EP1198552A1 - Coated detergent tablet - Google Patents

Coated detergent tablet

Info

Publication number
EP1198552A1
EP1198552A1 EP00950722A EP00950722A EP1198552A1 EP 1198552 A1 EP1198552 A1 EP 1198552A1 EP 00950722 A EP00950722 A EP 00950722A EP 00950722 A EP00950722 A EP 00950722A EP 1198552 A1 EP1198552 A1 EP 1198552A1
Authority
EP
European Patent Office
Prior art keywords
tablet
coating
acid
tablets
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00950722A
Other languages
German (de)
French (fr)
Inventor
Paul James Campbell
Darren Rees
Neil Joseph Lant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP00950722A priority Critical patent/EP1198552A1/en
Publication of EP1198552A1 publication Critical patent/EP1198552A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0086Laundry tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0082Coated tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers

Definitions

  • the present invention relates to coated detergent tablets, especially those adapted for use in washing machines, and to processes for making the coated detergent tablets.
  • GB-A-0 989 683 published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water- soluble silicate; and pressing the detergent particles into a solid form-retaining tablet.
  • a readily water-soluble organic film-forming polymer for example, polyvinyl alcohol
  • EP-A-0 002 293 published on 13th June 1979, discloses a tablet coating comprising hydrated salt such as acetate, metaborate, orthophosphate, tartrate, and sulphate.
  • EP-A-0 716 144 published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic co-polymer, polyethylene glycol, PVPVA, and sugar.
  • WO9518215 published on 6th July 1995, provides water-insoluble coatings for solid cast tablets.
  • the tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycol.
  • EP-A-0 846 754 published on the 10 th of June 1998, provides a tablet having a coating comprising a dicarboxylic acid, the coating material typically having a melting point of from 40°C to 200°C.
  • EP-A-0 846 755 published on the 10 th of June 1998, provides a tablet having a coating comprising a material insoluble in water at 25°C, such as C12-C22 fatty acids, adipic acid or C8-C13 dicarboxylic acids.
  • the present invention provides a means by which coated tablets can be provided with a coating so that they can be stored, shipped and handled without damage, the coating being easily broken when the tablet is in the washing machine, releasing the active ingredients into the wash solution.
  • the object of the present invention is to provide a tablet having a coating which is sufficiently hard to protect the tablet from mechanical forces when stored, shipped and handled, and disperses readily in an aqueous solution.
  • the object of the invention is achieved by providing a coated detergent tablet, the coating comprising a cation exchange resin.
  • Solidity of a tablet may be improved by making a coated tablet, the coating covering a non-coated tablet, thereby further improving the mechanical characteristics of the tablet while maintaining or further improving dissolution.
  • This very advantageously applies to multi-layer tablets, whereby the mechanical characteristics of a more elastic layer can be transmitted via the coating to the rest of the tablet, thus combining the advantage of the coating with the advantage of the more elastic layer. Indeed, mechanical constraints will be transmitted through the coating, thus improving mechanical integrity of the tablet.
  • the tablets may then be coated so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate.
  • the coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition.
  • the coating is preferably brittle so that the tablet breaks up quickly when subjected to stronger mechanical shock. Furthermore it is advantageous if the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This contributes to avoiding the problem of visible residue in the window of a front-loading washing machine during the wash cycle, and also avoids deposition of undissolved particles or lumps of coating material on the laundry load.
  • the coating material has a melting point preferably of from 40 °C to 200 °C.
  • the coating can be applied in a number of ways. Two preferred coating methods are a) coating with a molten material and b) coating with a solution of the material.
  • the coating material is applied at a temperature above its melting point, and solidifies on the tablet.
  • the coating is applied as a solution, the solvent being dried to leave a coherent coating.
  • the substantially insoluble material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material. During the solidification phase, the coating undergoes some internal stress (e.g. shrinkage upon cooling) and external stress (e.g. tablet relaxation).
  • the coating comprises a component which is liquid at 25°C. It is believed that this liquid component will allow the coating to better withstand and absorb mechanical stress by rendering the coating structure more flexible.
  • the component which is liquid at 25°C is preferably added to the coating materials in proportions of less than 10% by weight of the coating, more preferably less than 5% by weight, and most preferably of less than 3% by weight.
  • the component which is liquid at 25°C is preferably added to the coating materials in proportions of more than 0.1 % by weight of the coating, more preferably more than 0.3% by weight, and most preferably of more than 0.5% by weight. Further preferred is the addition of reinforcing fibres to the coating in order to further reinforce the structure.
  • the coating comprises a crystallised structure.
  • crystallised it should be understood that the coating comprises a material which is solid at ambient temperature (25°C) and has a structure exhibiting some order. This can be detected typically by usual crystallography techniques e.g. X-ray analysis, on the material itself.
  • the material forming the crystallised structure does not co-crystallised or only partially with the optional component which is liquid at 25°C mentioned above. Indeed, it is preferred that the optional component remains in the liquid state at 25°C in the coating crystalline structure in order to provide flexibility to the structure and resistance to mechanical stress.
  • the optional component which is liquid at 25°C may advantageously have a functionality in the washing of laundry, for example silicone oil which provides suds suppression benefits or perfume oil..
  • the coating comprises materials other than the optional component which is liquid at 25°C. Suitable coating materials are for example dicarboxylic acids.
  • Particularly suitable dicarboxylic acids are selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and mixtures thereof. Most preferred is adipic acid.
  • oxalic acid malonic acid
  • succinic acid glutaric acid
  • adipic acid pimelic acid
  • suberic acid azelaic acid
  • sebacic acid undecanedioic acid
  • dodecanedioic acid dodecanedioic acid
  • tridecanedioic acid tridecanedioic acid and mixtures thereof.
  • adipic acid Clearly substantially insoluble materials having a melting point below 40 °C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above
  • an acid having a melting point of more than 90°C such as azelaic, sebacic acid, dodecanedioic acid.
  • an acid having a melting point of more than 145°C such as adipic was found particularly suitable.
  • melting point is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
  • a coating of any desired thickness can be applied according to the present invention.
  • the coating forms from 1 % to 10%, preferably from 1.5% to 5%, of the tablet weight.
  • Tablet coatings are very hard and provide extra strength to the tablet.
  • optional components which are liquid at 25° are including PolyEthylene Glycols, thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions. It is preferred that the structure of the components which is liquid at 25°C is close to the material forming the crystallised structure, so that the structure is not excessively disrupted.
  • the crystallised structure is made of adipic acid, the component which is liquid at 25°C being available under the name CoasolTM from Chemoxy International, being a blend of the di-isobutyl esters of the glutaric, succinic and adipic acid. The advantage of the use of this component being the good dispersion in the adipic acid to provide flexibility. It should be noted that disintegration of the adipic acid is further improved by the adipate content of CoasolTM.
  • Fracture of the coating in the wash can be improved by adding a disintegrant in the coating.
  • This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution.
  • the disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5% and 20%, most preferably between 5 and 10% by weight. Possible disintegrants are described in Handbook of Pharmaceutical Excipients (1986).
  • Suitable disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacha des, ion exchange resins, polymers containing cationic (e.g. quaternary ammonium) groups, amine-substituted polyacrylates, polymerised cationic amino acids such as poly-L-lysine, polyallylamine hydrochloride) and mixtures thereof.
  • cationic e.g. quaternary ammonium
  • the coating comprises a cation exchange resin.
  • a cation exchange resin was particularly suitable as a disintegrant, and is more particularly preferred compared to anion exchange resins.
  • anion exchange resins would typically produce a so called "fishy" smell due to thermal degradation when used during a coating process.
  • Use of cation exchange resins according to the invention allows to prevent such "fishy" smell while maintaining the disintegration characteristics.
  • the coating comprises an acid having a melting temperature of at least 145°C, such as adipic acid for example, as well as a clay, such as a bentonite clay for example, whereby the clay is used as a disintegrant and also to render the structure of adipic acid more favourable for water penetration, thus improving the dispersion of the adipic acid in a aqueous medium.
  • a clay such as a bentonite clay for example
  • the acid has a melting point such that traditional cellulosic disintegrants undergo a thermal degradation during the coating process, whereas such clays are found to be more heat stable. Further, traditional cellulosic disintegrant such as NymcelTM for example are found to turn brown at these temperatures.
  • the coating further comprises reinforcing fibres.
  • Such fibres have been found to improve further the resistance of the coating to mechanical stress and minimise the splitting defect occurence.
  • Such fibres are preferably having a length of at least 100 ⁇ m, more preferably of at least 200 ⁇ m and most preferably of at least 250 ⁇ m to allow structure reinforcement.
  • Such fibres are preferably having a length of at less than 500 ⁇ m, more preferably of less than 400 ⁇ m and most preferably of less than 350 ⁇ m in order not to impact onto dispersion of the coating in an aqueous medium.
  • Materials which may be used for these fibres include viscose rayon, natural nylon, synthetic nylon (polyamides types 6 and 6,6), acrylic, polyester, cotton and derivatives of cellulose such as CMCs. Most preferred is a cellulosic material available under the trade mark Solka-FlocTM from Fibers Sales & Development. It should be noted that such fibres do not normally need pre-compression for reinforcing the coating structure. Such fibres are preferably added at a level of less than 5% by weight of the coating, more preferably less than 3% by weight. Such fibres are preferably added at a level of more than 0.5% by weight of the coating, more preferably more than 1 % by weight.
  • a preferred process for making a tablet according to the invention comprises the steps of:
  • Another preferred process for making a tablet according to the invention comprises the steps of : (a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
  • the tablets may comprise components such as fragrance, surfactants, enzymes, detergent etc....
  • Typical tablet compositions for the preferred embodiment of the present invention are disclosed in the pending European applications of the Applicant n° 96203471.6, 96203462.5, 96203473.2 and 96203464.1 for example.
  • Elements typically entering in the composition of detergent tablets or of other forms of detergents such as liquids or granules are detailed in the following paragraphs.
  • Preferred materials are cation exchange resins, typically as described in Kirk- Othmer's Encyclopedia of Chemical Technology, 4 th Edition, Volume 14, pp 738- 740. The substance of this passage is reproduced here for reference:
  • Strong acid Strong acid cation-exchange resins have sulfonic acid groups, -SO 3 H, attached to an insoluble polymeric matrix.
  • the functional groups are in the hydrogen form and the resin is in contact with a liquid containing other cations, hydrogen ions leave the solid phase and enter the liquid phase as they are replaced by cations from the liquid phase, for example,
  • the liquid phase is free of Na and the functional groups of the resin are converted to a sodium salt. Multivalent cations are removed in a similar manner. Electric charge neutrality must be maintained in both the liquid and solid phases.
  • the resin it is not always necessary for the resin to be in the hydrogen ion form for adsorption of cations, especially if a change in pH of the liquid phase is to be avoided (see also HYDROGEN-ION ACTIVITY).
  • softening of water both in homes and at industrial sites, is practiced by using the resin in the Na + form.
  • strong acid cation exchange resins are used in the hydrogen form to process liquids containing low concentrations of salts.
  • Ion-exchange reactions are reversible.
  • a regeneration procedure restores the resin to the ionic form it was prior to the adsorption step. Reversibility of reactions allows resins to be used many times before replacement is considered.
  • Strong acid cation exchangers are returned to the hydrogen, H + form with dilute hydrochloric acid [7647-01-0] or sulfuric acid [8014-95-7].
  • Other mineral acids are used at times. However, the safety, cost, and methods of disposal must be thoroughly reviewed before using other acids.
  • a 4% acid concentration is common. The use of higher or lower concentrations is dependent upon the process, the design of the system, and the potential for forming insoluble salts of the acid.
  • Weak acid has carboxylic groups, -
  • the sodium form of weak acid resins has exceptionally high selectivity for divalent cations in neutral, basic, and slightly acidic solutions.
  • styrene-divinylbenzene co- polymer which has been functionalised with sulfonic acid groups.
  • the sulfonic acid groups may be present in the acid form or as a salt with a metal counterion.
  • Many examples of these materials are commercially available; typical examples, sold by Rohm & Haas, are: Amberlite® IR-120(plus), Amberlite® IR-120(plus) sodium form and Amberlite® IRP-69.
