EP1207269A1 - Gas turbine vane - Google Patents

Gas turbine vane Download PDF

Info

Publication number
EP1207269A1
EP1207269A1 EP00125032A EP00125032A EP1207269A1 EP 1207269 A1 EP1207269 A1 EP 1207269A1 EP 00125032 A EP00125032 A EP 00125032A EP 00125032 A EP00125032 A EP 00125032A EP 1207269 A1 EP1207269 A1 EP 1207269A1
Authority
EP
European Patent Office
Prior art keywords
cavity
gas turbine
leading edge
subspace
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00125032A
Other languages
German (de)
French (fr)
Other versions
EP1207269B1 (en
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE50010300T priority Critical patent/DE50010300D1/en
Priority to EP00125032A priority patent/EP1207269B1/en
Priority to CA002362020A priority patent/CA2362020A1/en
Priority to JP2001350480A priority patent/JP4109445B2/en
Priority to US10/004,476 priority patent/US6572329B2/en
Publication of EP1207269A1 publication Critical patent/EP1207269A1/en
Application granted granted Critical
Publication of EP1207269B1 publication Critical patent/EP1207269B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the invention relates to a gas turbine blade with an inner Cavity for guiding a cooling fluid.
  • Such a coolable gas turbine blade shows the US 5,431,537.
  • Gas turbine blades are extremely high temperatures exposed by the hot gas flowing around them. For this Basically, they have to be cooled. Particularly high thermal Loads is the leading edge of a gas turbine blade exposed. For this reason, the leading edge be cooled particularly intensively.
  • cooling with Cooling air is the lowest possible consumption of cooling air aspired because the cooling air consumption the efficiency the gas turbine lowers.
  • turbulators are provided on the inside of the gas turbine blade, which swirl the cooling medium and thus a better one Allow heat transfer.
  • At the US gas turbine blade 5,431,537 is due to the turbulator configuration both achieved a favorable cooling of the leading edge, as well Achieved advantages for the castability of the turbine blade.
  • US 5,320,483 shows a steam-cooled gas turbine blade. Steam cooling is in terms of efficiency the gas turbine cheaper. However, it requires a closed one Cooling circuit because steam is different from air not introduced from the shovel into the hot gas duct can be. An impact cooling insert is used to cool the leading edge used, which corresponds to the contour of the leading edge Steam leads into a channel, being from that channel Impact-cooling through holes against the leading edge is directed. This construction is manufacturing technology very complex and also leads to one comparatively thick and therefore not aerodynamically optimized Leading edge.
  • the object of the invention is to provide a gas turbine blade, in which a technically simple and at the same time aerodynamically favorable cooling of the leading edge possible is.
  • this object is achieved by specifying a gas turbine blade directed along a blade axis with a profile that has a suction side, a pressure side, a Has leading edge and a trailing edge, and with a inner cavity in the profile for guiding a cooling fluid, wherein the cavity is adjacent to the leading edge Leading edge cavity and one towards the Trailing edge adjoining the leading edge cavity has the first partial cavity, the first partial cavity by moving in one direction from the leading edge to the Trailing edge extending partition into a first subspace and a second subspace is divided and wherein cooling fluid from the first sub-room via baffle cooling openings into the leading edge impact cooling in the leading edge cavity and can be introduced from there into the second subspace.
  • the path is taken for the first time connect a divided cavity upstream of the leading edge area, so that a closed in a constructively simple manner Cooling fluid guidance is possible.
  • This structure avoids a complex designed impact cooling insert in the area the leading edge and also allows the leading edge to perform in the most aerodynamically favorable way.
  • the leading edge cavity is from the first Partial cavity through a half rib connected to the profile Cut.
  • a half-rib does not extend like otherwise common for gas turbine blades from the suction side to to the pressure side, but ends in the cavity.
  • Such a half-rib can, for example, with a cast turbine blade be cast along. Cooling fluid is now from the first subspace led over the half rib into the leading edge cavity, for this purpose, baffle cooling openings are provided in the half-rib are. These impingement cooling openings are further preferred as Slots made.
  • Such a slotted half-rib is easy to manufacture and offers optimal Impingement cooling conditions.
  • a second partial cavity at the first partial cavity it preferably closes in the direction of the trailing edge a second partial cavity at the first partial cavity, the one extending from the suction side to the pressure side Rib is separated from the first partial cavity, the Cooling fluid through channels in the fin from the second subspace the second partial cavity can be introduced.
  • the cooling fluid in the first subspace parallel to the blade axis, in the second subspace transverse to the blade axis and in second partial cavity can be guided parallel to the blade axis. It This results in the constellation that the cooling fluid in the two subspaces of the first partial cavity two perpendicular has directions of flow directed towards one another.
  • the partition is preferably a sheet metal. This is what offers a further manufacturing technology for cast gas turbine blades Simplification, since no partition wall is cast got to.
  • the partition is in the finished cast scoop simply used.
  • the partition wall is preferred jammed in recesses between cast turbulators and / or on a particular cast on a rib Offset added.
  • the partition also separates the second subspace from the leading edge cavity, the Partition openings for introducing the cooling fluid from the leading edge cavity has in the second subspace.
  • This Execution is particularly preferred in connection with the Leading edge cavity to the first sub-space separating half-rib. Through the half rib on the one hand and the inserted as sheet metal Partition on the other hand thus becomes the leading edge cavity separated from the first partial cavity.
  • the sheet is preferably supported on the first half rib.
  • the gas turbine blade is preferably a guide blade executed.
  • the cooling fluid is preferably steam.
  • Steam cooling offers the advantage of saving cooling air and thus leads to an improvement in efficiency and increased performance for the gas turbine.
  • a steam supply can be used well because the guide vanes are connected to the housing through which the cooling steam can be supplied.
  • Figure 1 shows a side view of a gas turbine blade 1.
  • the gas turbine blade 1 is designed as a guide blade. It is directed along a blade axis 3.
  • the gas turbine blade 1 has a profile 5.
  • the profile 5 points a suction side 7 and a pressure side 9. Furthermore points the profile 5 has an entry edge 11 and a trailing edge 13 on.
  • the profile 5 is between a housing-side platform 15 and a rotor-side platform 17.
  • the Profile 5 has an inner cavity 19 for guiding a Cooling fluid on. The construction of the internal cooling structure of the profile 5 is explained in more detail with reference to the following figures.
  • Figure 2 shows a cross section through the gas turbine blade 1 from Figure 1.
  • the inner cavity 19 is constructed from a leading edge cavity lying in the region of the leading edge 11 21, one in the direction of the trailing edge 13 the first partial cavity adjoining the leading edge cavity 21 23, one adjoining the first partial cavity 23 second partial cavity 25 and one to the second partial cavity 25 adjoining partial cavity 27.
  • the first partial cavity 23 is divided into a first subspace 31 and a second subspace 33. These two subspaces 31, 33 are formed by a partition 37 which in first partial cavity 23 extends and extends in the direction of the leading edge extends to the trailing edge, so that the two subspaces 31, 33 side by side in the axial direction lie.
  • the partition 37 also borders the second subspace 33 from the leading edge cavity 21.
  • the leading edge cavity 21 is from the first subspace 31 through a half rib 35 separated from the pressure side 9 in the inner Cavity 19 extends approximately to half the distance to the opposite suction side 7
  • Half rib 35 pressing the partition 37 and through the half rib 35 is thus the leading edge cavity 21 from the first partial cavity 23 separated.
  • In the half rib 35 are slit-like Impingement cooling openings 55 arranged, see Figure 3.
  • Page openings 61 are provided.
  • the first partial cavity 23 is separated from the second partial cavity 25 by a the pressure side 9 to the suction side 7 extending rib 39 separated. About half the width of the rib 39 has one Paragraph 41, which extends along the blade axis 3.
  • first partial cavity 23 In the first partial cavity 23 are on the inside of the profile 5 extending across the blade axis 3 turbulators 45 arranged.
  • Turbulators 43 In the leading edge cavity 21 are Turbulators 43 extending transversely to the blade axis 3 arranged on the inside of the profile 5. Between Turbulators 43 and the turbulators 45 run approximately parallel a recess 44 to the blade axis 3.
  • the partition 37 is designed as a sheet metal, which at one end in the Recess 44 is held and at the other end on the paragraph 41 of the rib 39 rests. In addition, the partition 37 is against the half rib 35 stretched. This structure enables one particularly simple insertion 37, especially in an otherwise Cast gas turbine blade 1.
  • cooling fluid 51 in particular steam, in the first subspace 31 of the first Partial cavity 23 initiated. Arrives from the first subspace 31 the cooling fluid 51 via the impingement cooling openings 55 in the Half rib 35 in the leading edge cavity 21 that the Leading edge 11 is impact-cooled from the inside. The cooling fluid 51 then passes through openings 61 in partition 37 (see Figure 4) in the second subspace 33 where it is vertical flows to the blade axis 3. In contrast, it will Cooling fluid 51 in the first subspace 31 parallel to the blade axis 3 led. This occurs from the second subspace 33 Cooling fluid 51 via channels 63 in the rib 39 in the second Partial cavity 25, where it in turn is parallel to the blade axis 3 guided and derived from the gas turbine guide vane becomes.

