 wt%, or less than 1 wt%, or less than 0.1 wt%, or it may even be preferred that the mixmre is free from water.
  • the term "water” typically means water molecules which are not bound to other compounds, for example, the term “water” typically does not include the water content of hydrated molecules such as aluminosilicate but does include water added to the mixture, for example as a processing aid.
  • the mixmre may comprise water.
  • the mixmre comprises a polymeric material
  • water it may be preferred for water to be also be present in the mixmre to act as a plasticiser when forming a foam component from said polymeric material. If water is present in the mixmre, then preferably said water is present at a level of at least 3 wt%, or at least 5 wt%, or at least 10 wt%, or at least 20 wt% or even at least 40 wt%.
  • the presence of solid matter in said mixmre affects the extrusion process and the subsequent extruded particle formation. The extrusion of said liquid is typically more difficult when undissolved solid matter is present in said mixmre.
  • the extruded particle formed by extruding a mixmre comprising undissolved solid matter typically requires additional processing steps such as spheronisation. Therefore, preferably the mixmre preferably comprises (by weight) less than 30%, preferably less than 15%, preferably less than 12%, preferably less than 10%, preferably less than 7%, preferably less than 5%, preferably less than 3%, preferably less than 1%, preferably less than 0.1% undissolved solid matter. Most preferably, the mixture comprises no undissolved solid matter.
  • the levels of undissolved solid matter described above refer to the amount of solid matter during the step of extruding said mixmre through an aperture of a rotating extrusion plate and onto a receiving surface. It may be preferred for the mixmre to comprise solid matter during the process of the present invention other than during the extrusion step.
  • the solid matter is in the form of undissolved particles having a particle size smaller than, and thus being able to pass through, an aperture of a size of from 50 micrometers to 3000 micrometers, or other preferred sizes of said aperture which are described in more detail hereinafter.
  • the rotating extrusion plate preferably rotates at from 1 ⁇ m to 1000 ⁇ m, preferably from 2 ⁇ m, or from 3 ⁇ m, or from 4 ⁇ m, or from 5 ⁇ m, or from 6 ⁇ m, or from 7 ⁇ m, or from 8 ⁇ m, or from 9 ⁇ m, or from lO ⁇ tn, and preferably to 900 ⁇ m, or to 800 ⁇ m, or to 700 ⁇ m, or to 600 ⁇ m, or to 500 ⁇ m, or to 400 ⁇ m, or to 300 ⁇ m, or to 200 ⁇ m, or to lOO ⁇ rn, or to 50 ⁇ m.
  • the rotating extrusion plate may rotate in a clockwise or anticlockwise direction.
  • the rotating extrusion plate typically has a tip speed of from 0.1ms "1 to 1600ms "!
  • the tip speed of the rotating extmsion plate is typically defined as the angular velocity of the outer surface, or outer edge, of said rotating extrusion plate.
  • the direction of rotation, or typically the angular direction of rotation, of the rotating extrusion plate is typically pe ⁇ endicular like, or pe ⁇ endicular to, the direction of flow of the viscous liquid through the aperture of the rotating extrusion plate.
  • the rotating extrusion plate is typically a housing enclosing, or at least partially enclosing a volume capable of holding the liquid prior to the extrusion step.
  • the housing rotates around said volume, in a clockwise or anti-clockwise manner.
  • This housing can be a single layer of housing or can be more than one layer of housing, for example an outer layer and an inner layer.
  • the rotating extrusion plate is in the form of a housing for a volume, and said housing contains more than one layer, then only one layer needs to rotate, although it may be preferred for more than one layer, or even all of the layers of the housing, to rotate.
  • the housing consists of an outer layer and an inner layer, then preferably the outer layer rotates, although the inner layer may rotate, or even both the inner layer and the outer layer rotate.
  • the rotating extrusion plate is cylindrical, spheroid, or cubic in shape.
  • the rotating extrusion plate may be a polyhedral shape, such as a tetrahedral, pentahedral, hexahedron, rhombohedral, heptahedral, octahedral, nonahedral, decahedral, Most preferably, the rotating extrusion plate is cylindrical such as a barrel shape.
  • the rotating extrusion plate comprises an aperture of a size of from 50 micrometers to 3000 micrometers, preferably from 100 micrometers to 1000 micrometers. These apertures are typically formed by laser cutting the extrusion plate. Typically, said rotating extmsion plate comprises more than one aperture, preferably numerous apertures. If the rotating extmsion plate comprises more than one aperture, then said apertures may be a different size. By differing the sizes of the apertures and number of apertures having the same size, the size distribution of the extruded particle can be controlled, and extruded particles having a desired particle size distribution can be obtained from the process herein.
  • the density of apertures present on said rotating extrusion plate is from 0.001mm “ to 400mm “ , or from 0.01mm “ , or from 0.1mm “ , or from 1mm “ , or from 5mm “2 , or from 10mm “2 , or from 25mm “2 , or from 50mm “2 , or from 100mm “2 , and preferably to 300mm “2 , or to 275mm “2 or to 250mm “2 , or to 225mm “2 , or to 200m “2 , or to 175mm “2 , or to 150mm “2 .
  • Different areas of the rotating extrusion plate may have a different density of apertures present in said area. For example, smaller size apertures may be present in a higher density in one area of the rotating extrusion plate, whilst larger size apertures may be present in a lower density on a different area of said rotating extrusion plate.
  • the aperture preferably has a shape which resembles, or is, a square, rectangle, rhombus, triangle, oval, circle or diamond, preferably diamond. If more than one aperture is used in the present invention, then more than one type of shape of aperture may be used.
  • the rotating extrusion plate is at least partially coated, preferably completely coated, with a release agent.
  • the release agent acts to reduce the adhesive properties between the surface of the rotating extrusion plate and the liquid, thus the release of said liquid from the rotating extmsion plate, especially during the extrusion step.
  • Typical release agents comprise hydrophobic material such as wax, oil, grease, combinations thereof, preferably silicone oil.
  • the rotating extrusion plate may also be coated by agents which reduce the interaction between the rotating extrusion plate and the liquid or part thereof.
  • Preferred coatings are plasma coating, polish finishes, or a combination thereof. These coatings may be in addition to a coating comprising release agent, or may be in combination with the coating of release agent.
  • Preferred plasma coatings comprise polyethylene, polypropylene, or a combination thereof.
  • Typical plasma coatings comprise components known under the trade name as Teflon.
  • the rotating extrusion plate is a housing for a volume capable of holding the liquid, then it may be preferred that both the inner surface or outer surface is coated, or partially coated, with the release agent and/or other coating such as a plasma coating. If the rotating extrusion plate is a housing which comprises more than one layer, then it may be preferred for any layer or part thereof to be coated, or partially coated, with release agent and/or other coating such as plasma coating.
  • More than one rotating extrusion plate may be used in the process of the present invention, although it is preferred that only one rotating extrusion plate is used herein.
  • Preferred rotating extrusion plates for use herein are those known under the trade names as Rotoform supplied by Sandvik Conveyor GMBH, and Disk Pastillator supplied by Gausche Machinefabriek.
  • the mixmre is extruded from a rotating extrusion plate through an aperture onto a receiving surface.
  • the temperature of this process step is preferably as described above.
  • the mixmre is forced by a forcing means through the aperture.
  • the force required to extrude the mixmre through the aperture depends on the size of the aperture, the temperamre of said extmsion step, and the physical and chemical properties of said mixmre, such as viscosity.
  • the forcing means can comprise pushing, scraping, sucking the liquid through the aperture.
  • the forcing means can be in the form of a solid object, such as a bar, wedge, scraper, or combination thereof, which scrapes or pushes the mixture through the aperture.
  • the forcing means may also be a pump, which pumps the mixmre through the aperture. A combination of a pump and one or more means selected from a bar, wedge or scraper may also be used herein.
  • the mixmre is typically extmded through the aperture in the form of a ext date droplet.
  • Said droplet is typically forced onto the receiving surface by said forcing means.
  • the rotation of the extmsion plate typically pulls the droplet apart, leaving part of said droplet on the receiving surface to form an extruded particle.
  • the force required to pull the extmded droplet apart must be greater than the yield strength of said droplet.
  • the receiving surface typically receives the extmdate from the rotating extmsion plate, upon which said extruded liquid forms an extruded particle.
  • the receiving surface can be a belt, a drum, a disc, a platen, or a shape similar or identical to the rotating extrusion plate.
  • the receiving surface is a belt or disk. Even more preferably the receiving surface is a conveyor belt or spinning disk.
  • the shortest distance between the receiving surface and the rotating extrusion plate at is from 50 micrometers to 3000 micrometers.
  • the shortest distance means the distance measured at the closest point of proximity.
  • this distance is the height or cross-sectional distance, of the foam component prepared by the process herein. For example, if a spherical foam component having a mean diameter of 200 micrometers is required, then the prefe ⁇ ed shortest distance between the rotating extmsion plate and the receiving surface is 200 micrometers.
  • the receiving surface may rotate, said rotation may be clockwise or anti-clockwise.
  • the receiving surface rotates counter-clockwise to the rotating extmsion plate.
  • the receiving surface preferably rotates in an anti-clockwise direction. This prevents the extmded particles and/or liquid smearing or being damaged by the rotating extmsion plate when positioned on the receiving surface.
  • the receiving surface can be maintained at any temperamre as required, this can include heating or cooling said receiving surface.
  • the receiving surface is at a temperamre of from -20°C to 200°C, preferably from -10°C, or from 0°C, or from 10°C, or from 20°C, and preferably to 150°C, or to 100°C, or to 99°C, or to 75°C, or to 60°C or to 50°C, or to 40°C, or to 30°C.
  • Different areas of the receiving surface can be at different temperamres if required. For example, a first area of the receiving surface can be at a higher temperature than a second area.
  • the receiving surface is coated, or at least partially coated, with release agents or other coatings such as plasma coating or polish finishes. Said coatings and release agents are described hereinbefore. If said receiving surface is coated, or partially coated, with a release agent, then not only are the adhesive properties between the receiving surface and the extruded particle reduced, allowing easier release of said extruded particle from said receiving surface, but in addition to this, the surface tension between the extmded particle and the receiving surface is increased, thus reducing the area of contact between the extmded particle and the receiving surface and as a consequence of this, the extruded particle is more spherical in shape.
  • Gas is inco ⁇ orated into the liquid by any suitable means.
  • the gas is inco ⁇ orated into said mixmre either prior to, simultaneous to, or subsequent to said mixmre being extmded through said aperture.
  • the gas is inco ⁇ orated into said mixmre prior to said mixmre being extmded through the aperture of a rotating extmsion plate.
  • gas injection dry or aqueous route
  • gas dissolution and relaxation including critical gas diffusion (dry or aqueous route), injection of a compressed gas such as a super critical fluid; and/or
  • the gas preferably comprises CO 2 , N 2 , or a combination thereof such as air.
  • the gas may also be a compressed gas such as a super critical fluid.
  • the foam component is formed by extruding a mixmre through an aperture of a rotating extrusion plate, onto a receiving surface.
  • the foam component is formed as an extruded particle on the receiving surface.
  • the extmded particle can be a liquid, such as a droplet, or can be solid particle such as a bead or tablet.
  • the extruded particle is a solid and is typically formed from the extruded liquid which dries on the receiving surface.
  • the foam component can be subjected to further processing steps.
  • the foam component can be transferred from the receiving surface into a fluid bed and dried.
  • the temperamre of this fluid bed drying step is typically from 40°C to 80°C, preferably from 40°C to 60°C.
  • the foam component is preferably a sphere or spheroid. This is especially true if the receiving surface is coated or partially coated with release agent such as silicone oil.
  • the gas that is injected into said mixture may return to a gaseous state in the extruded particle and leave holes or gaps in the structure of the extruded particle.
  • This is an important part of the foaming process. It may be prefe ⁇ ed for the mixmre to be at a high temperamre or high pressure prior to being extmded. At these conditions, the gas may be in a compressed form or a super critical fluid.
  • the extruded particle which is formed from the extruded mixmre may be at a lower temperamre and/or pressure such as ambient conditions, and the gas returns to a gaseous state and foams the extmdate. This foaming step may occur on the receiving surface.
  • the foam component typically comprises an active ingredient, a matrix and a dissolution aid. Said active ingredient, matrix and stabilising agent are described in more detail hereinafter.
  • Said component herein is preferably water-dispersible, water-disintegrating or water- soluble.
  • Preferred water-dispersible articles herein have a dispersibility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinafter using a glass-filter with a maximum pore size of 50 microns; more preferably the article herein is water-soluble or water-disintegrating and has a solubility or disintegration of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinafter using a glass-filter with a maximum pore size of 20 microns, namely:
  • the article herein 50 grams ⁇ 0.1 gram of the article herein is added in a 400 ml beaker, whereof the weight has been determined, and 245ml ⁇ 1ml of distilled water is added. This is stirred vigorously on magnetic stirrer set at 600 ⁇ m, for 30 minutes. Then, the article-mixture is filtered through a folded qualitative sintered-glass filter with the pore sizes as defined above (max. 20 or 50 microns). The water is dried off from the collected filtrate by any conventional method, and the weight of the remaining article fraction is determined (which is the dissolved, disintegrated or dispersed fraction). Then, the % solubility, disintegration or dispersibility can be calculated.