  • Other examples, available from Dow Chemical are Dowex® 50WX8-100, Dowex® HCR-W2.
  • Weak acid cation exchange resins These are generally composed of co-polymers of a suitable alkenyl carboxylic acid (e.g. acrylic acid or methacrylic acid) with divinylbenzene.
  • the carboxylic groups may be present in the acid form or as a salt with a metal counterion.
  • Amberlite® IRP-64 Rost & Haas
  • Dowex® CCR-3(plus) Dowex® CCR-3(plus)
  • the strong acid cation exchange resins in alkali metal or alkaline earth metal salt form are found to be the most effective resins for the tablet coating application described.
  • ion exchange resins are employed beads of particle size of more than 300 micron. However, in certain applications it is preferred to use material of a lower particle size. Particle size reduction is typically carried out using suitable milling equipment, as described in EP 837110 (Rohm & Haas).
  • the resin is preferably ground to a mean particle size of less than 200 micron. More preferably it will be ground to have a particle size of less than 100 micron. In certain cases, resins may be prepared in specialised conditions to produce particles in the preferred particle size without the need for grinding. Moisture level:
  • the moisture level of resins can be determined by procedures described in Kirk- Othmer's Encyclopedia of Chemical Technology, 4 th Edition, Volume 14, pp 755- 756.
  • the resin will be dried using conventional techniques to obtain a moisture level of preferably less than 25%. More preferably, the moisture level will be less than 12%.
  • Examples of commercially available cation exchange resins which have both small particle size (less than 150 micron) and low moisture level (less than 12%) are sold by Purolite under the names Purolite® C100NaMR, a sodium salt sulfonated poly(styene-divinylbenzene) co-polymer and Purolite® CIOOCaMR, a calcium salt sulfonated poly(styene-divinylbenzene) co-polymer. These are produced for use in the pharmaceutical industry for the treatment of blood disorders but also make effective tablet coating disintegrants according to the present invention.
  • the tablet may comprise a highly soluble compound.
  • a highly soluble compound is defined as follow:
  • a solution is prepared as follows comprising de-ionised water as well as 20 grams per litre of a specific compound:
  • the measurement taken at 10 min is used as the plateau value or maximum value.
  • the specific compound is highly soluble according to the invention when the conductivity of the solution reaches 80% of its maximum value in less than 10 seconds, starting from the complete addition of the de-ionised water to the compound. Indeed, when monitoring the conductivity in such a manner, the conductivity reaches a plateau after a certain period of time, this plateau being considered as the maximum value.
  • Such a compound is preferably in the form of a flowable material constituted of solid particles at temperatures comprised between 10 and 80°Celsius for ease of handling, but other forms may be used such as a paste or a liquid.
  • Example of highly soluble compounds include Sodium di isobutylbenzene sulphonate (DIBS) or Sodium toluene sulphonate.
  • the tablet may comprise a compound having a Cohesive Effect on the particulate material of a detergent matrix forming the tablet.
  • the Cohesive Effect on the particulate material of a detergent matrix forming the tablet or a layer of the tablet is characterised by the force required to break a tablet or layer based on the examined detergent matrix pressed under controlled compression conditions. For a given compression force, a high tablet or layer strength indicates that the granules stuck highly together when they were compressed, so that a strong cohesive effect is taking place.
  • Means to assess tablet or layer strength are given in Pharmaceutical dosage forms : tablets volume 1 Ed. H.A. Lieberman et al, published in 1989.
  • the cohesive effect is measured by comparing the tablet or layer strength of the original base powder without compound having a cohesive effect with the tablet or layer strength of a powder mix which comprises 97 parts of the original base powder and 3 parts of the compound having a cohesive effect.
  • the compound having a cohesive effect is preferably added to the matrix in a form in which it is substantially free of water (water content below 10% (pref. below 5%)).
  • the temperature of the addition is between 10 and 80C, more pref. between 10 and 40C.
  • a compound is defined as having a cohesive effect on the particulate material according to the invention when at a given compacting force of 3000N, tablets with a weight of 50g of detergent particulate material and a diameter of 55mm have their tablet tensile strength increased by over 30% (preferably 60 and more preferably 100%) by means of the presence of 3% of the compound having a cohesive effect in the base particulate material.
  • An example of a compound having a cohesive effect is Sodium di isoalkylbenzene sulphonate.
  • the dissolution of the tablet or layer in an aqueous solution is significantly increased.
  • at least 1 % per weight of a tablet or layer is formed from the highly soluble compound, more preferably at least 2%, even more preferably at lest 3% and most preferably at least 5% per weight of the tablet or layer being formed from the highly soluble compound having a cohesive effect on the particulate material.
  • a composition comprising a highly soluble compound as well as a surfactant is disclosed in EP-A-0 524 075, this composition being a liquid composition.
  • a highly soluble compound having a cohesive effect on the particulate material allows to obtain a tablet having a higher tensile strength at constant compacting force or an equal tensile strength at lower compacting force when compared to traditional tablets.
  • a whole tablet will have a tensile strength of more than 5kPa, preferably of more than 10kPa, more preferably, in particular for use in laundry applications, of more than 15kPa, even more preferably of more than 30 kPa and most preferably of more than 50 kPa, in particular for use in dish washing or auto dish washing applications; and a tensile strength of less than 300 kPa, preferably of less than 200 kPa, more preferably of less than 100 kPa, even more preferably of less than 80 kPa and most preferably of less than 60 kPa.
  • the tablets should be less compressed than in case of auto dish washing applications for example, whereby the dissolution is more readily achieved, so that in a laundry application, the tensile strength is preferably of less than 30 kPa.
  • the tensile strength is preferably of less than 30 kPa.
  • the tablet may comprise several layers.
  • the layer may be considered as a tablet itself.
  • Detergent tablets can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry.
  • the principal ingredients in particular gelling surfactants, are used in particulate form.
  • Any liquid ingredients, for example surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients.
  • the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure.
  • the tablets according to the invention are compressed using a force of less than 100000N, more preferably of less than 50000N, even more preferably of less than 5000N and most preferably of less than 3000 N.
  • the most preferred embodiment is a tablet suitable for laundry compressed using a force of less than 2500N, but tablets for auto dish washing may also be considered for example, whereby such auto dish washing tablets are usually more compressed than laundry tablets.
  • the particulate material used for making a tablet can be made by any particulation or granulation process.
  • An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower.
  • Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers).
  • Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallisation sentering, etc.
  • Individual particles can also be any other particle, granule, sphere or grain.
  • the components of the particulate material may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s).
  • Non-gelling binder can be sprayed on to the mix of some, or all of, the components of the particulate material.
  • Other liquid ingredients may also be sprayed on to the mix of components either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed.
  • a finely divided flow aid (dusting agent such as zeolites, carbonates, silicas) can be added to the particulate material after spraying the binder, preferably towards the end of the process, to make the mix less sticky.
  • the tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®, Manesty®, or Bonals®).
  • the tablets prepared according to this invention preferably have a diameter of between 20mm and 60mm, preferably of at least 35 and up to 55 mm, and a weight between 25 and 100 g.
  • the ratio of height to diameter (or width) of the tablets is preferably greater than 1 :3, more preferably greater than 1 :2.
  • the compaction pressure used for preparing these tablets need not exceed 100000 kN/m 2 , preferably not exceed 30000 kN/m2, more preferably not exceed 5000 kN/m 2 , even more preferably not exceed 3000kN/m 2 and most preferably not exceed 1000kN/m 2 .
  • the tablet has a density of at least 0.9 g/cm 3 , more preferably of at least 1.0 g/cm 3 , and preferably of less than 2.0 g/cm 3 , more preferably of less than 1.5 g/cm 3 , even more preferably of less than 1.25 g/cm 3 and most preferably of less than 1.1 g/cm 3 .
  • Multi layered tablets are typically formed in rotating presses by placing the matrices of each layer, one after the other in matrix force feeding flasks. As the process continues, the matrix layers are then pressed together in the pre- compression and compression stages stations to form the multilayer layer tablet. With some rotating presses it is also possible to compress the first feed layer before compressing the whole tablet. Hydrotrope compound
  • a highly soluble compound having a cohesive effect may be integrated to a detergent tablet, whereby this compound is also a hydrotrope compound.
  • Such hydrotrope compound may be generally used to favour surfactant dissolution by avoiding gelling.
  • a specific compound is defined as being hydrotrope as follows (see S.E. Friberg and M. Chiu, J. Dispersion Science and Technology, 9(5&6), pages 443 to 457, (1988-1989)): 1.
  • a solution is prepared comprising 25% by weight of the specific compound and 75% by weight of water.
  • Octanoic Acid is thereafter added to the solution in a proportion of 1.6 times the weight of the specific compound in solution, the solution being at a temperature of 20°Celsius.
  • the solution is mixed in a Sotax beaker with a stirrer with a marine propeller, the propeller being situated at about 5mm above the bottom of the beaker, the mixer being set at a rotation speed of 200 rounds per minute.
  • the specific compound is hydrotrope if the the Octanoic Acid is completely solubilised, i.e . if the solution comprises only one phase, the phase being a liquid phase.
  • the hydrotrope compound is a flowable material made of solid particles at operating conditions between 15 and 60° Celsius.
  • Hydrotrope compounds include the compounds listed thereafter: A list of commercial hydrotropes could be found in McCutcheon's Emulsifiers and Detergents published by the McCutcheon division of Manufacturing Confectioners Company. Compounds of interest also include:
  • Anionic hydrotropes such as alkali metal aryl sulfonates. This includes alkali metal salts of benzoic acid, salicylic acid, bezenesulfonic acid and its many derivatives, naphthoic acid and various hydroaromatic acids.
  • sodium, potassium and ammonium benzene sulfonate salts derived from toluene sulfonic acid, xylene sulfonic acid, cumene sulfonic acid, tetralin sulfonic acid, naphtalene sulfonic acid, methyl- naphtalene sulfonic acid, dimethyl naphtalene sulfonic acid, trimethyl naphtalene sulfonic acid
  • Other examples include salts of dialkyl benzene sulfonic acid such as salts of di- isopropyl benzene sulfonic acid, ethyl methyl benzene sulfonic acid, alkyl benzene sulfonic acid with an alkyl chain length with 3 to 10, (pref.
  • alkoxylated glycerines and alkoxylated glycerides, esters slakoxylated glycerines, alkoxylated fatty acids, esters of glycerin, polyglycerol esters.
  • Preferred alkoxylated glycerines have the following structure:
  • Preferred alkoxylated glycerides have the following struture
  • R is H or a C1-C10 alkyl group or is a hydrophilic functional group;
  • R1 is H a lower alkyl group or an aromatic group,
  • R2 is H or a cyclic alkyl or aromatic group.
  • the polymer typically has a molecular weight of between about 1000 and 1000000. 5. Hydrotrope of unusual structure such as 5-carboxy-4-hexyl-2-cyclohexene-1-yl octanoic acid (Diacid®)
  • Such compound would further increase the dissolution rate of the tablet, as a hydrotrope compound facilitates dissolution of surfactants, for example.
  • a hydrotrope compound facilitates dissolution of surfactants, for example.
  • Such a compound could be formed from a mixture or from a single compound.
  • the layer may be considered as a tablet itself.
  • the used compacting force may be adjusted to not affect the tensile strength, and the disintegration time in the washing machine.
  • This process may be used to prepare homogenous or layered tablets of any size or shape.
  • the tensile strength corresponds to the diametrical fracture stress (DFS) which is a way to express the strength of a tablet or layer, and is determined by the following equation :
  • DFS diametrical fracture stress
  • F is the maximum force (Newton) to cause tensile failure (fracture) measured by a VK 200 tablet hardness tester supplied by Van Kell industries, Inc.
  • D is the diameter of the tablet or layer, and t the thickness of the tablet or layer. For a non round tablet, ⁇ D may simply be replaced by the perimeter of the tablet.
  • a tablet having a diametral fracture stress of less than 20 kPa is considered to be fragile and is likely to result in some broken tablets being delivered to the consumer.
  • a diametral fracture stress of at least 25 kPa is preferred. This applies similarly to non cylindrical tablets, to define the tensile strength, whereby the cross section normal to the height of the tablet is non round, and whereby the force is applied along a direction perpendicular to the direction of the height of the tablet and normal to the side of the tablet, the side being perpendicular to the non round cross section.
  • the rate of dispensing of a detergent tablet can be determined in the following way:
  • the water supply to the washing machine is set to a temperature of 20 °C and a hardness of 21 grains per gallon, the dispenser water inlet flow-rate being set to 8 l/min.
  • the level of tablet residues left in the dispenser is checked by switching the washing on and the wash cycle set to wash program 4 (white/colors, short cycle).
  • the dispensing percentage residue is determined as follows:
  • % dispensing residue weight x 100 / original tablet weight