Abstract

The gas turbine blade (1) has closed steam cooling. A sheet partition wall (37) marks off the first part cavity (23) axially. so that steam passes from the first lower cavity (31) with shock cooling effect into a leading-edge cavity (21), and thence to a second lower cavity (33). This enables a leading edge of acceptable aerodynamic shape to be produced.

Description

Die Erfindung betrifft eine Gasturbinenschaufel mit einem inneren Hohlraum zur Führung eines Kühlfluides.The invention relates to a gas turbine blade with an inner Cavity for guiding a cooling fluid.

Eine solche kühlbare Gasturbinenschaufel zeigt die US 5,431,537. Gasturbinenschaufeln sind extrem hohen Temperaturen durch das sie umströmende Heißgas ausgesetzt. Aus diesem Grunde müssen sie gekühlt werden. Besonders hohen thermischen Belastungen ist die Eintrittskante einer Gasturbinenschaufel ausgesetzt. Aus diesem Grunde muss die Eintrittskante besonders intensiv gekühlt werden. Bei der Kühlung mittels Kühlluft wird ein möglichst geringer Verbrauch an Kühlluft angestrebt, da der Kühlluftverbrauch den Wirkungsgrad der Gasturbine senkt. Zur Verbesserung der Kühlung sind auf der Innenseite der Gasturbinenschaufel Turbulatoren vorgesehen, die das Kühlmedium verwirbeln und somit einen besseren Wärmeübergang ermöglichen. Bei der Gasturbinenschaufel der US 5,431,537 wird durch die Turbulatorenkonfiguration sowohl eine günstige Kühlung der Eintrittskante erreicht, als auch Vorteile für die Gießbarkeit der Turbinenschaufel erzielt.Such a coolable gas turbine blade shows the US 5,431,537. Gas turbine blades are extremely high temperatures exposed by the hot gas flowing around them. For this Basically, they have to be cooled. Particularly high thermal Loads is the leading edge of a gas turbine blade exposed. For this reason, the leading edge be cooled particularly intensively. When cooling with Cooling air is the lowest possible consumption of cooling air aspired because the cooling air consumption the efficiency the gas turbine lowers. To improve cooling are on turbulators are provided on the inside of the gas turbine blade, which swirl the cooling medium and thus a better one Allow heat transfer. At the US gas turbine blade 5,431,537 is due to the turbulator configuration both achieved a favorable cooling of the leading edge, as well Achieved advantages for the castability of the turbine blade.