  • the component herein is typically used to deliver actives to aqueous environment. Then, the component herein, and preferably the matrix thereof, is unstable when brought into contact with water. This occurs such that the active ingredient(s) or part thereof, present in the component is delivered to a liquid, preferably an aqueous environment such as water. Preferably the component or part thereof denatures, disintegrates, preferably disperses or dissolves in liquid, preferably in an aqueous environment, more preferably in water.
  • the active ingredient is delivered rapidly to water and that the component is such that it disperses or dissolves rapidly; preferably at least 10% of the article, by weight, is dissolved or dispersed in 30 minutes after contacting said component with water, or more preferably at least 30% or even at least 50% or even at least 70% or even at least 90% (introduced in the water at a 1% by weight concentration). It may even be preferred that this happens within 20 minutes or even 10 minutes or even 5 minutes after contacting the component with the water.
  • the dissolution or dispersion can be measured by the method described hereinbefore for measuring the dissolution, disintegration and dispersion of the component herein.
  • the component is such that the total volume of the component is changed, preferably reduced, with at least 10%, compared to the initial total volume, as for example can be determined when 1 cm of the component is added to 100 ml of demineralised water upon and stirred for 5 minutes at a speed of 200 ⁇ tn, at a temperamre of 25°C.
  • the change, or preferably reduction, in total volume is at least 20% or even at least 40% or even at least 60% or even at least 90% or even about 100%, e.g. because it may be prefe ⁇ ed that substantially the whole component is disintegrated, dispersed or preferably dissolved into the water quickly. This can be measured by use of any method known in the art, in particular herein with a method as follows (double immersion technique):
  • 1 cm 3 of an elastic article is obtained and introduced in a 100 ml micro volumetric measuring cylinder which is filled with 50 ml ⁇ 0.1ml of an organic inert solvent.
  • Acetone is for example used when found to be neither denamring and/or not interacting with the polymeric material in the matrix of the elastic article herein, for example when this is PVA.
  • Other neutral organic medium can be used according to the nature of the article under investigation; the inert solvent is such that the component is substantially not dissolved, dispersed, disintegrated or denatured by the solvent.
  • the cylinder is air sealed and left to rest for 1 minute so that the solvent penetrates the whole component.
  • the change in volume is measured and taken as the original volume V, of the foam specimen.
  • the component is then removed from the solvent and left to dry in air so that the solvent evaporates.
  • the component is then placed in a 250 ml beaker containing 100 ml of demineralised water, maintained at 25°C, under stirring at 200 ⁇ m with the help of a magnetic stirrer, for 5 minutes.
  • the remaining of the component specimen, if any, is filtered off with a 60mm mesh copper filter and placed in an oven at a temperamre and for a period such that residual water is removed.
  • the dried remaining article is re-introduced in the measuring cylinder which volume of acetone had been re-adjusted to 50 ml.
  • the increase in total volume is monitored and taken as the final volume of the component Vf..
  • the decrease in total volume ⁇ V of the component specimen is then:
  • the component preferably has a relative density p of from 0.01 to 0.95, more preferably from 0.05 to 0.9 or even from 0.1 to 0.8 or even form 0.3 to 0.7.
  • the relative density is the ratio of the density of the component (p ), to the sum of the partial densities of all the bulk materials used to form component(p s ).
  • the preferred foamed component as used herein is air-stable or stable upon contact with air, which means herein that the bulk volume of the component or matrix thereof substantially remains the same when exposed to air.
  • the component retains from 75% to 125% or even from 90% to 110% or even from 95% to 100% of its bulk volume under the above storage conditions whereby the humidity is 80%.
  • the bulk volume change can be measured by any conventional method.
  • a digital image recorder system containing a digital camera coupled to a personal computer itself equipped with calibrated image analyser software.
  • a 1cm 3 specimen of the article is obtained and introduced in an open beaker having a diameter of 9 cm and stored for 24 hours at the above conditions. After 24 hours, the size in all three dimensions is measured with the image analysis recorder system. Each specimen measurement is repeated three times, and the average bulk volume change is calculated in %.
  • the component is such that, when in the form of particles of a mean particle size of 2000 microns or less, these particles also retain from 75% to 125% or even from 90% to 110% or even from 95% to 100% of their bulk volume.
  • This can for example be measured by placing 20 grams of such particles, or a weight comprising more than 500 particles, in a volumetric beaker having a diameter of 9 cm.
  • the beaker is taped lightly on its base until the particles re-arrange themselves in a stable position with a horizontal top surface. The volume is measured.
  • the open beaker with the particles is then carefully placed in the incubator for 24 hours, set to the desired %RH and temperature.
  • the bulk volume after the 24 hours is measured and the change of bulk volume is calculated in %.
  • the component comprises (by weight) preferably at least 1% active ingredient(s), more preferably from 5% to 70%, more preferably at least 10% by weight of the article, more preferably from 15% or even 20% or even 25% to 50%.
  • the component comprises (by weight) preferably from 10% to 99% matrix, more preferably at least 20% or even 30% to 99%, more preferably from 20% or 30% to 90% to 80%.
  • the component comprises ( by weight) at least 1% stabilising agent, more preferably from 5%, or from 10%, or from 15%, or from 20%, and to 50%, or to 40%, or to 30%, or to 25%.
  • matrix of the component, herein referred to as "matrix" is typically formed form a polymeric material and preferably a plasticiser. Said polymeric material and said plasticiser are described in more detail hereinafter.
  • the ratio of plasticiser to polymeric material in the matrix is preferably 1 to 100, more preferably 1 to 70 or 1 to 50, more preferably 1 to 30 or even 1 to 20, depending on the type of plasticiser and polymeric material used.
  • the ratio is preferably around 1:15 to 1:8, a preferred ratio being around 10:1.
  • the matrix herein may further comprise the active ingredient of the component herein and/or the dissolution aid of the component herein. Said active ingredient and said dissolution aid are described in more detail hereinafter. Cross-linking agents may also be added to modify the properties of the matrix or the resulting component as appropriate. Borate may be useful in the matrix herein.
  • the matrix herein preferably has a glass transition temperamre (Tg) of below 50°C, preferably below 40°C, preferably less than 20°C or even less than 10°C or even less than 0°C.
  • Tg glass transition temperamre
  • the matrix herein has a Tg of above -20°C or even above -10°C.
  • the Tg of the matrix when used herein is the Tg of the matrix as present in the component, which thus may be a mixmre of polymeric material and plasticiser alone, or a mixmre of polymeric material, plasticiser, active ingredient and/or stabilising agent, and in any case, optional additional ingredients may be present (such as, stability agents, densification aids, fillers, lubricants etc., as described hereinafter).
  • the Tg as used herein is as defined in the text book 'Dynamic Mechanical Analysis' (page 53, figure 3.11c on page 57), as being the temperamre of a material (matrix) where the material (matrix) changes from glassy to rubbery, namely where chains gain enough mobility to slide by each other.
  • the Tg of the matrix of the component of the invention can be measured in the Perkin- Elmer DMA 7e equipment, following the directions in operations manual for this equipment, generating a curve as illustrated in the book Dynamic Mechanical Analysis - page 57, figure 3-1 lc.
  • the Tg is the temperamre or log Frequency as measured with this equipment, between the glass and 'leathery region', as defined in that text.
  • the matrix and preferably the component as a whole, has a specific elasticity and flexibility, because of its specific glass transition temperamre.
  • the elasticity can be defined by the elastic modulus of the matrix, or even the component, which again can be defined by the Young's modulus. This can be calculated from strain or stress mechanical tests as known in the art, for example by using Perkin-Elmer DMA 7e equipment following the manufacturer's experimental procedure over a specific % static strain range, namely in the range of 10-40% static strain. This represents a maximum strain as could be applicable during normal manufacturing or handling.
  • the elastic modulus as defined herein is the maximum modulus as measured with this equipment in the range of 10% to 40% static strain. For example a piece of matrix (or component) of 1 cm 3 can be used in the testing with this equipment.
  • the matrix herein typically has an elastic modulus or Young's modulus of less than 4 GN.m “2 , or typically less than 2 GN.m “2 , even more preferentially less than 1 GN.m “2 , but typically even less than 0.5 GN.m “ 2, or even less than 0.1 GN.m “ 2, or even less than 0.01 GN.m “2 , as measured with the Perkin-Elmer DMA 7e equipment.
  • a matrix herein which contains gas bubbles, e.g. formed by processes involving the introduction of air in the matrix has an elastic modulus below 0.1 GN.m “2 or even 0.01 GN.m “2 or even below 0.005 GN.m “2 or even below 0.0001 GN.m “2 .
  • the matrix is flexible, such that it has a relative yield strain greater than 2%, and preferably greater than 15% or even greater than 50%, as measured with the Perkin- Elmer DMA 7e equipment. (The yield strain is in this measurement the limit deformation of a piece of matrix at which the it deforms irreversible).
  • This can for example be measured by use of Perkin-Elmer DMA 7e equipment.
  • the matrix is preferably flexible to such an extend that when a matrix sample having a cross section of a specific length, for example 1cm, is stretched with a static force applied along the axis of that cross section, the static force being variable, but at least equivalent to twice atmospheric pressure, the change of this length after removal of the force is at least 90% to 110% of the original length.
  • a matrix sample having a cross section of a specific length for example 1cm
  • the static force being variable, but at least equivalent to twice atmospheric pressure
  • this length of the cross section after this experiment is preferably from 90% to 110%) of the original length of the cross section, preferably from 95% to 105% or even from 98% to 100%.
  • the elastic modulus or Young's modulus is related to the relative density, namely
  • p* is the relative density of the matrix or even the component
  • p s is the relative densities of the components of the matrix or component, as described herein
  • E* is the Young's modulus of the matrix or even the component itself
  • E s that of the components of the matrix or even the component.
  • the matrix is in the form of a foam and preferably such that it forms an interconnected network of open and/ or closed cells, in particular a network of solid struts or plates which form the edges and faces of open and/ or closed cells.
  • the spacing inside the cells can contain part of the active ingredient and or a gas, such as air.
  • the ratio of the closed cells to open cells in the matrix of the component, or the component as a whole is more than 1: 1, preferably more than 3:2 or even more than 2: 1 or even more than 3:1.
  • any polymeric material can be used to form the matrix herein, preferably the polymeric material has itself a Tg as described above or more typically, it can be formed into a matrix having the Tg as described above by using a suitable amount of plasticiser.
  • the polymer material comprises or consists of amo ⁇ hous polymer(s).
  • the polymeric material may consist of a single type of homologous polymer or may be a mixture of polymers. Mixtures of polymers may in particular be beneficial to control the mechanical and/or dissolution properties of the component, depending on the application thereof and the requirements thereof.
  • the polymeric material comprises a water-dispersible or more preferably a water-soluble polymer.
  • Water-dispersible and water-soluble are typically defined as described hereinbefore, as per the method for determining the water-solubility and water- dispersibility of the component herein.
  • Preferred water-dispersible polymers herein have a dispersibility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinbefore using a glass-filter with a maximum pore size of 50 microns; more preferably the polymer herein is a water-soluble polymer which has a solubility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinbefore using a glass-filter with a maximum pore size of 20 microns.
  • the polymer can have any average molecular weight, preferably from about 1000 to 1,000,000, or even form 4000 to 250,000 or even form 10,000 to 200,000 or even form 20,000 to 75,000. Highly prefe ⁇ ed may be polymeric material having a weight average molecular weight of from 30,000 to 70,000.
  • the polymeric material can be adjusted.
  • polymers may be included in the material, which have high molecular weights typically above 50,000 or even above 100,000, and vice versa.
  • polymers of varying level of hydrolyses may be used.
  • the cross-linking of the polymers may be increased and/ or the molecular weight may be increased.
  • the polymer used in the component herein has a secondary function, for example a function in the composition wherein component is to be inco ⁇ orated.
  • a secondary function for example, a function in the composition wherein component is to be inco ⁇ orated.
  • the polymer in the polymeric material is a dye transfer inhibiting polymer, dispersant etc.
  • such polymers have a level of hydrolysis of at least 50%, more preferably at least 70% or even from 85% to 95%.
  • Plasticiser Any plasticiser which is suitable to aid the formation of a matrix as defined herein can be used. Mixtures of plasticiser may also be used. Preferably, when water is used, an additional plasticiser is present.
  • the plasticiser or at least one of the plasticisers has a boiling point above 40°C, preferably above 60°C, or even above 95°C, or even above 120°C, or even above 150°C.
  • Prefe ⁇ ed plasticisers include glycerol or glycerine, glycol derivatives including ethylene glycol, digomeric polyethylene glycols such as diethylene glycol, triethylene glycol and tetraethylene glycol, polyethylene glycol with a weight average M.W.
  • the plasticiser is preferably present at a level of at least 0.5% by weight of the article, preferably by weight of the matrix, provided that when water is the only plasticiser it is present at a level of at least 3% by weight of the article, or preferably by weight of the matrix.
  • the plasticiser is present at a level of 1% to 35% by weight of the article or matrix, more preferably 2% to 25% or even to 15% or even to 10% or even to 8% by weight of the article or by weight of the matrix.