  • the level of residues is determined by repeating the procedure 10 times and an average residue level is calculated based on the ten individual measurements. In this stressed test a residue of 40 % of the starting tablet weight is considered to be acceptable. A residue of less than 30% is preferred, and less than 25% is more preferred.
  • Detergent tablets may further comprise an effervescent.
  • Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C 6 H 8 O 7 + 3NaHCO 3 ⁇ Na3C6H 5 O 7 + 3C0 2 + 3H20
  • effervescent may be added to the tablet mix in addition to the detergent ingredients.
  • the addition of this effervescent to the detergent tablet improves the disintegration time of the tablet.
  • the amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet.
  • the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles. Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S.
  • disintegration time As a tablet without effervescency, the disintegration of the tablet with effervescency will be faster.
  • Further dissolution aid could be provided by using compounds such as sodium acetate or urea. A list of suitable dissolution aid may also be found in Pharmaceutical Dosage Forms: Tablets, Volume 1 , Second edition, Edited by H.A. Lieberman et all, ISBN 0-8247-8044-2.
  • Surfactant are typically comprised in a detergent composition.
  • the dissolution of surfactants is favoured by the addition of the highly soluble compound.
  • Nonlimiting examples of surfactants useful herein typically at levels from about 1 % to about 55%, by weight, include the conventional C ⁇ ⁇
  • the conventional nonionic and amphoteric surfactants such as the C-
  • AE alkyl ethoxylates
  • sulfobetaines especially C10-C18 amine oxides, and the like
  • C10-C18 amine oxides C10-C18 amine oxides, and the like
  • the C-I Q-CI S N-alkyl polyhydroxy fatty acid amides can also be used.
  • Typical examples include the C ⁇
  • Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C ⁇
  • the tablet comprises at least 5% per weight of surfactant, more preferably at least 15% per weight, even more preferably at least 25% per weight, and most preferably between 35% and 45% per weight of surfactant.
  • Non gelling binders can be integrated in detergent compositions to further facilitate dissolution.
  • suitable non-gelling binders include synthetic organic polymers such as polyethylene glycols, polyvinylpyrrolidones, polyacrylates and water-soluble acrylate copolymers.
  • binders classification Acacia, Alginic Acid, Carbomer, Carboxymethylcellulose sodium, Dextrin, Ethylcellulose, Gelatin, Guar gum, Hydrogenated vegetable oil type I, Hydroxyethyl cellulose, Hydroxypropyl methylcellulose, Liquid glucose, Magnesium aluminum silicate, Maltodextrin, Methylcellulose, polymethacrylates, povidone, sodium alginate, starch and zein.
  • binders also have an active cleaning function in the laundry wash such as cationic polymers, i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
  • cationic polymers i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
  • Non-gelling binder materials are preferably sprayed on and hence have an appropriate melting point temperature below 90°C, preferably below 70°C and even more preferably below 50°C so as not to damage or degrade the other active ingredients in the matrix.
  • non-aqueous liquid binders i.e. not in aqueous solution
  • they may also be solid binders incorporated into the matrix by dry addition but which have binding properties within the tablet.
  • Non-gelling binder materials are preferably used in an amount within the range from 0.1 to 15% of the composition, more preferably below 5% and especially if it is a non laundry active material below 2% by weight of the tablet.
  • gelling binders such as nonionic surfactants are avoided in their liquid or molten form.
  • Nonionic surfactants and other gelling binders are not excluded from the compositions, but it is preferred that they be processed into the detergent tablets as components of particulate materials, and not as liquids.
  • Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
  • Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • compositions herein function surprisingly well even in the presence of the so-called “weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
  • silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
  • Na SKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na 2 Si ⁇ 5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3, 417,649 and DE-A-3,742,043.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x O 2x + ⁇ yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11 , as the alpha, beta and gamma forms.
  • the delta- Na 2 SiO5 NaSKS-6 form
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula: M z (zAIO 2 ) y ] xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula: Na 12 [(AIO 2 ) 12 (SiO 2 ) 12 ]-xH 2 O wherein x is from about 20 to about 30, especially about 27.
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • alkali metals such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • Included among the polycarboxylate builders are a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S.
  • Patent 3,635,830 issued January 18, 1972. See also "TMSTDS" builders of U.S. Patent 4,663,071 , issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1 , 3, 5- trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid
  • various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1 ,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
  • succinic acid builders include the C5-C 2 rj alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane-1-hydroxy-1 ,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581 ; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137) can also be used.
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators.
  • bleaching agents will typically be at levels of from about 1 % to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering.
  • the amount of bleach activators will typically be from about 0.1 % to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino- 4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1 , 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used.
  • Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate” bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
  • Persulfate bleach e.g., OXONE, manufactured commercially by DuPont
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1 ,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1 ,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • Mixtures of bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyi ethylene diamine
  • amido-derived bleach activators are those of the formulae: Rl N(R5)C(O)R 2 C(O)L or R1 C(O)N(R5)R2C(O)L wherein R " ! is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6- octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzene- sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin- type is:
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
  • R ⁇ is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms.
  • Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof.
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos.
  • Preferred examples of these catalysts include Mn'V 2 (u-O) 3 (1 ,4,7-trimethyl-1 ,4,7- triazacyclononane) 2 (PF6) 2 , MnH ⁇ u-O)-] (u-OAc) 2 (1 ,4,7-trimethyl-l ,4,7- triazacyclononane) 2 .(Cl ⁇ 4) 2 , Mn ,V 4(u-O)6(1 ,4,7-triazacyclononane)4(CIO4)4, Mn Mn I 4(u-O) ⁇ (u-OAc) 2 .(1 ,4,7-trimethyl-1 ,4,7-triazacyclononane) 2 (CIO4) 3 , Mn'V(l ,4,7-trimethyl-1 ,4,7-triazacyclononane)- (OCH 3 ) 3 (PF ⁇ ), and
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161 ; and 5,227,084.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on.
  • bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition.
  • the compositions herein will typically comprise from about 0.001 % to about 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1 ,243,784 of Novo.
  • protealytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands).
  • proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
  • Amylases include, for example, ⁇ -amylases described in British Patent Specification No. 1 ,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • the cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S.
  • Patent 4,435,307, Barbesgoard et al issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander).
  • suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832.
  • CAREZYME Novo is especially useful.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1 ,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P.” Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
  • lipolyticum NRRLB 3673 commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo- peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • a wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S.
  • detergent compositions include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, suds suppressors, fabric softeners, dye transfer inhibition agents and perfumes.
  • the compounds disclosed above for a product are advantageously packed in a packaging system.
  • a packaging system may be formed from a sheet of flexible material.
  • Materials suitable for use as a flexible sheet include mono-layer, co-extruded or laminated films.
  • Such films may comprise various components, such as poly-ethylene, polypropylene, poly-styrene, poly-ethylene-terephtalate.
  • the packaging system is composed of a poly-ethylene and bi-oriented-poly-propylene co- extruded film with an MVTR of less than 5 g/day/m 2 .
  • the MVTR of the packaging system is preferably of less than 10 g/day/m 2 , more preferably of less than 5 g/day/m 2 .
  • the film (2) may have various thicknesses.
  • the thickness should typically be between 10 and 150 ⁇ m, preferably between 15 and 120 ⁇ m, more preferably between 20 and 100 ⁇ m, even more preferably between 25 and 80 ⁇ m and most preferably between 30 and 40 ⁇ m.
  • a packaging material preferably comprises a barrier layer typically found with packaging materials having a low oxygen transmission rate, typically of less than 300 cm 3 /m 2 /day, preferably of less than 150 cm 3 /m 2 /day, more preferably of less than 100 cm 3 /m 2 /day, even more preferably of less than 50 cm 3 /m 2 /day and most preferably of less than 10 cm 3 /m 2 /day.
  • Typical materials having such barrier properties include bi oriented polypropylene, poly ethylene terephthalate, Nylon, poly(ethylene vinyl alcohol) , or laminated materials comprising one of these, as well as SiOx (Silicium oxydes), or metallic foils such as aluminium foils for example.
  • Such packaging material may have a beneficial influence on the stability of the product during storage for example.
  • the packing method used are typically the wrapping methods disclosed in WO92/20593, including flow wrapping or over wrapping.
  • a longitudinal seal is provided, which may be a fin seal or an overlapping seal, after which a first end of the packaging system is closed with a first end seal, followed by closure of the second end with a second end seal.
  • the packaging system may comprise re-closing means as described in WO92/20593.
  • a cold seal or an adhesive is particularly suited.
  • a band of cold seal or a band of adhesive may be applied to the surface of the packaging system at a position adjacent to the second end of the packaging system, so that this band may provide both the initial seal and re- closure of the packaging system.
  • the adhesive or cold seal band may correspond to a region having a cohesive surface, i.e. a surface which will adhere only to another cohesive surface.
  • Such re-closing means may also comprise spacers which will prevent unwanted adhesion. Such spacers are described in WO 95/13225, published on the 18 th of May 1995.
  • a cold seal may be used, and in particular a grid of cold seal, whereby the cold seal is adapted so as to facilitate opening of the packaging system.
  • composition was prepared by mixing the dry-added materials followed b s ra in on of the erfume and binder.
  • Anionic agglomerate A include 40% anionic surfactant, 29% Zeolite and 20% Sodium carbonate.
  • Anionic agglomerate B include 40% anionic surfactant, 27% Zeolite and 11% Sodium carbonate.
  • Nonionic agglomerate comprises 25% nonionic surfactant, 7% polyethoxylated hexamethylene diamine (quaternary salt), 36% anhydrous sodium acetate , 20% sodium carbonate and 12% Zeolite.
  • Cationic agglomerate include 20% cationic surfactant and 56% Zeolite.
  • Bleach activator agglomerate comprises 81% TAED, 17% acrylic/maleic copolymer and 2% water.
  • Zinc Phthalocyanine sulfonate encapsulates are 10% active. Suds suppressor comprises 11.5% silicone oil and 88.5% starch.
  • Layered silicate comprises 95% SKS-6, 2.5% Sodium silicate-2.0R and 2.5% water.
  • Fluorescer contains Brightener 47 (70% active) and Brightener 49 (13% active).
  • Chelant particle contains ethylene diamine disuccinate and is 58% active.
  • the binder is polyethoxylated hexamethylene diamine (quaternary salt)
  • Adipic acid (du Pont LGA grade) was heated in a thermostatic bath to 163°C with gentle stirring until molten. The disintegrant was then added with continuous stirring so as to obtain a homogeneous suspension in the adipic acid. The tablets prepared as above were then dipped into the liquid then allowed to cool to give the final coated tablet.
  • Cellulosic disintegrant Nymcel® zsb16 commercially available from Metsa was used as the disintegrant in the above procedure at a level of 10% in coating mixture to yield a tablet having a total weight of 48g and a diametral fracture stress of 28 kPa.
  • the tablet had a pleasant odour, similar to that of the formulated perfume.
  • the time taken for the coating to begin to disintegrate was measured to be 25 seconds, judged by the start of effervescence from the tablet matrix
  • Anion exchange resin resin Dowex® 1X4-400 (ex. Rohm & Haas), sold wet in the particle size range 200-400 mesh (i.e. ⁇ 75 micron), was dried for 6h in an oven at 130°C. It was used as the disintegrant in the above procedure at a level of 3% in coating mixture to yield a tablet having a total weight of 48g and a diametral fracture stress of 28 kPa. This tablet was immersed in de-ionised water at 20°C the time taken for the coating to begin to disintegrate was measured to be 7 seconds, judged by the start of effervescence from the tablet matrix.
  • the tablet had an unpleasant fishy odour, likely to be due to resin decomposition leading to the formation of amines. It can be seen from the examples that small particle size ( ⁇ 200micron) cation exchange resins are disintegrants which are more effective at low levels in producing rapidly disintegrating tablet coatings than conventional cellulosic disintegrants. Moreover, they do not have the odours associated with the amine- functionalised anion exchange resins and are more cost effective than the anion exchange resins and are effective at much lower levels than conventional cellulosic disintegrants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a coated detergent tablet, the coating comprising a cation exchange resin.