Die US 5,320,483 zeigt eine dampfgekühlte Gasturbinenschaufel. Eine Dampfkühlung ist hinsichtlich des Wirkungsgrades der Gasturbine günstiger. Sie erfordert allerdings einen geschlossenen Kühlkreislauf, da Dampf im Gegensatz zu Luft nicht aus der Schaufel heraus in den Heißgaskanal eingeleitet werden kann. Zur Kühlung der Eintrittskante wird ein Prallkühleinsatz verwendet, der entsprechend der Kontur der Eintrittskante Dampf in einen Kanal führt, wobei aus diesem Kanal über Bohrungen Dampf prallkühlend gegen die Eintrittskante geleitet wird. Diese Konstruktion ist fertigungstechnisch sehr aufwendig und führt darüber hinaus auch zu einer vergleichsweise dicken und damit aerodynamisch nicht optimierten Eintrittskante. US 5,320,483 shows a steam-cooled gas turbine blade. Steam cooling is in terms of efficiency the gas turbine cheaper. However, it requires a closed one Cooling circuit because steam is different from air not introduced from the shovel into the hot gas duct can be. An impact cooling insert is used to cool the leading edge used, which corresponds to the contour of the leading edge Steam leads into a channel, being from that channel Impact-cooling through holes against the leading edge is directed. This construction is manufacturing technology very complex and also leads to one comparatively thick and therefore not aerodynamically optimized Leading edge.

Aufgabe der Erfindung ist die Angabe einer Gasturbinenschaufel, bei der eine herstellungstechnisch einfache und dabei aerodynamisch günstige Kühlung der Eintrittskante möglich ist.The object of the invention is to provide a gas turbine blade, in which a technically simple and at the same time aerodynamically favorable cooling of the leading edge possible is.

Erfindungsgemäß wird diese Aufgabe gelöst durch Angabe einer entlang einer Schaufelachse gerichteten Gasturbinenschaufel mit einem Profil, das eine Saugseite, eine Druckseite, eine Eintrittskante und eine Abströmkante aufweist, und mit einem inneren Hohlraum im Profil zur Führung eines Kühlfluides, wobei der Hohlraum einen an die Eintrittskante angrenzenden Eintrittskanten-Hohlraum und einen sich in Richtung auf die Abströmkante an den Eintrittskanten-Hohlraum anschließenden ersten Teilhohlraum aufweist, wobei der erste Teilhohlraum durch eine sich in eine Richtung von der Eintrittskante zur Abströmkante erstreckende Trennwand in einen ersten Unterraum und einen zweiten Unterraum geteilt ist und wobei Kühlfluid aus dem ersten Unterraum über Prallkühlöffnungen in die Eintrittskante prallkühlend in den Eintrittskantenhohlraum und von dort in den zweiten Unterraum einleitbar ist.According to the invention, this object is achieved by specifying a gas turbine blade directed along a blade axis with a profile that has a suction side, a pressure side, a Has leading edge and a trailing edge, and with a inner cavity in the profile for guiding a cooling fluid, wherein the cavity is adjacent to the leading edge Leading edge cavity and one towards the Trailing edge adjoining the leading edge cavity has the first partial cavity, the first partial cavity by moving in one direction from the leading edge to the Trailing edge extending partition into a first subspace and a second subspace is divided and wherein cooling fluid from the first sub-room via baffle cooling openings into the leading edge impact cooling in the leading edge cavity and can be introduced from there into the second subspace.

Mit dieser Konfiguration wird erstmals der Weg eingeschlagen, dem Eintrittskantenbereich einen geteilten Hohlraum vorzuschalten, so dass in konstruktiv einfacher Weise eine geschlossene Kühlfluidführung möglich wird. Dieser Aufbau vermeidet einen komplex gestalteten Prallkühl-Einsatz im Bereich der Eintrittskante und ermöglicht darüber hinaus, die Eintrittskante in der aerodynamisch günstigsten Weise auszuführen.With this configuration, the path is taken for the first time connect a divided cavity upstream of the leading edge area, so that a closed in a constructively simple manner Cooling fluid guidance is possible. This structure avoids a complex designed impact cooling insert in the area the leading edge and also allows the leading edge to perform in the most aerodynamically favorable way.

Vorzugsweise ist der Eintrittskanten-Hohlraum vom ersten Teilhohlraum durch eine mit dem Profil verbundene Halbrippe getrennt. Eine solche Halbrippe erstreckt sich nicht wie sonst bei Gasturbinenschaufeln üblich von der Saugseite bis zur Druckseite, sondern endet im Hohlraum. Eine solche Halbrippe kann beispielsweise bei einer gegossenen Turbinenschaufel mitgegossen sein. Kühlfluid wird nun vom ersten Unterraum über die Halbrippe in den Eintrittskanten-Hohlraum geführt, wobei hierzu Prallkühlöffnungen in der Halbrippe vorgesehen sind. Weiter bevorzugt sind diese Prallkühlöffnungen als Schlitze ausgeführt. Eine solche geschlitzte Halbrippe ist fertigungstechnisch einfach herstellbar und bietet dabei optimale Prallkühlbedingungen.Preferably, the leading edge cavity is from the first Partial cavity through a half rib connected to the profile Cut. Such a half-rib does not extend like otherwise common for gas turbine blades from the suction side to to the pressure side, but ends in the cavity. Such a half-rib can, for example, with a cast turbine blade be cast along. Cooling fluid is now from the first subspace led over the half rib into the leading edge cavity, for this purpose, baffle cooling openings are provided in the half-rib are. These impingement cooling openings are further preferred as Slots made. Such a slotted half-rib is easy to manufacture and offers optimal Impingement cooling conditions.