  • the exact level will depend on the polymeric material and plasticiser used, but should be such that the matrix of the article has the desired Tg.
  • the level is preferably 1% to 10% by weight of the matrix, while when glycerine or ethylene glycol or other glycol derivatives are used, higher levels may be preferred, for example 2% to 15% by weight of the article or matrix.
  • the active ingredient can be any material which is to be delivered to a liquid environment, or preferably an aqueous environment and preferably an ingredient which is active in an aqueous environment.
  • the component when used in cleaning compositions the component can contain any active cleaning ingredients.
  • the component may also comprise compositions, such as cleaning composition or personal care compositions.
  • active ingredients which are moismre sensitive or react upon contact with moisture, or solid ingredients which have a limited impact robustness and tend to form dust during handling.
  • active ingredients such as enzymes, perfumes, bleaches, bleach activators, fabric softeners, fabric conditioners, surfactants, such as liquid nonionic surfactant, conditioners, antibacterial agents, brighteners, photo-bleaches and mixtures thereof.
  • Another active ingredient is a perhydrate bleach, such as metal perborates, metal percarbonates, particularly the sodium salts.
  • organic peroxyacid bleach precursor or activator compound preferred are alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1 , 2 and 6 carbon atoms such as tetraacetyl ethylene diamine (TAED), sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose, but also amide substituted alkyl peroxyacid precursor compounds
  • Highly preferred active ingredient for use in the component herein are one or more enzymes.
  • Preferred enzymes include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally inco ⁇ orated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
  • Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
  • Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB- 1,269,839 (Novo).
  • Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S. Highly preferred amylase enzymes maybe those described in PCT/ US 9703635, and in WO95/26397 and WO96/23873.
  • the lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain ofHumicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens.
  • Lipase from chemically or genetically modified mutants of these strains are also useful herein.
  • a preferred lipase is derived from Pseudomonas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
  • Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge- Jensen et al, issued March 7, 1989.
  • the component of the invention preferably comprises additional ingredients which can improve the dissolution properties of the article herein.
  • Preferred additional ingredient which improve the dissolution of the article herein preferably comprise; a sulfonated compound such as -C 4 alk(en)yl sulfonates, C ⁇ -C 4 aryl sulfonates, di iso butyl benzene sulphonate, toluene sulfonate, cumene sulfonate, xylene sulfonate, salts thereof such as sodium salts thereof, derivatives thereof, or combinations thereof, preferably di iso butyl benzene sulphonate, sodium toluene sulfonate, sodium cumene sulfonate, sodium xylene sulfonate, and combinations thereof; and/or a C ⁇ -C 4 alcohol such as methanol, ethanol, propanol such as iso-propanol, and derivatives thereof, and combinations thereof, preferably ethanol and/or iso-propanol; and/or a C 4 -
  • the component of the invention preferably comprises additional ingredients which can improve the stability of the active ingredient of the article herein.
  • additional ingredients are typically capable of stabilising the active ingredient of the component herein, this is especially preferred when the active ingredient(s) comprise an oxidative or moismre sensitive active ingredient, such as one or more enzymes. These additional ingredients may also stabilise the matrix of the component herein, and thus indirectly stabilise the active ingredient. These stabilising ingredients are defined herein as "stabilising agents”.
  • the stabilising agent is preferably a compound which stabilises the active ingredient, or matrix, from oxidative and/or moismre degradation during storage.
  • the stabilising agent may be, or comprise, a foam matrix stabiliser.
  • the stabilising agent may be, or comprise, an active ingredient stabiliser, especially an enzyme stabiliser.
  • Stabilising agents which are capable of stabilising the active ingredient indirectly by keeping the foam matrix of the article stable, herein ref ⁇ ed to as "foam stabiliser”.
  • Foam stabilisers preferably comprise a surfactant such as a fatty alcohol, fatty acid, alkanolamide, amine oxide, or derivatives thereof, or combinations thereof.
  • the foam stabiliser may comprise betaine, sulfobetaine, phosphine oxide, alkyl sulfoxide, derivatives thereof, or combinations thereof.
  • Other preferred foam stabilisers comprises one or more anions or cations such as mono-, di-, tri- valent, or other multivalent metal ions, preferred are salts of sodium, calcium, magnesium, potassium, aluminium, zinc, copper, nickel, cobalt, iron, manganese and silver, preferably having an anionic counterion which is a sulphate, carbonate, oxide, chloride, bromide, iodide, phosphate, borate, acetate, citrate, and nitrate, and combinations thereof.
  • anions or cations such as mono-, di-, tri- valent, or other multivalent metal ions
  • salts of sodium, calcium, magnesium, potassium, aluminium, zinc, copper, nickel, cobalt, iron, manganese and silver preferably having an anionic counterion which is a sulphate, carbonate, oxide, chloride, bromide, iodide, phosphate, borate, acetate, citrate, and nitrate, and combinations thereof.
  • the foam stabiliser may comprise finely divided particles, preferably finely divided particles having an average particle size of less than 10 micrometers, more preferably less than 1 micrometer, even more preferably less than 0.5 micrometers, or less than 0.1 micrometers.
  • Preferred finely divided particles are aluminosilicates such as zeolite, silica, or electrolytes described hereinbefore being in the form of finely divided particles.
  • the foam stabiliser may comprise agar-agar, sodium alginate, sodium dodecyl sulfate, polyethylene oxide, guar gum, polyacrylate, or derivatives thereof, or combinations thereof.
  • the foam stabiliser may be coating which is separate to the matrix of the article herein.
  • the foam stabiliser typically partially encloses, preferably completely encloses, the article herein or the active ingredient thereof.
  • the coating is typically contacted to, preferable in such a manner as to form a coat on, the active ingredient prior to said active ingredient being contacted to the polymeric material or the plasticiser of the matrix, and preferably being inco ⁇ orated in the article herein.
  • the coating may typically be contacted to, preferable in such a manner as to form a coat on, the article herein subsequent to the polymeric material and the plasticiser forming the matrix, and preferably subsequent to the active ingredient contacting said matrix or being inco ⁇ orated in the article herein.
  • Preferred coating comprises polymers, typically selected from polyvinyl alcohols and derivatives thereof, polyethylene glycols and derivatives thereof, polyvinyl py ⁇ olidone and derivatives thereof, cellulose ethers and derivatives thereof, and copolymers of these polymers with one another or with other monomers or oligomers. Most preferred are PVP (and derivatives thereof) and/ or PEG (and derivatives thereof) and most preferably PVA (and derivatives thereof) or mixtures of PVA with PEG and or PVP (or derivatives thereof). These polymers do not form the matrix of the article herein. Thus, these polymers are different to the polymeric materials of the foam matrix.
  • a preferred coating comprises compounds such as glycerol or glycerine, glycol derivatives including ethylene glycol, digomeric polyethylene glycols such as diethylene glycol, triethylene glycol and tetraethylene glycol, polyethylene glycol with a weight average M.W.
  • Preferred stabilising agents that are capable of stabilising the active ingredient directly, especially if said active ingredient comprises one or more enzymes, are defined herein as “active stabilisers” or “enzyme stabilisers”.
  • active stabilisers interact directly with, and stabilise, the active ingredient.
  • Typical active stabilisers for use herein preferably comprise a surfactant.
  • surfactants for use herein are those described hereinbefore as surfactants suitable for use as matrix stabilisers.
  • surfactants suitable for use herein may comprise surfactants such as sodium alky(en)yl sulfonates, sodium alkoxysulfonates, preferred alkoxysulfonates are those comprising from 10 to 18 carbon atoms in any conformation, preferably linear, and having an average ethoxylation degree of from 1 to 7, preferably from 2 to 5.
  • Suitable active stabilisers comprise boric acid, formic acid, acetic acid, and salts thereof. These acid salts preferably comprise counerions such as calcium and/or sodium.
  • Preferred active stabilisers comprise cations such as calcium and or sodium.
  • cations such as calcium and or sodium.
  • active stabilisers comprise small peptide chains averaging from 3 to 20, preferably from 3 to 10 amino acids, which interact with and stabilise the active ingredient, especially enzyme(s).
  • nucleic acid molecules typically comprising from 3 to 300, preferably from 10 to 100 nucleotides.
  • nucleic acid molecules are deoxyribonucleic acid and ribonucleic acid.
  • the nucleic acid molecules may be in the form of a complex with other molecules such as proteins, or may form a complex with the active ingredient of the article herein, especially enzyme(s).
  • Active stabilisers suitable for use herein, especially when the article herein comprises a bleach comprise anti-oxidants and/or reducing agents such as thiosulphate, methionine, urea, thiourea dioxide, guanidine hydrochloride, guanidine carbonate, guanidine sulfamate, monoethanolamine, diethanolamine, triethanolamine, amino acids such as glycine, sodium glutamate, proteins such as bovine serum albumin and casein, tert- butylhydroxytoluene, 4-4,-butylidenebis (6-tert-butyl-3-methyl-phenol), 2,2'-butlidenebis (6-tert-butyl-4-methylphenol), (monostyrenated cresol, distyrenated cresol, monostyrenated phenol, distyrenated phenol, 1,1 -bis (4-hydroxy-phenyl) cyclohexane, or derivatives thereof, or a combination thereof.
  • active stabilisers may comprise a reversible inhibitor of the active ingredient.
  • a reversible inhibitor of the active ingredient especially if the active ingredient comprises one or more enzymes, may form a complex with, and improve the stability of, said active ingredient, and thus, stabilises the active ingredient during storage.
  • the active ingredient is released, typically into a liquid environment, the reversible inhibitor dissociates from the active ingredient and the active ingredient is then able to perform the desired action it is designed or intended to perform.
  • Active stabilisers suitable for use herein may comprise sugars, Typical sugars for use herein include those selected from the group consisting of sucrose, glucose, fructose, raffinose, trehalose, lactose, maltose, derivatives thereof, and combinations thereof.
  • the active stabiliser may also comprise sugar alcohols such as sorbitol, mannitol, inositol, derivatives thereof, and combinations thereof.
  • the active stabiliser is in the form of a coating or barrier which at least partially encloses the article herein or the active ingredient thereof, preferably completely encloses the article herein or the active ingredient thereof, especially an enzyme.
  • the perforated dmm rotates at 15 ⁇ m whilst the mixture is pumped through the apertures of the perforated drum and onto smooth surfaced drum coated with silicone oil heated to 30°C, to form pastilles on said smooth surfaced drum.
  • the extrusion process is stopped and the pastilles are dried in hot air at a temperamre of 70°C until the surfaces of the pastilles are dry to touch.
  • the resulting dried pastilles are scraped off the smooth surfaced drum and collected.
  • the dmm is perforated with apertures having a size of 1000 micrometers , spaced 2500 micrometers apart.
  • the perforated dmm is positioned above a smooth surfaced dmm, the shortest distance apart (the distance at the nearest point of proximity) is 1000 micrometers.
  • the perforated drum rotates at 15 ⁇ m whilst the mixmre is pumped through the apertures of the perforated dmm and onto smooth surfaced dmm coated with silicone oil heated to 30°C, to form pastilles on said smooth surfaced dmm.
  • a 4000g solution is prepared by mixing 1464.0g of polyvinyl alcohol (weight average molecular weight being from 30000 to 70000) 2282.0 g enzyme solution (5% by weight active enzyme and 85% by weight water), 150.4g of glycerol and 103.6 Sodium Thiosulphate in a high shear mixer until a smooth foam is formed.
  • This mixture is transferred to a feed tank, and is pumped, using a gear pump, into a drum, known under the trade name as Rotoform supplied by Sandvik Conveyor GMBH.
  • the drum is perforated with apertures having a size of 300 micrometers , spaced 100 micrometers apart.
  • the perforated dmm is positioned above a smooth surface steel belt conveyor.
  • the perforated dram rotates at 100 ⁇ m whilst the mixmre is pumped through the apertures of the perforated drum and onto smooth surfaced steel belt conveyor coated with silicone oil heated to 30°C, to form pastilles on said smooth surfaced belt.
  • the extrusion process is stopped and the pastilles are dried in hot air at a temperature of 70°C until the surfaces of the pastilles are dry to touch.
  • the resulting dried pastilles are scraped off the smooth surfaced drum and collected.
  • Example 4 A process for preparing a foam component
  • a 4000g solution is prepared as described in example 3 with the exception of having CO 2 gas dissolved into the solution.
  • the CO dissolution is achieved by placing the described solution into a 10L pressure vessel, and charging the pressure vessel with CO gas until a pressure of 1.0 bar is achieved. The CO 2 feed is stopped at this point, and the pressure vessel and its contents area allowed to reach dissolution equilibrium.
  • This mixmre is pumped directly from the pressure vessel, using a gear pump, into a drum, known under the trade name as Rotoform supplied by Sandvik Conveyor GMBH.
  • the drum is perforated with apertures having a size of 300 micrometers , spaced 100 micrometers apart.
  • the perforated dram is positioned above a smooth surface steel belt conveyor.
  • the perforated drum rotates at 100 ⁇ m whilst the mixmre is pumped through the apertures of the perforated dram and onto smooth surfaced steel belt conveyor coated with silicone oil to form pastilles on said smooth surfaced belt.
  • the steel belt conveyor is sprayed with a cooling media on the side opposite the side where the pastilles are formed.
  • the cooling media spray results in a belt temperamre of -10 °C which immediately sets the pastilles.
  • the pastilles are removed from the smooth surface steel belt , optionally with the aid of a scraper blade. Upon removal, the pastilles fall via gravity, or are similarly transported, to a Fluid Bed Dryer/Coater where moisture removal can take place. Furthermore, an additional coating can be applied in the Fluid Bed Dryer/Coater. The resulting dried, coated pastilles are removed from the Fluid Bed Dryer/Coater.