Description

COATED DETERGENT TABLET
The present invention relates to coated detergent tablets, especially those adapted for use in washing machines, and to processes for making the coated detergent tablets.
Although cleaning compositions in tablet form have often been proposed, these have not (with the exception of soap bars for personal washing) gained any substantial success, despite the several advantages of products in a unit dispensing form. One of the reasons for this may be that detergent tablets require a relatively complex manufacturing process. In particular, it is often desirable to provide the tablet with a coating and this adds to the difficulties of manufacture.
While tablets without a coating are entirely effective in use, they usually lack the necessary surface hardness to withstand the abrasion that is a part of normal manufacture, packaging and handling. The result is that non-coated tablets suffer from abrasion during these processes, resulting in chipped tablets and loss of active material.
Finally, coating of tablets is often desired for aesthetic reasons, to improve the outer appearance of the tablet or to achieve some particular aesthetic effect. Numerous methods of tablet coating have been proposed, and many of these have been suggested for detergent tablets. However, all of these methods have certain disadvantages, as will be explained below.
GB-A-0 989 683, published on 22nd April 1965, discloses a process for preparing a particulate detergent from surfactants and inorganic salts; spraying on water- soluble silicate; and pressing the detergent particles into a solid form-retaining tablet. Finally a readily water-soluble organic film-forming polymer (for example, polyvinyl alcohol) provides a coating to make the detergent tablet resistant to abrasion and accidental breakage. EP-A-0 002 293, published on 13th June 1979, discloses a tablet coating comprising hydrated salt such as acetate, metaborate, orthophosphate, tartrate, and sulphate.
EP-A-0 716 144, published on 12th June 1996, also discloses laundry detergent tablets with water-soluble coatings which may be organic polymers including acrylic/maleic co-polymer, polyethylene glycol, PVPVA, and sugar.
WO9518215, published on 6th July 1995, provides water-insoluble coatings for solid cast tablets. The tablets are provided with hydrophobic coatings including wax, fatty acid, fatty acid amides, and polyethylene glycol.
EP-A-0 846 754, published on the 10th of June 1998, provides a tablet having a coating comprising a dicarboxylic acid, the coating material typically having a melting point of from 40°C to 200°C.
EP-A-0 846 755, published on the 10th of June 1998, provides a tablet having a coating comprising a material insoluble in water at 25°C, such as C12-C22 fatty acids, adipic acid or C8-C13 dicarboxylic acids.
EP-A-0 846 756, published on the 10th of June 1998, provides a tablet having a coating comprising a disintegrant material and preferably an effervescent material.
The present invention provides a means by which coated tablets can be provided with a coating so that they can be stored, shipped and handled without damage, the coating being easily broken when the tablet is in the washing machine, releasing the active ingredients into the wash solution.
The object of the present invention is to provide a tablet having a coating which is sufficiently hard to protect the tablet from mechanical forces when stored, shipped and handled, and disperses readily in an aqueous solution.
Summary of the Invention The object of the invention is achieved by providing a coated detergent tablet, the coating comprising a cation exchange resin.
Detailed Description of the Invention
Coating
Solidity of a tablet may be improved by making a coated tablet, the coating covering a non-coated tablet, thereby further improving the mechanical characteristics of the tablet while maintaining or further improving dissolution. This very advantageously applies to multi-layer tablets, whereby the mechanical characteristics of a more elastic layer can be transmitted via the coating to the rest of the tablet, thus combining the advantage of the coating with the advantage of the more elastic layer. Indeed, mechanical constraints will be transmitted through the coating, thus improving mechanical integrity of the tablet. In one embodiment of the present invention, the tablets may then be coated so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate. The coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition. Finally the coating is preferably brittle so that the tablet breaks up quickly when subjected to stronger mechanical shock. Furthermore it is advantageous if the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This contributes to avoiding the problem of visible residue in the window of a front-loading washing machine during the wash cycle, and also avoids deposition of undissolved particles or lumps of coating material on the laundry load.
Water solubility is measured following the test protocol of ASTM E1148-87 entitled, "Standard Test Method for Measurements of Aqueous Solubility". The coating material has a melting point preferably of from 40 °C to 200 °C. The coating can be applied in a number of ways. Two preferred coating methods are a) coating with a molten material and b) coating with a solution of the material.
In a), the coating material is applied at a temperature above its melting point, and solidifies on the tablet. In b), the coating is applied as a solution, the solvent being dried to leave a coherent coating. The substantially insoluble material can be applied to the tablet by, for example, spraying or dipping. Normally when the molten material is sprayed on to the tablet, it will rapidly solidify to form a coherent coating. When tablets are dipped into the molten material and then removed, the rapid cooling again causes rapid solidification of the coating material. During the solidification phase, the coating undergoes some internal stress (e.g. shrinkage upon cooling) and external stress (e.g. tablet relaxation). This will likely cause some cracks in the structure such as edge splitting if the coating material is too brittle to withstand these mechanical stress, which is the case when a coating is solely made from components solid at 25°C. Indeed, it is preferred that the coating comprises a component which is liquid at 25°C. It is believed that this liquid component will allow the coating to better withstand and absorb mechanical stress by rendering the coating structure more flexible. The component which is liquid at 25°C is preferably added to the coating materials in proportions of less than 10% by weight of the coating, more preferably less than 5% by weight, and most preferably of less than 3% by weight. The component which is liquid at 25°C is preferably added to the coating materials in proportions of more than 0.1 % by weight of the coating, more preferably more than 0.3% by weight, and most preferably of more than 0.5% by weight. Further preferred is the addition of reinforcing fibres to the coating in order to further reinforce the structure.
Preferably, the coating comprises a crystallised structure. By crystallised, it should be understood that the coating comprises a material which is solid at ambient temperature (25°C) and has a structure exhibiting some order. This can be detected typically by usual crystallography techniques e.g. X-ray analysis, on the material itself. In a more preferred embodiment, the material forming the crystallised structure does not co-crystallised or only partially with the optional component which is liquid at 25°C mentioned above. Indeed, it is preferred that the optional component remains in the liquid state at 25°C in the coating crystalline structure in order to provide flexibility to the structure and resistance to mechanical stress. In another embodiment, the optional component which is liquid at 25°C may advantageously have a functionality in the washing of laundry, for example silicone oil which provides suds suppression benefits or perfume oil..
The coating comprises materials other than the optional component which is liquid at 25°C. Suitable coating materials are for example dicarboxylic acids.
Particularly suitable dicarboxylic acids are selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid and mixtures thereof. Most preferred is adipic acid. Clearly substantially insoluble materials having a melting point below 40 °C are not sufficiently solid at ambient temperatures and it has been found that materials having a melting point above about 200 °C are not practicable to use. Preferably, an acid having a melting point of more than 90°C such as azelaic, sebacic acid, dodecanedioic acid. In a preferred embodiment, it was found that an acid having a melting point of more than 145°C such as adipic was found particularly suitable.
By "melting point" is meant the temperature at which the material when heated slowly in, for example, a capillary tube becomes a clear liquid.
A coating of any desired thickness can be applied according to the present invention. For most purposes, the coating forms from 1 % to 10%, preferably from 1.5% to 5%, of the tablet weight.
Tablet coatings are very hard and provide extra strength to the tablet. Examples of optional components which are liquid at 25° are including PolyEthylene Glycols, thermal oil, silicon oil, esters of dicarboxylic acids, mono carboxylic acids, parafin, triacetin, perfumes or alkaline solutions. It is preferred that the structure of the components which is liquid at 25°C is close to the material forming the crystallised structure, so that the structure is not excessively disrupted. In a most preferred embodiment, the crystallised structure is made of adipic acid, the component which is liquid at 25°C being available under the name Coasol™ from Chemoxy International, being a blend of the di-isobutyl esters of the glutaric, succinic and adipic acid. The advantage of the use of this component being the good dispersion in the adipic acid to provide flexibility. It should be noted that disintegration of the adipic acid is further improved by the adipate content of Coasol™.
Fracture of the coating in the wash can be improved by adding a disintegrant in the coating. This disintegrant will swell once in contact with water and break the coating in small pieces. This will improve the dissolution of the coating in the wash solution. The disintegrant is suspended in the coating melt at a level of up to 30%, preferably between 5% and 20%, most preferably between 5 and 10% by weight. Possible disintegrants are described in Handbook of Pharmaceutical Excipients (1986). Examples of suitable disintegrants include starch: natural, modified or pregelatinized starch, sodium starch gluconate; gum: agar gum, guar gum, locust bean gum, karaya gum, pectin gum, tragacanth gum; croscarmylose Sodium, crospovidone, cellulose, carboxymethyl cellulose, algenic acid and its salts including sodium alginate, silicone dioxide, clay, polyvinylpyrrolidone, soy polysacha des, ion exchange resins, polymers containing cationic (e.g. quaternary ammonium) groups, amine-substituted polyacrylates, polymerised cationic amino acids such as poly-L-lysine, polyallylamine hydrochloride) and mixtures thereof.
According to the invention, the coating comprises a cation exchange resin. Indeed, it was found that such a cation exchange resin was particularly suitable as a disintegrant, and is more particularly preferred compared to anion exchange resins. Indeed, it was found that anion exchange resins would typically produce a so called "fishy" smell due to thermal degradation when used during a coating process. Use of cation exchange resins according to the invention allows to prevent such "fishy" smell while maintaining the disintegration characteristics.
In a preferred embodiment, the coating comprises an acid having a melting temperature of at least 145°C, such as adipic acid for example, as well as a clay, such as a bentonite clay for example, whereby the clay is used as a disintegrant and also to render the structure of adipic acid more favourable for water penetration, thus improving the dispersion of the adipic acid in a aqueous medium. Preferred are clays having a particle size of less than 75 μm, more preferably of less than 53 μm, in order to obtain the desired effect on the structure of the acid. Preferred are bentonite clays. Indeed the acid has a melting point such that traditional cellulosic disintegrants undergo a thermal degradation during the coating process, whereas such clays are found to be more heat stable. Further, traditional cellulosic disintegrant such as Nymcel™ for example are found to turn brown at these temperatures.
In another preferred embodiment, the coating further comprises reinforcing fibres. Such fibres have been found to improve further the resistance of the coating to mechanical stress and minimise the splitting defect occurence. Such fibres are preferably having a length of at least 100 μm, more preferably of at least 200 μm and most preferably of at least 250 μm to allow structure reinforcement. Such fibres are preferably having a length of at less than 500 μm, more preferably of less than 400 μm and most preferably of less than 350 μm in order not to impact onto dispersion of the coating in an aqueous medium. Materials which may be used for these fibres include viscose rayon, natural nylon, synthetic nylon (polyamides types 6 and 6,6), acrylic, polyester, cotton and derivatives of cellulose such as CMCs. Most preferred is a cellulosic material available under the trade mark Solka-Floc™ from Fibers Sales & Development. It should be noted that such fibres do not normally need pre-compression for reinforcing the coating structure. Such fibres are preferably added at a level of less than 5% by weight of the coating, more preferably less than 3% by weight. Such fibres are preferably added at a level of more than 0.5% by weight of the coating, more preferably more than 1 % by weight.
A preferred process for making a tablet according to the invention comprises the steps of:
(a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being in the form of a melt; (c) allowing the molten coating material to solidify; characterised in that the coating comprises an ion exchange resin.