Bevorzugtermaßen schließt sich in Richtung auf die Abströmkante an den ersten Teilhohlraum ein zweiter Teilhohlraum an, der durch eine sich von der Saugseite zur Druckseite erstreckende Rippe vom ersten Teilhohlraum getrennt ist, wobei das Kühlfluid durch Kanäle in der Rippe vom zweiten Unterraum in den zweiten Teilhohlraum einleitbar ist. Weiter bevorzugt ist dabei das Kühlfluid im ersten Unterraum parallel zur Schaufelachse, im zweiten Unterraum quer zur Schaufelachse und im zweiten Teilhohlraum parallel zur Schaufelachse führbar. Es ergibt sich somit die Konstellation, dass das Kühlfluid in den beiden Unterräumen des ersten Teilhohlraums zwei senkrecht zueinander gerichtete Strömungsrichtungen aufweist.It preferably closes in the direction of the trailing edge a second partial cavity at the first partial cavity, the one extending from the suction side to the pressure side Rib is separated from the first partial cavity, the Cooling fluid through channels in the fin from the second subspace the second partial cavity can be introduced. Is further preferred the cooling fluid in the first subspace parallel to the blade axis, in the second subspace transverse to the blade axis and in second partial cavity can be guided parallel to the blade axis. It This results in the constellation that the cooling fluid in the two subspaces of the first partial cavity two perpendicular has directions of flow directed towards one another.

Vorzugsweise ist die Trennwand ein Blech. Dies bietet gerade bei gegossenen Gasturbinenschaufeln eine weitere fertigungstechnische Vereinfachung, da keine Trennwand mitgegossen werden muss. Die Trennwand wird in die fertig gegossene Schaufel einfach eingesetzt. Bevorzugtermaßen wird die Trennwand dabei in Aussparungen zwischen angegossenen Turbulatoren verklemmt und/oder an einem insbesondere an einer Rippe angegossenen Versatz angefügt. Weiter bevorzugt trennt die Trennwand auch den zweiten Unterraum vom Eintrittskantenhohlraum, wobei die Trennwand Öffnungen zur Einleitung des Kühlfluides vom Eintrittskantenhohlraum in den zweiten Unterraum aufweist. Diese Ausführung ist besonders bevorzugt in Verbindung mit der den Eintrittskantenhohlraum zum ersten Unterraum trennenden Halbrippe. Durch die Halbrippe einerseits und die als Blech eingefügte Trennwand andererseits wird somit der Eintrittskanten-Hohlraum vom ersten Teilhohlraum getrennt. Das Blech stützt sich dabei vorzugsweise an der ersten Halbrippe ab.The partition is preferably a sheet metal. This is what offers a further manufacturing technology for cast gas turbine blades Simplification, since no partition wall is cast got to. The partition is in the finished cast scoop simply used. The partition wall is preferred jammed in recesses between cast turbulators and / or on a particular cast on a rib Offset added. More preferably, the partition also separates the second subspace from the leading edge cavity, the Partition openings for introducing the cooling fluid from the leading edge cavity has in the second subspace. This Execution is particularly preferred in connection with the Leading edge cavity to the first sub-space separating half-rib. Through the half rib on the one hand and the inserted as sheet metal Partition on the other hand thus becomes the leading edge cavity separated from the first partial cavity. The sheet is preferably supported on the first half rib.

Vorzugsweise ist die Gasturbinenschaufel als Leitschaufel ausgeführt.The gas turbine blade is preferably a guide blade executed.

Bevorzugtermaßen ist das Kühlfluid Dampf.The cooling fluid is preferably steam.

Die Dampfkühlung bietet den Vorteil einer Kühllufteinsparung und führt somit zu einer Wirkungsgradverbesserung und Leistungserhöhung für die Gasturbine. Gerade für die Leitschaufeln ist eine Dampfzufuhr gut einsetzbar, da die Leitschaufeln mit dem Gehäuse verbunden sind, über das der Kühldampf zugeführt werden kann.Steam cooling offers the advantage of saving cooling air and thus leads to an improvement in efficiency and increased performance for the gas turbine. Especially for the guide vanes A steam supply can be used well because the guide vanes are connected to the housing through which the cooling steam can be supplied.

Die Erfindung wird anhand der Zeichnung beispielhaft näher erläutert. Es zeigen:

FIG 1
eine Gasturbinenleitschaufel,
FIG 2
einen Querschnitt durch eine Gasturbinenleitschaufel,
FIG 3
einen Querschnitt durch eine geschlitzte Halbrippe und
FIG 4
einen Ausschnitt aus einer Gasturbinenleitschaufel.
The invention is explained in more detail by way of example with reference to the drawing. Show it:
FIG. 1
a gas turbine guide vane,
FIG 2
a cross section through a gas turbine guide vane,
FIG 3
a cross section through a slotted half-rib and
FIG 4
a section of a gas turbine guide vane.

Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.The same reference numerals have in the different figures same meaning.