Abstract

The present invention relates to a process for preparing a foam component, said process comprises the steps of extruding a viscous mixture from a rotating extrusion plate onto a receiving surface. Said process provides a convenient, efficient, simple means of preparing foam components, especially foam components suitable for use in cleaning compositions. The present invention also provides a foam component obtainable therefrom.

Description

PROCESS FOR PREPARING A FOAM COMPONENT
Technical field of the invention
The present invention relates to a process for preparing foam components and to foam components obtainable therefrom, said process is especially applicable for preparing a foam component which are useful in cleaning compositions such as laundry cleaning compositions.
Background to the invention
Compositions such as cleaning products and personal care products, cosmetic products and pharmaceutical products, often comprise active ingredients which are to be delivered to water or which are required to be active in an aqueous environment. Many of these active ingredients are sensitive to moismre, temperamre changes, light and/or air during storage.
Another problem with many of these active ingredients, in particular enzymes, is that they tend to form dust due to physical forces directed upon them during handling. This not only creates waste product, but the dust can also cause hygiene and health problems.
Attempts to overcome these problems have led to the development of protecting these active ingredients by coating agents or encapsulating agents. Typically these active ingredients are prepared by spraying a coating material onto a core particle comprising the active ingredient to be protected. This process is extremely costly, time-consuming and technically difficult to perform.
The inventors herein provide a process for preparing foam components that are impact robust and do not form dust when acted upon by physical forces typically encountered during handling. The process of the present invention prepares foam components in a single step, thus negating the need for numerous process steps, such as spheronisation. Said process provides a fast, simple, convenient, and cost effective means of providing a foam component, especially spherical foam components.
The foam components obtainable by the process of the present invention are more impact robust and do not form dust when acted upon by physical forces typically encountered during handling.
Summary of the invention
The present invention provides a process for preparing a foam component, said process comprises the steps of extruding a viscous mixture through an aperture of a rotating extrusion plate, onto a receiving surface, and wherein a gas is incorporated into said viscous mixture either prior to, simultaneous to, or subsequent to, said viscous mixture being extruded through said aperture.
Preferably, the shortest distance between said extrusion plate and said receiving surface is from 50 micrometers to 3000 micrometers, and preferably the aperture is of a size of from 50 micrometers to 3000 micrometers.
The present invention also provides foam component obtainable therefrom.
Detailed description of the invention
Process of preparing foam component
The process of the present invention, herein referred to as "process", provides a simple, fast, efficient, cost-effective means of preparing foam components, especially foam components for use in cleaning compositions. Said foam component is described in more detail hereinafter. The process herein comprises the steps of extruding a viscous mixmre through an aperture of a rotating extrusion plate, onto a receiving surface, and wherein a gas is incorporated into said viscous mixmre either prior to, simultaneous to, or subsequent to, said viscous mixmre being extruded through said aperture.
Preferably, the shortest distance between said extrusion plate and said receiving surface is from 50 micrometers to 3000 micrometers, and preferably the aperture is of a size of from 50 micrometers to 3000 micrometers.
It may be preferred that the process, especially the step of extruding the viscous mixture through the aperture, is carried out at a temperamre of from -20°C to 100°C, preferably from -10°C, or from 0°C, or from 10°C, and preferably to 90°C, or to 80°C, or to 70°C, or to 60°C, or to 50°C, or to 40°C. If the foam component comprises an ingredient, such as an active ingredient, which is sensitive to temperamre, then it is preferred to perform the process at a temperamre which is compatible with said temperature sensitive ingredient. For enzyme containing foam components, this temperature is typically from 0°C to 50°C, preferably from 10°C to 30°C.
Viscous mixmre
The viscous mixture, herein refeπed to as "mixture", typically has a viscosity of from lmPas to 200000mPas. The mixmre herein is preferably a fluid or liquid. The viscosity of the mixture depends on the chemical and physical properties of the ingredients in the mixmre, which typically depends on the ingredients required in the foam component. However, if the viscosity is too low, then the mixmre will pour too rapidly through the aperture onto the receiving surface and will not form extruded particles. Conversely, if the mixture is too viscous, then the mixmre will either not be able to pass through the aperture, or will form extruded noodles, as opposed to extruded particles, which will require additional cutting steps and possibly spheronisation steps before a useable foam component is prepared. Typically the viscosity of the mixmre is from 2mPas, or from 5mPas, or from 7mPas, or from lOmPas, or from 12mPas, or from 15mPas, or from 17mPas, or from 20mPas, or from 22mPas, or from 25mPas, or from 50mPas, or from lOOmPas, or from 150mPas, or from 200mPas, and typically to 150000mPas, or to lOOOOOmPas, or to 50000mPas, or to 25000mPas, or to 12000mPas, or to lOOOOmPas, or to 8000mPas, or to 5000mPas.
The mixmre typically comprises all or most of the ingredients that will be present in the foam component. Typically the mixmre comprises a polymeric material, a plasticiser and an active ingredient, and preferably also comprises a stabilising agent, a dissolution aid. Said polymeric material, plasticiser, active ingredient, stabilising agent, dissolution aid are described in more detail herein after.
The water content of the mixmre affects the physical and chemical properties of the mixmre. Typically, the water content of the mixmre is from 0.1 wt% to 80 wt%, preferably from 60 wt% to 80 wt%. If the mixmre comprises ingredients especially active ingredients, which are sensitive to water, for example ingredients which degrade in the presence of water, then it is preferred that the water content of the mixmre is as low as possible, possibly being less than 5 wt%, or less than 3 wt%, or less than 1 wt%, or less than 0.1 wt%, or it may even be preferred that the mixmre is free from water. The term "water" typically means water molecules which are not bound to other compounds, for example, the term "water" typically does not include the water content of hydrated molecules such as aluminosilicate but does include water added to the mixture, for example as a processing aid.
Alternatively, it may be preferred for the mixmre to comprise water. For example, if the mixmre comprises a polymeric material, it may be preferred for water to be also be present in the mixmre to act as a plasticiser when forming a foam component from said polymeric material. If water is present in the mixmre, then preferably said water is present at a level of at least 3 wt%, or at least 5 wt%, or at least 10 wt%, or at least 20 wt% or even at least 40 wt%. The presence of solid matter in said mixmre affects the extrusion process and the subsequent extruded particle formation. The extrusion of said liquid is typically more difficult when undissolved solid matter is present in said mixmre. Furthermore, the extruded particle formed by extruding a mixmre comprising undissolved solid matter typically requires additional processing steps such as spheronisation. Therefore, preferably the mixmre preferably comprises (by weight) less than 30%, preferably less than 15%, preferably less than 12%, preferably less than 10%, preferably less than 7%, preferably less than 5%, preferably less than 3%, preferably less than 1%, preferably less than 0.1% undissolved solid matter. Most preferably, the mixture comprises no undissolved solid matter. Typically the levels of undissolved solid matter described above refer to the amount of solid matter during the step of extruding said mixmre through an aperture of a rotating extrusion plate and onto a receiving surface. It may be preferred for the mixmre to comprise solid matter during the process of the present invention other than during the extrusion step.
If undissolved solid matter is present during the extrusion step, then preferably the solid matter is in the form of undissolved particles having a particle size smaller than, and thus being able to pass through, an aperture of a size of from 50 micrometers to 3000 micrometers, or other preferred sizes of said aperture which are described in more detail hereinafter.
Rotating extrusion plate
The rotating extrusion plate preferably rotates at from 1 φm to 1000 φm, preferably from 2φm, or from 3 φm, or from 4φm, or from 5φm, or from 6φm, or from 7φm, or from 8φm, or from 9φm, or from lOφtn, and preferably to 900φm, or to 800φm, or to 700φm, or to 600φm, or to 500φm, or to 400φm, or to 300φm, or to 200φm, or to lOOφrn, or to 50φm. The rotating extrusion plate may rotate in a clockwise or anticlockwise direction. The rotating extrusion plate typically has a tip speed of from 0.1ms"1 to 1600ms"!, or typically from 10ms"1, or from 50ms"1, or from 100ms"1, or from 150ms"1, or from 200ms" and typically to 900ms"1, or to 800ms"1, or to 700ms"1, or to 600ms"1, or to 500ms"1, or to 400ms"1. For the puφose of the present invention, the tip speed of the rotating extmsion plate is typically defined as the angular velocity of the outer surface, or outer edge, of said rotating extrusion plate.
The direction of rotation, or typically the angular direction of rotation, of the rotating extrusion plate is typically peφendicular like, or peφendicular to, the direction of flow of the viscous liquid through the aperture of the rotating extrusion plate.
The rotating extrusion plate is typically a housing enclosing, or at least partially enclosing a volume capable of holding the liquid prior to the extrusion step. The housing rotates around said volume, in a clockwise or anti-clockwise manner. This housing can be a single layer of housing or can be more than one layer of housing, for example an outer layer and an inner layer. For the pmposes of the present invention, if the rotating extrusion plate is in the form of a housing for a volume, and said housing contains more than one layer, then only one layer needs to rotate, although it may be preferred for more than one layer, or even all of the layers of the housing, to rotate. If the housing consists of an outer layer and an inner layer, then preferably the outer layer rotates, although the inner layer may rotate, or even both the inner layer and the outer layer rotate.
Preferably, the rotating extrusion plate is cylindrical, spheroid, or cubic in shape. The rotating extrusion plate may be a polyhedral shape, such as a tetrahedral, pentahedral, hexahedron, rhombohedral, heptahedral, octahedral, nonahedral, decahedral, Most preferably, the rotating extrusion plate is cylindrical such as a barrel shape.
The rotating extrusion plate comprises an aperture of a size of from 50 micrometers to 3000 micrometers, preferably from 100 micrometers to 1000 micrometers. These apertures are typically formed by laser cutting the extrusion plate. Typically, said rotating extmsion plate comprises more than one aperture, preferably numerous apertures. If the rotating extmsion plate comprises more than one aperture, then said apertures may be a different size. By differing the sizes of the apertures and number of apertures having the same size, the size distribution of the extruded particle can be controlled, and extruded particles having a desired particle size distribution can be obtained from the process herein.
Typically the density of apertures present on said rotating extrusion plate is from 0.001mm" to 400mm" , or from 0.01mm" , or from 0.1mm" , or from 1mm" , or from 5mm"2, or from 10mm"2, or from 25mm"2, or from 50mm"2, or from 100mm"2, and preferably to 300mm"2, or to 275mm"2 or to 250mm"2, or to 225mm"2, or to 200m"2, or to 175mm"2, or to 150mm"2. Different areas of the rotating extrusion plate may have a different density of apertures present in said area. For example, smaller size apertures may be present in a higher density in one area of the rotating extrusion plate, whilst larger size apertures may be present in a lower density on a different area of said rotating extrusion plate.
If it is preferred that the process of the present invention prepares a spherical foam component, then the aperture preferably has a shape which resembles, or is, a square, rectangle, rhombus, triangle, oval, circle or diamond, preferably diamond. If more than one aperture is used in the present invention, then more than one type of shape of aperture may be used.
It may be prefeπed that the rotating extrusion plate is at least partially coated, preferably completely coated, with a release agent. The release agent acts to reduce the adhesive properties between the surface of the rotating extrusion plate and the liquid, thus the release of said liquid from the rotating extmsion plate, especially during the extrusion step. Typical release agents comprise hydrophobic material such as wax, oil, grease, combinations thereof, preferably silicone oil.
The rotating extrusion plate may also be coated by agents which reduce the interaction between the rotating extrusion plate and the liquid or part thereof. Preferred coatings are plasma coating, polish finishes, or a combination thereof. These coatings may be in addition to a coating comprising release agent, or may be in combination with the coating of release agent. Preferred plasma coatings comprise polyethylene, polypropylene, or a combination thereof. Typical plasma coatings comprise components known under the trade name as Teflon.
If the rotating extrusion plate is a housing for a volume capable of holding the liquid, then it may be preferred that both the inner surface or outer surface is coated, or partially coated, with the release agent and/or other coating such as a plasma coating. If the rotating extrusion plate is a housing which comprises more than one layer, then it may be preferred for any layer or part thereof to be coated, or partially coated, with release agent and/or other coating such as plasma coating.
More than one rotating extrusion plate may be used in the process of the present invention, although it is preferred that only one rotating extrusion plate is used herein.
Preferred rotating extrusion plates for use herein are those known under the trade names as Rotoform supplied by Sandvik Conveyor GMBH, and Disk Pastillator supplied by Gausche Machinefabriek.
Extrusion of viscous mixture
The mixmre is extruded from a rotating extrusion plate through an aperture onto a receiving surface. The temperature of this process step is preferably as described above.