Another preferred process for making a tablet according to the invention comprises the steps of : (a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being dissolved in a solvent or water;
(c) allowing the solvent or water to evaporate; characterised in that the coating comprises an ion exchange resin.
The tablets may comprise components such as fragrance, surfactants, enzymes, detergent etc.... Typical tablet compositions for the preferred embodiment of the present invention are disclosed in the pending European applications of the Applicant n° 96203471.6, 96203462.5, 96203473.2 and 96203464.1 for example. Elements typically entering in the composition of detergent tablets or of other forms of detergents such as liquids or granules are detailed in the following paragraphs.
Cation exchange resins
Preferred materials are cation exchange resins, typically as described in Kirk- Othmer's Encyclopedia of Chemical Technology, 4th Edition, Volume 14, pp 738- 740. The substance of this passage is reproduced here for reference:
Strong acid. Strong acid cation-exchange resins have sulfonic acid groups, -SO3H, attached to an insoluble polymeric matrix. When the functional groups are in the hydrogen form and the resin is in contact with a liquid containing other cations, hydrogen ions leave the solid phase and enter the liquid phase as they are replaced by cations from the liquid phase, for example,
resin-SO3 "H+ + Na+ + OH" ^=^ resin-SO3 "Na+ + H2O
The liquid phase is free of Na and the functional groups of the resin are converted to a sodium salt. Multivalent cations are removed in a similar manner. Electric charge neutrality must be maintained in both the liquid and solid phases.
It is not always necessary for the resin to be in the hydrogen ion form for adsorption of cations, especially if a change in pH of the liquid phase is to be avoided (see also HYDROGEN-ION ACTIVITY). For example, softening of water, both in homes and at industrial sites, is practiced by using the resin in the Na+ form.
2 resin-SO3 "Na+ + Ca2+ + 2CI" =.== (resin-SO3 ")2 Ca2+ + 2 Na+ + 2 CI"
Sodium ions are displaced from the resin by calcium ions, for which the resin has a greater selectivity.
In many industrial applications, strong acid cation exchange resins are used in the hydrogen form to process liquids containing low concentrations of salts.
2 resin-SO3 "H+ + 2 Na+ + SO4 2" =-=^ 2 resin-SO3 "Na+ + 2 H+ + SO4 2" This is commonly referred to as a salt splitting reaction. The resin's selectivity for Na+ is greater than it is for H . Anions are removed in a similar manner with an anion exchange resin.
Ion-exchange reactions are reversible. A regeneration procedure restores the resin to the ionic form it was prior to the adsorption step. Reversibility of reactions allows resins to be used many times before replacement is considered. Strong acid cation exchangers are returned to the hydrogen, H+ form with dilute hydrochloric acid [7647-01-0] or sulfuric acid [8014-95-7]. Other mineral acids are used at times. However, the safety, cost, and methods of disposal must be thoroughly reviewed before using other acids. A 4% acid concentration is common. The use of higher or lower concentrations is dependent upon the process, the design of the system, and the potential for forming insoluble salts of the acid.
Weak acid. Weak acid cation exchange resins have carboxylic groups, -
COOH, attached to the polymeric matrix. Although not as versatile in process applications as the strong acid resins, these resins are included in numerous systems where higher operating capacities and greater ease in regeneration can be used advantageously. Weak acid cation exchangers have essentially no ability to split neutral salts such as sodium chloride [7647-14-5]. On the other hand, an exchange is favourable when the electrolyte is a salt of a strong base and a weak acid.
resin-COO"H+ + Na+ + HCO3 " =^ resin-COO"Na+ + H2CO3
The sodium form of weak acid resins has exceptionally high selectivity for divalent cations in neutral, basic, and slightly acidic solutions.
2 resin-COO"Na+ + Ca2+ + 2 CI" =^ (resin-COO")2Ca2+ + 2 Na+ + 2 CI"
The selectivity is so great that reversal of the reaction to restore the resin to the Na+ form is not practical using NaCI solutions at any concentration. Regeneration with dilute acid, followed by conversion of the resulting H+ form to the Na+ form with dilute sodium hydroxide [1310-73-2] is the preferred alternative.
Commercially available cation exchange resins Strong acid cation exchange resins
These are generally composed of an insoluble poly(styrene-divinylbenzene) co- polymer which has been functionalised with sulfonic acid groups. The sulfonic acid groups may be present in the acid form or as a salt with a metal counterion. Many examples of these materials are commercially available; typical examples, sold by Rohm & Haas, are: Amberlite® IR-120(plus), Amberlite® IR-120(plus) sodium form and Amberlite® IRP-69. Other examples, available from Dow Chemical, are Dowex® 50WX8-100, Dowex® HCR-W2. Other examples can be prepared to show optimal performance in the application by varying several chemical aspects of the resin such as degree of sulfonation, level of crosslinking, type of counterion, or the nature of any other monomers included in the polymerisation step. Weak acid cation exchange resins: These are generally composed of co-polymers of a suitable alkenyl carboxylic acid (e.g. acrylic acid or methacrylic acid) with divinylbenzene. The carboxylic groups may be present in the acid form or as a salt with a metal counterion. Many examples of these materials are commercially available; typical examples, are: Amberlite® IRP-64 (Rohm & Haas), Dowex® CCR-3(plus) (Dow Chemical). Other examples can be prepared to show optimal performance in the application by varying several chemical aspects of the resin such as the level and type of monomers included in the polymerisation step, the level of crosslinking or the type of counterion. Mixed functionality: Occasionally, cation exchange resins may contain both weak acid and strong acid functionality. These cannot be easily categorised into the above but are within the scope of the invention.
The strong acid cation exchange resins in alkali metal or alkaline earth metal salt form are found to be the most effective resins for the tablet coating application described.
Physical characteristics of cation exchange resins:
Particle size:
For most applications, ion exchange resins are employed beads of particle size of more than 300 micron. However, in certain applications it is preferred to use material of a lower particle size. Particle size reduction is typically carried out using suitable milling equipment, as described in EP 837110 (Rohm & Haas). For the purposes of the invention, the resin is preferably ground to a mean particle size of less than 200 micron. More preferably it will be ground to have a particle size of less than 100 micron. In certain cases, resins may be prepared in specialised conditions to produce particles in the preferred particle size without the need for grinding. Moisture level:
The moisture level of resins can be determined by procedures described in Kirk- Othmer's Encyclopedia of Chemical Technology, 4th Edition, Volume 14, pp 755- 756. For the purposes of the invention, the resin will be dried using conventional techniques to obtain a moisture level of preferably less than 25%. More preferably, the moisture level will be less than 12%.
Examples of commercially available cation exchange resins which have both small particle size (less than 150 micron) and low moisture level (less than 12%) are sold by Purolite under the names Purolite® C100NaMR, a sodium salt sulfonated poly(styene-divinylbenzene) co-polymer and Purolite® CIOOCaMR, a calcium salt sulfonated poly(styene-divinylbenzene) co-polymer. These are produced for use in the pharmaceutical industry for the treatment of blood disorders but also make effective tablet coating disintegrants according to the present invention.
Highly soluble Compounds
The tablet may comprise a highly soluble compound. Such a compound could be formed from a mixture or from a single compound. A highly soluble compound is defined as follow:
A solution is prepared as follows comprising de-ionised water as well as 20 grams per litre of a specific compound:
1- 20 g of the specific compound is placed in a Sotax Beaker. This beaker is placed in a constant temperature bath set at 10°C. A stirrer with a marine propeller is placed in the beaker so that the bottom of the stirrer is at 5 mm above the bottom of the Sotax beaker. The mixer is set at a rotation speed of 200 turns per minute.
2- 980 g of the de-ionised water is introduced into the Sotax beaker.
3- 10 s after the water introduction, the conductivity of the solution is measured, using a conductivity meter. 4- Step 3 is repeated after 20, 30, 40, 50, 1 min, 2 min, 5 min and 10 min after step 2.
5- The measurement taken at 10 min is used as the plateau value or maximum value. The specific compound is highly soluble according to the invention when the conductivity of the solution reaches 80% of its maximum value in less than 10 seconds, starting from the complete addition of the de-ionised water to the compound. Indeed, when monitoring the conductivity in such a manner, the conductivity reaches a plateau after a certain period of time, this plateau being considered as the maximum value. Such a compound is preferably in the form of a flowable material constituted of solid particles at temperatures comprised between 10 and 80°Celsius for ease of handling, but other forms may be used such as a paste or a liquid. Example of highly soluble compounds include Sodium di isobutylbenzene sulphonate (DIBS) or Sodium toluene sulphonate.
Cohesive Effect
The tablet may comprise a compound having a Cohesive Effect on the particulate material of a detergent matrix forming the tablet. The Cohesive Effect on the particulate material of a detergent matrix forming the tablet or a layer of the tablet is characterised by the force required to break a tablet or layer based on the examined detergent matrix pressed under controlled compression conditions. For a given compression force, a high tablet or layer strength indicates that the granules stuck highly together when they were compressed, so that a strong cohesive effect is taking place. Means to assess tablet or layer strength (also refer to diametrical fracture stress) are given in Pharmaceutical dosage forms : tablets volume 1 Ed. H.A. Lieberman et al, published in 1989. The cohesive effect is measured by comparing the tablet or layer strength of the original base powder without compound having a cohesive effect with the tablet or layer strength of a powder mix which comprises 97 parts of the original base powder and 3 parts of the compound having a cohesive effect. The compound having a cohesive effect is preferably added to the matrix in a form in which it is substantially free of water (water content below 10% (pref. below 5%)). The temperature of the addition is between 10 and 80C, more pref. between 10 and 40C.
A compound is defined as having a cohesive effect on the particulate material according to the invention when at a given compacting force of 3000N, tablets with a weight of 50g of detergent particulate material and a diameter of 55mm have their tablet tensile strength increased by over 30% (preferably 60 and more preferably 100%) by means of the presence of 3% of the compound having a cohesive effect in the base particulate material. An example of a compound having a cohesive effect is Sodium di isoalkylbenzene sulphonate.
When integrating a highly soluble compound having also a cohesive effect on the particulate material used for a tablet or layer formed by compressing a particulate material comprising a surfactant, the dissolution of the tablet or layer in an aqueous solution is significantly increased. In a preferred embodiment, at least 1 % per weight of a tablet or layer is formed from the highly soluble compound, more preferably at least 2%, even more preferably at lest 3% and most preferably at least 5% per weight of the tablet or layer being formed from the highly soluble compound having a cohesive effect on the particulate material. It should be noted that a composition comprising a highly soluble compound as well as a surfactant is disclosed in EP-A-0 524 075, this composition being a liquid composition.
A highly soluble compound having a cohesive effect on the particulate material allows to obtain a tablet having a higher tensile strength at constant compacting force or an equal tensile strength at lower compacting force when compared to traditional tablets. Typically, a whole tablet will have a tensile strength of more than 5kPa, preferably of more than 10kPa, more preferably, in particular for use in laundry applications, of more than 15kPa, even more preferably of more than 30 kPa and most preferably of more than 50 kPa, in particular for use in dish washing or auto dish washing applications; and a tensile strength of less than 300 kPa, preferably of less than 200 kPa, more preferably of less than 100 kPa, even more preferably of less than 80 kPa and most preferably of less than 60 kPa. Indeed, in case of laundry application, the tablets should be less compressed than in case of auto dish washing applications for example, whereby the dissolution is more readily achieved, so that in a laundry application, the tensile strength is preferably of less than 30 kPa. This allows to produce tablets or layers which have a solidity and mechanical resistance comparable to the solidity or mechanical resistance of traditional tablets while having a less compact tablet or layer thus dissolving more readily. Furthermore, as the compound is highly soluble, the dissolution of the tablet or layer is further facilitated, resulting in a synergy leading to facilitated dissolution for a tablet according to the invention.
Tablet Manufacture