Figur 1 zeigt in einer Seitenansicht eine Gasturbinenschaufel 1. Die Gasturbinenschaufel 1 ist als Leitschaufel ausgeführt. Sie ist entlang einer Schaufelachse 3 gerichtet. Die Gasturbinenschaufel 1 weist ein Profil 5 auf. Das Profil 5 weist eine Saugseite 7 und eine Druckseite 9 auf. Weiterhin weist das Profil 5 eine Eintrittskante 11 und eine Abströmkante 13 auf. Das Profil 5 ist zwischen einer gehäuseseitigen Plattform 15 und einer rotorseitigen Plattform 17 angeordnet. Das Profil 5 weist einen inneren Hohlraum 19 zur Führung eines Kühlfluides auf. Der Aufbau der inneren Kühlstruktur des Profils 5 wird anhand der folgenden Figuren näher erläutert.Figure 1 shows a side view of a gas turbine blade 1. The gas turbine blade 1 is designed as a guide blade. It is directed along a blade axis 3. The gas turbine blade 1 has a profile 5. The profile 5 points a suction side 7 and a pressure side 9. Furthermore points the profile 5 has an entry edge 11 and a trailing edge 13 on. The profile 5 is between a housing-side platform 15 and a rotor-side platform 17. The Profile 5 has an inner cavity 19 for guiding a Cooling fluid on. The construction of the internal cooling structure of the profile 5 is explained in more detail with reference to the following figures.

Figur 2 zeigt einen Querschnitt durch die Gasturbinenschaufel 1 aus Figur 1. Der innere Hohlraum 19 ist aufgebaut aus einem im Bereich der Eintrittskante 11 liegenden Eintrittskanten-Hohlraum 21, einem sich in Richtung der Abströmkante 13 an den Eintrittskanten-Hohlraum 21 anschließenden ersten Teilhohlraum 23, einem sich an den ersten Teilhohlraum 23 anschließenden zweiten Teilhohlraum 25 und einem sich an den zweiten Teilhohlraum 25 anschließenden Teilhohlraum 27. Der erste Teilhohlraum 23 ist unterteilt in einen ersten Unterraum 31 und einen zweiten Unterraum 33. Diese beiden Unterräume 31, 33 werden durch eine Trennwand 37 gebildet, die im ersten Teilhohlraum 23 verläuft und sich in der Richtung von der Eintrittskante zur Abströmkante erstreckt, so dass die beiden Unterräume 31, 33 in axialer Richtung nebeneinander liegen. Die Trennwand 37 grenzt zugleich den zweiten Unterraum 33 vom Eintrittskanten-Hohlraum 21 ab. Der Eintrittskanten-Hohlraum 21 ist vom ersten Unterraum 31 durch eine Halbrippe 35 getrennt, die sich von der Druckseite 9 in den inneren Hohlraum 19 erstreckt, etwa bis zur Hälfte der Strecke zur gegenüberliegenden Saugseite 7. Durch die sich an die Halbrippe 35 anpressende Trennwand 37 und durch die Halbrippe 35 ist somit der Eintrittskanten-Hohlraum 21 vom ersten Teilhohlraum 23 getrennt. In der Halbrippe 35 sind schlitzartige Prallkühlöffnungen 55 angeordnet, siehe Figur 3. In der Trennwand 37 sind auf der den Eintrittskanten-Hohlraum 21 begrenzenden Seite Öffnungen 61 vorgesehen. Der erste Teilhohlraum 23 ist vom zweiten Teilhohlraum 25 durch eine sich von der Druckseite 9 zur Saugseite 7 erstreckenden Rippe 39 getrennt. Etwa auf halber Breite der Rippe 39 weist diese einen Absatz 41 auf, der sich entlang der Schaufelachse 3 erstreckt. Im ersten Teilhohlraum 23 sind auf der Innenseite des Profils 5 sich quer zur Schaufelachse 3 erstreckende Turbulatoren 45 angeordnet. Im Eintrittskanten-Hohlraum 21 sind sich quer zur Schaufelachse 3 erstreckende Turbulatoren 43 auf der Innenseite des Profils 5 angeordnet. Zwischen den Turbulatoren 43 und den Turbulatoren 45 verläuft etwa parallel zur Schaufelachse 3 eine Aussparung 44. Die Trennwand 37 ist als ein Blech ausgeführt, welches an einem Ende in der Aussparung 44 gehaltert wird und am anderen Ende auf dem Absatz 41 der Rippe 39 aufliegt. Zudem ist die Trennwand 37 gegen die Halbrippe 35 gespannt. Dieser Aufbau ermöglicht ein besonders einfaches Einsetzen 37, insbesondere in eine ansonsten gegossen ausgeführte Gasturbinenschaufel 1.Figure 2 shows a cross section through the gas turbine blade 1 from Figure 1. The inner cavity 19 is constructed from a leading edge cavity lying in the region of the leading edge 11 21, one in the direction of the trailing edge 13 the first partial cavity adjoining the leading edge cavity 21 23, one adjoining the first partial cavity 23 second partial cavity 25 and one to the second partial cavity 25 adjoining partial cavity 27. The first partial cavity 23 is divided into a first subspace 31 and a second subspace 33. These two subspaces 31, 33 are formed by a partition 37 which in first partial cavity 23 extends and extends in the direction of the leading edge extends to the trailing edge, so that the two subspaces 31, 33 side by side in the axial direction lie. The partition 37 also borders the second subspace 33 from the leading edge cavity 21. The leading edge cavity 21 is from the first subspace 31 through a half rib 35 separated from the pressure side 9 in the inner Cavity 19 extends approximately to half the distance to the opposite suction side 7 Half rib 35 pressing the partition 37 and through the half rib 35 is thus the leading edge cavity 21 from the first partial cavity 23 separated. In the half rib 35 are slit-like Impingement cooling openings 55 arranged, see Figure 3. In the Partition 37 are on the boundary of the leading edge cavity 21 Page openings 61 are provided. The first partial cavity 23 is separated from the second partial cavity 25 by a the pressure side 9 to the suction side 7 extending rib 39 separated. About half the width of the rib 39 has one Paragraph 41, which extends along the blade axis 3. In the first partial cavity 23 are on the inside of the profile 5 extending across the blade axis 3 turbulators 45 arranged. In the leading edge cavity 21 are Turbulators 43 extending transversely to the blade axis 3 arranged on the inside of the profile 5. Between Turbulators 43 and the turbulators 45 run approximately parallel a recess 44 to the blade axis 3. The partition 37 is designed as a sheet metal, which at one end in the Recess 44 is held and at the other end on the paragraph 41 of the rib 39 rests. In addition, the partition 37 is against the half rib 35 stretched. This structure enables one particularly simple insertion 37, especially in an otherwise Cast gas turbine blade 1.