Typically, the mixmre is forced by a forcing means through the aperture. The force required to extrude the mixmre through the aperture depends on the size of the aperture, the temperamre of said extmsion step, and the physical and chemical properties of said mixmre, such as viscosity. The forcing means can comprise pushing, scraping, sucking the liquid through the aperture. The forcing means can be in the form of a solid object, such as a bar, wedge, scraper, or combination thereof, which scrapes or pushes the mixture through the aperture. The forcing means may also be a pump, which pumps the mixmre through the aperture. A combination of a pump and one or more means selected from a bar, wedge or scraper may also be used herein.
The mixmre is typically extmded through the aperture in the form of a ext date droplet. Said droplet is typically forced onto the receiving surface by said forcing means The rotation of the extmsion plate typically pulls the droplet apart, leaving part of said droplet on the receiving surface to form an extruded particle. The force required to pull the extmded droplet apart must be greater than the yield strength of said droplet.
Receiving surface
The receiving surface typically receives the extmdate from the rotating extmsion plate, upon which said extruded liquid forms an extruded particle.
The receiving surface can be a belt, a drum, a disc, a platen, or a shape similar or identical to the rotating extrusion plate. Preferably the receiving surface is a belt or disk. Even more preferably the receiving surface is a conveyor belt or spinning disk.
The shortest distance between the receiving surface and the rotating extrusion plate at is from 50 micrometers to 3000 micrometers. For the puφose of the present invention, the shortest distance means the distance measured at the closest point of proximity. Preferably, this distance is the height or cross-sectional distance, of the foam component prepared by the process herein. For example, if a spherical foam component having a mean diameter of 200 micrometers is required, then the prefeπed shortest distance between the rotating extmsion plate and the receiving surface is 200 micrometers.
The receiving surface may rotate, said rotation may be clockwise or anti-clockwise. Preferably the receiving surface rotates counter-clockwise to the rotating extmsion plate. For example, if the rotating extmsion plate rotates in a clockwise direction, then the receiving surface preferably rotates in an anti-clockwise direction. This prevents the extmded particles and/or liquid smearing or being damaged by the rotating extmsion plate when positioned on the receiving surface.
The receiving surface can be maintained at any temperamre as required, this can include heating or cooling said receiving surface. Preferably, the receiving surface is at a temperamre of from -20°C to 200°C, preferably from -10°C, or from 0°C, or from 10°C, or from 20°C, and preferably to 150°C, or to 100°C, or to 99°C, or to 75°C, or to 60°C or to 50°C, or to 40°C, or to 30°C. Different areas of the receiving surface can be at different temperamres if required. For example, a first area of the receiving surface can be at a higher temperature than a second area.
It may be prefeπed that the receiving surface is coated, or at least partially coated, with release agents or other coatings such as plasma coating or polish finishes. Said coatings and release agents are described hereinbefore. If said receiving surface is coated, or partially coated, with a release agent, then not only are the adhesive properties between the receiving surface and the extruded particle reduced, allowing easier release of said extruded particle from said receiving surface, but in addition to this, the surface tension between the extmded particle and the receiving surface is increased, thus reducing the area of contact between the extmded particle and the receiving surface and as a consequence of this, the extruded particle is more spherical in shape.
Incoφoration of gas
Gas is incoφorated into the liquid by any suitable means. The gas is incoφorated into said mixmre either prior to, simultaneous to, or subsequent to said mixmre being extmded through said aperture. Preferably, the gas is incoφorated into said mixmre prior to said mixmre being extmded through the aperture of a rotating extmsion plate.
The incoφoration of gas into said mixture causes said mixmre to foam. Typically this is by physical and or chemical introduction of said gas into said mixmre. Prefeπed methods are;
(a) gas injection (dry or aqueous route), optionally under mixing, high shear mixing (dry or aqueous route), gas dissolution and relaxation including critical gas diffusion (dry or aqueous route), injection of a compressed gas such as a super critical fluid; and/or
(b) chemical in-situ gas formation, typically via a chemical reaction(s) of one or more ingredients including formation of CO2 by an effervescence system; and/or
(c) steam blowing, UV light radiation curing.
The gas preferably comprises CO2, N2, or a combination thereof such as air. The gas may also be a compressed gas such as a super critical fluid.
If said gas is incoφorated in the mixmre prior to said mixmre being extmded thorough an aperture, then preferably if the gas forms bubbles in said mixture, these bubbles are smaller than the aperture which the mixmre is extmded through.
Foam component
The foam component is formed by extruding a mixmre through an aperture of a rotating extrusion plate, onto a receiving surface. Typically, the foam component is formed as an extruded particle on the receiving surface.
The extmded particle can be a liquid, such as a droplet, or can be solid particle such as a bead or tablet. Preferably the extruded particle is a solid and is typically formed from the extruded liquid which dries on the receiving surface.
The foam component can be subjected to further processing steps. For example, the foam component can be transferred from the receiving surface into a fluid bed and dried. The temperamre of this fluid bed drying step is typically from 40°C to 80°C, preferably from 40°C to 60°C. The foam component is preferably a sphere or spheroid. This is especially true if the receiving surface is coated or partially coated with release agent such as silicone oil.
The gas that is injected into said mixture, especially if in a compressed state such as a super critical fluid, may return to a gaseous state in the extruded particle and leave holes or gaps in the structure of the extruded particle. This is an important part of the foaming process. It may be prefeπed for the mixmre to be at a high temperamre or high pressure prior to being extmded. At these conditions, the gas may be in a compressed form or a super critical fluid. Subsequent to the extrusion step, the extruded particle which is formed from the extruded mixmre, may be at a lower temperamre and/or pressure such as ambient conditions, and the gas returns to a gaseous state and foams the extmdate. This foaming step may occur on the receiving surface.
The foam component, herein referred to as "component", typically comprises an active ingredient, a matrix and a dissolution aid. Said active ingredient, matrix and stabilising agent are described in more detail hereinafter.
Said component herein is preferably water-dispersible, water-disintegrating or water- soluble. Preferred water-dispersible articles herein have a dispersibility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinafter using a glass-filter with a maximum pore size of 50 microns; more preferably the article herein is water-soluble or water-disintegrating and has a solubility or disintegration of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinafter using a glass-filter with a maximum pore size of 20 microns, namely:
Gravimetric method for determining water-solubility, water-disintegration or water- dispersibility of the component herein:
50 grams ± 0.1 gram of the article herein is added in a 400 ml beaker, whereof the weight has been determined, and 245ml ± 1ml of distilled water is added. This is stirred vigorously on magnetic stirrer set at 600 φm, for 30 minutes. Then, the article-mixture is filtered through a folded qualitative sintered-glass filter with the pore sizes as defined above (max. 20 or 50 microns). The water is dried off from the collected filtrate by any conventional method, and the weight of the remaining article fraction is determined (which is the dissolved, disintegrated or dispersed fraction). Then, the % solubility, disintegration or dispersibility can be calculated.
The component herein is typically used to deliver actives to aqueous environment. Then, the component herein, and preferably the matrix thereof, is unstable when brought into contact with water. This occurs such that the active ingredient(s) or part thereof, present in the component is delivered to a liquid, preferably an aqueous environment such as water. Preferably the component or part thereof denatures, disintegrates, preferably disperses or dissolves in liquid, preferably in an aqueous environment, more preferably in water. It may be preferred that the active ingredient is delivered rapidly to water and that the component is such that it disperses or dissolves rapidly; preferably at least 10% of the article, by weight, is dissolved or dispersed in 30 minutes after contacting said component with water, or more preferably at least 30% or even at least 50% or even at least 70% or even at least 90% (introduced in the water at a 1% by weight concentration). It may even be preferred that this happens within 20 minutes or even 10 minutes or even 5 minutes after contacting the component with the water. The dissolution or dispersion can be measured by the method described hereinbefore for measuring the dissolution, disintegration and dispersion of the component herein.
Preferably the component is such that the total volume of the component is changed, preferably reduced, with at least 10%, compared to the initial total volume, as for example can be determined when 1 cm of the component is added to 100 ml of demineralised water upon and stirred for 5 minutes at a speed of 200φtn, at a temperamre of 25°C. Preferably the change, or preferably reduction, in total volume is at least 20% or even at least 40% or even at least 60% or even at least 90% or even about 100%, e.g. because it may be prefeπed that substantially the whole component is disintegrated, dispersed or preferably dissolved into the water quickly. This can be measured by use of any method known in the art, in particular herein with a method as follows (double immersion technique):
1 cm3 of an elastic article is obtained and introduced in a 100 ml micro volumetric measuring cylinder which is filled with 50 ml ± 0.1ml of an organic inert solvent. Acetone is for example used when found to be neither denamring and/or not interacting with the polymeric material in the matrix of the elastic article herein, for example when this is PVA. Other neutral organic medium can be used according to the nature of the article under investigation; the inert solvent is such that the component is substantially not dissolved, dispersed, disintegrated or denatured by the solvent.
The cylinder is air sealed and left to rest for 1 minute so that the solvent penetrates the whole component. The change in volume is measured and taken as the original volume V, of the foam specimen. The component is then removed from the solvent and left to dry in air so that the solvent evaporates.
The component is then placed in a 250 ml beaker containing 100 ml of demineralised water, maintained at 25°C, under stirring at 200 φm with the help of a magnetic stirrer, for 5 minutes. The remaining of the component specimen, if any, is filtered off with a 60mm mesh copper filter and placed in an oven at a temperamre and for a period such that residual water is removed. The dried remaining article is re-introduced in the measuring cylinder which volume of acetone had been re-adjusted to 50 ml. The increase in total volume is monitored and taken as the final volume of the component Vf.. The decrease in total volume ΔV of the component specimen is then:
%ΔF = ^ * 100
Vi
The component preferably has a relative density p of from 0.01 to 0.95, more preferably from 0.05 to 0.9 or even from 0.1 to 0.8 or even form 0.3 to 0.7. The relative density is the ratio of the density of the component (p ), to the sum of the partial densities of all the bulk materials used to form component(ps). The preferred foamed component as used herein is air-stable or stable upon contact with air, which means herein that the bulk volume of the component or matrix thereof substantially remains the same when exposed to air. This means in particular that the component retains preferably from 75% to 125% or even from 90% to 110% or even from 95% to 100% of its bulk volume when stored in an open beaker (9 cm diameter; without any protective barrier) in a incubator under controlled ambient conditions (humidity = P_H 60%, temperamre = 25°C ) for 24 hours. Preferably the component retains from 75% to 125% or even from 90% to 110% or even from 95% to 100% of its bulk volume under the above storage conditions whereby the humidity is 80%.
The bulk volume change can be measured by any conventional method. In particular useful is a digital image recorder system containing a digital camera coupled to a personal computer itself equipped with calibrated image analyser software. A 1cm3 specimen of the article is obtained and introduced in an open beaker having a diameter of 9 cm and stored for 24 hours at the above conditions. After 24 hours, the size in all three dimensions is measured with the image analysis recorder system. Each specimen measurement is repeated three times, and the average bulk volume change is calculated in %.
Preferably, the component is such that, when in the form of particles of a mean particle size of 2000 microns or less, these particles also retain from 75% to 125% or even from 90% to 110% or even from 95% to 100% of their bulk volume. This can for example be measured by placing 20 grams of such particles, or a weight comprising more than 500 particles, in a volumetric beaker having a diameter of 9 cm. The beaker is taped lightly on its base until the particles re-arrange themselves in a stable position with a horizontal top surface. The volume is measured. The open beaker with the particles is then carefully placed in the incubator for 24 hours, set to the desired %RH and temperature. The bulk volume after the 24 hours is measured and the change of bulk volume is calculated in %. The component comprises (by weight) preferably at least 1% active ingredient(s), more preferably from 5% to 70%, more preferably at least 10% by weight of the article, more preferably from 15% or even 20% or even 25% to 50%.
The component comprises (by weight) preferably from 10% to 99% matrix, more preferably at least 20% or even 30% to 99%, more preferably from 20% or 30% to 90% to 80%.
The component comprises ( by weight) at least 1% stabilising agent, more preferably from 5%, or from 10%, or from 15%, or from 20%, and to 50%, or to 40%, or to 30%, or to 25%.
Matrix