The tablet may comprise several layers. For the purpose of manufacture of a single layer, the layer may be considered as a tablet itself. Detergent tablets can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry. Preferably the principal ingredients, in particular gelling surfactants, are used in particulate form. Any liquid ingredients, for example surfactant or suds suppressor, can be incorporated in a conventional manner into the solid particulate ingredients. In particular for laundry tablets, the ingredients such as builder and surfactant can be spray-dried in a conventional manner and then compacted at a suitable pressure. Preferably, the tablets according to the invention are compressed using a force of less than 100000N, more preferably of less than 50000N, even more preferably of less than 5000N and most preferably of less than 3000 N. Indeed, the most preferred embodiment is a tablet suitable for laundry compressed using a force of less than 2500N, but tablets for auto dish washing may also be considered for example, whereby such auto dish washing tablets are usually more compressed than laundry tablets.
The particulate material used for making a tablet can be made by any particulation or granulation process. An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower. Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers). Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallisation sentering, etc. Individual particles can also be any other particle, granule, sphere or grain.
The components of the particulate material may be mixed together by any conventional means. Batch is suitable in, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s). Non-gelling binder can be sprayed on to the mix of some, or all of, the components of the particulate material. Other liquid ingredients may also be sprayed on to the mix of components either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed. A finely divided flow aid (dusting agent such as zeolites, carbonates, silicas) can be added to the particulate material after spraying the binder, preferably towards the end of the process, to make the mix less sticky. The tablets may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®, Manesty®, or Bonals®). The tablets prepared according to this invention preferably have a diameter of between 20mm and 60mm, preferably of at least 35 and up to 55 mm, and a weight between 25 and 100 g. The ratio of height to diameter (or width) of the tablets is preferably greater than 1 :3, more preferably greater than 1 :2. The compaction pressure used for preparing these tablets need not exceed 100000 kN/m2, preferably not exceed 30000 kN/m2, more preferably not exceed 5000 kN/m2, even more preferably not exceed 3000kN/m2 and most preferably not exceed 1000kN/m2. In a preferred embodiment according to the invention, the tablet has a density of at least 0.9 g/cm3, more preferably of at least 1.0 g/cm3, and preferably of less than 2.0 g/cm3, more preferably of less than 1.5 g/cm3, even more preferably of less than 1.25 g/cm3 and most preferably of less than 1.1 g/cm3. Multi layered tablets are typically formed in rotating presses by placing the matrices of each layer, one after the other in matrix force feeding flasks. As the process continues, the matrix layers are then pressed together in the pre- compression and compression stages stations to form the multilayer layer tablet. With some rotating presses it is also possible to compress the first feed layer before compressing the whole tablet. Hydrotrope compound
A highly soluble compound having a cohesive effect may be integrated to a detergent tablet, whereby this compound is also a hydrotrope compound. Such hydrotrope compound may be generally used to favour surfactant dissolution by avoiding gelling. A specific compound is defined as being hydrotrope as follows (see S.E. Friberg and M. Chiu, J. Dispersion Science and Technology, 9(5&6), pages 443 to 457, (1988-1989)): 1. A solution is prepared comprising 25% by weight of the specific compound and 75% by weight of water.
2. Octanoic Acid is thereafter added to the solution in a proportion of 1.6 times the weight of the specific compound in solution, the solution being at a temperature of 20°Celsius. The solution is mixed in a Sotax beaker with a stirrer with a marine propeller, the propeller being situated at about 5mm above the bottom of the beaker, the mixer being set at a rotation speed of 200 rounds per minute.
3. The specific compound is hydrotrope if the the Octanoic Acid is completely solubilised, i.e . if the solution comprises only one phase, the phase being a liquid phase.
It should be noted that in a preferred embodiment of the invention, the hydrotrope compound is a flowable material made of solid particles at operating conditions between 15 and 60° Celsius. Hydrotrope compounds include the compounds listed thereafter: A list of commercial hydrotropes could be found in McCutcheon's Emulsifiers and Detergents published by the McCutcheon division of Manufacturing Confectioners Company. Compounds of interest also include:
1. Nonionic hydrotrope with the following structure:
R - O - (CH2CH20)x( CH -CH20)yH CH3 where R is a C8-C10 alkyl chain, x ranges from 1 to 15, y from 3 to 10.
2. Anionic hydrotropes such as alkali metal aryl sulfonates. This includes alkali metal salts of benzoic acid, salicylic acid, bezenesulfonic acid and its many derivatives, naphthoic acid and various hydroaromatic acids. Examples of these are sodium, potassium and ammonium benzene sulfonate salts derived from toluene sulfonic acid, xylene sulfonic acid, cumene sulfonic acid, tetralin sulfonic acid, naphtalene sulfonic acid, methyl- naphtalene sulfonic acid, dimethyl naphtalene sulfonic acid, trimethyl naphtalene sulfonic acid= Other examples include salts of dialkyl benzene sulfonic acid such as salts of di- isopropyl benzene sulfonic acid, ethyl methyl benzene sulfonic acid, alkyl benzene sulfonic acid with an alkyl chain length with 3 to 10, (pref. 4 to 9), linear or branched alkyl sulfonates with an alkyl chain with 1 to 18 carbons. 3. Solvent hydrotropes such as alkoxylated glycerines and alkoxylated glycerides, esters slakoxylated glycerines, alkoxylated fatty acids, esters of glycerin, polyglycerol esters. Preferred alkoxylated glycerines have the following structure:
where I, m and n are each a number from 0 to about 20, with l+m+n = from about 2 to about 60, preferably from about 10 to about 45 and R represents H, CH3 or C2H5 Preferred alkoxylated glycerides have the following struture
HC-R2
H2C-0-(CH 22 fCCHH-- 00))--Hl where R1 and R2 are each CnCOO or -(CH2CHR3-O)rH where R3 = H, CH3 or C2H5 and I is a number from 1 to about 60, n is a number from about 6 to about 24. 4. Polymeric hydrotropes such as those described in EP636687:
where E is a hydrophilic functional group,
R is H or a C1-C10 alkyl group or is a hydrophilic functional group; R1 is H a lower alkyl group or an aromatic group, R2 is H or a cyclic alkyl or aromatic group.
The polymer typically has a molecular weight of between about 1000 and 1000000. 5. Hydrotrope of unusual structure such as 5-carboxy-4-hexyl-2-cyclohexene-1-yl octanoic acid (Diacid®)
Use of such compound in the invention would further increase the dissolution rate of the tablet, as a hydrotrope compound facilitates dissolution of surfactants, for example. Such a compound could be formed from a mixture or from a single compound.
Tensile Strength
For the purpose of measuring tensile strength of a layer, the layer may be considered as a tablet itself.
Depending on the composition of the starting material, and the shape of the tablets, the used compacting force may be adjusted to not affect the tensile strength, and the disintegration time in the washing machine. This process may be used to prepare homogenous or layered tablets of any size or shape. For a cylindrical tablet, the tensile strength corresponds to the diametrical fracture stress (DFS) which is a way to express the strength of a tablet or layer, and is determined by the following equation : Tensile strength = 2 F/ πDt
Where F is the maximum force (Newton) to cause tensile failure (fracture) measured by a VK 200 tablet hardness tester supplied by Van Kell industries, Inc. D is the diameter of the tablet or layer, and t the thickness of the tablet or layer. For a non round tablet, πD may simply be replaced by the perimeter of the tablet.
(Method Pharmaceutical Dosage Forms : Tablets Volume 2 Page 213 to 217). A tablet having a diametral fracture stress of less than 20 kPa is considered to be fragile and is likely to result in some broken tablets being delivered to the consumer. A diametral fracture stress of at least 25 kPa is preferred. This applies similarly to non cylindrical tablets, to define the tensile strength, whereby the cross section normal to the height of the tablet is non round, and whereby the force is applied along a direction perpendicular to the direction of the height of the tablet and normal to the side of the tablet, the side being perpendicular to the non round cross section. Tablet Dispensing
The rate of dispensing of a detergent tablet can be determined in the following way:
Two tablets, nominally 50 grams each, are weighed, and then placed in the dispenser of a Baucknecht® WA9850 washing machine. The water supply to the washing machine is set to a temperature of 20 °C and a hardness of 21 grains per gallon, the dispenser water inlet flow-rate being set to 8 l/min. The level of tablet residues left in the dispenser is checked by switching the washing on and the wash cycle set to wash program 4 (white/colors, short cycle). The dispensing percentage residue is determined as follows:
% dispensing = residue weight x 100 / original tablet weight
The level of residues is determined by repeating the procedure 10 times and an average residue level is calculated based on the ten individual measurements. In this stressed test a residue of 40 % of the starting tablet weight is considered to be acceptable. A residue of less than 30% is preferred, and less than 25% is more preferred.
It should be noted that the measure of water hardness is given in the traditional "grain per gallon" unit, whereby 0.001 mole per litre = 7.0 grain per gallon, representing the concentration of Ca2+ ions in solution.
Effervescent
Detergent tablets may further comprise an effervescent.
Effervescency as defined herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble acid source and an alkali metal carbonate, to produce carbon dioxide gas, i.e. C6H8O7 + 3NaHCO3 Na3C6H5O7 + 3C02 + 3H20
Further examples of acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291 ). An effervescent may be added to the tablet mix in addition to the detergent ingredients. The addition of this effervescent to the detergent tablet improves the disintegration time of the tablet. The amount will preferably be between 5 and 20 % and most preferably between 10 and 20% by weight of the tablet. Preferably the effervescent should be added as an agglomerate of the different particles or as a compact, and not as separated particles. Due to the gas created by the effervescency in the tablet, the tablet can have a higher D.F.S. and still have the same disintegration time as a tablet without effervescency. When the D.F.S. of the tablet with effervescency is kept the same as a tablet without, the disintegration of the tablet with effervescency will be faster. Further dissolution aid could be provided by using compounds such as sodium acetate or urea. A list of suitable dissolution aid may also be found in Pharmaceutical Dosage Forms: Tablets, Volume 1 , Second edition, Edited by H.A. Lieberman et all, ISBN 0-8247-8044-2.
Detersive surfactants
Surfactant are typically comprised in a detergent composition. The dissolution of surfactants is favoured by the addition of the highly soluble compound. Nonlimiting examples of surfactants useful herein typically at levels from about 1 % to about 55%, by weight, include the conventional Cι <|_C<|8 a Iky I benzene sulfonates ("LAS") and primary, branched-chain and random C10-C20 alkyl sulfates ("AS"), the C-jo-Ciβ secondary (2,3) alkyl sulfates of the formula CH3(CH2)χ(CHOSθ3_M+) CH3 and CH3 (CH2)y(CHOSO3.M+) CH2CH3 where x and (y + 1 ) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C10-C18 alkyl alkoxy sulfates ("AEXS"; especially EO 1-7 ethoxy sulfates), C10-C18 alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-I8 glycerol ethers, the C-10-C18 alkyl polyglycosides and their corresponding sulfated polyglycosides, and C-|2_C-| 8 alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the C-| .C-|8 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C-ι alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), Cι2_C-| 8 betaines and sulfobetaines ("sultaines"), C10-C18 amine oxides, and the like, can also be included in the overall compositions. The C-I Q-CI S N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C<|2-C«|8 N-methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C<|rj-Ci8 N-(3-methoxypropyl) glucamide. The N-propyl through N-hexyl C-]2-Ci 8 glucamides can be used for low sudsing. Cιn-C2o conventional soaps may also be used. If high sudsing is desired, the branched-chain C-|o-C<| 6 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts. In a preferred embodiment, the tablet comprises at least 5% per weight of surfactant, more preferably at least 15% per weight, even more preferably at least 25% per weight, and most preferably between 35% and 45% per weight of surfactant.
Non gelling binders
Non gelling binders can be integrated in detergent compositions to further facilitate dissolution.
If non gelling binders are used, suitable non-gelling binders include synthetic organic polymers such as polyethylene glycols, polyvinylpyrrolidones, polyacrylates and water-soluble acrylate copolymers. The handbook of Pharmaceutical Excipients second edition, has the following binders classification: Acacia, Alginic Acid, Carbomer, Carboxymethylcellulose sodium, Dextrin, Ethylcellulose, Gelatin, Guar gum, Hydrogenated vegetable oil type I, Hydroxyethyl cellulose, Hydroxypropyl methylcellulose, Liquid glucose, Magnesium aluminum silicate, Maltodextrin, Methylcellulose, polymethacrylates, povidone, sodium alginate, starch and zein. Most preferable binders also have an active cleaning function in the laundry wash such as cationic polymers, i.e. ethoxylated hexamethylene diamine quaternary compounds, bishexamethylene triamines, or others such as pentaamines, ethoxylated polyethylene amines, maleic acrylic polymers.