Beim Einsatz der Gasturbinenschaufel 1 wird Kühlfluid 51, insbesondere Dampf, in den ersten Unterraum 31 des ersten Teilhohlraums 23 eingeleitet. Aus dem ersten Unterraum 31 gelangt das Kühlfluid 51 über die Prallkühlöffnungen 55 in der Halbrippe 35 so in den Eintrittskanten-Hohlraum 21, dass die Eintrittskante 11 von innen prallgekühlt wird. Das Kühlfluid 51 tritt sodann über die Öffnungen 61 in der Trennwand 37 (siehe Figur 4) in den zweiten Unterraum 33 ein, wo es senkrecht zur Schaufelachse 3 strömt. Im Gegensatz dazu wird das Kühlfluid 51 im ersten Unterraum 31 parallel zur Schaufelachse 3 geführt. Aus dem zweiten Unterraum 33 tritt das Kühlfluid 51 über Kanäle 63 in der Rippe 39 in den zweiten Teilhohlraum 25 ein, wo es wiederum parallel zur Schaufelachse 3 geführt und aus der Gasturbinenleitschaufel abgeleitet wird.When using the gas turbine blade 1, cooling fluid 51, in particular steam, in the first subspace 31 of the first Partial cavity 23 initiated. Arrives from the first subspace 31 the cooling fluid 51 via the impingement cooling openings 55 in the Half rib 35 in the leading edge cavity 21 that the Leading edge 11 is impact-cooled from the inside. The cooling fluid 51 then passes through openings 61 in partition 37 (see Figure 4) in the second subspace 33 where it is vertical flows to the blade axis 3. In contrast, it will Cooling fluid 51 in the first subspace 31 parallel to the blade axis 3 led. This occurs from the second subspace 33 Cooling fluid 51 via channels 63 in the rib 39 in the second Partial cavity 25, where it in turn is parallel to the blade axis 3 guided and derived from the gas turbine guide vane becomes.

Dieser fertigungstechnisch besonders einfache und damit kostengünstige Aufbau ermöglicht eine geschlossene Kühlfluidführung, insbesondere für eine Dampfkühlung, bei einer bleibend günstigen aerodynamischen Gestaltung der Eintrittskante 11.This is particularly simple in terms of production technology and therefore inexpensive Construction enables closed cooling fluid guidance, especially for steam cooling, with one remaining favorable aerodynamic design of the leading edge 11.

Claims (9)