The matrix of the component, herein referred to as "matrix", is typically formed form a polymeric material and preferably a plasticiser. Said polymeric material and said plasticiser are described in more detail hereinafter.
The ratio of plasticiser to polymeric material in the matrix is preferably 1 to 100, more preferably 1 to 70 or 1 to 50, more preferably 1 to 30 or even 1 to 20, depending on the type of plasticiser and polymeric material used. For example, when the polymeric material comprises PVA and the plasticiser comprises glycerine or glycerol derivatives and optionally water, the ratio is preferably around 1:15 to 1:8, a preferred ratio being around 10:1.
The matrix herein may further comprise the active ingredient of the component herein and/or the dissolution aid of the component herein. Said active ingredient and said dissolution aid are described in more detail hereinafter. Cross-linking agents may also be added to modify the properties of the matrix or the resulting component as appropriate. Borate may be useful in the matrix herein. The matrix herein preferably has a glass transition temperamre (Tg) of below 50°C, preferably below 40°C, preferably less than 20°C or even less than 10°C or even less than 0°C. Preferably the matrix herein has a Tg of above -20°C or even above -10°C.
The Tg of the matrix when used herein, is the Tg of the matrix as present in the component, which thus may be a mixmre of polymeric material and plasticiser alone, or a mixmre of polymeric material, plasticiser, active ingredient and/or stabilising agent, and in any case, optional additional ingredients may be present (such as, stability agents, densification aids, fillers, lubricants etc., as described hereinafter).
The Tg as used herein is as defined in the text book 'Dynamic Mechanical Analysis' (page 53, figure 3.11c on page 57), as being the temperamre of a material (matrix) where the material (matrix) changes from glassy to rubbery, namely where chains gain enough mobility to slide by each other.
The Tg of the matrix of the component of the invention can be measured in the Perkin- Elmer DMA 7e equipment, following the directions in operations manual for this equipment, generating a curve as illustrated in the book Dynamic Mechanical Analysis - page 57, figure 3-1 lc. The Tg is the temperamre or log Frequency as measured with this equipment, between the glass and 'leathery region', as defined in that text.
The matrix, and preferably the component as a whole, has a specific elasticity and flexibility, because of its specific glass transition temperamre. In particular, this means that the matrix and the component reversibly deform, absorbing the energy of impacts or of forces so that the component or matrix remains substantially its original bulk volume after the physical force seizes to be applied on the component.
The elasticity can be defined by the elastic modulus of the matrix, or even the component, which again can be defined by the Young's modulus. This can be calculated from strain or stress mechanical tests as known in the art, for example by using Perkin-Elmer DMA 7e equipment following the manufacturer's experimental procedure over a specific % static strain range, namely in the range of 10-40% static strain. This represents a maximum strain as could be applicable during normal manufacturing or handling. Thus, the elastic modulus as defined herein is the maximum modulus as measured with this equipment in the range of 10% to 40% static strain. For example a piece of matrix (or component) of 1 cm3 can be used in the testing with this equipment.
The matrix herein typically has an elastic modulus or Young's modulus of less than 4 GN.m"2, or typically less than 2 GN.m"2, even more preferentially less than 1 GN.m"2, but typically even less than 0.5 GN.m"2, or even less than 0.1 GN.m"2, or even less than 0.01 GN.m"2, as measured with the Perkin-Elmer DMA 7e equipment. In particular a matrix herein which contains gas bubbles, e.g. formed by processes involving the introduction of air in the matrix, has an elastic modulus below 0.1 GN.m"2 or even 0.01 GN.m"2 or even below 0.005 GN.m"2 or even below 0.0001 GN.m"2.
Preferably the matrix is flexible, such that it has a relative yield strain greater than 2%, and preferably greater than 15% or even greater than 50%, as measured with the Perkin- Elmer DMA 7e equipment. (The yield strain is in this measurement the limit deformation of a piece of matrix at which the it deforms irreversible).
In particular this means that when a matrix sample having a cross section of a specific length, for example 1cm, is compressed with a static force applied along the axis of that cross section, the static force being variable but at least equivalent to twice atmospheric pressure, the change of this length after removal of the force is at least 90% to 110% of the original length. This can for example be measured by use of Perkin-Elmer DMA 7e equipment.
Similarly, the matrix is preferably flexible to such an extend that when a matrix sample having a cross section of a specific length, for example 1cm, is stretched with a static force applied along the axis of that cross section, the static force being variable, but at least equivalent to twice atmospheric pressure, the change of this length after removal of the force is at least 90% to 110% of the original length. This can for example be measured by use of Perkin-Elmer DMA 7e equipment.
In particular, when using this equipment, the static forces applied along the axis of a cross section of a 1 cm matrix sample are gradually increased until the deformation of the component, in the direction of the cross section, is 70%. Then, the force is removed and the final deformation of the matrix sample in the direction of the cross section is measured. Preferably, this length of the cross section after this experiment is preferably from 90% to 110%) of the original length of the cross section, preferably from 95% to 105% or even from 98% to 100%.
The elastic modulus or Young's modulus is related to the relative density, namely
where p* is the relative density of the matrix or even the component, and ps is the relative densities of the components of the matrix or component, as described herein, and E* is the Young's modulus of the matrix or even the component itself, and Es that of the components of the matrix or even the component. This means that even a stiff polymeric material, with a high Es can be made into an elastic, flexible matrix by adjusting the levels and/ or type of plasticiser and optionally by modifying the density (or for example by introducing gas during the making process to form foam component, as described below).
The matrix, or even the component as a whole, is in the form of a foam and preferably such that it forms an interconnected network of open and/ or closed cells, in particular a network of solid struts or plates which form the edges and faces of open and/ or closed cells. The spacing inside the cells can contain part of the active ingredient and or a gas, such as air.
Preferably, the ratio of the closed cells to open cells in the matrix of the component, or the component as a whole is more than 1: 1, preferably more than 3:2 or even more than 2: 1 or even more than 3:1. This ratio can be determined by calculating the Total Volume of a specimen of the matrix or component, Vτ , (assuming a spherical shape), and then measuring with a Mercury Porosimetry Test method the Open Cell Volume (Vo) and subtracting the Open Cell Volume from the Total Volume should deliver the Closed Cell Volume (Vc: Vτ = V0 + Vc).
Polymeric material
Any polymeric material can be used to form the matrix herein, preferably the polymeric material has itself a Tg as described above or more typically, it can be formed into a matrix having the Tg as described above by using a suitable amount of plasticiser.
Preferably, the polymer material comprises or consists of amoφhous polymer(s).
The polymeric material may consist of a single type of homologous polymer or may be a mixture of polymers. Mixtures of polymers may in particular be beneficial to control the mechanical and/or dissolution properties of the component, depending on the application thereof and the requirements thereof.
Prefeπed it that the polymeric material comprises a water-dispersible or more preferably a water-soluble polymer. Water-dispersible and water-soluble are typically defined as described hereinbefore, as per the method for determining the water-solubility and water- dispersibility of the component herein. Preferred water-dispersible polymers herein have a dispersibility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinbefore using a glass-filter with a maximum pore size of 50 microns; more preferably the polymer herein is a water-soluble polymer which has a solubility of at least 50%, preferably at least 75% or even at least 95%, as measured by the method set out hereinbefore using a glass-filter with a maximum pore size of 20 microns. The polymer can have any average molecular weight, preferably from about 1000 to 1,000,000, or even form 4000 to 250,000 or even form 10,000 to 200,000 or even form 20,000 to 75,000. Highly prefeπed may be polymeric material having a weight average molecular weight of from 30,000 to 70,000.
Depending on the required properties of the component herein, the polymeric material can be adjusted. For example, to reduce the solubility, polymers may be included in the material, which have high molecular weights typically above 50,000 or even above 100,000, and vice versa. For example, to change the solubility, polymers of varying level of hydrolyses may be used. For example, to improve (reduce) the elastic modulus, the cross-linking of the polymers may be increased and/ or the molecular weight may be increased.
It may be preferred that the polymer used in the component herein has a secondary function, for example a function in the composition wherein component is to be incoφorated. Thus, for example, for cleaning products, it is useful when the polymer in the polymeric material is a dye transfer inhibiting polymer, dispersant etc.
Preferred are polymers selected from polyvinyl alcohols and derivatives thereof, polyethylene glycols and derivatives thereof, polyvinyl pyπolidone and derivatives thereof, cellulose ethers and derivatives thereof, and copolymers of these polymers with one another or with other monomers or oligomers. Most prefeπed are PVP (and derivatives thereof) and/ or PEG (and derivatives thereof) and most preferably PVA (and derivatives thereof) or mixtures of PVA with PEG and/ or PVP (or derivatives thereof). Most preferred may also be a polymeric material only comprising PVA.
Preferably, such polymers have a level of hydrolysis of at least 50%, more preferably at least 70% or even from 85% to 95%.
Plasticiser Any plasticiser which is suitable to aid the formation of a matrix as defined herein can be used. Mixtures of plasticiser may also be used. Preferably, when water is used, an additional plasticiser is present.
Preferably, the plasticiser or at least one of the plasticisers, has a boiling point above 40°C, preferably above 60°C, or even above 95°C, or even above 120°C, or even above 150°C.
Prefeπed plasticisers include glycerol or glycerine, glycol derivatives including ethylene glycol, digomeric polyethylene glycols such as diethylene glycol, triethylene glycol and tetraethylene glycol, polyethylene glycol with a weight average M.W. of below 1000, wax and carbowax, ethanolacetamide, ethanolformamide, triethanolamine or acetate thereof, and ethanolamine salts, sodium thiocyanates, ammonium thiocyanates, polyols such as 1,3-butanediol, sugars, sugar alcohols, ureas, dibutyl or dimethyl pthalate, oxa monoacids, oxa diacids, diglycolic acids and other linear carboxylic acids with at least one ether group distributed along the chain thereof, water or mixtures thereof.
The plasticiser is preferably present at a level of at least 0.5% by weight of the article, preferably by weight of the matrix, provided that when water is the only plasticiser it is present at a level of at least 3% by weight of the article, or preferably by weight of the matrix.
Preferably, the plasticiser is present at a level of 1% to 35% by weight of the article or matrix, more preferably 2% to 25% or even to 15% or even to 10% or even to 8% by weight of the article or by weight of the matrix. The exact level will depend on the polymeric material and plasticiser used, but should be such that the matrix of the article has the desired Tg. For example, when urea is used, the level is preferably 1% to 10% by weight of the matrix, while when glycerine or ethylene glycol or other glycol derivatives are used, higher levels may be preferred, for example 2% to 15% by weight of the article or matrix. Active ingredient
The active ingredient can be any material which is to be delivered to a liquid environment, or preferably an aqueous environment and preferably an ingredient which is active in an aqueous environment. For example, when used in cleaning compositions the component can contain any active cleaning ingredients. The component may also comprise compositions, such as cleaning composition or personal care compositions.
In particular, it is beneficial to incoφorate in the component, active ingredients which are moismre sensitive or react upon contact with moisture, or solid ingredients which have a limited impact robustness and tend to form dust during handling. In particular prefeπed in component are active ingredients, such as enzymes, perfumes, bleaches, bleach activators, fabric softeners, fabric conditioners, surfactants, such as liquid nonionic surfactant, conditioners, antibacterial agents, brighteners, photo-bleaches and mixtures thereof.
Another active ingredient is a perhydrate bleach, such as metal perborates, metal percarbonates, particularly the sodium salts. Also preferred active ingredients are organic peroxyacid bleach precursor or activator compound, preferred are alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1 , 2 and 6 carbon atoms such as tetraacetyl ethylene diamine (TAED), sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose, but also amide substituted alkyl peroxyacid precursor compounds
Highly preferred active ingredient for use in the component herein are one or more enzymes. Preferred enzymes include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incoφorated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139. Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Preferred amylases include, for example, α-amylases obtained from a special strain of B licheniformis, described in more detail in GB- 1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl, Duramyl and BAN by Novo Industries A/S. Highly preferred amylase enzymes maybe those described in PCT/ US 9703635, and in WO95/26397 and WO96/23873. The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain ofHumicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A preferred lipase is derived from Pseudomonas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge- Jensen et al, issued March 7, 1989.
Preferred additional ingredients
The component of the invention preferably comprises additional ingredients which can improve the dissolution properties of the article herein.