Non-gelling binder materials are preferably sprayed on and hence have an appropriate melting point temperature below 90°C, preferably below 70°C and even more preferably below 50°C so as not to damage or degrade the other active ingredients in the matrix. Most preferred are non-aqueous liquid binders (i.e. not in aqueous solution) which may be sprayed in molten form. However, they may also be solid binders incorporated into the matrix by dry addition but which have binding properties within the tablet.
Non-gelling binder materials are preferably used in an amount within the range from 0.1 to 15% of the composition, more preferably below 5% and especially if it is a non laundry active material below 2% by weight of the tablet.
It is preferred that gelling binders, such as nonionic surfactants are avoided in their liquid or molten form. Nonionic surfactants and other gelling binders are not excluded from the compositions, but it is preferred that they be processed into the detergent tablets as components of particulate materials, and not as liquids.
Builders
Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
The level of builder can vary widely depending upon the end use of the composition. Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so- called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders. Examples of silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2Siθ5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3, 417,649 and DE-A-3,742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixO2x+ι yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11 , as the alpha, beta and gamma forms. As noted above, the delta- Na2SiO5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973. Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula: Mz(zAIO2)y] xH2O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264. Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula: Na12[(AIO2)12(SiO2)12]-xH2O wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter. Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred. Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMSTDS" builders of U.S. Patent 4,663,071 , issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
Other useful detergency builders include the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1 , 3, 5- trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1 ,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof. Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
Also suitable in the detergent compositions of the present invention are the 3,3- dicarboxy-4-oxa-1 ,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C2rj alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322. Fatty acids, e.g., C<|2-C<|8 monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator. In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane-1-hydroxy-1 ,1-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581 ; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137) can also be used.
Bleach
The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1 % to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1 % to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein. Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino- 4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1 , 1983. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al. Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used. A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1 ,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1 ,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
Mixtures of bleaching agents can also be used.
Peroxygen bleaching agents, the perborates, the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyi ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein. Highly preferred amido-derived bleach activators are those of the formulae: Rl N(R5)C(O)R2C(O)L or R1 C(O)N(R5)R2C(O)L wherein R"! is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred leaving group is phenyl sulfonate.
Preferred examples of bleach activators of the above formulae include (6- octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzene- sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incorporated herein by reference. Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference. A highly preferred activator of the benzoxazin- type is:
Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
wherein R^ is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate. Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine. If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621 , U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos. 549,271 A1 , 549.272A1 , 544.440A2, and 544.490A1 ; Preferred examples of these catalysts include Mn'V2(u-O)3(1 ,4,7-trimethyl-1 ,4,7- triazacyclononane)2(PF6)2, MnH^u-O)-] (u-OAc)2(1 ,4,7-trimethyl-l ,4,7- triazacyclononane)2.(Clθ4)2, Mn,V4(u-O)6(1 ,4,7-triazacyclononane)4(CIO4)4, Mn MnI 4(u-O)ι (u-OAc)2.(1 ,4,7-trimethyl-1 ,4,7-triazacyclononane)2(CIO4)3, Mn'V(l ,4,7-trimethyl-1 ,4,7-triazacyclononane)- (OCH3)3(PFβ), and mixtures thereof. Other metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161 ; and 5,227,084. As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
Enzymes
Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration. The enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases. Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001 % to about 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1 ,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
Amylases include, for example, α-amylases described in British Patent Specification No. 1 ,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries. The cellulase usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander). suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832. CAREZYME (Novo) is especially useful.
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1 ,372,034. See also lipases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341 ,947) is a preferred lipase for use herein. Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo- peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S. A wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. Patent 4,101 ,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261 ,868, Hora et al, issued April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
Other components which are commonly used in detergent compositions and which may be incorporated into detergent tablets include chelating agents, soil release agents, soil antiredeposition agents, dispersing agents, suds suppressors, fabric softeners, dye transfer inhibition agents and perfumes.
The compounds disclosed above for a product are advantageously packed in a packaging system.
A packaging system may be formed from a sheet of flexible material. Materials suitable for use as a flexible sheet include mono-layer, co-extruded or laminated films. Such films may comprise various components, such as poly-ethylene, polypropylene, poly-styrene, poly-ethylene-terephtalate. Preferably, the packaging system is composed of a poly-ethylene and bi-oriented-poly-propylene co- extruded film with an MVTR of less than 5 g/day/m2. The MVTR of the packaging system is preferably of less than 10 g/day/m2, more preferably of less than 5 g/day/m2. The film (2) may have various thicknesses. The thickness should typically be between 10 and 150 μm, preferably between 15 and 120 μm, more preferably between 20 and 100 μm, even more preferably between 25 and 80 μm and most preferably between 30 and 40 μm. A packaging material preferably comprises a barrier layer typically found with packaging materials having a low oxygen transmission rate, typically of less than 300 cm3/m2/day, preferably of less than 150 cm3/m2/day, more preferably of less than 100 cm3/m2/day, even more preferably of less than 50 cm3/m2/day and most preferably of less than 10 cm3/m2/day. Typical materials having such barrier properties include bi oriented polypropylene, poly ethylene terephthalate, Nylon, poly(ethylene vinyl alcohol) , or laminated materials comprising one of these, as well as SiOx (Silicium oxydes), or metallic foils such as aluminium foils for example. Such packaging material may have a beneficial influence on the stability of the product during storage for example. Among the packing method used are typically the wrapping methods disclosed in WO92/20593, including flow wrapping or over wrapping. When using such processes, a longitudinal seal is provided, which may be a fin seal or an overlapping seal, after which a first end of the packaging system is closed with a first end seal, followed by closure of the second end with a second end seal. The packaging system may comprise re-closing means as described in WO92/20593. In particular, using a twist, a cold seal or an adhesive is particularly suited. Indeed, a band of cold seal or a band of adhesive may be applied to the surface of the packaging system at a position adjacent to the second end of the packaging system, so that this band may provide both the initial seal and re- closure of the packaging system. In such a case the adhesive or cold seal band may correspond to a region having a cohesive surface, i.e. a surface which will adhere only to another cohesive surface. Such re-closing means may also comprise spacers which will prevent unwanted adhesion. Such spacers are described in WO 95/13225, published on the 18th of May 1995. There may also be a plurality of spacers and a plurality of strips of adhesive material. The main requirement is that the communication between the exterior and the interior of the package should be minimal, even after first opening of the packaging system. A cold seal may be used, and in particular a grid of cold seal, whereby the cold seal is adapted so as to facilitate opening of the packaging system.
EXAMPLES
The following composition was prepared by mixing the dry-added materials followed b s ra in on of the erfume and binder.
Anionic agglomerate A include 40% anionic surfactant, 29% Zeolite and 20% Sodium carbonate. Anionic agglomerate B include 40% anionic surfactant, 27% Zeolite and 11% Sodium carbonate.
Nonionic agglomerate comprises 25% nonionic surfactant, 7% polyethoxylated hexamethylene diamine (quaternary salt), 36% anhydrous sodium acetate , 20% sodium carbonate and 12% Zeolite.
Cationic agglomerate include 20% cationic surfactant and 56% Zeolite. Bleach activator agglomerate comprises 81% TAED, 17% acrylic/maleic copolymer and 2% water.
Zinc Phthalocyanine sulfonate encapsulates are 10% active. Suds suppressor comprises 11.5% silicone oil and 88.5% starch.
Layered silicate comprises 95% SKS-6, 2.5% Sodium silicate-2.0R and 2.5% water.
Fluorescer contains Brightener 47 (70% active) and Brightener 49 (13% active).
Chelant particle contains ethylene diamine disuccinate and is 58% active.
The binder is polyethoxylated hexamethylene diamine (quaternary salt)
A series of tablets was made according to the following example:
45g of this composition was introduced into a cylindrical tablet die with a diameter 54mm, and compressed using a Lloyd Instruments LR50 testing apparatus at a rate of 10 mm/minute. The resulting tablet was removed from the mould and its diametral fracture stress (s) calculated using the following equation, where F is the force applied to cause fracture (in Newton), D is the tablet diameter (in m) and h is the tablet height (in m). A Vankel VK-200 tablet hardness tester was used to measure the fracture force. The compression load was optimised so as to produce a diametral fracture stress of 11 (± 1 ) kPa, calculated using the following equation:
s (in Pa) = 2F πDh
A series of similar 11 (± 1 ) kPa tablets were prepared in this way for use in the following examples.
Tablet coating Adipic acid (du Pont LGA grade) was heated in a thermostatic bath to 163°C with gentle stirring until molten. The disintegrant was then added with continuous stirring so as to obtain a homogeneous suspension in the adipic acid. The tablets prepared as above were then dipped into the liquid then allowed to cool to give the final coated tablet.
Example
Cation exchange resin Amberlite® IRP-69 (ex. Rohm & Haas), sold wet in the particle size range 100-500 mesh (i.e. <150 micron), was dried for 6h in an oven at 130°C. It was used as the disintegrant in the above procedure at a level of 3% in coating mixture to yield a tablet having a total weight of 48g and a diametral fracture stress of 26 kPa. This tablet was immersed in de-ionised water at 20°C the time taken for the coating to begin to disintegrate was measured to be 5 seconds, judged by the start of effervescence from the tablet matrix The tablets had a pleasant odour, similar to that of the formulated perfume.
Comparative example A
Cellulosic disintegrant Nymcel® zsb16, commercially available from Metsa was used as the disintegrant in the above procedure at a level of 10% in coating mixture to yield a tablet having a total weight of 48g and a diametral fracture stress of 28 kPa. The tablet had a pleasant odour, similar to that of the formulated perfume. However, when this tablet was immersed in de-ionised water at 20°C the time taken for the coating to begin to disintegrate was measured to be 25 seconds, judged by the start of effervescence from the tablet matrix
Comparative example B
Anion exchange resin resin Dowex® 1X4-400 (ex. Rohm & Haas), sold wet in the particle size range 200-400 mesh (i.e. <75 micron), was dried for 6h in an oven at 130°C. It was used as the disintegrant in the above procedure at a level of 3% in coating mixture to yield a tablet having a total weight of 48g and a diametral fracture stress of 28 kPa. This tablet was immersed in de-ionised water at 20°C the time taken for the coating to begin to disintegrate was measured to be 7 seconds, judged by the start of effervescence from the tablet matrix. The tablet had an unpleasant fishy odour, likely to be due to resin decomposition leading to the formation of amines. It can be seen from the examples that small particle size (<200micron) cation exchange resins are disintegrants which are more effective at low levels in producing rapidly disintegrating tablet coatings than conventional cellulosic disintegrants. Moreover, they do not have the odours associated with the amine- functionalised anion exchange resins and are more cost effective than the anion exchange resins and are effective at much lower levels than conventional cellulosic disintegrants.