Entlang einer Schaufelachse (3) gerichtete Gasturbinenschaufel (1) mit einem Profil (5), das eine Saugseite (7), eine Druckseite (9), eine Eintrittskante (11) und eine Abströmkante (13) aufweist, und mit einem inneren Hohlraum (19) im Profil (5) zur Führung eines Kühlfluides (51), wobei der Hohlraum (19) einen an die Eintrittskante (11) angrenzenden Eintrittskanten-Hohlraum (21) und einen sich in Richtung auf die Abströmkante (13) an den Eintrittskanten-Hohlraum (21) anschliessenden ersten Teilhohlraum (23) aufweist, wobei der erste Teilhohlraum (23) durch eine sich in einer Richtung von der Eintrittskante (11) zur Abströmkante (13) erstreckende Trennwand (37) in einen ersten Unterraum (31) und einen zweiten Unterraum (33) geteilt ist und wobei Kühlfluid (51) aus dem ersten Unterraum (31) über Prallkühlöffnungen (55) die Eintrittskante (11) prallkühlend in den Eintrittskanten-Hohlraum (21) und von dort in den zweiten Unterraum (33) einleitbar ist.Gas turbine blade directed along a blade axis (3) (1) with a profile (5) which has a suction side (7), a pressure side (9), an inlet edge (11) and a trailing edge (13), and with an inner cavity (19) in the profile (5) for guiding a cooling fluid (51), the Cavity (19) adjacent to the leading edge (11) Leading edge cavity (21) and one towards the trailing edge (13) to the leading edge cavity (21) subsequent first partial cavity (23), the first partial cavity (23) through one in a direction of the leading edge (11) to the trailing edge (13) extending Partition (37) in a first subspace (31) and a second Subspace (33) is divided and wherein cooling fluid (51) the first subspace (31) via impingement cooling openings (55) The leading edge (11) is impact-cooling in the leading edge cavity (21) and from there into the second subspace (33) is. Gasturbinenschaufel (1) nach Anspruch 1,
bei der der Eintrittskanten-Hohlraum (21) vom ersten Teilhohlraum (23) durch eine mit dem Profil (5) verbundene Halbrippe (35) getrennt ist.
Gas turbine blade (1) according to claim 1,
in which the leading edge cavity (21) is separated from the first partial cavity (23) by a half rib (35) connected to the profile (5).
Gasturbinenschaufel (1) nach Anspruch 2,
bei der die Prallkühlöffnungen (55) durch quer zur Halbrippe (35) und in der Halbrippe (35) verlaufende Schlitze gebildet sind.
Gas turbine blade (1) according to claim 2,
in which the impingement cooling openings (55) are formed by slots running transversely to the half-rib (35) and in the half-rib (35).
Gasturbinenschaufel (1) nach Anspruch 1,
bei der sich in Richtung auf die Abströmkante (13) an den ersten Teilhohlraum (23) ein zweiter Teilhohlraum (25) anschliesst, der durch eine sich von der Saugseite (7) zur Druckseite (9) erstreckende Rippe (39) vom ersten Teilhohlraum (23) getrennt ist, wobei das Kühlfluid (51) durch Kanäle (63) in der Rippe (39) vom zweiten Unterraum (33) in den zweiten Teilhohlraum (25) einleitbar ist.
Gas turbine blade (1) according to claim 1,
in which a second partial cavity (25) adjoins the first partial cavity (23) in the direction of the trailing edge (13), said second partial cavity (25) extending from the first partial cavity () through a rib (39) extending from the suction side (7) to the pressure side (9) 23) is separated, the cooling fluid (51) being able to be introduced from the second subspace (33) into the second partial cavity (25) through channels (63) in the rib (39).
Gasturbinenschaufel (1) nach Anspruch 5,
bei der das Kühlfluid (51) im ersten Unterraum (31) parallel zur Schaufelachse (3), im zweiten Unterraum (33) quer zur Schaufelachse (3) und im zweiten Teilhohlraum (25) parallel zur Schaufelachse (3) führbar ist.
Gas turbine blade (1) according to claim 5,
in which the cooling fluid (51) in the first subspace (31) can be guided parallel to the blade axis (3), in the second subspace (33) transversely to the blade axis (3) and in the second partial cavity (25) parallel to the blade axis (3).
Gasturbinenschaufel (1) nach Anspruch 1,
bei der die Trennwand (37) ein Blech ist.
Gas turbine blade (1) according to claim 1,
in which the partition (37) is a sheet.
Gasturbinenschaufel (1) nach Anspruch 6,
bei der die Trennwand (37) auch den zweiten Unterraum (33) vom Eintrittskanten-Hohlraum (21) trennt, wobei die Trennwand (37) Öffnungen (61) zur Einleitung des Kühlfluids (51) vom Eintrittskanten-Hohlraum (21) in den zweiten Unterraum (33) aufweist.
Gas turbine blade (1) according to claim 6,
in which the partition (37) also separates the second subspace (33) from the leading edge cavity (21), the partition (37) having openings (61) for introducing the cooling fluid (51) from the leading edge cavity (21) into the second Has subspace (33).
Gasturbinenschaufel (1) nach Anspruch 1,
die als Leitschaufel ausgebildet ist.
Gas turbine blade (1) according to claim 1,
which is designed as a guide vane.
Gasturbinenschaufel (1) nach Anspruch 1,
bei der das Kühlfluid (51) Dampf ist.
Gas turbine blade (1) according to claim 1,
in which the cooling fluid (51) is steam.
EP00125032A 2000-11-16 2000-11-16 Gas turbine vane Expired - Lifetime EP1207269B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50010300T DE50010300D1 (en) 2000-11-16 2000-11-16 Gas turbine blade
EP00125032A EP1207269B1 (en) 2000-11-16 2000-11-16 Gas turbine vane
CA002362020A CA2362020A1 (en) 2000-11-16 2001-11-14 Gas turbine blade
JP2001350480A JP4109445B2 (en) 2000-11-16 2001-11-15 Gas turbine blade
US10/004,476 US6572329B2 (en) 2000-11-16 2001-11-16 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00125032A EP1207269B1 (en) 2000-11-16 2000-11-16 Gas turbine vane

Publications (2)

Publication Number Publication Date
EP1207269A1 true EP1207269A1 (en) 2002-05-22
EP1207269B1 EP1207269B1 (en) 2005-05-11

Family

ID=8170399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00125032A Expired - Lifetime EP1207269B1 (en) 2000-11-16 2000-11-16 Gas turbine vane

Country Status (5)

Country Link
US (1) US6572329B2 (en)
EP (1) EP1207269B1 (en)
JP (1) JP4109445B2 (en)
CA (1) CA2362020A1 (en)
DE (1) DE50010300D1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283326B1 (en) * 2001-08-09 2005-12-21 Siemens Aktiengesellschaft Cooling of a turbine vane
US6742991B2 (en) * 2002-07-11 2004-06-01 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
US7137779B2 (en) * 2004-05-27 2006-11-21 Siemens Power Generation, Inc. Gas turbine airfoil leading edge cooling
GB2441771B (en) * 2006-09-13 2009-07-08 Rolls Royce Plc Cooling arrangement for a component of a gas turbine engine
US7762784B2 (en) * 2007-01-11 2010-07-27 United Technologies Corporation Insertable impingement rib
KR101239595B1 (en) 2009-05-11 2013-03-05 미츠비시 쥬고교 가부시키가이샤 Turbine stator vane and gas turbine
US9127561B2 (en) * 2012-03-01 2015-09-08 General Electric Company Turbine bucket with contoured internal rib
CA2954785A1 (en) * 2016-01-25 2017-07-25 Rolls-Royce Corporation Forward flowing serpentine vane
US20180210734A1 (en) * 2017-01-26 2018-07-26 Alibaba Group Holding Limited Methods and apparatus for processing self-modifying codes
CN108979734B (en) * 2018-07-18 2021-05-28 上海交通大学 Turbine blade multichannel cooling structure and device with whirl
CN111764967B (en) * 2020-07-06 2022-10-14 中国航发湖南动力机械研究所 Turbine blade trailing edge cooling structure