Preferred additional ingredient which improve the dissolution of the article herein preferably comprise; a sulfonated compound such as -C4 alk(en)yl sulfonates, Cι-C4 aryl sulfonates, di iso butyl benzene sulphonate, toluene sulfonate, cumene sulfonate, xylene sulfonate, salts thereof such as sodium salts thereof, derivatives thereof, or combinations thereof, preferably di iso butyl benzene sulphonate, sodium toluene sulfonate, sodium cumene sulfonate, sodium xylene sulfonate, and combinations thereof; and/or a Cι-C4 alcohol such as methanol, ethanol, propanol such as iso-propanol, and derivatives thereof, and combinations thereof, preferably ethanol and/or iso-propanol; and/or a C4-Cι0 diol such as hexanediol and/or cyclohexanediol, preferably 1,6- hexanediol and/or 1,4-cyclohexanedimethanol; and/or ingredients which are capable of acting as whicking agents, such as cellulosic based ingredients, especially modified cellulose; and/or swelling agents such as clays, preferred clays are smectite clays, especially dioctahedral or trioctrahedral smectite clays, highly preferred clays are montmorillonite clay and hectorite clay, or other clays found in bentonite clay formations; and/or an effervescence system, a preferred effervescence system comprises an acid source capable of reacting with an alkali source in the presence of water to produce a gas.
The component of the invention preferably comprises additional ingredients which can improve the stability of the active ingredient of the article herein.
These additional ingredients are typically capable of stabilising the active ingredient of the component herein, this is especially preferred when the active ingredient(s) comprise an oxidative or moismre sensitive active ingredient, such as one or more enzymes. These additional ingredients may also stabilise the matrix of the component herein, and thus indirectly stabilise the active ingredient. These stabilising ingredients are defined herein as "stabilising agents".
The stabilising agent is preferably a compound which stabilises the active ingredient, or matrix, from oxidative and/or moismre degradation during storage. The stabilising agent may be, or comprise, a foam matrix stabiliser. The stabilising agent may be, or comprise, an active ingredient stabiliser, especially an enzyme stabiliser. Stabilising agents which are capable of stabilising the active ingredient indirectly by keeping the foam matrix of the article stable, herein refεπed to as "foam stabiliser". Foam stabilisers preferably comprise a surfactant such as a fatty alcohol, fatty acid, alkanolamide, amine oxide, or derivatives thereof, or combinations thereof. The foam stabiliser may comprise betaine, sulfobetaine, phosphine oxide, alkyl sulfoxide, derivatives thereof, or combinations thereof.
Other preferred foam stabilisers comprises one or more anions or cations such as mono-, di-, tri- valent, or other multivalent metal ions, preferred are salts of sodium, calcium, magnesium, potassium, aluminium, zinc, copper, nickel, cobalt, iron, manganese and silver, preferably having an anionic counterion which is a sulphate, carbonate, oxide, chloride, bromide, iodide, phosphate, borate, acetate, citrate, and nitrate, and combinations thereof.
The foam stabiliser may comprise finely divided particles, preferably finely divided particles having an average particle size of less than 10 micrometers, more preferably less than 1 micrometer, even more preferably less than 0.5 micrometers, or less than 0.1 micrometers. Preferred finely divided particles are aluminosilicates such as zeolite, silica, or electrolytes described hereinbefore being in the form of finely divided particles.
The foam stabiliser may comprise agar-agar, sodium alginate, sodium dodecyl sulfate, polyethylene oxide, guar gum, polyacrylate, or derivatives thereof, or combinations thereof.
The foam stabiliser may be coating which is separate to the matrix of the article herein. The foam stabiliser typically partially encloses, preferably completely encloses, the article herein or the active ingredient thereof.
The coating is typically contacted to, preferable in such a manner as to form a coat on, the active ingredient prior to said active ingredient being contacted to the polymeric material or the plasticiser of the matrix, and preferably being incoφorated in the article herein. The coating may typically be contacted to, preferable in such a manner as to form a coat on, the article herein subsequent to the polymeric material and the plasticiser forming the matrix, and preferably subsequent to the active ingredient contacting said matrix or being incoφorated in the article herein.
Preferred coating comprises polymers, typically selected from polyvinyl alcohols and derivatives thereof, polyethylene glycols and derivatives thereof, polyvinyl pyπolidone and derivatives thereof, cellulose ethers and derivatives thereof, and copolymers of these polymers with one another or with other monomers or oligomers. Most preferred are PVP (and derivatives thereof) and/ or PEG (and derivatives thereof) and most preferably PVA (and derivatives thereof) or mixtures of PVA with PEG and or PVP (or derivatives thereof). These polymers do not form the matrix of the article herein. Thus, these polymers are different to the polymeric materials of the foam matrix.
A preferred coating comprises compounds such as glycerol or glycerine, glycol derivatives including ethylene glycol, digomeric polyethylene glycols such as diethylene glycol, triethylene glycol and tetraethylene glycol, polyethylene glycol with a weight average M.W. of below 1000, wax and carbowax, ethanolacetamide, ethanolformamide, triethanolamine or acetate thereof, and ethanolamine salts, sodium thiocyanates, ammonium thiocyanates, polyols such as 1,3-butanediol, sugars, sugar alcohols, ureas, dibutyl or dimethyl pthalate, oxa monoacids, oxa diacids, diglycolic acids and other linear carboxylic acids with at least one ether group distributed along the chain thereof, water or mixtures thereof. These compounds do not form the foam matrix of the article herein. Thus, these compounds are different to the plastisicer of the foam matrix.
Preferred stabilising agents that are capable of stabilising the active ingredient directly, especially if said active ingredient comprises one or more enzymes, are defined herein as "active stabilisers" or "enzyme stabilisers". Typically active stabilisers interact directly with, and stabilise, the active ingredient. Typical active stabilisers for use herein preferably comprise a surfactant. Suitable surfactants for use herein are those described hereinbefore as surfactants suitable for use as matrix stabilisers. In addition to these surfactants, other surfactants suitable for use herein may comprise surfactants such as sodium alky(en)yl sulfonates, sodium alkoxysulfonates, preferred alkoxysulfonates are those comprising from 10 to 18 carbon atoms in any conformation, preferably linear, and having an average ethoxylation degree of from 1 to 7, preferably from 2 to 5.
Other preferred active stabilisers comprise boric acid, formic acid, acetic acid, and salts thereof. These acid salts preferably comprise counerions such as calcium and/or sodium.
Preferred active stabilisers comprise cations such as calcium and or sodium. Preferably calcium chloride and/or sodium chloride.
Other preferred active stabilisers comprise small peptide chains averaging from 3 to 20, preferably from 3 to 10 amino acids, which interact with and stabilise the active ingredient, especially enzyme(s).
Other active stabilisers comprise small nucleic acid molecules, typically comprising from 3 to 300, preferably from 10 to 100 nucleotides. Typically nucleic acid molecules are deoxyribonucleic acid and ribonucleic acid. The nucleic acid molecules may be in the form of a complex with other molecules such as proteins, or may form a complex with the active ingredient of the article herein, especially enzyme(s).
Active stabilisers suitable for use herein, especially when the article herein comprises a bleach, comprise anti-oxidants and/or reducing agents such as thiosulphate, methionine, urea, thiourea dioxide, guanidine hydrochloride, guanidine carbonate, guanidine sulfamate, monoethanolamine, diethanolamine, triethanolamine, amino acids such as glycine, sodium glutamate, proteins such as bovine serum albumin and casein, tert- butylhydroxytoluene, 4-4,-butylidenebis (6-tert-butyl-3-methyl-phenol), 2,2'-butlidenebis (6-tert-butyl-4-methylphenol), (monostyrenated cresol, distyrenated cresol, monostyrenated phenol, distyrenated phenol, 1,1 -bis (4-hydroxy-phenyl) cyclohexane, or derivatives thereof, or a combination thereof.
Other active stabilisers may comprise a reversible inhibitor of the active ingredient. Without wishing to be bound by theory, it is believe that a reversible inhibitor of the active ingredient, especially if the active ingredient comprises one or more enzymes, may form a complex with, and improve the stability of, said active ingredient, and thus, stabilises the active ingredient during storage. When the active ingredient is released, typically into a liquid environment, the reversible inhibitor dissociates from the active ingredient and the active ingredient is then able to perform the desired action it is designed or intended to perform.
Active stabilisers suitable for use herein may comprise sugars, Typical sugars for use herein include those selected from the group consisting of sucrose, glucose, fructose, raffinose, trehalose, lactose, maltose, derivatives thereof, and combinations thereof.
The active stabiliser may also comprise sugar alcohols such as sorbitol, mannitol, inositol, derivatives thereof, and combinations thereof.
It may be preferred that the active stabiliser is in the form of a coating or barrier which at least partially encloses the article herein or the active ingredient thereof, preferably completely encloses the article herein or the active ingredient thereof, especially an enzyme.
Examples
Example 1
A process for preparing a foam component
4700g of a 33 w/w% solution of polyvinyl alcohol (weight average molecular weight being from 30000 to 70000) is mixed with 159.3g of glycerol and 019.8g citric acid in a high shear mixer until a smooth foam is formed. This mixmre is transferred to a feed tank, and is pumped, using a gear pump, into dmm, known under the trade name as Rotoform supplied by Sandvik Conveyor GMBH. The drum is perforated with apertures having a size of 1000 micrometers , spaced 2500 micrometers apart. The perforated dmm is positioned above a smooth surfaced dmm, the shortest distance apart (the distance at the nearest point of proximity) is 1000 micrometers. The perforated dmm rotates at 15φm whilst the mixture is pumped through the apertures of the perforated drum and onto smooth surfaced drum coated with silicone oil heated to 30°C, to form pastilles on said smooth surfaced drum. When one quarter of the smooth surfaced dmm is covered by pastilles, the extrusion process is stopped and the pastilles are dried in hot air at a temperamre of 70°C until the surfaces of the pastilles are dry to touch. The resulting dried pastilles are scraped off the smooth surfaced drum and collected.
Example 2
A process for preparing a foam component
4700g of a 33 w/w% solution of polyvinyl alcohol (weight average molecular weight being from 30000 to 70000) is mixed with 3360g enzyme solution (5% by weight active enzyme and 85% by weight water), 159.3g of glycerol and 155g cyclohexane dimethanal in a high shear mixer until a smooth foam is formed. This mixmre is transferred to a feed tank, and is pumped, using a gear pump, into dmm, known under the trade name as
Rotoform supplied by Sandvik Conveyor GMBH. The dmm is perforated with apertures having a size of 1000 micrometers , spaced 2500 micrometers apart. The perforated dmm is positioned above a smooth surfaced dmm, the shortest distance apart (the distance at the nearest point of proximity) is 1000 micrometers. The perforated drum rotates at 15φm whilst the mixmre is pumped through the apertures of the perforated dmm and onto smooth surfaced dmm coated with silicone oil heated to 30°C, to form pastilles on said smooth surfaced dmm. When one quarter of the smooth surfaced drum is covered by pastilles, the extmsion process is stopped and the pastilles are dried in hot air at a temperamre of 70°C until the surfaces of the pastilles are dry to touch. The resulting dried pastilles are scraped off the smooth surfaced drum and collected.
Example 3
A process for preparing a foam component
A 4000g solution is prepared by mixing 1464.0g of polyvinyl alcohol (weight average molecular weight being from 30000 to 70000) 2282.0 g enzyme solution (5% by weight active enzyme and 85% by weight water), 150.4g of glycerol and 103.6 Sodium Thiosulphate in a high shear mixer until a smooth foam is formed. This mixture is transferred to a feed tank, and is pumped, using a gear pump, into a drum, known under the trade name as Rotoform supplied by Sandvik Conveyor GMBH. The drum is perforated with apertures having a size of 300 micrometers , spaced 100 micrometers apart. The perforated dmm is positioned above a smooth surface steel belt conveyor. The perforated dram rotates at 100 φm whilst the mixmre is pumped through the apertures of the perforated drum and onto smooth surfaced steel belt conveyor coated with silicone oil heated to 30°C, to form pastilles on said smooth surfaced belt. When the entire length of the smooth surface steel conveyor belt is covered by pastilles, the extrusion process is stopped and the pastilles are dried in hot air at a temperature of 70°C until the surfaces of the pastilles are dry to touch. The resulting dried pastilles are scraped off the smooth surfaced drum and collected.
Example 4 A process for preparing a foam component
A 4000g solution is prepared as described in example 3 with the exception of having CO2 gas dissolved into the solution. The CO dissolution is achieved by placing the described solution into a 10L pressure vessel, and charging the pressure vessel with CO gas until a pressure of 1.0 bar is achieved. The CO2 feed is stopped at this point, and the pressure vessel and its contents area allowed to reach dissolution equilibrium. This mixmre is pumped directly from the pressure vessel, using a gear pump, into a drum, known under the trade name as Rotoform supplied by Sandvik Conveyor GMBH. The drum is perforated with apertures having a size of 300 micrometers , spaced 100 micrometers apart. The perforated dram is positioned above a smooth surface steel belt conveyor. The perforated drum rotates at 100 φm whilst the mixmre is pumped through the apertures of the perforated dram and onto smooth surfaced steel belt conveyor coated with silicone oil to form pastilles on said smooth surfaced belt. The steel belt conveyor is sprayed with a cooling media on the side opposite the side where the pastilles are formed. The cooling media spray results in a belt temperamre of -10 °C which immediately sets the pastilles. The pastilles are removed from the smooth surface steel belt , optionally with the aid of a scraper blade. Upon removal, the pastilles fall via gravity, or are similarly transported, to a Fluid Bed Dryer/Coater where moisture removal can take place. Furthermore, an additional coating can be applied in the Fluid Bed Dryer/Coater. The resulting dried, coated pastilles are removed from the Fluid Bed Dryer/Coater.