Claims

1. A coated detergent tablet, the coating comprising a cation exchange resin.
2. A coated detergent tablet according to claim 1 , whereby the coating comprises a component which is liquid at 25°C.
3. A tablet according to claim 1 wherein the coating further comprises a crystallised structure.
4. A tablet according to claim 3 wherein the material forming the crystallised structure is a dicarboxylic acid.
5. A tablet according to any of claims 1 or 4 wherein the coating consists essentially of adipic acid.
6. A tablet according to claim 1 , whereby the coating further comprises reinforcing fibres.
7. A tablet according to claim 1 , whereby the cation exchange resin is in particles having a size below 200 μm diameter.
8. A process for making a tablet according to any of the above claims comprising the steps of :
(a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder;
(b) applying a coating material to the core, the coating material being in the form of a melt; (c) allowing the molten coating material to solidify; characterised in that the coating comprises a cation exchange resin.
9. A process for making a tablet according to any of claims 1 to 7 comprising the steps of : (a) forming a core by compressing a particulate material, the particulate material comprising surfactant and detergent builder; (b) applying a coating material to the core, the coating material being dissolved in a solvent or water;
(c) allowing the solvent or water to evaporate; characterised in that the coating comprises a cation exchange resin.
10. A process for making a tablet according to any of claims 8 or 9, whereby the coating comprises an acid having a melting temperature of at least 145°C.
EP00950722A 1999-07-27 2000-07-26 Coated detergent tablet Withdrawn EP1198552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00950722A EP1198552A1 (en) 1999-07-27 2000-07-26 Coated detergent tablet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99870167A EP1072674A1 (en) 1999-07-27 1999-07-27 Coated detergent tablet
EP99870167 1999-07-27
PCT/US2000/020343 WO2001007559A1 (en) 1999-07-27 2000-07-26 Coated detergent tablet
EP00950722A EP1198552A1 (en) 1999-07-27 2000-07-26 Coated detergent tablet

Publications (1)

Publication Number Publication Date
EP1198552A1 true EP1198552A1 (en) 2002-04-24

Family

ID=8243878

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99870167A Withdrawn EP1072674A1 (en) 1999-07-27 1999-07-27 Coated detergent tablet
EP00950722A Withdrawn EP1198552A1 (en) 1999-07-27 2000-07-26 Coated detergent tablet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99870167A Withdrawn EP1072674A1 (en) 1999-07-27 1999-07-27 Coated detergent tablet

Country Status (9)

Country Link
EP (2) EP1072674A1 (en)
KR (1) KR20020011144A (en)
CN (1) CN1364192A (en)
AR (1) AR024958A1 (en)
AU (1) AU6378600A (en)
BR (1) BR0012758A (en)
CA (1) CA2379523A1 (en)
MX (1) MXPA02000923A (en)
WO (1) WO2001007559A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2258442T3 (en) * 2000-06-09 2006-09-01 THE PROCTER &amp; GAMBLE COMPANY PROCEDURE TO TREAT FABRICS WITH A DETERGENT PAD THAT INCLUDES AN ION EXCHANGE RESIN.
US20090325841A1 (en) 2008-02-11 2009-12-31 Ecolab Inc. Use of activator complexes to enhance lower temperature cleaning in alkaline peroxide cleaning systems
MX2019002639A (en) * 2016-09-07 2019-07-04 Ecolab Usa Inc Solid detergent compositions and methods of adjusting the dispense rate of solid detergents using solid anionic surfactants.
CN107384655A (en) * 2017-08-04 2017-11-24 诺圆环保科技(苏州)有限公司 Tablet handling process is used in washing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352938A (en) * 1989-07-20 1991-03-07 Lion Corp Production of cellulosic sponge
GB9422924D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions
EP0846754A1 (en) * 1996-12-06 1998-06-10 The Procter & Gamble Company Coated detergent tablet
ATE380235T1 (en) * 1996-12-06 2007-12-15 Procter & Gamble COATED CLEANING AGENT IN TABLET FORM
ATE360056T1 (en) * 1996-12-06 2007-05-15 Procter & Gamble COATED CLEANING AGENT IN TABLET FORM AND PRODUCTION METHOD THEREOF
EP0896053B1 (en) * 1997-08-08 2004-09-08 The Procter & Gamble Company Detergent tablet
EP0896052A1 (en) * 1997-08-08 1999-02-10 The Procter & Gamble Company Detergent tablet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0107559A1 *

Also Published As

Publication number Publication date
AU6378600A (en) 2001-02-13
CA2379523A1 (en) 2001-02-01
MXPA02000923A (en) 2002-07-30
BR0012758A (en) 2002-04-02
KR20020011144A (en) 2002-02-07
CN1364192A (en) 2002-08-14
EP1072674A1 (en) 2001-01-31
AR024958A1 (en) 2002-10-30
WO2001007559A1 (en) 2001-02-01

Similar Documents

Publication Publication Date Title
EP0846756B1 (en) Coated detergent tablet and the process for producing the same
EP1261687A1 (en) Solid bodies
EP0846754A1 (en) Coated detergent tablet
US6686329B1 (en) Multilayer detergent tablet with different hardness
EP0971028A1 (en) Detergent tablet with high dissolution and mechanical characteristics
WO2001034759A1 (en) Bleach-containing detergent tablets
EP1026228B1 (en) Coated detergent tablet
WO2000046340A1 (en) Coated detergent tablet
EP1198552A1 (en) Coated detergent tablet
US6846794B1 (en) Production process for detergent tablet
EP0979863A1 (en) Multilayer detergent tablet with different elasticities
EP0971029B1 (en) Detergent tablet with high mechanical and dissolution characteristics
EP1026227A1 (en) Coated detergent tablet
US20030114349A1 (en) Coating composition for solid bodies
EP1035197B1 (en) Production process for detergent tablet
EP0979862A1 (en) Multilayer detergent tablet with different hardness
EP0949327A1 (en) Shape and strength of detergent tablets
WO2001081522A1 (en) Coating composition for solid bodies
WO2001025391A1 (en) Detergent tablet with high dissolution and mechanical characteristics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031119