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956773A (en) * 1956-05-15 1960-10-18 Napier & Son Ltd Cooled hollow turbine blades
US3574481A (en) * 1968-05-09 1971-04-13 James A Pyne Jr Variable area cooled airfoil construction for gas turbines
FR2221020A5 (en) * 1973-03-09 1974-10-04 Gen Electric
GB1467483A (en) * 1974-02-19 1977-03-16 Rolls Royce Cooled vane for a gas turbine engine
US4025226A (en) * 1975-10-03 1977-05-24 United Technologies Corporation Air cooled turbine vane
US4135855A (en) * 1973-10-13 1979-01-23 Rolls-Royce Limited Hollow cooled blade or vane for a gas turbine engine
US4252501A (en) * 1973-11-15 1981-02-24 Rolls-Royce Limited Hollow cooled vane for a gas turbine engine
US5320483A (en) 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine
US5431537A (en) 1994-04-19 1995-07-11 United Technologies Corporation Cooled gas turbine blade
US5464322A (en) * 1994-08-23 1995-11-07 General Electric Company Cooling circuit for turbine stator vane trailing edge
US6036441A (en) * 1998-11-16 2000-03-14 General Electric Company Series impingement cooled airfoil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063851A (en) * 1975-12-22 1977-12-20 United Technologies Corporation Coolable turbine airfoil
US5667359A (en) * 1988-08-24 1997-09-16 United Technologies Corp. Clearance control for the turbine of a gas turbine engine
US5762471A (en) * 1997-04-04 1998-06-09 General Electric Company turbine stator vane segments having leading edge impingement cooling circuits

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956773A (en) * 1956-05-15 1960-10-18 Napier & Son Ltd Cooled hollow turbine blades
US3574481A (en) * 1968-05-09 1971-04-13 James A Pyne Jr Variable area cooled airfoil construction for gas turbines
FR2221020A5 (en) * 1973-03-09 1974-10-04 Gen Electric
US4135855A (en) * 1973-10-13 1979-01-23 Rolls-Royce Limited Hollow cooled blade or vane for a gas turbine engine
US4252501A (en) * 1973-11-15 1981-02-24 Rolls-Royce Limited Hollow cooled vane for a gas turbine engine
GB1467483A (en) * 1974-02-19 1977-03-16 Rolls Royce Cooled vane for a gas turbine engine
US4025226A (en) * 1975-10-03 1977-05-24 United Technologies Corporation Air cooled turbine vane
US5320483A (en) 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine
US5431537A (en) 1994-04-19 1995-07-11 United Technologies Corporation Cooled gas turbine blade
US5464322A (en) * 1994-08-23 1995-11-07 General Electric Company Cooling circuit for turbine stator vane trailing edge
US6036441A (en) * 1998-11-16 2000-03-14 General Electric Company Series impingement cooled airfoil

Also Published As

Publication number Publication date
CA2362020A1 (en) 2002-05-16
US20020085908A1 (en) 2002-07-04
US6572329B2 (en) 2003-06-03
JP4109445B2 (en) 2008-07-02
EP1207269B1 (en) 2005-05-11
JP2002161705A (en) 2002-06-07
DE50010300D1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
DE60018817T2 (en) Chilled gas turbine blade
EP2828484B1 (en) Turbine blade
DE602005000350T2 (en) Turbine stator blade with improved cooling
DE69924953T2 (en) Shovel of a gas turbine engine
EP1789654B1 (en) Turbine engine vane with fluid cooled shroud
DE60129281T2 (en) Cooled turbine blade and method for this
DE69822100T2 (en) turbine blade
EP1907670B1 (en) Cooled turbine blade for a gas turbine and use of such a turbine blade
EP2307670B1 (en) Integrally bladed rotor disk for a turbine
DE102009003327B4 (en) Turbine blade tip shroud
EP1283326B1 (en) Cooling of a turbine vane
CH702101B1 (en) Turbine blade with winglet.
DE1476804A1 (en) Turbine blade with aerofoil profile
EP1191189A1 (en) Gas turbine blades
DE10001109A1 (en) Cooled blade for gas turbine, with several internal cooling channels running radially in blade
DE3248163A1 (en) COOLABLE SHOVEL
EP2881541A1 (en) Tip cooling of a turbine rotor blade of a gas turbine
EP3658751B1 (en) Blade for a turbine blade
DE102014119693B4 (en) TURBINE BLADE WITH HOLLOW BLADE WITH INNER RIBS AND COOLING CHANNELS
DE19904229A1 (en) Cooled turbine blade has shroud formed by sealing rib with integrated cooling channels connected to coolant channel in blade
DE3518314A1 (en) TURBINE SHOVEL
EP2087207B1 (en) Turbine blade
EP1207269B1 (en) Gas turbine vane
DE102015203871A1 (en) Rotor of a turbine of a gas turbine with improved cooling air flow
EP3115558A1 (en) Guide blade of a gas turbine engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020722

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20040624

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010300

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151109

Year of fee payment: 16

Ref country code: IT

Payment date: 20151126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151110

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160120

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50010300

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601