Claims

Claims
1. A process for preparing a foam component, said process comprises the steps of extruding a viscous mixmre through an aperture of a rotating extrusion plate, onto a receiving surface, and wherein a gas is incoφorated into said viscous mixmre either prior to, simultaneous to, or subsequent to, said viscous mixmre being extruded through said aperture.
2. A process according to claim 1, whereby said viscous mixmre has a viscosity of from 25mPas to 20000mPas, preferably from 50mPas to 1 OOOOmPas.
3. A process according to any preceding claim, whereby the shortest distance between said extrusion plate and said receiving surface is from 50 micrometers to 3000 micrometers.
4. A process according to any preceding claim, whereby said aperture is of a size of from 50 micrometers to 3000 micrometers.
5. A process according to any preceding claim, whereby said viscous mixmre has a water content of from 0.1 wt% to 80 wt%, preferably from 60 wf% to 80 wt%.
6. A process according to any preceding claim, whereby the direction of rotation of the rotating extrusion plate is peφendicular to the direction of flow of the viscous liquid through the aperture of said rotating extrusion plate.
7. A process according to any preceding claim, whereby said viscous mixture comprises a member selected from the group consisting of polymeric material, plasticiser, active ingredient, combination thereof, and preferably a comprises a member selected from the group consisting of dissolution aid, stability aid, or combination thereof.
8. A process according to any preceding claim, whereby said viscous mixmre is extruded through said aperture at a temperature of from 0°C to 50°C.
9. A process according to any preceding claim, whereby said aperture is in the shape of a diamond, a square or a circle, or a triangle, preferably a diamond.
10. A process according to any preceding claim, whereby said gas comprises carbon dioxide, nitrogen, or combination thereof such as air.
11. A process according to any preceding claim, whereby said rotating extrusion plate rotates at from lφm to lOOOφm, preferably from 10φm to 200φm, and the tip speed of said rotating extrusion plate is from O.lms-1 to 1600ms- 1.
12. A process according to any preceding claim, whereby said receiving surface and or said rotating extrusion plate is partially coated with a release agent.
13. A process according to any preceding claim, wherein said foam component is water- soluble or water-dispersible.
14. Use of a process according to any preceding claim to prepare a foam component suitable for use in cleaning compositions, fabric care compositions, personal care compositions, cosmetic compositions, pharmaceutical compositions, preferably to incoφorate therein active ingredients selected from the group consisting of enzymes, perfumes, surfactants, brighteners, dyes, suds suppressors, bleaches, bleach activators, fabric softeners, antibacterial agents, effervescing systems, and mixtures thereof.
15. A foam component obtainable by a process according to any of claims 1 to 13.
EP00967303A 1999-10-05 2000-10-04 Process for preparing a foam component Withdrawn EP1218160A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GB9923393A GB2355008A (en) 1999-10-05 1999-10-05 Foam matrix coating material
GB9923344 1999-10-05
GB9923344A GB2355014A (en) 1999-10-05 1999-10-05 Foams and compositions containing these foams
GB9923393 1999-10-05
GB0010599 2000-05-03
GB0010599A GB2361928A (en) 2000-05-03 2000-05-03 Elastic packaging or binder material
GB0022499A GB2366795A (en) 2000-09-13 2000-09-13 Preparation of a foam component by extrusion
GB0022499 2000-09-13
PCT/US2000/027331 WO2001024990A1 (en) 1999-10-05 2000-10-04 Process for preparing a foam component

Publications (1)

Publication Number Publication Date
EP1218160A1 true EP1218160A1 (en) 2002-07-03

Family

ID=27447835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967303A Withdrawn EP1218160A1 (en) 1999-10-05 2000-10-04 Process for preparing a foam component

Country Status (8)

Country Link
EP (1) EP1218160A1 (en)
JP (1) JP2003511485A (en)
CN (1) CN1399589A (en)
AU (1) AU7752300A (en)
BR (1) BR0014501A (en)
CA (1) CA2385195A1 (en)
MX (1) MXPA02003448A (en)
WO (1) WO2001024990A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070820B2 (en) 2000-10-02 2006-07-04 Novozymes A/S Coated particles containing an active
AU2003214037A1 (en) 2002-03-27 2003-10-08 Novozymes A/S Granules with filamentous coatings
US7960326B2 (en) * 2002-09-05 2011-06-14 Kimberly-Clark Worldwide, Inc. Extruded cleansing product
US7201815B2 (en) 2003-09-02 2007-04-10 H.B. Fuller Licensing & Financing Inc. Paper laminates manufactured using foamed adhesive systems
DE10358800A1 (en) * 2003-12-12 2005-07-14 Basf Ag Expandable styrene polymer granules
DE102014226010A1 (en) * 2014-12-16 2016-06-16 Henkel Ag & Co. Kgaa Process for the preparation of water-soluble detergent and cleaner foams
CN109652218A (en) * 2019-02-03 2019-04-19 南京林业大学 A kind of protide foam concentrate and preparation method thereof with degradation function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB972851A (en) * 1959-12-01 1964-10-21 John William Richard Wright Improvements in or relating to the manufacture of synthetic aggregates
JPS4835329B1 (en) * 1969-12-03 1973-10-27
SU1706688A1 (en) * 1989-05-11 1992-01-23 Специальное конструкторско-технологическое бюро катализаторов с опытным заводом Unit for producing spherical granules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0124990A1 *

Also Published As

Publication number Publication date
AU7752300A (en) 2001-05-10
JP2003511485A (en) 2003-03-25
WO2001024990A1 (en) 2001-04-12
MXPA02003448A (en) 2002-08-20
CA2385195A1 (en) 2001-04-12
BR0014501A (en) 2002-06-11
CN1399589A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US6943200B1 (en) Water unstable foam compositions
WO2001025393A1 (en) Elastic article
EP1237996A1 (en) Water unstable foam
EP1237542A1 (en) Foam coatings and foam coated compositions
JP2004509198A (en) Method for producing a foam component
WO2002022771A1 (en) Process for making a foam component
EP1218160A1 (en) Process for preparing a foam component
EP1237698A2 (en) Water unstable foam compositions
EP1237997A1 (en) Elastic articles and uses thereof
US6706773B1 (en) Process for preparing a foam component
GB2366795A (en) Preparation of a foam component by extrusion
GB2366798A (en) Elastic article
GB2361928A (en) Elastic packaging or binder material
GB2366796A (en) Foam component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DRIFFIELD, CHRISTOPHER CHARLES

Inventor name: TANTAWY, HOSSAM HASSAN

Inventor name: MCGOFF, MATTHEW GRADY

Inventor name: STEPHENS, SCOTT, EDWARD

17Q First examination report despatched

Effective date: 20021209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050127